JP5427469B2 - Microporous film, method for producing the same, and battery separator - Google Patents
Microporous film, method for producing the same, and battery separator Download PDFInfo
- Publication number
- JP5427469B2 JP5427469B2 JP2009118916A JP2009118916A JP5427469B2 JP 5427469 B2 JP5427469 B2 JP 5427469B2 JP 2009118916 A JP2009118916 A JP 2009118916A JP 2009118916 A JP2009118916 A JP 2009118916A JP 5427469 B2 JP5427469 B2 JP 5427469B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- microporous film
- temperature
- polypropylene resin
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- -1 polypropylene Polymers 0.000 claims description 50
- 229920001155 polypropylene Polymers 0.000 claims description 46
- 239000004743 Polypropylene Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 37
- 239000011342 resin composition Substances 0.000 claims description 35
- 230000035699 permeability Effects 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 15
- 238000010622 cold drawing Methods 0.000 claims description 6
- 229920005989 resin Polymers 0.000 description 23
- 239000011347 resin Substances 0.000 description 23
- 238000009998 heat setting Methods 0.000 description 13
- 239000012528 membrane Substances 0.000 description 13
- 238000001125 extrusion Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920001384 propylene homopolymer Polymers 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000010220 ion permeability Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229920006379 extruded polypropylene Polymers 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は、微多孔性フィルム及びその製造方法並びに電池用セパレータに関する。 The present invention relates to a microporous film, a method for producing the same, and a battery separator.
微多孔性フィルム、特にポリオレフィン系微多孔性フィルムは、精密濾過膜、電池用セパレータ、コンデンサー用セパレータ、燃料電池用材料等に用いられており、特にリチウムイオン電池用セパレータとして好適に用いられている。また、近年、リチウムイオン電池は、携帯電話、ノート型パーソナルコンピュータ等の小型電子機器用途として用いられる一方で、ハイブリッド電気自動車等への応用も図られている。 Microporous films, particularly polyolefin microporous films, are used in microfiltration membranes, battery separators, capacitor separators, fuel cell materials, and the like, and are particularly preferably used as lithium ion battery separators. . In recent years, lithium ion batteries have been used for small electronic devices such as mobile phones and notebook personal computers, while being applied to hybrid electric vehicles and the like.
リチウムイオン電池に備えられる電池用セパレータは、安全性を確保するために、シャットダウン機能を備えることが必須とされている。シャットダウン機能とは、電池内部の温度が過度に上昇した場合に、電池用セパレータの電気抵抗を急激に増大させることにより、電池反応を停止させて、それ以上の温度上昇を防止する機能である。上記シャットダウン機能の発現機構として、例えば、微多孔性フィルム製の電池用セパレータの場合、所定の温度まで電池内部温度が上昇すると、その多孔質構造を喪失して無孔化し、イオン透過を遮断することが挙げられる。しかしながら、このように無孔化してイオン透過を遮断しても、温度が更に上昇してフィルム全体が溶融し破膜してしまった場合は、電気的絶縁性を維持できなくなってしまう。このようにフィルムがその形態を保持できなくなりイオン透過を遮断することができなくなる温度を破膜温度といい、この破膜温度が高いほど電池用セパレータは耐熱性に優れているといえる。また、上記破膜温度とシャットダウンが開始する温度との差が大きいほど、安全性に優れているといえる。 The battery separator provided in the lithium ion battery is required to have a shutdown function in order to ensure safety. The shutdown function is a function of stopping the battery reaction and preventing further temperature increase by rapidly increasing the electric resistance of the battery separator when the temperature inside the battery rises excessively. As an expression mechanism of the shutdown function, for example, in the case of a battery separator made of a microporous film, when the internal temperature of the battery rises to a predetermined temperature, the porous structure is lost to make it nonporous, and ion permeation is blocked. Can be mentioned. However, even if the pores are made non-porous in this way and ion permeation is blocked, if the temperature further rises and the entire film melts and breaks, the electrical insulation cannot be maintained. The temperature at which the film cannot maintain its shape and cannot block ion permeation is called the membrane breaking temperature. The higher the membrane breaking temperature, the better the battery separator. Moreover, it can be said that the greater the difference between the film breaking temperature and the temperature at which shutdown starts, the better the safety.
このような事情に対応可能なセパレータとなる微多孔性フィルムを提供することを目的として、例えば、特許文献1には、従来のポリエチレン微多孔性フィルムにポリプロピレン微多孔性フィルムを積層した積層構造を有する複合微多孔性フィルム(電池用セパレータ)が提案されている。
また、特許文献2には、特定の重量平均分子量を有するポリプロピレンから形成される積層微多孔性フィルムが開示されている。
For the purpose of providing a microporous film serving as a separator that can cope with such circumstances, for example, Patent Document 1 discloses a laminated structure in which a polypropylene microporous film is laminated on a conventional polyethylene microporous film. A composite microporous film (battery separator) has been proposed.
Patent Document 2 discloses a laminated microporous film formed from polypropylene having a specific weight average molecular weight.
しかしながら、特許文献1、2に記載された微多孔性フィルムはいずれも、高い破膜温度を達成する観点からは、なお改良の余地がある。
本発明は、このような事情に鑑みなされたものであり、高い破膜温度を有する耐破膜性に優れた微多孔性フィルム、及びそれを用いた電池用セパレータを提供することを課題とする。
However, any of the microporous films described in Patent Documents 1 and 2 still has room for improvement from the viewpoint of achieving a high film breaking temperature.
This invention is made | formed in view of such a situation, and makes it a subject to provide the microporous film excellent in the tear resistance which has a high tear temperature, and the battery separator using the same. .
本発明者らは前述の課題を解決すべく、鋭意検討を重ねた結果、特定の伸長粘度を有する微多孔性フィルムが、高温においても破れ難いことを見出した。これにより、高い破膜温度を有し、且つリチウムイオン二次電池用セパレータとして好適な耐破膜性を備えた微多孔フィルムを得ることができることを本発明者らは見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a microporous film having a specific elongational viscosity is difficult to break even at high temperatures. As a result, the inventors have found that a microporous film having a high film breaking temperature and having a film breaking resistance suitable as a separator for a lithium ion secondary battery can be obtained, and the present invention is completed. It came to.
すなわち、本発明は以下の通りである。
[1]
MFRが0.3〜1.0g/10分であり、
重量平均分子量が50万〜75万のポリプロピレン樹脂組成物からなり、
透気度が10秒/100cc〜5000秒/100ccであり、
200℃、伸長歪み10s -1 における伸長粘度が30000Pa・s〜60000Pa・sである、微多孔性フィルム。
[2]
上記[1]に記載の微多孔性フィルムからなる、電池用セパレータ。
[3]
上記[1]に記載の微多孔性フィルムの製造方法であって、以下の(A)、(B)の各工程を含む微多孔性フィルムの製造方法:
(A)ポリプロピレン樹脂組成物からなるフィルムを−20℃以上90℃未満の温度で延伸する冷延伸工程、
(B)前記冷延伸工程において延伸されたフィルムを90℃以上150℃未満の温度で延伸する熱延伸工程。
That is, the present invention is as follows.
[1]
MFR is 0.3 to 1.0 g / 10 min,
A polypropylene resin composition having a weight average molecular weight of 500,000 to 750,000 ,
The air permeability is 10 seconds / 100 cc to 5000 seconds / 100 cc,
200 ° C., elongation viscosity at elongation distortion 10s -1 is 30000Pa · s~60000Pa · s, microporous film.
[ 2 ]
A battery separator comprising the microporous film according to the above [1] .
[ 3 ]
A method for producing a microporous film as described in [1] above, which comprises the following steps (A) and (B):
(A) a cold drawing step of drawing a film comprising a polypropylene resin composition at a temperature of -20 ° C or higher and lower than 90 ° C;
(B) A hot stretching process in which the film stretched in the cold stretching process is stretched at a temperature of 90 ° C. or higher and lower than 150 ° C.
本発明によると、高い破膜温度を有する耐破膜性に優れた微多孔性フィルム、及びそれを用いた電池用セパレータを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the microporous film excellent in the film-breaking resistance which has high film-breaking temperature, and the battery separator using the same can be provided.
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiment, and can be implemented with various modifications within the scope of the gist.
本実施形態の微多孔性フィルムは、ポリプロピレン樹脂組成物(以下「ポリプロピレン樹脂組成物Ac」と表記する)からなり、透気度が10〜5000秒/100cc、伸長粘度が30000〜60000Pa・sに調整されている。 The microporous film of the present embodiment is made of a polypropylene resin composition (hereinafter referred to as “polypropylene resin composition Ac”), and has an air permeability of 10 to 5000 seconds / 100 cc and an extensional viscosity of 30000 to 60000 Pa · s. It has been adjusted.
ポリプロピレン樹脂組成物Acは、ポリプロピレン樹脂のみからなるものも含む概念であり、ポリプロピレン樹脂と他の樹脂との混合物であってもよく、さらに任意の添加剤を含有してもよい。
また、「ポリプロピレン樹脂」とは、そのモノマーの主成分がプロピレンであるポリマーをいう。ここで「主成分」とは、ポリプロピレン樹脂を構成するモノマーの全体量に対して50質量%以上を占めるモノマーを意味し、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95%以上、更により好ましくは98%以上、特に好ましくは100質量%(すなわち全量)、を示すモノマーを意味する。
The polypropylene resin composition Ac is a concept that includes only a polypropylene resin, and may be a mixture of a polypropylene resin and another resin, and may further contain any additive.
The “polypropylene resin” refers to a polymer whose main component is propylene. Here, the “main component” means a monomer occupying 50% by mass or more with respect to the total amount of monomers constituting the polypropylene resin, preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably. It means a monomer showing 95% or more, still more preferably 98% or more, particularly preferably 100% by mass (ie the total amount).
本実施形態のポリプロピレン樹脂とは、プロピレンを単量体成分として含む重合体であり、ホモポリマーであってもコポリマーであってもよい。透気性や破膜温度の観点からは、ホモポリマーが好ましい。コポリマーである場合、ランダムコポリマーであってもよいし、ブロックコポリマーであってもよい。また、コポリマーである場合、その共重合成分としては、特に限定はなく、例えば、エチレン、ブテン、ヘキセン等が挙げられる。 The polypropylene resin of this embodiment is a polymer containing propylene as a monomer component, and may be a homopolymer or a copolymer. From the viewpoint of air permeability and membrane breaking temperature, a homopolymer is preferable. When it is a copolymer, it may be a random copolymer or a block copolymer. In the case of a copolymer, the copolymerization component is not particularly limited, and examples thereof include ethylene, butene, hexene and the like.
ポリプロピレン樹脂がコポリマーである場合、プロピレンの共重合割合は50質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上である。 When the polypropylene resin is a copolymer, the copolymerization ratio of propylene is 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more.
ポリプロピレン樹脂は、1種類又は2種類以上を混合して使用することができる。また、重合触媒にも特に制限はなく、チーグラー・ナッタ系の触媒やメタロセン系の触媒等が挙げられる。また、立体規則性にも特に制限はなく、アイソタクチックポリプロピレンやシンジオタクチックポリプロピレンを使用することができる。 A polypropylene resin can be used 1 type or in mixture of 2 or more types. The polymerization catalyst is not particularly limited, and examples thereof include a Ziegler-Natta catalyst and a metallocene catalyst. Further, there is no particular limitation on the stereoregularity, and isotactic polypropylene or syndiotactic polypropylene can be used.
前記他の樹脂としては、例えば、ポリエチレン樹脂や、オレフィン系エラストマー樹脂等が挙げられる。ポリエチレン樹脂としては、高密度ポリエチレン樹脂、低密度ポリエチレン樹脂、直鎖状低密度ポリエチレン樹脂等が挙げられる。これらは1種を単独で、又は2種以上を併用することができる。 Examples of the other resins include polyethylene resins and olefin elastomer resins. Examples of the polyethylene resin include a high density polyethylene resin, a low density polyethylene resin, and a linear low density polyethylene resin. These can be used alone or in combination of two or more.
前記ポリプロピレン樹脂と、前記他の樹脂との配合割合としては、前記他の樹脂が前記ポリプロピレン樹脂と前記他の樹脂との総量中に占める割合として、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下であり、0質量%であっても良い。 The blending ratio of the polypropylene resin and the other resin is preferably 20% by mass or less, more preferably 10% by mass as the ratio of the other resin in the total amount of the polypropylene resin and the other resin. % Or less, more preferably 5% by mass or less, or 0% by mass.
また、本実施形態のポリプロピレン樹脂組成物Acは、上記の成分の他に本発明の特徴及び効果を損なわない範囲で必要に応じて他の付加的成分、例えば、酸化防止剤、金属不活性化剤、熱安定剤、難燃剤(有機リン酸エステル系化合物、ポリリン酸アンモニウム系化合物、芳香族ハロゲン系難燃剤、シリコーン系難燃剤等)、フッ素系ポリマー、可塑剤(低分子量ポリエチレン、エポキシ化大豆油、ポリエチレングリコール、脂肪酸エステル類等)、三酸化アンチモン等の難燃助剤、耐候(光)性改良剤、ポリオレフィン用造核剤、スリップ剤、無機又は有機の充填材や強化材(ポリアクリロニトリル繊維、カーボンブラック、酸化チタン、炭酸カルシウム、導電性金属繊維、導電性カーボンブラック等)、各種着色剤、離型剤等を含有してもよい。これらの付加的成分の総含有量は、ポリプロピレン樹脂組成物Acの100質量部に対して、20質量部以下であることが好ましく、より好ましくは10質量部以下、更に好ましくは5質量部以下である。 In addition to the above components, the polypropylene resin composition Ac of the present embodiment may contain other additional components as necessary within the range that does not impair the features and effects of the present invention, for example, an antioxidant, metal deactivation. Agent, heat stabilizer, flame retardant (organophosphate ester compound, ammonium polyphosphate compound, aromatic halogen flame retardant, silicone flame retardant, etc.), fluorine polymer, plasticizer (low molecular weight polyethylene, large epoxidation) Bean oil, polyethylene glycol, fatty acid esters, etc.), flame retardant aids such as antimony trioxide, weathering (light) improvers, polyolefin nucleating agents, slip agents, inorganic or organic fillers and reinforcing materials (polyacrylonitrile) Fiber, carbon black, titanium oxide, calcium carbonate, conductive metal fiber, conductive carbon black, etc.), various colorants, release agents, etc. It may be. The total content of these additional components is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less with respect to 100 parts by mass of the polypropylene resin composition Ac. is there.
本実施形態のポリプロピレン樹脂組成物AcのMFR(メルトフローレート)は、0.01〜20g/10分であることが好ましく、より好ましくは0.1〜10g/10分であり、更に好ましくは0.3〜1.0g/10分である。MFRが0.01g/10分以上であると、溶融時の伸びが高く、成膜性が良好となる傾向にあり、20g/10分以下であると、ドローダウンが起こり難くなり、成膜性が良好となる傾向にある。ポリプロピレン樹脂組成物AcのMFRは、下記実施例に記載した方法に準じて測定される。 The MFR (melt flow rate) of the polypropylene resin composition Ac of the present embodiment is preferably 0.01 to 20 g / 10 minutes, more preferably 0.1 to 10 g / 10 minutes, and still more preferably 0. .3 to 1.0 g / 10 min. If the MFR is 0.01 g / 10 min or more, the elongation at the time of melting tends to be high and the film formability tends to be good, and if it is 20 g / 10 min or less, drawdown hardly occurs, and the film formability is high. Tends to be good. MFR of polypropylene resin composition Ac is measured according to the method described in the following Example.
本実施形態の微多孔性フィルムの製造方法としては、特に限定されないが、(A)ポリプロピレン樹脂組成物Acからなるフィルム(以下「原反フィルムAf」と表記する)を−20℃以上90℃未満の温度で延伸する冷延伸工程と、(B)前記冷延伸工程において延伸されたフィルムを90℃以上150℃未満の温度で延伸する熱延伸工程と、を含むことが好ましい。 Although it does not specifically limit as a manufacturing method of the microporous film of this embodiment, (A) The film (henceforth "raw film Af") consisting of polypropylene resin composition Ac is -20 degreeC or more and less than 90 degreeC. It is preferable to include a cold stretching step of stretching at a temperature of (B) and a thermal stretching step of stretching the film stretched in the cold stretching step at a temperature of 90 ° C. or higher and lower than 150 ° C.
本実施形態のポリプロピレン樹脂組成物Acからなる原反フィルムAfの製造方法としては、Tダイ押出成形、インフレーション成形、カレンダー成形、スカイフ法等のシート成形方法を採用し得る。中でも、本実施形態の微多孔性フィルムに要求される物性や用途の観点から、Tダイ押出成形が好ましい。 As a method for producing the raw film Af made of the polypropylene resin composition Ac of the present embodiment, a sheet molding method such as T-die extrusion molding, inflation molding, calendar molding, and Skyf's method can be employed. Among these, T-die extrusion molding is preferable from the viewpoint of physical properties and applications required for the microporous film of the present embodiment.
原反フィルムAfの製造方法において、押出し後のドロー比、すなわち、フィルムの巻取速度(単位:m/分)をポリプロピレン樹脂組成物Acの押出速度(ダイリップを通過する溶融樹脂の流れ方向の線速度。単位:m/分)で除した値は、好ましくは10〜500、より好ましくは100〜400、更に好ましくは150〜350である。また、原反フィルムAfを巻き取る際のフィルムの巻取速度は、好ましくは約2〜400m/分、より好ましくは10〜200m/分である。ドロー比を上記範囲とすることは、得られる微多孔性フィルムの透気性を向上させる観点から好適である。 In the manufacturing method of the raw film Af, the draw ratio after extrusion, that is, the film winding speed (unit: m / min) is the extrusion speed of the polypropylene resin composition Ac (the line in the flow direction of the molten resin passing through the die lip). The value divided by the speed (unit: m / min) is preferably 10 to 500, more preferably 100 to 400, and still more preferably 150 to 350. Moreover, the winding speed of the film when winding the raw film Af is preferably about 2 to 400 m / min, more preferably 10 to 200 m / min. Setting the draw ratio in the above range is preferable from the viewpoint of improving the air permeability of the obtained microporous film.
また、原反フィルムAfには、必要に応じて熱処理(アニール)を施すことが好ましい。アニールの方法としては、例えば、原反フィルムAfを加熱ロール上に接触させる方法、巻き取る前に加熱気相中に曝す方法、原反フィルムAfを芯体上に巻き取り加熱気相又は加熱液相中に曝す方法、並びにこれらを組み合わせて行う方法が挙げられる。これらのアニールの条件は、例えば、100℃〜150℃の加熱温度で、10秒間〜100時間アニールすることが好ましい。加熱温度が100℃以上であれば、後に得られる微多孔性フィルムの透気性が更に良好となる傾向となり、150℃以下であれば原反フィルムAfを芯体上に巻き取った状態でアニールしてもフィルム同士が融着し難くなる傾向となる。より好ましい加熱温度の範囲は、120℃〜140℃である。 The raw film Af is preferably subjected to heat treatment (annealing) as necessary. As the annealing method, for example, a method of bringing the original film Af into contact with a heating roll, a method of exposing the original film Af to a heated gas phase before winding, a method of winding the original film Af on a core body, a heated gas phase or a heating liquid The method of exposing in a phase and the method of combining these are mentioned. The annealing conditions are preferably, for example, annealing at a heating temperature of 100 ° C. to 150 ° C. for 10 seconds to 100 hours. If the heating temperature is 100 ° C. or higher, the air permeability of the microporous film obtained later tends to be further improved, and if it is 150 ° C. or lower, the raw film Af is annealed in a state wound on the core. However, the films tend not to be fused. A more preferable heating temperature range is 120 ° C to 140 ° C.
冷延伸工程においては、ポリプロピレン樹脂組成物Acからなる原反フィルムAfを、−20℃以上90℃未満に保持した状態で、少なくとも一方向に好ましくは1.05倍〜2.0倍に冷延伸する。 In the cold stretching step, the raw film Af made of the polypropylene resin composition Ac is cold stretched in at least one direction, preferably 1.05 times to 2.0 times, in a state where the original film Af is held at −20 ° C. or higher and lower than 90 ° C. To do.
冷延伸工程における冷延伸の延伸温度は、−20℃以上90℃未満、好ましくは0℃以上50℃以下の温度である。−20℃以上で延伸すれば原反フィルムAfが破断し難くなる傾向となり、90℃未満で延伸すれば、得られる微多孔性フィルムの透気性がより良好になる傾向となる。ここで、冷延伸の延伸温度とは、冷延伸工程におけるフィルムの表面温度を示す。 The stretching temperature for cold stretching in the cold stretching step is -20 ° C or higher and lower than 90 ° C, preferably 0 ° C or higher and 50 ° C or lower. If it extends | stretches above -20 degreeC, it will become the tendency for the original film Af to become difficult to fracture | rupture, and if it extends below 90 degreeC, it will become the tendency for the air permeability of the microporous film obtained to become more favorable. Here, the stretching temperature for cold stretching refers to the surface temperature of the film in the cold stretching step.
冷延伸工程における冷延伸の延伸倍率は、好ましくは1.05倍以上2.0倍以下であり、より好ましくは1.2倍以上1.7倍以下である。延伸倍率が1.05倍以上であると、透気性の良好な微多孔性フィルムが得られる傾向にあり、2.0倍以下であると、膜厚が均一な微多孔性フィルムが得られる傾向にある。原反フィルムAfの冷延伸は、少なくとも一方向に行い、二方向に行ってもよいが、好ましくは、フィルムの押出し方向(以下「MD方向」という)にのみ一軸延伸を行う。 The draw ratio of cold drawing in the cold drawing step is preferably 1.05 times or more and 2.0 times or less, more preferably 1.2 times or more and 1.7 times or less. When the draw ratio is 1.05 times or more, a microporous film having good air permeability tends to be obtained, and when it is 2.0 times or less, a microporous film having a uniform film thickness tends to be obtained. It is in. The cold stretch of the raw film Af may be performed in at least one direction and may be performed in two directions. Preferably, the original film Af is uniaxially stretched only in the film extrusion direction (hereinafter referred to as “MD direction”).
本実施形態の製造方法においては、冷延伸工程において、原反フィルムAfを、0℃以上70℃以下の温度で、MD方向に1.1倍〜2.0倍に一軸延伸することが好ましい。 In the manufacturing method of the present embodiment, in the cold stretching step, the raw film Af is preferably uniaxially stretched 1.1 to 2.0 times in the MD direction at a temperature of 0 ° C. or higher and 70 ° C. or lower.
次に、熱延伸工程について説明する。
本実施形態における微多孔性フィルムの製造方法は、冷延伸工程において延伸されたフィルムを、90℃以上150℃未満に保持した状態で、少なくとも一方向に好ましくは1.05倍以上5.0倍以下に熱延伸する。
Next, the heat stretching process will be described.
The method for producing a microporous film in this embodiment is preferably 1.05 times or more and 5.0 times in at least one direction in a state where the film stretched in the cold stretching step is held at 90 ° C. or higher and lower than 150 ° C. The film is hot stretched below.
熱延伸の延伸温度は、上記冷延伸の延伸温度よりも高ければ特に限定されない。また、熱延伸の延伸温度は、90℃以上150℃未満、好ましくは110℃以上140℃以下の温度である。90℃以上で熱延伸すればフィルムが破断し難くなり、150℃未満で熱延伸すれば得られる微多孔性フィルムの透気性が良好となる。ここで、熱延伸の延伸温度とは、熱延伸工程におけるフィルムの表面温度を示す。 The stretching temperature for hot stretching is not particularly limited as long as it is higher than the stretching temperature for cold stretching. Further, the stretching temperature of the thermal stretching is a temperature of 90 ° C. or higher and lower than 150 ° C., preferably 110 ° C. or higher and 140 ° C. or lower. If it is hot-stretched at 90 ° C. or higher, the film is difficult to break, and if it is heat-stretched below 150 ° C., the air permeability of the microporous film obtained is improved. Here, the stretching temperature of the heat stretching indicates the surface temperature of the film in the heat stretching step.
熱延伸工程における熱延伸の延伸倍率は、好ましくは1.05倍以上5.0倍以下であり、より好ましくは1.1倍以上5.0倍以下、更に好ましくは2.0倍以上4.0倍以下である。熱延伸工程における延伸倍率が1.05倍以上であると、透気性の良好な微多孔性フィルムが得られる傾向にあり、5.0倍以下であると、膜厚が均一な微多孔性フィルムが得られる傾向にある。熱延伸は、少なくとも一方向に対して行い、二方向に行ってもよいが、好ましくは冷延伸の延伸方向と同じ方向に行い、より好ましくは冷延伸の延伸方向と同じ方向にのみ一軸延伸を行う。 The draw ratio of the hot drawing in the hot drawing step is preferably 1.05 to 5.0, more preferably 1.1 to 5.0, and still more preferably 2.0 to 4. 0 times or less. When the draw ratio in the heat drawing step is 1.05 times or more, a microporous film having good air permeability tends to be obtained, and when it is 5.0 times or less, the film thickness is uniform. Tends to be obtained. The hot stretching may be performed in at least one direction and may be performed in two directions, but is preferably performed in the same direction as the cold stretching direction, more preferably uniaxial stretching only in the same direction as the cold stretching direction. Do.
本実施形態の製造方法においては、熱延伸工程において、冷延伸工程を経て冷延伸されたフィルムを、90℃以上150℃未満の温度で、MD方向に2.0倍〜5.0倍に一軸延伸することが好ましい。 In the manufacturing method of the present embodiment, in the hot stretching process, the film that has been cold-drawn through the cold-drawing process is uniaxial in the MD direction at 2.0 times to 5.0 times at a temperature of 90 ° C. or higher and lower than 150 ° C. It is preferable to stretch.
本実施形態の微多孔性フィルムの製造方法は、微多孔性フィルムに要求される良好な透気性や用途の観点から、冷延伸工程と熱延伸工程との2段階の延伸工程を含む。微多孔性フィルムの製造方法が延伸工程を1段階で行う方法である場合、得られる微多孔性フィルムは、要求される良好な透気性を満たし難くなる。なお、本実施形態の微多孔性フィルムの製造方法は、上述の各延伸工程に加えて、更なる延伸工程を含んでもよい。 The manufacturing method of the microporous film of the present embodiment includes a two-stage stretching process including a cold stretching process and a hot stretching process from the viewpoint of good air permeability and use required for the microporous film. When the manufacturing method of a microporous film is a method which performs an extending | stretching process in 1 step, the obtained microporous film becomes difficult to satisfy | fill the required favorable air permeability. In addition, the manufacturing method of the microporous film of this embodiment may include the further extending process in addition to each above-mentioned extending process.
本実施形態の微多孔性フィルムの製造方法は、熱延伸工程を経て得られた微多孔性フィルムに対して、好ましくは100℃以上150℃以下の温度で熱固定を施す熱固定工程を含むことが好ましい。この熱固定の方法としては、熱固定後の微多孔性フィルムの長さが、熱固定前の微多孔性フィルムの長さに対して3〜50%減少する程度熱収縮させる方法(以下、この方法を「緩和」という)、延伸方向の寸法が変化しないように熱固定する方法が挙げられる。 The method for producing a microporous film according to the present embodiment includes a heat setting step in which heat setting is preferably performed at a temperature of 100 ° C. or higher and 150 ° C. or lower with respect to the microporous film obtained through the heat stretching step. Is preferred. This heat setting method includes a method of heat shrinking to such an extent that the length of the microporous film after heat setting is reduced by 3 to 50% with respect to the length of the microporous film before heat setting (hereinafter referred to as this method). The method is referred to as “relaxation”), and heat setting is performed so that the dimension in the stretching direction does not change.
熱固定温度は、100℃以上150℃以下であることが好ましく、130℃以上140℃以下であることがより好ましい。ここで、熱固定温度とは、熱固定工程における微多孔性フィルムの表面温度を示す。 The heat setting temperature is preferably 100 ° C. or higher and 150 ° C. or lower, and more preferably 130 ° C. or higher and 140 ° C. or lower. Here, the heat setting temperature indicates the surface temperature of the microporous film in the heat setting process.
本実施形態の微多孔性フィルムの製造方法における冷延伸工程、熱延伸工程、その他の延伸工程及び熱固定工程の各工程において、延伸又は熱固定は、ロール、テンター、オートグラフ等により、1段階又は2段階以上で、一軸方向及び/又は二軸方向に行うことができる。特に、得られる微多孔性フィルムに要求される透気度や気孔率等の物性や用途の観点から、少なくとも1つの工程において、ロールによる2段階以上の一軸延伸/固定を行うことが好ましい。 In each step of the cold drawing step, the hot drawing step, other drawing steps and the heat setting step in the method for producing the microporous film of the present embodiment, the drawing or heat setting is performed in one step by a roll, a tenter, an autograph, or the like. Or it can carry out to a uniaxial direction and / or a biaxial direction in two steps or more. In particular, from the viewpoint of physical properties and applications such as air permeability and porosity required for the obtained microporous film, it is preferable to perform uniaxial stretching / fixing in two or more stages with a roll in at least one step.
次に、本実施形態における微多孔性フィルムの物性について説明する。 Next, the physical property of the microporous film in this embodiment is demonstrated.
本実施形態の微多孔性フィルムの伸長粘度は30000〜60000Pa・sであり、好ましくは40000〜50000Pa・sである。伸長粘度が30000Pa・s以上であると、微多孔性フィルムの破膜温度が良好となり、60000Pa・s以下であると、フィルム成形時に破断し難くなる。 The elongational viscosity of the microporous film of this embodiment is 30,000 to 60000 Pa · s, preferably 40000 to 50000 Pa · s. When the elongational viscosity is 30000 Pa · s or more, the film breaking temperature of the microporous film is good, and when it is 60000 Pa · s or less, it is difficult to break during film forming.
微多孔性フィルムの伸長粘度は、温度200℃、伸長歪み速度10s-1の条件で測定される値であり、ツインキャピラリーレオメーターによる流入圧力損失法を用い、Cogswellの理論[Polymer Engineering Science、12、64(1972)]に従って測定を行うことにより得られる。 The elongational viscosity of the microporous film is a value measured under conditions of a temperature of 200 ° C. and an elongation strain rate of 10 s −1. The inflow pressure loss method using a twin capillary rheometer is used, and Cogswell's theory [Polymer Engineering Science, 12 , 64 (1972)].
本発明者らは、微多孔性フィルムの伸長粘度を上記範囲にすることで破膜温度が顕著に向上することを見出した。この要因は、完全には解明できていない。従来技術では、破膜温度を向上させるためには、より融点の高い樹脂を用いることが必要であると考えられていた。しかし、本発明者は、融点が同程度の樹脂であっても、伸長粘度を上記範囲にすることで、微多孔性フィルムの破膜温度を飛躍的に向上させ得ることを見出した。 The inventors of the present invention have found that the membrane breaking temperature is remarkably improved by setting the elongation viscosity of the microporous film within the above range. This factor has not been fully elucidated. In the prior art, in order to improve the film breaking temperature, it was considered necessary to use a resin having a higher melting point. However, the present inventor has found that even if the resins have the same melting point, the film breaking temperature of the microporous film can be dramatically improved by setting the elongational viscosity within the above range.
なお、微多孔性フィルムの伸長粘度を高める方法としては、例えば、長鎖分岐を含有するポリプロピレン樹脂組成物を用いる方法や、ポリプロピレン樹脂組成物を有機過酸化物等の架橋剤と共に溶融混練し、適度に架橋させる方法が挙げられる。 In addition, as a method for increasing the extensional viscosity of the microporous film, for example, a method using a polypropylene resin composition containing a long chain branch, or melt kneading the polypropylene resin composition with a crosslinking agent such as an organic peroxide, A method of appropriately crosslinking is mentioned.
本実施形態のポリプロピレン樹脂組成物の重量平均分子量(Mw)は、30万〜200万であることが好ましく、より好ましくは50万〜100万、更に好ましくは50万〜75万である。Mwが30万以上であれば、微多孔性フィルムの破膜温度が向上する傾向にあり、200万以下であれば、微多孔性フィルムの成膜性が良好となる傾向にある。Mwが50万〜75万であれば、更に、微多孔性フィルムの熱収縮率が低くなる傾向にある。熱収縮率が低くなると、微多孔性フィルムを電池用セパレータとして使用した場合に、電池温度が異常に上昇しても、セパレータの収縮が起こり難くなり、正負極が接触してショートする危険性が低減する傾向にある。 It is preferable that the weight average molecular weight (Mw) of the polypropylene resin composition of this embodiment is 300,000-2 million, More preferably, it is 500,000-1 million, More preferably, it is 500,000-750,000. If Mw is 300,000 or more, the membrane breaking temperature of the microporous film tends to be improved, and if it is 2 million or less, the film formability of the microporous film tends to be good. If Mw is 500,000-750,000, the thermal shrinkage rate of the microporous film tends to be lower. When the thermal shrinkage rate is low, when a microporous film is used as a battery separator, even if the battery temperature rises abnormally, the separator does not easily shrink, and there is a risk that the positive and negative electrodes come into contact and short-circuit. It tends to decrease.
また、ポリプロピレン樹脂組成物の分子量分布は、数平均分子量(Mn)に対する重量平均分子量(Mw)の比(以下「Mw/Mn」と表記する)で、2.0〜20.0であることが好ましく、より好ましくは3.0〜10.0であり、更に好ましくは5.0〜7.0である。Mw/Mnが2.0以上であれば、ポリプロピレン樹脂組成物Acを成形する際の発熱が抑えられ、樹脂劣化が起こり難くなる傾向にあり、20.0以下であれば、高分子量成分由来の未溶融物が少なくなる傾向にある。Mw及びMnは、ポリスチレンを標準試料として、微多孔性フィルムのゲル・パーミエーション・クロマトグラフィー(以下「GPC」と表記する)から求められ、詳細には下記実施例に記載した方法に準じて測定される。 The molecular weight distribution of the polypropylene resin composition is a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (hereinafter referred to as “Mw / Mn”) and is 2.0 to 20.0. More preferably, it is 3.0-10.0, More preferably, it is 5.0-7.0. If Mw / Mn is 2.0 or more, heat generation during molding of the polypropylene resin composition Ac is suppressed, and resin degradation tends to hardly occur. If it is 20.0 or less, it is derived from a high molecular weight component. There is a tendency for unmelted material to decrease. Mw and Mn are obtained from gel permeation chromatography (hereinafter referred to as “GPC”) of a microporous film using polystyrene as a standard sample, and measured in detail according to the method described in the following examples. Is done.
本実施形態の微多孔性フィルムの気孔率は、20%〜80%であることが好ましく、より好ましくは30%〜70%、更に好ましくは40%〜60%である。気孔率を20%以上に設定することにより、微多孔性フィルムを電池用セパレータとして用いた場合に、十分なイオン透過性を確保し得る傾向にある。一方、気孔率を80%以下に設定することにより、微多孔性フィルムが十分な機械強度を確保し得る傾向にある。 The porosity of the microporous film of this embodiment is preferably 20% to 80%, more preferably 30% to 70%, and still more preferably 40% to 60%. By setting the porosity to 20% or more, when a microporous film is used as a battery separator, sufficient ion permeability tends to be ensured. On the other hand, by setting the porosity to 80% or less, the microporous film tends to ensure sufficient mechanical strength.
なお、微多孔性フィルムの気孔率は、ポリプロピレン樹脂組成物Acの組成、各延伸工程における延伸温度、延伸倍率等を適宜設定することにより上述の範囲に調整することができる。例えば、その気孔率を高くするには、原反フィルムAfを成形する際のドロー比を高くしたり、延伸倍率を高くしたりすればよい。また、微多孔性フィルムの気孔率は、そのフィルムから10cm×10cm角のサンプルを切り出し、そのサンプルの体積V(cm3)及び質量M(g)と、フィルムを構成する樹脂組成物Acの密度d(g/cm3)とから下記式を用いて算出される。
気孔率(%)={(V−M/d)/V}×100
The porosity of the microporous film can be adjusted to the above range by appropriately setting the composition of the polypropylene resin composition Ac, the stretching temperature in each stretching step, the stretching ratio, and the like. For example, in order to increase the porosity, the draw ratio at the time of forming the raw film Af may be increased, or the stretch ratio may be increased. Moreover, the porosity of a microporous film cuts out the sample of 10 cm x 10 cm square from the film, the volume V (cm < 3 >) and mass M (g) of the sample, and the density of resin composition Ac which comprises a film Calculated from d (g / cm 3 ) using the following formula.
Porosity (%) = {(VM−d / V) × 100
また、微多孔性フィルムの透気度は、10秒/100cc〜5000秒/100ccであり、好ましくは50秒/100cc〜1000秒/100cc、より好ましくは100秒/100cc〜300秒/100ccである。透気度が5000秒/100cc以下である場合、微多孔性フィルムが十分なイオン透過性を確保し得る。一方、透気度が10秒/100cc以上である場合、欠陥のない、より均質な微多孔性フィルムが得られる。 The air permeability of the microporous film is 10 seconds / 100 cc to 5000 seconds / 100 cc, preferably 50 seconds / 100 cc to 1000 seconds / 100 cc, more preferably 100 seconds / 100 cc to 300 seconds / 100 cc. . When the air permeability is 5000 seconds / 100 cc or less, the microporous film can ensure sufficient ion permeability. On the other hand, when the air permeability is 10 seconds / 100 cc or more, a more uniform microporous film having no defects can be obtained.
なお、微多孔性フィルムの透気度は、ポリプロピレン樹脂組成物Acの組成、各延伸工程における延伸温度、延伸倍率等を適宜設定することにより上述の範囲に調整することができる。例えば、その透気度を高くするには、延伸倍率を高くしたり、熱固定における緩和倍率を低くすればよい。また、微多孔性フィルムの透気度は、JIS P−8117に準拠し、ガーレー式透気度計を用いて測定される。 The air permeability of the microporous film can be adjusted to the above range by appropriately setting the composition of the polypropylene resin composition Ac, the stretching temperature in each stretching step, the stretching ratio, and the like. For example, in order to increase the air permeability, the stretch ratio may be increased or the relaxation ratio in heat setting may be decreased. The air permeability of the microporous film is measured using a Gurley type air permeability meter according to JIS P-8117.
微多孔性フィルムの膜厚は、好ましくは5〜40μm、より好ましくは10〜30μmである。 The film thickness of the microporous film is preferably 5 to 40 μm, more preferably 10 to 30 μm.
本実施形態における微多孔性フィルムは、電池用セパレータ、より具体的にはリチウムイオン二次電池用セパレータとして好適に用いられる。電池用セパレータは、本実施形態の微多孔性フィルムを備える他は、公知の構成を有し、公知の方法により作製されればよい。その他、本実施形態の微多孔性フィルムは各種分離膜としても用いられる。 The microporous film in this embodiment is suitably used as a battery separator, more specifically as a lithium ion secondary battery separator. The battery separator has a known configuration except that it includes the microporous film of the present embodiment, and may be manufactured by a known method. In addition, the microporous film of this embodiment is also used as various separation membranes.
次に、実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、各種特性の評価方法は下記の通りである。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist. In addition, the evaluation method of various characteristics is as follows.
(1)MFR
MFRは、メルトインデックスと同義であり、JIS K7210に準拠して、温度230℃、荷重2.16kgの条件下でポリプロピレン樹脂組成物のMFRを測定した。MFRの単位はg/10分である。
(1) MFR
MFR is synonymous with melt index, and the MFR of the polypropylene resin composition was measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210. The unit of MFR is g / 10 minutes.
(2)融点
ポリプロピレン樹脂組成物の融点をJIS K−7121に準拠した方法で測定した。融点の単位は℃である。
(2) Melting point The melting point of the polypropylene resin composition was measured by a method based on JIS K-7121. The unit of melting point is ° C.
(3)分子量,分子量分布(Mw/Mn)
ポリプロピレン樹脂組成物における樹脂の分子量分布は、ゲル・パーミエーション・クロマトグラフィー(GPC)から求められる重量平均分子量(Mw)と数平均分子量(Mn)との比Mw/Mnの値である。GPC測定は、東ソー社製のGPS装置(商品名「HLC−8121GPC/HT」)を用いて行った。カラムとして東ソー社製の商品名「TSKgel GMHHR−H(20)」(2本)を用い、移動相o−ジクロロベンゼン(o−DCB)、カラム温度155℃、流量1.0mL/分、試料濃度0.5mg/mL(o−DCB)、注入量500μL、試料溶解温度160℃、試料溶解時間3時間の条件で行った。分子量の校正は、ポリスチレンで行い、ポリスチレン換算分子量でMw及びMnを求め、分子量分布を導出した。
(3) Molecular weight, molecular weight distribution (Mw / Mn)
The molecular weight distribution of the resin in the polypropylene resin composition is a value of the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) obtained from gel permeation chromatography (GPC). The GPC measurement was performed using a GPS device (trade name “HLC-8121GPC / HT”) manufactured by Tosoh Corporation. Using the trade name “TSKgel GMHHR-H (20)” (two) manufactured by Tosoh Corporation as the column, mobile phase o-dichlorobenzene (o-DCB), column temperature 155 ° C., flow rate 1.0 mL / min, sample concentration The test was performed under the conditions of 0.5 mg / mL (o-DCB), injection amount 500 μL, sample dissolution temperature 160 ° C., and sample dissolution time 3 hours. The molecular weight was calibrated with polystyrene, and Mw and Mn were obtained from the polystyrene-equivalent molecular weight to derive the molecular weight distribution.
(4)伸長粘度
微多孔性フィルムの伸長粘度は、流入圧力損失法を用い、Cogswellの理論[Polymer Engineering Science、12、64(1972)]に従って測定を行うことにより得た。測定装置として、ロザンド社製のツインキャピラリーレオメーターを用い、オリフィスは、以下に示すロングダイ及びショートダイを用い、温度200℃、伸長歪み速度10s-1の条件で測定を行った。
ロングダイ:長さ16mm、直径1mm、流入角180°
ショートダイ:長さ0.25mm、直径1mm、流入角180°
(4) Elongation Viscosity The elongational viscosity of the microporous film was obtained by measurement according to Cogswell's theory [Polymer Engineering Science, 12, 64 (1972)] using the inflow pressure loss method. As a measuring apparatus, a twin capillary rheometer manufactured by Rosand was used, and for the orifice, the following long die and short die were used, and measurement was performed under the conditions of a temperature of 200 ° C. and an elongation strain rate of 10 s −1 .
Long die: length 16mm, diameter 1mm, inflow angle 180 °
Short die: Length 0.25mm, diameter 1mm, inflow angle 180 °
(5)膜厚(μm)
微多孔性フィルムの膜厚は、ダイヤルゲージ(尾崎製作所社製、商品名「PEACOCK No.25」)を用いて測定した。
(5) Film thickness (μm)
The film thickness of the microporous film was measured using a dial gauge (manufactured by Ozaki Seisakusho, trade name “PEACOCK No. 25”).
(6)気孔率(%)
微多孔性フィルムの気孔率は、微多孔性フィルムから10cm×10cm角のサンプルを切り出し、そのサンプルの体積V(cm3)及び質量M(g)と、フィルムを構成する樹脂組成物の密度d(g/cm3)とから下記式を用いて算出した。
気孔率(%)={(V−M/d)/V}×100
(6) Porosity (%)
The porosity of the microporous film was determined by cutting out a 10 cm × 10 cm square sample from the microporous film, the volume V (cm 3 ) and mass M (g) of the sample, and the density d of the resin composition constituting the film. It calculated using the following formula from (g / cm 3 ).
Porosity (%) = {(VM−d / V) × 100
(7)透気度(秒/100cc)
微多孔性フィルムの透気度は、JIS P−8117に準拠したガーレー式透気度計にて測定した。なお、微多孔性フィルムの膜厚を20μmとした場合の値に換算した値を、その微多孔性フィルムの透気度とした。
(7) Air permeability (sec / 100cc)
The air permeability of the microporous film was measured with a Gurley type air permeability meter based on JIS P-8117. In addition, the value converted into the value when the film thickness of a microporous film was 20 micrometers was made into the air permeability of the microporous film.
(8)熱収縮率
フィルムから12cm×12cm角のサンプルを切り出し、そのサンプルのMD方向に10cm間隔で2つの印を付け、サンプルを紙で挟んだ状態で、100℃のオーブン中に60分間静置した。オーブンからサンプルを取り出し冷却した後、印間の長さ(cm)を測定し、下記式にてMD方向の熱収縮率を算出した。
熱収縮率(%)=(10−加熱後の印間の長さ(cm))/10×100
(8) Thermal Shrinkage A 12 cm × 12 cm square sample was cut out from the film, two marks were made at 10 cm intervals in the MD direction of the sample, and the sample was sandwiched between papers and allowed to stand still in an oven at 100 ° C. for 60 minutes. I put it. After removing the sample from the oven and cooling, the length (cm) between the marks was measured, and the thermal shrinkage in the MD direction was calculated by the following formula.
Thermal contraction rate (%) = (10−length between marks after heating (cm)) / 10 × 100
(9)シャットダウン温度
微多孔性フィルムを40mm角のホルダ−に全周拘束状態で取付け、120℃に設定された熱風循環式オ−ブン中に60分間放置した。次いで試料オ−ブンから取り出して拘束状態のまま20℃まで冷却し透気度を測定した。透気度が、10000秒/100cc以下であれば、新たに微多孔性フィルムを用意し、オーブンの温度を5℃上げて同様の試験を行い、透気度が10000秒/100cc以上になる温度をシャットダウン温度とした。
(9) Shutdown temperature A microporous film was attached to a 40 mm square holder in a constrained state and left in a hot air circulation oven set at 120 ° C. for 60 minutes. Next, the sample was taken out of the sample oven, cooled to 20 ° C. in a restrained state, and the air permeability was measured. If the air permeability is 10000 seconds / 100 cc or less, a new microporous film is prepared, the temperature of the oven is increased by 5 ° C., the same test is performed, and the air permeability becomes 10000 seconds / 100 cc or more. Was the shutdown temperature.
(10)破膜温度
微多孔性フィルムを40mm角のホルダ−に全周拘束状態で取付け、170℃に設定された熱風循環式オ−ブン中に60分間放置した。次いで試料オ−ブンから取り出して目視により膜が破れているかどうかを判定した。膜が破れていなければ、新たに微多孔性フィルムを用意し、オーブンの温度を5℃上げて同様の試験を行い、膜が破れる温度を破膜温度とした。
(10) Film breakage temperature A microporous film was attached to a 40 mm square holder in a constrained state and left in a hot air circulation oven set at 170 ° C. for 60 minutes. Subsequently, it was taken out from the sample oven and it was judged by visual observation whether the film was torn. If the membrane was not torn, a new microporous film was prepared, the oven temperature was raised by 5 ° C., the same test was performed, and the temperature at which the membrane was broken was defined as the membrane breaking temperature.
尚、使用したポリプロピレン樹脂組成物は以下の通りである。
(Ac−1) プロピレンホモポリマー、プライムポリマー製 E111G
(Ac−2) 長鎖分岐を含有するプロピレンホモポリマー、日本ポリプロ製 SH9000
(Ac−3) プロピレンホモポリマー、プライムポリマー製 F113G
(Ac−4) 長鎖分岐を含有するプロピレンホモポリマー、サンアロマー製 PF814
In addition, the used polypropylene resin composition is as follows.
(Ac-1) E111G made of propylene homopolymer and prime polymer
(Ac-2) Propylene homopolymer containing long chain branch, SH9000 manufactured by Nippon Polypro
(Ac-3) F113G made of propylene homopolymer and prime polymer
(Ac-4) Propylene homopolymer containing long chain branches, PF814 made by Sun Allomer
[実施例]
表1の「ポリプロピレン樹脂組成物の組成」に示したとおり、ポリプロピレン樹脂組成物(Ac−1)80質量部とポリプロピレン樹脂組成物(Ac−3)20質量部を混合し、スクリュー径40mmの二軸押出機を用い、シリンダー温度200℃、押出量40kg/時間の条件で混練しながら押出し、ポリプロピレン樹脂組成物(Ac−5)を得た。得られたポリプロピレン樹脂組成物(Ac−5)について、MFR、融点を測定した。その結果を表1に示す。
[ Example ]
As shown in “Composition of the polypropylene resin composition” in Table 1, 80 parts by mass of the polypropylene resin composition (Ac-1) and 20 parts by mass of the polypropylene resin composition (Ac-3) were mixed, and two screws having a screw diameter of 40 mm were mixed. Using a shaft extruder, extrusion was performed while kneading under the conditions of a cylinder temperature of 200 ° C. and an extrusion rate of 40 kg / hour to obtain a polypropylene resin composition (Ac-5). About the obtained polypropylene resin composition (Ac-5), MFR and melting | fusing point were measured. The results are shown in Table 1.
ポリプロピレン樹脂組成物(Ac−5)を、口径20mm、L/D=30の220℃に設定した単軸押出機にフィーダーを介して投入し、押出機先端に設置したリップ厚4.0mmのTダイから押し出した。押し出した後の溶融したポリプロピレン樹脂組成物(Ac−5)に直ちに25℃の冷風を当て、次いで、95℃に冷却したキャストロールでドロー比200、巻き取り速度15m/分の条件で巻き取り、原反フィルム(Af−1)を得た。 The polypropylene resin composition (Ac-5) was introduced into a single-screw extruder set at 220 ° C. having a diameter of 20 mm and L / D = 30 via a feeder, and a lip thickness of 4.0 mm set at the tip of the extruder. Extruded from the die. The extruded polypropylene resin composition (Ac-5) after extrusion was immediately applied with cold air of 25 ° C., and then wound with a cast roll cooled to 95 ° C. under a draw ratio of 200 and a winding speed of 15 m / min. An original film (Af-1) was obtained.
得られた原反フィルム(Af−1)を芯体上に巻き取った状態で、130℃の温度で3時間アニールした後、25℃まで冷却し、25℃の温度でMD方向に1.3倍に一軸延伸(冷延伸工程)し、続いて、120℃の温度でMD方向に2.5倍に一軸延伸(熱延伸工程)し、更に、145℃の温度で0.9倍に緩和させて熱固定を施し、微多孔性フィルムを得た。
得られた微多孔性フィルムについて、分子量、分子量分布、伸長粘度、膜厚、気孔率、透気度、シャットダウン温度、破膜温度、熱収縮率を測定した。その結果を表1に示す。
The obtained raw film (Af-1) was annealed at a temperature of 130 ° C. for 3 hours in the state of being wound on the core, cooled to 25 ° C., and 1.3 ° in the MD direction at a temperature of 25 ° C. Uniaxially stretched twice (cold stretching step), then uniaxially stretched 2.5 times in the MD direction (thermal stretching step) at a temperature of 120 ° C, and further relaxed 0.9 times at a temperature of 145 ° C. Then, heat setting was performed to obtain a microporous film.
The obtained microporous film was measured for molecular weight, molecular weight distribution, elongational viscosity, film thickness, porosity, air permeability, shutdown temperature, membrane breaking temperature, and heat shrinkage rate. The results are shown in Table 1.
[実施例5、比較例1、参考例3〜4]
表1に記載した条件以外は[実施例]と同様にして、微多孔性フィルムを得た。
得られた微多孔性フィルムについて諸物性を評価した。結果を表1に示す。
A microporous film was obtained in the same manner as in [Example] except for the conditions described in Table 1 .
Various physical properties of the obtained microporous film were evaluated. The results are shown in Table 1.
表1の結果から明らかなように、実施例5の微多孔性フィルムは、高い破膜温度と良好な透気性(低い透気度)を示した。また、シャットダウン温度と破膜温度の差も大きかった。
これに対し、伸長粘度が30000Pa・sよりも小さい比較例1は破膜温度が低く、シャットダウン温度と破膜温度の差も小さかった。
As apparent from the results in Table 1, microporous film of Example 5 exhibited a high not rupture temperature and a good air permeability (low air permeability). In addition, the difference between the shutdown temperature and the film breaking temperature was also large.
On the other hand, Comparative Example 1 having an extensional viscosity smaller than 30000 Pa · s had a low membrane breaking temperature, and the difference between the shutdown temperature and the membrane breaking temperature was also small .
本発明の微多孔性フィルムは、電池用セパレータ、より具体的には、リチウム二次電池用セパレータとしての産業上利用可能性を有する。 The microporous film of the present invention has industrial applicability as a battery separator, more specifically as a lithium secondary battery separator.
Claims (3)
重量平均分子量が50万〜75万のポリプロピレン樹脂組成物からなり、
透気度が10秒/100cc〜5000秒/100ccであり、
200℃、伸長歪み10s -1 における伸長粘度が30000Pa・s〜60000Pa・sである、微多孔性フィルム。 MFR is 0.3 to 1.0 g / 10 min,
A polypropylene resin composition having a weight average molecular weight of 500,000 to 750,000 ,
The air permeability is 10 seconds / 100 cc to 5000 seconds / 100 cc,
200 ° C., elongation viscosity at elongation distortion 10s -1 is 30000Pa · s~60000Pa · s, microporous film.
(A)ポリプロピレン樹脂組成物からなるフィルムを−20℃以上90℃未満の温度で延伸する冷延伸工程、
(B)前記冷延伸工程において延伸されたフィルムを90℃以上150℃未満の温度で延伸する熱延伸工程。 It is a manufacturing method of the microporous film of Claim 1 , Comprising: The manufacturing method of a microporous film including each process of the following (A) and (B):
(A) a cold drawing step of drawing a film comprising a polypropylene resin composition at a temperature of -20 ° C or higher and lower than 90 ° C;
(B) A hot stretching process in which the film stretched in the cold stretching process is stretched at a temperature of 90 ° C. or higher and lower than 150 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009118916A JP5427469B2 (en) | 2009-05-15 | 2009-05-15 | Microporous film, method for producing the same, and battery separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009118916A JP5427469B2 (en) | 2009-05-15 | 2009-05-15 | Microporous film, method for producing the same, and battery separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010265414A JP2010265414A (en) | 2010-11-25 |
JP5427469B2 true JP5427469B2 (en) | 2014-02-26 |
Family
ID=43362674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009118916A Active JP5427469B2 (en) | 2009-05-15 | 2009-05-15 | Microporous film, method for producing the same, and battery separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5427469B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10947373B2 (en) | 2016-08-18 | 2021-03-16 | Japan Polypropylene Corporation | Polypropylene resin composition for microporous film and use of polypropylene resin composition |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5731762B2 (en) * | 2010-06-10 | 2015-06-10 | 旭化成イーマテリアルズ株式会社 | Microporous film, method for producing the same, and battery separator |
JP5765960B2 (en) * | 2011-02-16 | 2015-08-19 | 旭化成イーマテリアルズ株式会社 | Method for producing microporous film and battery separator |
JP5692917B2 (en) * | 2011-07-26 | 2015-04-01 | 旭化成イーマテリアルズ株式会社 | Microporous film and battery separator |
EP2757125A4 (en) * | 2011-09-17 | 2015-06-17 | Sekisui Chemical Co Ltd | Method for producing propylene-based resin microporous film and propylene-based resin microporous film |
JP5845222B2 (en) * | 2012-09-19 | 2016-01-20 | 積水化学工業株式会社 | Microporous resin film, method for producing the same, and separator for lithium ion battery |
JP6034635B2 (en) * | 2012-09-27 | 2016-11-30 | 旭化成株式会社 | Microporous film and battery separator |
JP2016128535A (en) * | 2015-01-09 | 2016-07-14 | Jnc株式会社 | Microporous film and manufacturing method therefor |
JP6507650B2 (en) * | 2015-01-09 | 2019-05-08 | Jnc株式会社 | Microporous membrane and method for producing the same |
JP6507647B2 (en) * | 2015-01-09 | 2019-05-08 | Jnc株式会社 | Microporous membrane and method for producing the same |
JP6550754B2 (en) * | 2015-01-09 | 2019-07-31 | Jnc株式会社 | Microporous membrane and method for producing the same |
JP6435886B2 (en) * | 2015-01-30 | 2018-12-12 | Jnc株式会社 | Multilayer heat-resistant separator material and method for producing the same |
JP6288216B2 (en) * | 2016-02-09 | 2018-03-07 | 宇部興産株式会社 | Polyolefin microporous membrane, separator film for electricity storage device, and electricity storage device |
JP6781394B2 (en) * | 2016-03-31 | 2020-11-04 | Jnc株式会社 | Microporous membrane with excellent low temperature characteristics and its manufacturing method |
JP7498571B2 (en) * | 2019-02-18 | 2024-06-12 | 旭化成株式会社 | Microporous membrane for power storage devices |
WO2020196120A1 (en) * | 2019-03-27 | 2020-10-01 | 旭化成株式会社 | Separator for power storage device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3669777B2 (en) * | 1996-07-05 | 2005-07-13 | 旭化成ケミカルズ株式会社 | Polyethylene microporous membrane |
JP5042583B2 (en) * | 2006-10-10 | 2012-10-03 | 三菱樹脂株式会社 | Porous film and method for producing the same |
-
2009
- 2009-05-15 JP JP2009118916A patent/JP5427469B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10947373B2 (en) | 2016-08-18 | 2021-03-16 | Japan Polypropylene Corporation | Polypropylene resin composition for microporous film and use of polypropylene resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2010265414A (en) | 2010-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5427469B2 (en) | Microporous film, method for producing the same, and battery separator | |
JP5807388B2 (en) | Porous polypropylene film | |
JP5731762B2 (en) | Microporous film, method for producing the same, and battery separator | |
JP2013199545A (en) | Fine porous film and battery separator | |
JP7283080B2 (en) | Polyolefin microporous membrane, battery separator and secondary battery | |
KR20210137000A (en) | Polyolefin microporous membrane, separator for secondary battery, and secondary battery | |
JP5692917B2 (en) | Microporous film and battery separator | |
JP6135665B2 (en) | Polyolefin porous film and electricity storage device | |
JP5594873B2 (en) | Method for producing polyolefin biaxially stretched porous membrane and polyolefin biaxially stretched porous membrane | |
WO2014103713A1 (en) | Porous polyolefin film and method for producing same, and storage device separator formed using same | |
JP6034635B2 (en) | Microporous film and battery separator | |
JP2012015073A (en) | Microporous film, method for producing the same, and battery separator | |
JP5765960B2 (en) | Method for producing microporous film and battery separator | |
JP6486620B2 (en) | Laminated microporous film, method for producing the same, and battery separator | |
JP2011076851A (en) | Microporous film and method of manufacturing the same, and separator for battery | |
JP5924263B2 (en) | Porous polypropylene film and method for producing the same | |
JP6486621B2 (en) | Laminated microporous film, method for producing the same, and battery separator | |
JP6356000B2 (en) | Laminated microporous film, method for producing the same, and battery separator | |
JP5519229B2 (en) | Method for producing microporous film | |
JP5411550B2 (en) | Polyolefin microporous membrane | |
JP7532843B2 (en) | Polyolefin microporous membrane, battery separator, and secondary battery | |
JP2010215901A (en) | Porous polypropylene film | |
JP2010137509A (en) | Laminate fine porous film and method of manufacturing the same | |
WO2024077927A1 (en) | Polyolefin porous membrane and preparation method therefor, battery separator, and electrochemical device | |
JP7540336B2 (en) | Polyolefin microporous membrane, battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120508 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131202 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5427469 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |