JP5427664B2 - SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method - Google Patents
SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method Download PDFInfo
- Publication number
- JP5427664B2 JP5427664B2 JP2010069120A JP2010069120A JP5427664B2 JP 5427664 B2 JP5427664 B2 JP 5427664B2 JP 2010069120 A JP2010069120 A JP 2010069120A JP 2010069120 A JP2010069120 A JP 2010069120A JP 5427664 B2 JP5427664 B2 JP 5427664B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- heat treatment
- magnetic material
- iron
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000696 magnetic material Substances 0.000 title claims description 29
- 239000000428 dust Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000006247 magnetic powder Substances 0.000 title claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 161
- 239000000843 powder Substances 0.000 claims description 99
- 238000010438 heat treatment Methods 0.000 claims description 77
- 239000012298 atmosphere Substances 0.000 claims description 39
- 229910052742 iron Inorganic materials 0.000 claims description 38
- 239000012535 impurity Substances 0.000 claims description 27
- 230000001590 oxidative effect Effects 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000000314 lubricant Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011261 inert gas Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 4
- 238000010410 dusting Methods 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims 5
- 229910045601 alloy Inorganic materials 0.000 claims 5
- 239000011247 coating layer Substances 0.000 claims 3
- 238000007664 blowing Methods 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 230000000694 effects Effects 0.000 description 21
- 229910052719 titanium Inorganic materials 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 229910052758 niobium Inorganic materials 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000009692 water atomization Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- 238000000465 moulding Methods 0.000 description 9
- 229910052684 Cerium Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910000398 iron phosphate Inorganic materials 0.000 description 3
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 3
- 239000005365 phosphate glass Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000009702 powder compression Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、鉄を主成分とする圧粉磁性体用軟磁性粉末、それを用いた圧粉磁性体,圧粉磁性体の製造方法に関する。 The present invention relates to a soft magnetic powder for dust magnetic material containing iron as a main component, a dust magnetic material using the same, and a method for producing a dust magnetic material.
軟磁性粉末を高圧下で圧縮成形することで製造する圧粉磁性体はモータや電源回路用リアクトル等の磁心に利用されている。圧粉の磁心は、一般に磁気特性が等方的で且つ3次元形状への成形が容易であり、例えば珪素鋼板を積層して製造する積層型磁心に比べて、モータ等の電動機に適用した場合その小型化,軽量化に寄与すると期待されている。特に軟磁性粉末としてFe粉末を使った圧粉磁性体は、安価であると共に、Fe粉の延性が高いため高密度となり磁束密度が増加する長所があるため、近年実用化に向けての開発が活発化している。 A powder magnetic material produced by compression-molding soft magnetic powder under high pressure is used for magnetic cores such as motors and reactors for power supply circuits. The magnetic core of the dust is generally isotropic in magnetic properties and can be easily formed into a three-dimensional shape. For example, when applied to an electric motor such as a motor compared to a laminated magnetic core manufactured by laminating silicon steel plates It is expected to contribute to the reduction in size and weight. In particular, a compact magnetic body using Fe powder as a soft magnetic powder is inexpensive and has the advantages of high density and high magnetic flux density due to the high ductility of Fe powder. It is becoming active.
圧粉磁性体に必要な特性として磁束密度が高いことに加えて、鉄損と呼ばれる交流磁場下での使用時に生じるエネルギー損失が低いことが重要である。鉄損は主として渦電流損失とヒステリシス損失の和で表される。渦電流損失は、圧粉磁性体を構成するFe粉末粒子間を流れる渦電流により生じるエネルギー損失である。渦電流損失を低下する工夫として、磁性体用のFe粉末の表面に薄い絶縁皮膜をコーティングすることが必要となる。 In addition to high magnetic flux density as a necessary characteristic of the dust magnetic material, it is important that energy loss generated during use under an alternating magnetic field called iron loss is low. Iron loss is mainly expressed as the sum of eddy current loss and hysteresis loss. Eddy current loss is energy loss caused by eddy current flowing between Fe powder particles constituting the dust magnetic material. As a device for reducing eddy current loss, it is necessary to coat a thin insulating film on the surface of the Fe powder for magnetic material.
一方、ヒステリシス損失は、Fe粉末内部の磁壁の移動に伴い発生する損失であり、Fe粉末内部の格子歪、すなわちそれを発生させる構造欠陥である空孔や格子間原子(所謂、点欠陥),転位及び粒界等の格子欠陥、また化学欠陥であるFe以外の不純物原子やそれらで構成される析出物の存在に強く影響される。ヒステリシス損失の低下には、Fe粉末の圧縮成形後の成形体に熱処理を行い、成形加工で導入されたFe粉末内部の歪を低減する必要がある。 On the other hand, the hysteresis loss is a loss generated with the movement of the domain wall inside the Fe powder, and the lattice distortion inside the Fe powder, that is, the vacancies and interstitial atoms (so-called point defects) that are structural defects that generate it. It is strongly influenced by the presence of lattice defects such as dislocations and grain boundaries, impurity atoms other than Fe which are chemical defects, and precipitates composed of them. In order to reduce the hysteresis loss, it is necessary to heat-treat the compact after the Fe powder compression molding to reduce the strain inside the Fe powder introduced by the molding process.
また圧粉磁性体の欠点として、圧粉成形のみで形状を決定するため、鉄心としての強度が著しく低い問題がある。圧粉磁性体を用いてモータを構成する場合、圧分磁性体の強度は10〜30MPaと電磁鋼板等の鉄叛より著しく低く、衝撃にも弱い。そこで、少なくともモータとして製造される時のハンドリングの荷重、モータとして動作する場合の固定子と回転子の間で生じるトルク反力、および外部からの衝撃,振動などに耐えられる強度対策が必要とされる。 Moreover, since the shape is determined only by compacting as a disadvantage of the compacted magnetic body, there is a problem that the strength as an iron core is extremely low. When a motor is constructed using a dust magnetic material, the strength of the pressure magnetic material is 10 to 30 MPa, which is significantly lower than that of an iron plate such as an electromagnetic steel plate, and is also susceptible to impact. Therefore, it is necessary to take strength measures that can withstand at least the handling load when manufactured as a motor, the torque reaction force generated between the stator and the rotor when operating as a motor, and external impact and vibration. The
圧粉磁性体の強度を向上する方法として、鉄心を樹脂で埋め込んで使用する方法(特許文献1)や、金属磁性粉末の粒径やその粉末の絶縁コーティング材を工夫することによる強度向上方法(特許文献2)が示されている。 As a method of improving the strength of the magnetic powder magnetic body, a method of using an iron core embedded in a resin (Patent Document 1), or a strength improvement method by devising the particle size of the metal magnetic powder and the insulating coating material of the powder ( Patent Document 2) is shown.
圧粉磁性体の強度向上のもう一つの方法として、圧粉成形後に水蒸気や大気雰囲気等の酸化雰囲気中における熱処理を行う方法がある。例えば特許文献3において、絶縁性無機被覆後に有機潤滑剤を混合した鉄粉末を圧粉成型後に300〜600℃の温度で、水蒸気中で熱処理する事例が示されている。ここでは圧粉成型後の磁性体に520℃の水蒸気中の熱処理を実施することで、抗折強度が100MPa以上(145MPa)、1T(テスラ),400Hzの鉄損W10/400が44W/kgの、圧粉磁性体として比較的高強度、低鉄損の優れた特性の材料が得られた結果が報告されている。文献3によると、水蒸気中の熱処理による圧粉磁性体の強度向上の理由として、鉄粉表面に酸化による皮膜が形成され、酸化皮膜を媒介として鉄粉間の結合力が増加すると説明されている。
圧粉磁性体の強度を向上する従来技術にはいずれも課題がある。圧粉鉄心を樹脂で埋め込む場合は、モータとしての重量が増加する、製造工程が複雑になる等の課題がある。また鉄粉の粒径を過度に大きくする手法は渦電流損失の増加につながる欠点がある。
As another method for improving the strength of the powder magnetic body, there is a method of performing heat treatment in an oxidizing atmosphere such as water vapor or air atmosphere after the compacting. For example,
All of the conventional techniques for improving the strength of the dust magnetic material have problems. When embedding a dust core with resin, there are problems such as an increase in weight as a motor and a complicated manufacturing process. Moreover, the method of excessively increasing the particle size of the iron powder has a drawback that leads to an increase in eddy current loss.
また、水蒸気や大気雰囲気等の酸化雰囲気中における圧粉磁性体の熱処理では、酸化皮膜の成長により鉄損が増大する課題がある。本発明者のグループにて、絶縁性無機被覆を施した鉄粉末に0.4%の有機潤滑剤を混合し、成型を実施した後に500℃以上の水蒸気、あるいは大気雰囲気にて10分の熱処理を行った結果、不活性雰囲気の窒素ガス中熱処理の場合と比較して、圧粉磁性体の鉄損W10/400の値は1.4〜1.5倍増加する結果となった。水蒸気および大気雰囲気における熱処理時の鉄損増加は、酸化による皮膜厚さが増して高強度化する半面、酸化の影響が鉄粉内部まで進むことによると考えられる。 Moreover, in the heat treatment of the magnetic powder compact in an oxidizing atmosphere such as water vapor or air atmosphere, there is a problem that iron loss increases due to the growth of the oxide film. In the group of the present inventors, 0.4% organic lubricant was mixed with iron powder coated with an insulating inorganic coating, and after forming, heat treatment at 500 ° C. or higher, or heat treatment for 10 minutes in air As a result, the iron loss W10 / 400 value of the magnetic powder body increased by 1.4 to 1.5 times compared to the case of heat treatment in an inert atmosphere of nitrogen gas. The increase in iron loss during heat treatment in water vapor and in the atmosphere is thought to be due to the fact that the thickness of the film increases due to oxidation and the strength increases, while the influence of oxidation proceeds to the inside of the iron powder.
本発明の目的は、圧粉磁性体の酸化雰囲気中の熱処理の際の、鉄粉表面に生じる酸化皮膜の成長と、鉄粉内部への酸化の影響を適切に制御することで、圧粉磁性体の鉄損の増加を防ぐと共に、モータ部品としての製造、使用時に必要な強度を付与する圧粉磁性体用軟磁性粉末、それを用いた圧粉磁性体および製造方法を提供することにある。 The object of the present invention is to appropriately control the growth of an oxide film formed on the surface of the iron powder and the effect of oxidation on the inside of the iron powder during the heat treatment in the oxidizing atmosphere of the powdered magnetic material. An object of the present invention is to provide a soft magnetic powder for a dust magnetic body that prevents the increase in iron loss of the body and provides the strength required for manufacture and use as a motor component, a dust magnetic body using the same, and a manufacturing method .
本発明は、鉄を主成分とする圧粉磁性体用軟磁性粉末であって、前記粉末は、Ceを0.005〜0.03質量%と、Nb,Tiの少なくともいずれかを0.001〜0.02質量%と、不可避の金属不純物を0.25質量%以下とを含み、前記粉末は、表面に形成された酸化層と、内部母相に析出した析出粒子を含み、前記析出粒子の平均粒子径が0.02μm以上0.5μm以下であることを特徴とする。 The present invention is a soft magnetic powder for dusting magnetic material containing iron as a main component, wherein the powder has 0.005 to 0.03 mass% of Ce and 0.001 of at least one of Nb and Ti. -0.02 mass% and 0.25 mass% or less of inevitable metal impurities, the powder includes an oxide layer formed on the surface and precipitated particles precipitated in an internal matrix, and the precipitated particles The average particle size of is 0.02 μm or more and 0.5 μm or less.
本発明によれば、圧粉磁性体の酸化雰囲気中の熱処理の際の、鉄粉表面に生じる酸化皮膜の成長と、鉄粉内部への酸化の影響を適切に制御することで、圧粉磁性体の鉄損の増加を防ぐと共に、モータ部品としての製造、使用時に必要な強度を付与する圧粉磁性体用軟磁性粉末を提供することができる。 According to the present invention, by appropriately controlling the growth of the oxide film formed on the surface of the iron powder and the effect of oxidation inside the iron powder during the heat treatment in the oxidizing atmosphere of the powder magnetic material, It is possible to provide a soft magnetic powder for a dusting magnetic material that prevents an increase in iron loss of the body and provides strength necessary for manufacturing and use as a motor component.
本発明の圧粉磁性体は、水アトマイズ法により作製される鉄粉を原料とする。水アトマイ後の鉄粉に対し、主として酸素を対象とするガス不純物を低減する目的で、水素を含む還元雰囲気中における熱処理を800〜1000℃で実施して、鉄粉を純化する。純化された鉄粉の表面に、リン酸等に代表される絶縁特性に優れた物質により被覆する処理を行い、さらに潤滑剤を添加した複合粉末として、プレスにより圧粉成型体とする。最後に、圧粉成型体の磁気特性阻害の要因となる歪を除去する目的から、400〜600℃にて熱処理を行い、軟磁性部材として各種製品に適用する。 The powder magnetic body of the present invention uses iron powder produced by a water atomization method as a raw material. The iron powder after water atomization is subjected to a heat treatment in a reducing atmosphere containing hydrogen at a temperature of 800 to 1000 ° C. for the purpose of reducing gas impurities mainly for oxygen, thereby purifying the iron powder. The surface of the purified iron powder is coated with a material having excellent insulating properties such as phosphoric acid, and a powder compact is formed by pressing as a composite powder to which a lubricant is added. Finally, heat treatment is performed at 400 to 600 ° C. and applied to various products as a soft magnetic member for the purpose of removing the strain that is a factor that hinders the magnetic properties of the green compact.
原料である鉄粉は、水アトマイズ法により作製され、微粉化中に水との反応で生成するOを多く含有し、ガスアトマイズ粉末のようにC,S含有量は多くない。酸素原子は、圧粉成形性,成形加工の熱処理による歪の除去(より低温での一次再結晶化)の阻害になる。従って、鉄損の増大を招く惧れがある。そのため本発明では、ガス不純物O,C,Nの作用低減のために、上記ガス不純物O,C,Nと親和力が強い元素を適切な組成範囲に制御して添加し、粉末中に残存するそれらを上記添加元素と共に析出物として母相から取り出すことで、水アトマイズFe粉末の母相をより清浄化する材料組織制御方法,材料の製造方法を考案した。 The iron powder as a raw material is produced by a water atomizing method, contains a large amount of O produced by reaction with water during pulverization, and does not have as much C and S content as a gas atomized powder. Oxygen atoms interfere with compaction moldability and strain removal (primary recrystallization at a lower temperature) by heat treatment during molding. Therefore, there is a risk of increasing iron loss. Therefore, in the present invention, in order to reduce the action of the gas impurities O, C, N, elements having a strong affinity with the gas impurities O, C, N are controlled to be added within an appropriate composition range, and those remaining in the powder are added. A material structure control method and a material manufacturing method have been devised in which the parent phase of the water atomized Fe powder is further cleaned by taking out from the parent phase as a precipitate together with the above-described additive elements.
本発明では、ガス不純物O,C,Nの作用低減のために、水アトマイズ後に十分な水素熱処理を実施して、粉末中に含有するガス不純物量を低減し、かつ、上記ガス不純物と親和力が強い元素を適切な組成範囲に制御して添加し、残存するガス不純物を酸化物,炭化物,窒化物、及びそれらの複合化合物として凝集する。さらに、添加元素と共に析出物として母相から取り出すことで、水アトマイズ鉄粉末の母相をより清浄化する。具体的には、添加元素としてCeおよびNbあるいはTiのうち、少なくとも一種以上を含有させる。添加量は、粉末の変形抵抗,一次再結晶温度,圧粉成形体の鉄損を低減できるところの適切な範囲で添加する必要がある。 In the present invention, in order to reduce the action of the gas impurities O, C, N, sufficient hydrogen heat treatment is performed after water atomization to reduce the amount of gas impurities contained in the powder, and the affinity to the gas impurities is high. Strong elements are added within a suitable composition range, and the remaining gas impurities are aggregated as oxides, carbides, nitrides, and complex compounds thereof. Furthermore, the mother phase of the water atomized iron powder is further cleaned by taking out from the parent phase as a precipitate together with the additive element. Specifically, at least one of Ce, Nb, and Ti is added as an additive element. The addition amount must be added within an appropriate range that can reduce the deformation resistance of the powder, the primary recrystallization temperature, and the iron loss of the green compact.
さらに、十分な水素熱処理を実施して、粉末中に含有するガス不純物量を低減することも可能である。水アトマイズ法で粉末にした後に、粉末を800℃〜1000℃の温度範囲で水素ガスを含む還元雰囲気中で熱処理すると、ガス不純物濃度を低減できる。かつ、残留するガス不純物についても、添加元素と共に析出物として凝集されて、粗大化して粉末母相を清浄化する。その結果、新規の安価な軟磁性Fe粉末とそれを製造する材料組織制御技術,材料製造方法を提供することができる。 Further, it is possible to reduce the amount of gas impurities contained in the powder by performing sufficient hydrogen heat treatment. If the powder is heat treated in a reducing atmosphere containing hydrogen gas in a temperature range of 800 ° C. to 1000 ° C. after being powdered by the water atomization method, the gas impurity concentration can be reduced. Further, the remaining gas impurities are also aggregated as precipitates together with the additive elements, and are coarsened to clean the powder matrix. As a result, it is possible to provide a new inexpensive soft magnetic Fe powder, a material structure control technique for manufacturing the powder, and a material manufacturing method.
ここで不純物元素とそれらを固定化する安定化元素を含むFe粉末の作製方法について説明する。本発明のFe粉末は水アトマイズ法により作製する。Cr,Mn,Siを含む不可避不純物の下記組成範囲を満足するように原料鉄を選定して、るつぼなどの容器に入れ、高温に加熱して溶融状態とするが、CeおよびNbあるいはTiから選ばれる1種以上の元素を同時添加し、攪拌し均一化する。この段階で所定の化学組成となった溶融鉄に、高圧の水を吹付けて急冷凝固させ、微粉化して回収する。 Here, a method for producing an Fe powder containing impurity elements and a stabilizing element for immobilizing them will be described. The Fe powder of the present invention is produced by a water atomization method. Raw material iron is selected so as to satisfy the following composition range of inevitable impurities including Cr, Mn, and Si, put in a container such as a crucible, and heated to a high temperature to be in a molten state, but selected from Ce and Nb or Ti One or more elements to be added simultaneously are added and stirred to homogenize. At this stage, the molten iron having a predetermined chemical composition is rapidly solidified by spraying high-pressure water, and then pulverized and recovered.
本発明で用いる圧粉成形用Fe粉末は、水アトマイズ処理直後には上記したように多量のOを含有する。表面層は酸化層に被覆され、内部の母相にも多くの酸素が急冷固溶する。水アトマイズ粉末のOの低減には、上記のCeおよびNbあるいはTiを添加する処理に加えて、水素を含む還元ガス中の熱処理を併用すると効果的である。この効果が顕著となる温度範囲は800℃以上、1000℃以下である。1000℃以上は粉末の凝集,焼結が促進されすぎることから、また、800℃以下は水素処理の安全面から好ましくない。 The Fe powder for compacting used in the present invention contains a large amount of O as described above immediately after the water atomization treatment. The surface layer is covered with an oxide layer, and a large amount of oxygen is rapidly cooled and dissolved in the inner matrix. In order to reduce O in the water atomized powder, it is effective to use heat treatment in a reducing gas containing hydrogen in addition to the above-described treatment of adding Ce and Nb or Ti. The temperature range in which this effect is remarkable is 800 ° C. or higher and 1000 ° C. or lower. Above 1000 ° C, powder aggregation and sintering are promoted too much, and below 800 ° C is not preferable from the safety aspect of hydrogen treatment.
添加元素であるCeおよびNbあるいはTiの添加量は、ガス不純物(O,C,N)の含有量、及び特にOと強く結合しやすい不可避不純物に依存する。このような不可避不純物としては、特に不純物として多く存在するSi,Mn,Crの影響が大きい。Si,Mn,Cr量を質量%で合計0.15%以下、O,C,Nを合計0.05%(原子%では概ね0.18%)以下とすることが望ましい。圧粉成形用Fe粉末の好ましい特性を得るためには、水素熱処理を行った粉末の不可避不純物量は、経済性,生産性を含め考慮すると、質量%で原子番号9以上の元素が0.25%以下、原子番号8以下の元素が0.05%以下の範囲である必要がある。原子番号9以上の元素は多くが金属元素である。特に、製造上Cr,Mn,Siが多く含有される傾向にあり、制限が必要である。 The amount of addition of Ce and Nb or Ti, which are additive elements, depends on the content of gas impurities (O, C, N) and especially on the inevitable impurities that are likely to be strongly bonded to O. As such inevitable impurities, the influence of Si, Mn, Cr, which is present as a large amount of impurities, is particularly large. It is desirable that the amount of Si, Mn, and Cr is 0.15% or less in terms of mass%, and the total amount of O, C, and N is 0.05% (approximately 0.18% in terms of atomic%) or less. In order to obtain desirable characteristics of the powder for forming green powder, the amount of unavoidable impurities in the powder subjected to the hydrogen heat treatment is 0.25% by mass in terms of element% of atomic number 9 or more, considering economy and productivity. % Or less and an element having an atomic number of 8 or less needs to be in a range of 0.05% or less. Many of the elements having an atomic number of 9 or more are metal elements. In particular, there is a tendency to contain a large amount of Cr, Mn, and Si in production, and a restriction is necessary.
Crは、O,C,Nに対する凝集作用を期待でき、含有量を質量%で0.03%以下とする。含有量が質量%で0.03%を越えると、製造過程でFe粉末の表面から内部に拡散してきたOと反応して、安定なCr酸化物を多数形成する。従って、圧粉成形体のひずみの熱回復を遅らせてヒステリシス損失の増大を招くため好ましくない。 Cr can be expected to have an aggregating effect on O, C, and N, and its content is 0.03% or less by mass%. When the content exceeds 0.03% by mass%, it reacts with O diffused from the surface of the Fe powder in the production process to form many stable Cr oxides. Therefore, it is not preferable because the thermal recovery of the strain of the green compact is delayed to increase the hysteresis loss.
Mnは、製造上多く存在する。Mnの含有量は、質量%で0.1%以下とする。質量%で0.1%を越えると、Crと同様にFe粉末の製造過程で表面から内部に拡散してきたOと反応して、安定なMn酸化物を多数形成することで、圧粉成形体のひずみの熱回復を遅らせてヒステリシス損失の増大を招くため好ましくない。 Mn is abundant in production. The Mn content is 0.1% or less by mass. If it exceeds 0.1% by mass, it reacts with O diffused from the surface in the process of producing Fe powder in the same manner as Cr to form a large number of stable Mn oxides, thereby forming a compacted compact. This is not preferable because the thermal recovery of the strain is delayed and the hysteresis loss is increased.
Siは、酸化物生成自由エネルギーが小さく、酸化物をより形成し易く、さらに安定であるため粗大化しにくい。従って、できるだけ含有量を抑え、質量%で0.02%以下とすることが好ましい。質量%で0.02%を越えると、鉄粉の製造過程で表面から内部に拡散してきたOと反応して、安定なSi酸化物を多数形成することで、圧粉成形体のひずみの熱回復を遅らせてヒステリシス損失の増大を招く。 Si has a small oxide generation free energy, is easy to form an oxide, and is more stable, so it is difficult to coarsen. Therefore, it is preferable to suppress the content as much as possible and to make it 0.02% or less by mass%. If it exceeds 0.02% by mass, it reacts with O diffused from the surface to the inside during the production process of iron powder to form a large number of stable Si oxides. Delays recovery and increases hysteresis loss.
原子番号8以下の不可避不純物の元素では、C,O,Nがほとんどを占める。水アトマイズ粉末では、C、N量の合計は質量%で0.002%以下とする。上記した理由でC,N量は低く、さらに水素熱処理により低減できる。ガス不純物ではOが大部分を占める。
水素熱処理した水アトマイズ粉末のO量は、表面酸化層も含めて、最大でも概ね0.05%(原子%で概ね0.18%)近く、C,O,Nの合計では質量%で0.05%以下が好ましい。
Of the inevitable impurity elements having an atomic number of 8 or less, C, O, and N account for the majority. In the water atomized powder, the total amount of C and N is 0.002% or less in mass%. For the reasons described above, the amounts of C and N are low and can be further reduced by hydrogen heat treatment. O accounts for the majority of gas impurities.
The amount of O in the water atomized powder subjected to hydrogen heat treatment, including the surface oxide layer, is approximately 0.05% at maximum (approximately 0.18% in atomic%) at the maximum, and the total amount of C, O, and N is 0.1% in mass%. 05% or less is preferable.
次に本発明で必須の添加元素の効果について説明する。Ceは鉄粉中のOの除去において効果的な役割をする。水アトマイズ処理中に急冷でFe粉末に凍結されるOは上記した800℃〜1000℃範囲の水素熱処理において除去され、残留量は上記熱処理中にNbを含む酸化物として析出し、処理時間共にそれらの析出物は粗大化して粉末母相を清浄化する。酸化物はFe中に含有する他の金属元素との複合酸化物であってもよい。その清浄化によってFe粉末の変形抵抗,一次再結晶温度,圧粉成形体の鉄損を下げる効果が増大する。 Next, effects of the additive elements essential in the present invention will be described. Ce plays an effective role in the removal of O in the iron powder. O which is frozen into Fe powder by rapid cooling during the water atomization treatment is removed in the above-described hydrogen heat treatment in the range of 800 ° C. to 1000 ° C., and the remaining amount is precipitated as an oxide containing Nb during the heat treatment. The precipitate is coarsened to clean the powder matrix. The oxide may be a complex oxide with other metal elements contained in Fe. The effect of reducing the deformation resistance of the Fe powder, the primary recrystallization temperature, and the iron loss of the green compact is increased by the cleaning.
Ce添加によるもうひとつの効果は、絶縁被覆処理および潤滑剤を混入した鉄粉に対しプレスによる圧粉成型を行った後の、ひずみ除去熱処理の段階で重要となる。本発明において圧粉成型体のひずみ回復熱処理は、後述するように成型体に十分な強度を付与する目的から、大気あるいは不活性ガスに20%以下の酸素を加えた酸化雰囲気中において実施する。酸化雰囲気中の熱処理段階で、成型体を構成する個々の鉄粉の表面には鉄を主体とする酸化皮膜が形成されるが、本発明材においては酸化皮膜がCeを含むことで緻密化して、皮膜厚さの過度の増加を抑制する。さらにCeを含む酸化皮膜は、熱処理中の酸素の鉄粉内部への拡散を抑制する作用があり、これらのCe添加の効果により、本発明の圧粉磁性材料は、酸化雰囲気中のひずみ回復熱処理後においても、鉄損が増加することなく、優れた磁気特性を発揮することが可能となる。 Another effect of Ce addition becomes important at the stage of heat treatment for removing strains after the insulating coating treatment and the iron powder mixed with the lubricant are compacted by pressing. In the present invention, the strain recovery heat treatment of the green compact is carried out in an oxidizing atmosphere in which 20% or less of oxygen is added to the atmosphere or an inert gas for the purpose of imparting sufficient strength to the compact as described later. In the heat treatment stage in an oxidizing atmosphere, an oxide film mainly composed of iron is formed on the surface of each iron powder constituting the molded body. In the present invention material, however, the oxide film is densified by containing Ce. Suppresses excessive increase in film thickness. Further, the oxide film containing Ce has an action of suppressing diffusion of oxygen into the iron powder during the heat treatment. Due to the effect of adding Ce, the dust magnetic material of the present invention is subjected to strain recovery heat treatment in an oxidizing atmosphere. Even later, it is possible to exhibit excellent magnetic properties without increasing iron loss.
Ceの添加量は、質量%で0.05%を越えると特に鉄粉中の酸化物の密度が増え、粗大化に伴う母相の清浄化効果を損なうため、0.05%以下が好ましく、0.002%を切ると母相の清浄化効果、ならびにひずみ回復熱処理時の酸化皮膜の緻密化の効果より低減するため、0.05%〜0.003%の範囲における添加が好適である。 The amount of Ce added is preferably 0.05% or less because the density of the oxide in the iron powder particularly increases when the mass percentage exceeds 0.05% and the cleaning effect of the parent phase accompanying coarsening is impaired. Addition in the range of 0.05% to 0.003% is preferable because when the content is less than 0.002%, the effect of cleaning the parent phase and the effect of densifying the oxide film during strain recovery heat treatment are reduced.
NbおよびTiは、O及びC,Nの除去において効果的な役割をする。水アトマイズ処理中に急冷でFe粉末に凍結されるO及びC,Nは上記した800℃〜1000℃範囲の水素還元熱処理において除去され、残留量は上記熱処理中にNbあるいはTiを含む酸化物として、またはごく少量の炭化物,窒化物として析出し、処理時間共にそれらの析出物は粗大化して粉末母相を清浄化する。酸化物はFe中に含有する他の金属元素との複合酸化物であってもよい。その清浄化によってFe粉末の変形抵抗,一次再結晶温度,圧粉成形体の鉄損を下げる効果が増大する。 Nb and Ti play an effective role in removing O, C, and N. O, C, and N that are frozen into Fe powder by rapid cooling during the water atomization treatment are removed in the hydrogen reduction heat treatment in the range of 800 ° C. to 1000 ° C., and the residual amount is converted into an oxide containing Nb or Ti during the heat treatment. Or precipitate as a very small amount of carbides and nitrides, and the precipitates become coarser with the treatment time to clean the powder matrix. The oxide may be a complex oxide with other metal elements contained in Fe. The effect of reducing the deformation resistance of the Fe powder, the primary recrystallization temperature, and the iron loss of the green compact is increased by the cleaning.
本発明においてNbまたはTiはもうひとつの重要な役割を持つ。水素還元熱処理の段階で鉄粉内部に残留した酸素不純物は、添加元素のCe,Nb,Ti、あるいは不可避不純物として含まれるCr,Mn,Si等と反応して酸化物として析出する。NbおよびTiはこれらの複数種の酸化物が析出する際に、析出の核となり周囲に異なる種類の酸化物粒子を凝集する作用がある。このNbおよびTiの酸化物の凝集効果により、鉄粉内部から多数の微細な酸化物粒子が除去されて、鉄粉の清浄化が促進される。この析出の際の酸化物の凝集効果はCe添加では発揮されない。一方でNbまたはTiは、Ceの持つひずみ回復熱処理時の酸化皮膜の緻密化の効果は少ない。このため本発明では、Ceと共にNbまたはTiを同時に鉄粉に添加することで、優れた材料特性を発揮することができる。 In the present invention, Nb or Ti has another important role. Oxygen impurities remaining inside the iron powder at the stage of the hydrogen reduction heat treatment react with the additive elements Ce, Nb, Ti or Cr, Mn, Si, etc. contained as inevitable impurities, and precipitate as oxides. Nb and Ti act as a nucleus of precipitation when these types of oxides precipitate, and have the effect of aggregating different types of oxide particles around them. Due to the aggregation effect of the oxides of Nb and Ti, many fine oxide particles are removed from the inside of the iron powder, and cleaning of the iron powder is promoted. The effect of the oxide aggregation during the precipitation is not exhibited by the addition of Ce. On the other hand, Nb or Ti has little effect of densifying the oxide film during strain recovery heat treatment of Ce. For this reason, in this invention, the outstanding material characteristic can be exhibited by adding Nb or Ti to iron powder simultaneously with Ce.
Nbの添加量は、質量%で0.03%を越えると特に酸化物の密度が増え、粗大化に伴う母相の清浄化効果を損なうため、0.03%以下が好ましく、0.002%を切ると効果がより低減するため、0.002%〜0.03%の範囲が好適である。 The amount of Nb added is preferably 0.03% or less, and is preferably 0.002% or less because the density of the oxide increases particularly when the amount exceeds 0.03% by mass% and the effect of cleaning the parent phase accompanying coarsening is impaired. Since the effect is further reduced by cutting off, a range of 0.002% to 0.03% is preferable.
Tiの添加量は、そのO及びC,Nとの結合力がNbよりも強く、原子%で0.02%を越えるとそれらの析出物の密度が増え、かつより安定的で、粗大化に伴う母相の清浄化効果をより損なうことから、0.02%以下の制限を設定することが好適であり、また0.002%までで十分効果が期待できるため、0.002%〜0.02%の範囲がより好適である。Tiと同時にNbを添加する場合はNbを含めた合計で0.002%〜0.03%の範囲が好ましい。 The added amount of Ti is stronger in bonding strength with O, C, and N than Nb, and when the atomic percent exceeds 0.02%, the density of the precipitates increases, and it is more stable and coarse. Since the cleaning effect of the parent phase is further impaired, it is preferable to set a limit of 0.02% or less, and since a sufficient effect can be expected up to 0.002%, 0.002% to 0.02%. A range of 02% is more preferred. When Nb is added simultaneously with Ti, the total content including Nb is preferably in the range of 0.002% to 0.03%.
本発明の水素熱処理水アトマイズ鉄粉末は、該粉末の圧縮成形における塑性変形の阻害(抵抗)となるO,C,Nのガス不純物を低減する水素熱処理及びCeおよびNあるいはTiが添加されていることから、該粉末の平均のマイクロビッカース硬さは低減され、120以下である。このことから同じ成形体密度を得る成形圧力も従来粉末成形体より低減される。 The hydrogen heat treatment water atomized iron powder of the present invention is added with hydrogen heat treatment and Ce, N, or Ti for reducing O, C, and N gas impurities that inhibit (resistance) plastic deformation in compression molding of the powder. Therefore, the average micro Vickers hardness of the powder is reduced to 120 or less. Therefore, the molding pressure for obtaining the same molded body density is also reduced as compared with the conventional powder molded body.
本発明の水素還元熱処理した水アトマイズ鉄粉末を、金型成形にて高圧下で過度の塑性変形をさせ、圧粉成形体とする。圧扮成型体としての磁気特性、特に渦電流損失の低減を目的として、鉄粉表面に絶縁皮膜を施行する。絶縁皮膜の材質は十分な絶縁性が保たれるならば、特に規定されないが耐熱性と絶縁特性を兼ね備えた鉄リン酸ガラス(Fe−P−O)かそれに化学組成が近い無機系材料の使用が好ましい。また鉄リン酸ガラスの外側に有機系皮膜などを積層した、複合絶縁皮膜を採用してもよい。 The water atomized iron powder subjected to the hydrogen reduction heat treatment of the present invention is excessively plastically deformed under high pressure by molding to obtain a green compact. An insulating film is applied to the iron powder surface for the purpose of reducing the magnetic properties of the compacted body, especially eddy current loss. As long as the insulation film has sufficient insulating properties, it is not particularly specified, but iron phosphate glass (Fe-PO), which has both heat resistance and insulation properties, or an inorganic material with a similar chemical composition is used. Is preferred. Moreover, you may employ | adopt the composite insulating film which laminated | stacked the organic type film | membrane etc. on the outer side of iron phosphate glass.
圧粉成形の際の成形性を付与する目的で、絶縁皮膜を施行した鉄粉に潤滑剤を混入した複合粉末として、成型に用いることが好ましい。潤滑剤の材質は特に規定を設けないが、従来からの公知のものを使用すればよく、具体的にはステアリン酸亜鉛,ステアリン酸リチウム等の金属塩粉末およびその他のワックス等が挙げられる。潤滑剤の添加量を過度に増やすと、圧粉成型体の密度が低下して磁気特性を阻害する要因となる。また添加量が少ないと抜出しが困難になる等の成形性が低下する。0.05〜0.8質量%の範囲で潤滑剤を添加することが好ましい。 For the purpose of imparting moldability at the time of compacting, it is preferably used for molding as a composite powder in which a lubricant is mixed in iron powder subjected to an insulating film. The material of the lubricant is not particularly specified, but conventionally known materials may be used, and specific examples thereof include metal salt powders such as zinc stearate and lithium stearate and other waxes. If the addition amount of the lubricant is excessively increased, the density of the green compact is lowered, which becomes a factor that hinders magnetic properties. Moreover, when there is little addition amount, moldability, such as extraction becoming difficult, will fall. It is preferable to add a lubricant in the range of 0.05 to 0.8 mass%.
前述の圧粉成型体に対して、歪を除去して磁気特性を改善する、特にヒステリシス損失を低減する目的から、400〜600℃にて熱処理を実施する。成型体の歪除去熱処理は、本来は窒素,アルゴンなどの不活性ガス雰囲気での実施の方が、酸化による鉄損増加を防ぐ目的からは好ましい。しかし、不活性ガス雰囲気で熱処理された圧粉成型体の強度は、10〜30MPaと低いことが欠点である。本発明では、歪除去熱処理を酸化性雰囲気、具体的には大気、あるいは不活性ガス中に20質量%以下の酸素を含む雰囲気で実施して、鉄粉を酸化させて圧粉成型体の強度を向上する。 For the purpose of removing distortion and improving magnetic properties, particularly reducing hysteresis loss, the above-mentioned green compact is subjected to heat treatment at 400 to 600 ° C. The strain-removing heat treatment of the molded body is originally preferably performed in an inert gas atmosphere such as nitrogen or argon for the purpose of preventing an increase in iron loss due to oxidation. However, it is a disadvantage that the strength of the green compact molded by heat treatment in an inert gas atmosphere is as low as 10 to 30 MPa. In the present invention, the strain-removing heat treatment is performed in an oxidizing atmosphere, specifically in the atmosphere or an atmosphere containing oxygen of 20% by mass or less in an inert gas to oxidize iron powder and thereby improve the strength of the green compact. To improve.
本発明の鉄粉は表面に絶縁被膜が被覆されさらに潤滑剤が添加された状態で、圧粉成型される。このため圧粉成型体を構成する鉄粉間の界面は結合力が非常に弱く、不活性ガス雰囲気中の歪除去熱処理後も、界面の結合力はほとんど増加しない。一方で、大気、あるいは水蒸気等の酸化性雰囲気の歪除去熱処理では、鉄粉表面にFe3O4を主体とする酸化被膜が形成される。異なる鉄粉表面の酸化被膜が粉末界面で接触し、一部で酸化層が結合することにより、圧粉成型体の強度は大きく改善する。その反面、熱処理による酸化皮膜の厚みが過度に増加する場合、先に施工した鉄リン酸ガラス等の絶縁被膜の一部を破壊し、渦電流損失の増加につながる問題がある。さらに、酸化被膜下部の鉄粉内部にも酸素が拡散により侵入することで、鉄粉の純度が低下し、ヒステリシス損失も増加する。このように、酸化雰囲気中の熱処理は成形体強度の改善に有効である一方で、鉄損の増加による磁気特性の低下に繋がる課題がある。 The iron powder of the present invention is compacted in a state in which an insulating coating is coated on the surface and a lubricant is added. For this reason, the bonding force between the iron powders constituting the green compact is very weak, and the bonding force at the interface hardly increases even after the strain removing heat treatment in the inert gas atmosphere. On the other hand, in the strain removal heat treatment in an oxidizing atmosphere such as air or water vapor, an oxide film mainly composed of Fe 3 O 4 is formed on the iron powder surface. The oxide film on the surface of different iron powder comes into contact with the powder interface, and the oxide layer is partially bonded, whereby the strength of the green compact is greatly improved. On the other hand, when the thickness of the oxide film due to heat treatment is excessively increased, there is a problem that a part of the insulating film such as iron phosphate glass previously applied is destroyed, leading to an increase in eddy current loss. Further, oxygen penetrates into the iron powder below the oxide film by diffusion, so that the purity of the iron powder is lowered and hysteresis loss is also increased. As described above, the heat treatment in the oxidizing atmosphere is effective for improving the strength of the compact, but there is a problem that leads to a decrease in magnetic properties due to an increase in iron loss.
本発明の材料では、Ceを添加することでこの課題に対応する。本発明鉄粉では酸化性雰囲気にて圧粉成形体を熱処理する際に、鉄粉表面で形成される酸化皮膜の内部に微量のCeが含まれている。酸化被膜に含まれるCeは少量であるが、熱処理中の酸化被膜の形成速度を低下して、被膜を緻密化する効果を有する。結果として本発明材の鉄粉では、酸化皮膜が緻密、かつ薄くなることで絶縁被膜の破壊を抑制し、渦電流損失の増加を抑制する。同時に鉄粉表面の緻密な酸化皮膜の形成は、熱処理中の鉄粉内部への酸素の拡散も低減することで、ヒステリシス損失の増加も抑制する。 In the material of the present invention, this problem is addressed by adding Ce. In the iron powder of the present invention, a trace amount of Ce is contained inside the oxide film formed on the surface of the iron powder when the green compact is heat-treated in an oxidizing atmosphere. Although the amount of Ce contained in the oxide film is small, it has the effect of reducing the formation rate of the oxide film during heat treatment and densifying the film. As a result, in the iron powder of the present invention material, the oxide film becomes dense and thin, thereby suppressing the breakdown of the insulating film and suppressing an increase in eddy current loss. At the same time, the formation of a dense oxide film on the surface of the iron powder also suppresses an increase in hysteresis loss by reducing the diffusion of oxygen into the iron powder during the heat treatment.
一方で本発明材は、酸化皮膜が薄くなることから、熱処理後の成形体の強度はCeを添加しない従来の鉄粉の成形体の6割程度まで低下する。しかし、モータ等の製品として組み込まれる時のハンドリングの荷重や、製品化後の外部からの衝撃,振動などに耐えるための強度は充分に確保できることから、軟磁性部材としての使用には特に問題は生じない。 On the other hand, since the present invention material has a thin oxide film, the strength of the molded body after the heat treatment is reduced to about 60% of that of a conventional iron powder molded body to which Ce is not added. However, handling strength when incorporated as a product such as a motor and sufficient strength to withstand external impact and vibration after commercialization can be secured sufficiently, so there are no particular problems when used as a soft magnetic member. Does not occur.
このように、本発明の圧粉磁性体は、酸化性雰囲気中の歪み除去熱処理により、圧粉成形体に十分な強度を付与すると共に、Ceの添加により酸化による鉄損増加を抑制することが可能であり、部材の強度と磁気特性のバランスを取るところに特徴がある。 As described above, the dust magnetic body of the present invention imparts sufficient strength to the dust compact by the strain-removing heat treatment in the oxidizing atmosphere, and suppresses an increase in iron loss due to oxidation by addition of Ce. It is possible and is characterized in that it balances the strength and magnetic properties of the member.
〔実施例〕
以下、実施例で更に詳細を説明する。
〔Example〕
Hereinafter, further details will be described in Examples.
本実施例では、数種類の純FeにCeおよびNbあるいはTiを添加し、製造した水アトマイズ粉末の諸特性について調査した。 In this example, Ce and Nb or Ti were added to several kinds of pure Fe, and various characteristics of the water atomized powder produced were investigated.
図1は水アトマイズFe粉末の製造工程を示す。所定の化学組成になるように純Feの選定、添加元素を配合して、それら素材を溶解、高圧水を用いて溶融Feの粉砕と急冷凝固を行いFe粉末化した(工程1及び2)。表面に酸化皮膜を被ったFe粉末をその平均粒径が100〜150μmとなるように篩い分け、その選別粉末をガス不純物低減のために乾水素が流れる雰囲気中、880℃±4℃で2時間、熱処理した(工程3及び4)。熱処理中に一部粉末間の凝集が進んだため、個々の粉末を分離するためにできるだけ歪が加わらないように配慮しつつ、機械的に粉砕した(工程5)。ここで歪導入の懸念がある場合には粉砕後、水素を含む還元雰囲気か真空中で600℃,30分〜1時間の焼鈍を実施してもよい(工程6)。本実施にては真空中にて工程6を30分間実施した。水アトマイズ直後の黒化した粉末表面が水素熱処理で薄灰色に変色した。
FIG. 1 shows a process for producing water atomized Fe powder. Pure Fe was selected to have a predetermined chemical composition, additive elements were blended, the materials were dissolved, molten Fe was pulverized and rapidly solidified using high-pressure water to form Fe powder (
工程6の熱処理終了後に、鉄粉の表面にリン酸系無機材料による絶縁被膜を化学処理により施工した。リン酸絶縁層の厚さは50〜100nmの範囲とした。絶縁処理後の鉄粉に、粉末状のステアリン酸亜鉛系の潤滑剤を添加して、V型攪拌装置に投入して攪拌,混合して均一化を行った。
After completion of the heat treatment in
潤滑剤を混合した粉末を用いて、油圧プレス機による圧粉成形を行って、外形50mm,内径40mm,厚さ5mmのリング形状の圧粉成形体を作製した。成形圧力は1180MPaとした。得られた圧粉成形体に対して、純窒素ガス中に5%の酸素ガスを混入した酸化性雰囲気において、520℃,30分間の歪除去熱処理を実施して、成形時の歪みを開放した。また酸化雰囲気との比較のために、純窒素ガス中にて同一温度,時間による熱処理(不活性熱処理)も実施した。 Using the powder mixed with the lubricant, compacting was performed by a hydraulic press machine to produce a ring-shaped compacted product having an outer diameter of 50 mm, an inner diameter of 40 mm, and a thickness of 5 mm. The molding pressure was 1180 MPa. The obtained green compact was subjected to a strain removing heat treatment at 520 ° C. for 30 minutes in an oxidizing atmosphere in which 5% oxygen gas was mixed in pure nitrogen gas to release the strain during molding. . For comparison with the oxidizing atmosphere, heat treatment (inert heat treatment) was performed in pure nitrogen gas at the same temperature and time.
成形体の磁気特性評価は、0.5mmの銅線を用いて熱処理後の成形体に、1次側200ターン,2次側60ターンの巻線を実施して、10kA励磁における磁束密度B(T)、および磁束密度1T、周波数400Hzにおける鉄損W(W/kg)を求めた。成形体の密度はアルキメデス法により測定した。またリング成形体と同一の成形、歪除去熱処理条件にて、11×30×5mmの板状成形・熱処理体を各鉄粉試料から作製して、3点曲げによる抗折強度を求めた。 Magnetic properties of the molded body were evaluated by applying a winding of 200 turns on the primary side and 60 turns on the secondary side to the molded body after heat treatment using a 0.5 mm copper wire, and the magnetic flux density B ( T), and iron loss W (W / kg) at a magnetic flux density of 1T and a frequency of 400 Hz were determined. The density of the molded body was measured by Archimedes method. In addition, an 11 × 30 × 5 mm plate-like molded / heat treated body was produced from each iron powder sample under the same molding and strain removing heat treatment conditions as the ring molded body, and the bending strength by three-point bending was determined.
表1に水アトマイズ後に水素還元熱処理施した時点の鉄粉試料の化学組成の分析値を示す。 Table 1 shows the analytical value of the chemical composition of the iron powder sample at the time when the hydrogen reduction heat treatment was performed after water atomization.
試料A〜Hのうち、AはCe,Nb,Tiを含まない比較材であり、B〜Hが本発明の鉄粉である。B,CおよびDはCeとNbを添加した鉄粉で、Ce濃度を0.009〜0.024%と変えて、Nbは0.010%以下の濃度で添加した。E、FおよびGはCeとTiを添加し、Ce濃度を0.007〜0.022%と変えて、Nbは0.011%以下の濃度で添加した。HはNb、Tiは添加せずCeを0.022%単独で添加した。各鉄粉の酸素濃度を分析した結果、いずれの鉄粉も500ppm以下の値となった。 Among samples A to H, A is a comparative material that does not contain Ce, Nb, and Ti, and B to H are iron powders of the present invention. B, C, and D were iron powders to which Ce and Nb were added. The Ce concentration was changed from 0.009 to 0.024%, and Nb was added at a concentration of 0.010% or less. For E, F and G, Ce and Ti were added, the Ce concentration was changed from 0.007 to 0.022%, and Nb was added at a concentration of 0.011% or less. H was Nb, Ti was not added, and Ce was added alone by 0.022%. As a result of analyzing the oxygen concentration of each iron powder, all the iron powders had a value of 500 ppm or less.
表2に成形体の材料特性を示す。 Table 2 shows the material characteristics of the molded body.
表2では520℃の歪除去熱処理の雰囲気(酸化性熱処理,不活性熱処理)により、特性を整理した。酸化性雰囲気で歪み除去熱処理した成形体では、密度,B,W,抗折強度を評価した。成形体密度はいずれの試料も7.50以上の値を示す。密度の値は、Ce,Nb,Tiの添加量や酸素濃度との相関は見られず、化学組成の密度への影響は無いことがわかった。磁束密度Bの値は成形体密度との相関があり、密度に比例して値が変化する傾向を確認した。 In Table 2, the characteristics are arranged according to the atmosphere of 520 ° C. strain removal heat treatment (oxidative heat treatment, inert heat treatment). Density, B, W, and bending strength were evaluated for the molded body subjected to heat treatment for removing strain in an oxidizing atmosphere. The molded body density shows a value of 7.50 or more for all samples. The density value did not correlate with the addition amount of Ce, Nb, Ti or the oxygen concentration, and it was found that there was no influence on the density of the chemical composition. The value of the magnetic flux density B was correlated with the compact density, and the tendency of the value to change in proportion to the density was confirmed.
酸化性熱処理後における鉄損Wは、比較粉Aにおいて値が55W/kgと比較的高く、本発明材B〜Gの6種ではWは44〜46W/kgを下回る低い値を示した。本発明粉B〜GはCeと同時にNbあるいはTiを添加しており、元素添加により鉄損を改善する効果を確認した。一方Ceのみを単独添加した試料HではWは49W/kgとなり、B〜Gよりも若干高い値を示した。酸化性熱処理後の抗折強度は、比較粉Aにおいて160MPaと最も高く、他の本発明粉B〜Hでは強度は100MPai以下とAよりも低い値を示した。 The iron loss W after the oxidative heat treatment was comparatively high at 55 W / kg in the comparative powder A, and W was a low value of less than 44 to 46 W / kg in the six types of the inventive materials B to G. Inventive powders B to G were added with Nb or Ti simultaneously with Ce, and the effect of improving the iron loss by adding the elements was confirmed. On the other hand, in Sample H to which only Ce was added alone, W was 49 W / kg, which was slightly higher than B to G. The bending strength after the oxidative heat treatment was the highest at 160 MPa in the comparative powder A, and the strengths of other invention powders B to H were 100 MPai or less, which was lower than A.
表2の窒素雰囲気中の不活性熱処理の結果では、Wの測定値は酸化性熱処理時に比べて、いずれの試料も値が低下している。不活性熱処理時のWの低下は、酸化の影響が無くなったためと推測される。酸化雰囲気と不活性雰囲気でのWの差ΔWの大きさは試料により異なり、比較粉AではΔW=9W/kgであるのに対し、本発明粉B〜HではΔWは2〜4W/kgと差が小さくなることがわかった。比較粉Aに比べて、本発明粉の方が前述のΔWが低くなる理由として、本発明粉ではCeを添加することにより、酸化による特性劣化が抑制されたと考えられる。 As a result of the inert heat treatment in the nitrogen atmosphere in Table 2, the measured value of W is lower in all samples than in the oxidizing heat treatment. The decrease in W during the inert heat treatment is presumed to be due to the absence of the influence of oxidation. The difference in W between the oxidizing atmosphere and the inert atmosphere, ΔW, varies depending on the sample. In the comparative powder A, ΔW = 9 W / kg, whereas in the inventive powders BH, ΔW is 2-4 W / kg. It was found that the difference became smaller. The reason why the above-described ΔW of the powder of the present invention is lower than that of the comparative powder A is considered to be that the deterioration of the characteristics due to oxidation was suppressed by adding Ce to the powder of the present invention.
一方で、不活性熱処理時の成形体の抗折強度は、全ての試料で30MPa程度かそれ以下の著しく低い値となっている。このように酸化の影響の無い不活性環境での熱処理を実施することで、圧粉成形体の鉄損は低下する一方で、成形体の強度は非常に低い値となる。このような磁気特性と機械的特性のバランスが悪いことが、従来の圧粉磁性体の課題の一つであった。 On the other hand, the bending strength of the molded body during the inert heat treatment is a remarkably low value of about 30 MPa or less for all the samples. By performing the heat treatment in an inert environment free from the influence of oxidation in this way, the iron loss of the green compact is reduced, while the strength of the green compact is very low. Such a poor balance between magnetic properties and mechanical properties has been one of the problems of conventional powder magnetic materials.
表2の酸化性熱処理後の本開発粉B〜Gの鉄損Wと抗折強度の結果は、前述の特性バランスの欠点をある程度解消すると考えられる。B〜Gの酸化性雰囲気での熱処理後の抗折強度は比較粉Aよりも低いが、不活性熱処理時の強度と比較すると3倍以上値が増加することがわかる。また酸化性熱処理後のB〜Gの鉄損は、比較粉Aに比べて10W/kg以上の幅で値が低下する。このようにCeおよびNbまたはTiを添加した本発明粉では、成形体に酸化性熱処理を施すことで、無添加の比較粉と比べて鉄損の増加を抑制できると同時に、不活性熱処理時よりも、強度を3倍以上増加することができる結果が示された。このような、本発明鉄粉の磁気特性と強度のバランスが取れた特性は、モータ用鉄心等の軟磁性部材として使用する際に有益であると考える。 The results of the iron loss W and the bending strength of the newly developed powders B to G after the oxidative heat treatment in Table 2 are considered to eliminate the above-mentioned characteristic balance defect to some extent. The bending strength after heat treatment in the oxidizing atmosphere of B to G is lower than that of the comparative powder A, but it can be seen that the value increases three times or more as compared with the strength during the inert heat treatment. Further, the iron loss of B to G after the oxidative heat treatment decreases with a width of 10 W / kg or more as compared with the comparative powder A. Thus, in the present invention powder to which Ce and Nb or Ti are added, an increase in iron loss can be suppressed by performing an oxidative heat treatment on the molded body as compared with the additive-free comparative powder, and at the same time as in the inert heat treatment. The results showed that the intensity could be increased by more than 3 times. Such a characteristic that balances the magnetic characteristics and strength of the iron powder of the present invention is considered to be beneficial when used as a soft magnetic member such as a motor core.
実施例1の比較粉Aと本開発粉Cにおいて、酸化性雰囲気で歪み除去熱処理を行った成形体から、組織観察試料を採取して、SEM(走査型電子顕微鏡)による、鉄粉表面の酸化皮膜の観察を行った。観察試料はリング成形体の一部を切断し、樹脂埋め込み後に研磨を実施して、観察に供した。 In the comparative powder A of Example 1 and the newly developed powder C, a structure observation sample was collected from a molded body subjected to heat treatment for removing strain in an oxidizing atmosphere, and the iron powder surface was oxidized by SEM (scanning electron microscope). The film was observed. For the observation sample, a part of the ring molded body was cut, polished after resin embedding, and subjected to observation.
比較粉Aの成形体において、プレス面近傍の鉄粉界面に熱処理による酸化皮膜の形成を確認した。SEM写真から鉄粉表面の被膜の厚さを複数個所で測定した結果、被膜厚さは平均で約12μmであり、粉末界面の微小空壁の近傍部分等では、厚さが20μmを越える部分も確認した。一方、本発明粉Cの成形体では、鉄粉表面の酸化被膜は、厚さが平均1.8μmとAに比べて、被膜が非常に薄いことを確認した。両者の酸化皮膜の厚さは添加元素、特にCeの添加により影響され、本発明粉CではCeにより酸化速度が低下して、被膜が薄膜化したと推測される。 In the compact of Comparative Powder A, formation of an oxide film by heat treatment was confirmed at the iron powder interface near the press surface. As a result of measuring the thickness of the coating on the surface of the iron powder from the SEM photograph, the film thickness is about 12 μm on average, and there are portions where the thickness exceeds 20 μm in the vicinity of the fine vacant wall of the powder interface. confirmed. On the other hand, in the compact of the powder C of the present invention, it was confirmed that the oxide film on the surface of the iron powder had an average thickness of 1.8 μm and was very thin compared to A. The thicknesses of both oxide films are influenced by the addition of an additive element, particularly Ce, and it is presumed that in the powder C of the present invention, the oxidation rate was lowered by Ce, and the film became thin.
本発明のFe粉末,軟磁性材料,圧粉磁心およびその製造方法は、例えばモータコア,電磁弁,リアクトル、もしくは電磁部品一般に利用することができる。 The Fe powder, soft magnetic material, dust core and manufacturing method thereof of the present invention can be used for, for example, a motor core, a solenoid valve, a reactor, or a general electromagnetic component.
Claims (8)
前記粉末は、Ceを0.005〜0.03質量%と、Nb,Tiの少なくともいずれかを0.001〜0.02質量%と、不可避の金属不純物を0.25質量%以下とで構成され、
前記粉末は、表面に形成された酸化層と、内部母相に析出した析出粒子を含み、
前記析出粒子の平均粒子径が0.02μm以上0.5μm以下であることを特徴とする圧粉磁性体用軟磁性粉末。 A soft magnetic powder for powdered magnetic material mainly composed of iron,
The powder is composed of a 0.005 to 0.03 wt% of Ce, Nb, and 0.001 to 0.02 wt% of at least one of Ti, the inevitable metallic impurities 0.25 wt% or less And
The powder includes an oxide layer formed on the surface, and precipitated particles precipitated in the internal matrix.
An average particle diameter of the precipitated particles is 0.02 μm or more and 0.5 μm or less.
前記粉末は前記不可避の金属不純物としてCr,Mn,Siの少なくともいずれかを含み、
それぞれの含有率がCr:0.03質量%以下,Mn:0.1質量%以下,Si:0.02質量%以下であることを特徴とする圧粉磁性体用軟磁性粉末。 In claim 1,
The powder contains at least one of Cr, Mn, and Si as the inevitable metal impurities,
A soft magnetic powder for a magnetic powder compact, characterized in that the respective contents are Cr: 0.03 mass% or less, Mn: 0.1 mass% or less, and Si: 0.02 mass% or less.
表面に無機絶縁被覆層を有することを特徴とする圧粉磁性体用軟磁性粉末。 In claim 1,
A soft magnetic powder for a dusting magnetic material, comprising an inorganic insulating coating layer on a surface.
水素を含む還元雰囲気中800℃〜900℃の温度範囲で熱処理し、
前記合金粉末を圧粉成形し、
前記圧粉成形体を450〜600℃で熱処理させることを特徴とする圧粉磁性体の製造方法。 Iron was cooled by blowing water into the molten alloy as a main component, it is composed of a 0.005 to 0.03 wt% of Ce, Nb, and 0.001 to 0.02 wt% of at least one of Ti After obtaining a finely divided alloy,
Heat treatment in a temperature range of 800 ° C. to 900 ° C. in a reducing atmosphere containing hydrogen;
Compacting the alloy powder,
A method for producing a magnetic powder compact comprising heat-treating the powder compact at 450 to 600 ° C.
水素を含む還元雰囲気中800℃〜900℃の温度範囲で前記熱処理された合金粉末の表面に、無機絶縁性被覆層を設け、
有機潤滑剤を混合し、
前記無機絶縁被覆層を有する合金粉末を圧粉成形することを特徴とする圧粉磁性体の製造方法。 In claim 4,
An inorganic insulating coating layer is provided on the surface of the alloy powder that has been heat-treated at a temperature range of 800 ° C. to 900 ° C. in a reducing atmosphere containing hydrogen,
Mix organic lubricants,
A method for producing a powder magnetic material, comprising compacting an alloy powder having the inorganic insulating coating layer.
前記圧粉磁性体の成形後の熱処理の雰囲気が、大気あるいは10%以下の酸素を不活性ガス中混合した酸化性雰囲気であることを特徴とする圧粉磁性体の製造方法。 In claim 4,
The method for producing a dust magnetic material, characterized in that the atmosphere of the heat treatment after forming the dust magnetic material is air or an oxidizing atmosphere in which 10% or less of oxygen is mixed in an inert gas.
圧粉磁性体を構成する鉄分表面に、前記酸化性雰囲気における熱処理の作用により形成される、厚さの平均値が2μm以下のFe3O4を主体とする酸化皮膜を有することを特徴とする圧粉磁性体。 A powder magnetic body obtained by the production method according to claim 6,
It has an oxide film mainly composed of Fe 3 O 4 having an average thickness of 2 μm or less, which is formed by the heat treatment in the oxidizing atmosphere on the iron surface constituting the dust magnetic body. Powder magnetic material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069120A JP5427664B2 (en) | 2010-03-25 | 2010-03-25 | SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010069120A JP5427664B2 (en) | 2010-03-25 | 2010-03-25 | SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011202213A JP2011202213A (en) | 2011-10-13 |
JP5427664B2 true JP5427664B2 (en) | 2014-02-26 |
Family
ID=44879158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010069120A Expired - Fee Related JP5427664B2 (en) | 2010-03-25 | 2010-03-25 | SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5427664B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101996723B (en) * | 2010-09-29 | 2012-07-25 | 清华大学 | Composite soft magnetic powder core and preparation method thereof |
JP6052960B2 (en) * | 2012-01-12 | 2016-12-27 | 株式会社神戸製鋼所 | Method for producing soft magnetic iron-based powder |
JP2013149661A (en) * | 2012-01-17 | 2013-08-01 | Hitachi Industrial Equipment Systems Co Ltd | Iron powder for pressed powder magnetic body, pressed powder magnetic body, method of manufacturing iron powder for pressed powder magnetic body, and method of manufacturing pressed powder magnetic body |
JP6073066B2 (en) * | 2012-03-27 | 2017-02-01 | 株式会社神戸製鋼所 | Method for producing soft magnetic iron-based powder for dust core |
CA2903399C (en) * | 2013-04-19 | 2018-05-22 | Jfe Steel Corporation | Iron powder for dust core and insulation-coated iron powder for dust core |
JP5913246B2 (en) * | 2013-09-26 | 2016-04-27 | 東光株式会社 | Metal magnetic materials, electronic components |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006135324A1 (en) * | 2005-06-15 | 2006-12-21 | Höganäs Ab | Soft magnetic composite materials |
JP2007027320A (en) * | 2005-07-14 | 2007-02-01 | Sumitomo Electric Ind Ltd | Soft magnetic material, method of manufacturing the same and dust core |
JP2007194273A (en) * | 2006-01-17 | 2007-08-02 | Jfe Steel Kk | Dust core and soft magnetic metal powder therefor |
-
2010
- 2010-03-25 JP JP2010069120A patent/JP5427664B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011202213A (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5308916B2 (en) | Soft magnetic powder for dust magnetic body and dust magnetic body using the same | |
JP4609339B2 (en) | Powder for powder magnetic core and method for producing powder magnetic core | |
KR100360533B1 (en) | Method for producing high silicon steel, and silicon steel | |
TWI509642B (en) | Rare earth permanent magnet and its manufacturing method | |
JP5427664B2 (en) | SOFT MAGNETIC POWDER FOR Dust Magnetic Material, Dust Magnetic Material Using the Same, and Manufacturing Method | |
US9275779B2 (en) | Iron-based soft magnetic powder for dust core, preparation process thereof, and dust core | |
TW201034775A (en) | Process for producing metallurgical powder, process for producing powder magnetic core, powder magnetic core, and coil component | |
EP2484464A1 (en) | Powder for magnetic member, powder compact, and magnetic member | |
JP2008189950A (en) | Method for manufacturing soft magnetic powder, method for manufacturing soft magnetic material, method for manufacturing powder magnetic core, soft magnetic powder, soft magnetic material and powder magnetic core | |
JP4700578B2 (en) | Method for producing high resistance rare earth permanent magnet | |
EP2248617A2 (en) | Iron powder coated with Mg-containing oxide film | |
JP5439888B2 (en) | Composite magnetic material and method for producing the same | |
JP2019178402A (en) | Soft magnetic powder | |
JP6476989B2 (en) | Method of manufacturing dust core | |
CN110942878A (en) | R-T-B series permanent magnetic material and preparation method and application thereof | |
WO2014034616A1 (en) | Iron powder for powder magnetic core and process for producing powder magnetic core | |
JP2009164317A (en) | Method for manufacturing soft magnetism composite consolidated core | |
JP2012204486A (en) | SURFACE-MODIFIED R-Fe-B BASED SINTERED MAGNET AND PRODUCTION METHOD THEREFOR | |
JP2010016290A (en) | Ferrous metal magnetic particle, soft magnetic material, powder magnetic core and manufacturing method of them | |
WO2013108642A1 (en) | Iron powder for magnetic compact, magnetic compact, method for producing iron powder for magnetic compact, and method for producing magnetic compact | |
JP2006183121A (en) | Iron based powder for powder magnetic core and powder magnetic core using the same | |
KR101483319B1 (en) | Method for forming rare earth metal hydride and method for forming rare earth metal-transition metal alloy powder using the same | |
JP4480015B2 (en) | Laminated oxide film coated iron powder | |
JP2007027320A (en) | Soft magnetic material, method of manufacturing the same and dust core | |
JP4883755B2 (en) | Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110907 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5427664 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |