[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5423785B2 - Dielectric ceramic and multilayer ceramic capacitors - Google Patents

Dielectric ceramic and multilayer ceramic capacitors Download PDF

Info

Publication number
JP5423785B2
JP5423785B2 JP2011502609A JP2011502609A JP5423785B2 JP 5423785 B2 JP5423785 B2 JP 5423785B2 JP 2011502609 A JP2011502609 A JP 2011502609A JP 2011502609 A JP2011502609 A JP 2011502609A JP 5423785 B2 JP5423785 B2 JP 5423785B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
mol parts
mol
main component
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011502609A
Other languages
Japanese (ja)
Other versions
JPWO2010100827A1 (en
Inventor
朋美 古賀
晃一 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2011502609A priority Critical patent/JP5423785B2/en
Publication of JPWO2010100827A1 publication Critical patent/JPWO2010100827A1/en
Application granted granted Critical
Publication of JP5423785B2 publication Critical patent/JP5423785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Description

この発明は、誘電体セラミックおよびそれを用いて構成される積層セラミックコンデンサに関するもので、特に、高い電界下で用いるのに適した誘電体セラミックおよび積層セラミックコンデンサに関するものである。   The present invention relates to a dielectric ceramic and a multilayer ceramic capacitor formed using the dielectric ceramic, and more particularly to a dielectric ceramic and a multilayer ceramic capacitor suitable for use under a high electric field.

積層セラミックコンデンサには、たとえば250〜1000Vという高い電圧下において使用されるものがある。この場合、誘電体セラミック層の1層当たりの厚みによっては、電界にして、25〜100kV/mmという高い電圧がかかる。そのため、このような中高圧用途の積層セラミックコンデンサでは、誘電体セラミック層が絶縁破壊する懸念がある。   Some multilayer ceramic capacitors are used under a high voltage of 250 to 1000 V, for example. In this case, depending on the thickness of each dielectric ceramic layer, a high voltage of 25 to 100 kV / mm is applied as an electric field. Therefore, there is a concern that the dielectric ceramic layer may be dielectrically broken in such a multilayer ceramic capacitor for medium and high voltage applications.

上述した背景からわかるように、中高圧用途に向けられる積層セラミックコンデンサにおいては、絶縁破壊電圧(BDV:単位はkV/mm)が重要な指標となる。BDVは、電界を上昇させていった際に絶縁破壊が生じる電界の値をいい、負荷試験における寿命とは全く異なる現象によるものである。   As can be seen from the background described above, the dielectric breakdown voltage (BDV: the unit is kV / mm) is an important index for multilayer ceramic capacitors intended for medium and high voltage applications. BDV refers to the value of an electric field that causes dielectric breakdown when the electric field is raised, and is due to a phenomenon that is completely different from the life in a load test.

この発明にとって興味ある誘電体セラミックとして、たとえば特許第3323801号公報(以下、特許文献1という)に記載されたものがある。特許文献1には、(Ca,Sr,Ba)(Zr,Ti)O系の誘電体セラミックが開示されている。この誘電体セラミックは、耐還元性を有し、容量温度特性の直線性と品質係数Qの向上を図りながら、BDVの向上を達成している。An example of a dielectric ceramic that is of interest to the present invention is described in Japanese Patent No. 3323801 (hereinafter referred to as Patent Document 1). Patent Document 1 discloses a (Ca, Sr, Ba) (Zr, Ti) O 3 -based dielectric ceramic. This dielectric ceramic has reduction resistance and achieves an improvement in BDV while improving the linearity of capacity-temperature characteristics and the quality factor Q.

特許第3323801号公報Japanese Patent No. 3323801

しかしながら、一般に、BDVの高い材料は、誘電率εが低い。特許文献1に記載された誘電体セラミックにあっても例外ではなく、120kV/mm以上のBDVを達成している一方、誘電率εが100前後と低い。このため、積層セラミックコンデンサの小型化にとって不利である。   However, in general, a material having a high BDV has a low dielectric constant ε. The dielectric ceramic described in Patent Document 1 is no exception, and a BDV of 120 kV / mm or more is achieved, while the dielectric constant ε is as low as about 100. For this reason, it is disadvantageous for miniaturization of the multilayer ceramic capacitor.

したがって、BDVおよび誘電率εの双方について高い値を与えることができる誘電体セラミックの開発が望まれる。   Therefore, development of dielectric ceramics that can provide high values for both BDV and dielectric constant ε is desired.

さらに、高いBDVを満足しつつ、信頼性の高い、すなわち負荷試験における寿命特性の良好な誘電体セラミックの開発も望まれる。   Furthermore, development of a dielectric ceramic that satisfies high BDV and has high reliability, that is, good life characteristics in a load test is also desired.

そこで、この発明の目的は、高い絶縁破壊電圧ばかりでなく、高い誘電率εを有し、信頼性も良好な誘電体セラミックを提供することである。   Accordingly, an object of the present invention is to provide a dielectric ceramic having not only a high dielectric breakdown voltage but also a high dielectric constant ε and good reliability.

この発明の他の目的は、上述の誘電体セラミックを用いて構成される、中高圧用途に適した積層セラミックコンデンサを提供することである。   Another object of the present invention is to provide a monolithic ceramic capacitor that is configured using the above-described dielectric ceramic and is suitable for medium to high voltage applications.

この発明に係る誘電体セラミックは、上述した技術的課題を解決するため、チタン酸バリウムとチタン酸カルシウムとの混晶系を主成分とし、混晶系においては、チタン酸バリウムの一部がカルシウム(Ca)で置換された結晶粒子が存在していてもよく、混晶系中におけるバリウム(Ba)とカルシウム(Ca)の合計モル量に対するカルシウム(Ca)の存在モル比xが0.30≦x≦0.50の範囲であり、主成分100モル部に対し、バナジウム(V)を0.03モル部以上5モル部以下、ケイ素(Si)を0.5モル部以上5モル部以下含む。

In order to solve the technical problems described above, the dielectric ceramic according to the present invention is mainly composed of a mixed crystal system of barium titanate and calcium titanate. In the mixed crystal system, a part of the barium titanate is calcium. There may be crystal grains substituted with (Ca), and the molar ratio x of calcium (Ca) to the total molar amount of barium (Ba) and calcium (Ca) in the mixed crystal system is 0.30 ≦ x ≦ 0.50, and contains 0.03 mol part or more and 5 mol parts or less of vanadium (V) and 0.5 mol part or more and 5 mol parts or less of silicon (Si) with respect to 100 mol parts of the main component. .

この発明に係る誘電体セラミックにおいて、BaTiOとCaTiOとは、全率固溶せず、2相に分離することがある。ここで、BaTiOは、単独では、その絶縁破壊電圧が低いが、誘電率εについては高い。他方、CaTiOは、単独では、その絶縁破壊電圧が高いが、誘電率εについては低い。これらの存在モル比であるxを上記のように0.30≦x≦0.50の範囲に選ぶと、BaTiOとCaTiOとの単なる平均ではなく、相乗効果により、両者の長所を併せ持った特性を引き出すことができる。その結果、この発明に係る誘電体セラミックによれば、たとえば、誘電率εについては500以上の値を得ながら、90kV/mm以上の絶縁破壊電圧(BDV)を保証することができる。In the dielectric ceramic according to the present invention, BaTiO 3 and CaTiO 3 may not be completely dissolved but may be separated into two phases. Here, BaTiO 3 alone has a low dielectric breakdown voltage, but has a high dielectric constant ε. On the other hand, CaTiO 3 alone has a high dielectric breakdown voltage, but has a low dielectric constant ε. When x, which is the molar ratio of these, is selected in the range of 0.30 ≦ x ≦ 0.50 as described above, it is not a simple average of BaTiO 3 and CaTiO 3 , but has the advantages of both due to a synergistic effect. Characteristics can be extracted. As a result, according to the dielectric ceramic according to the present invention, for example, a dielectric breakdown voltage (BDV) of 90 kV / mm or more can be ensured while obtaining a value of 500 or more for the dielectric constant ε.

上記主成分100モル部に対し、0.03モル部以上5モル部以下のバナジウム(V)を含むことにより、負荷試験における寿命特性を向上することができる。このバナジウム(V)は、一般的なBaTiOを主成分とするセラミックに対しても用いられるが、高温における絶縁抵抗を劣化させることがあるため、高BDVの必要な用途には用いられにくい。しかしながら、本発明のようにBaTiOとCaTiOとの混晶系にバナジウム(V)を含有させた場合には、バナジウム(V)が粒界の絶縁抵抗を粒内の絶縁抵抗と同程度までしか下げないため、BDVを劣化させることはない。また、絶縁抵抗が粒内と粒界とで同程度になることにより、負荷試験における負荷電圧が粒内と粒界とで適度に分担され、寿命特性が向上する。By including 0.03 mol part or more and 5 mol parts or less of vanadium (V) with respect to 100 mol parts of the main component, the life characteristics in the load test can be improved. This vanadium (V) is also used for general ceramics containing BaTiO 3 as a main component, but since it may degrade the insulation resistance at high temperatures, it is difficult to use for applications requiring high BDV. However, when vanadium (V) is contained in the mixed crystal system of BaTiO 3 and CaTiO 3 as in the present invention, the vanadium (V) reduces the insulation resistance of the grain boundaries to the same degree as the intra-granular insulation resistance. However, the BDV is not deteriorated. Further, since the insulation resistance is approximately the same between the grains and the grain boundaries, the load voltage in the load test is appropriately shared between the grains and the grain boundaries, and the life characteristics are improved.

本発明の誘電体セラミックは、主成分100モル部に対し、5モル部以下のマンガン(Mn)をさらに含むことが好ましい。   The dielectric ceramic of the present invention preferably further contains 5 mol parts or less of manganese (Mn) with respect to 100 mol parts of the main component.

また、本発明の誘電体セラミックは、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)からなる群より選ばれた少なくとも1種の希土類元素を、主成分100モル部に対して、0.5モル部以上4.5モル部以下さらに含むことが好ましい。   The dielectric ceramic of the present invention includes yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), At least one rare earth element selected from the group consisting of terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu), It is preferable to further include 0.5 mol part or more and 4.5 mol part or less with respect to 100 mol parts of the component.

上記主成分100モル部に対し、0.5モル部以上4.5モル部以下の希土類元素をさらに含むことにより、負荷試験における寿命特性をさらに向上することができる。   The life characteristics in the load test can be further improved by further including 0.5 to 4.5 mole parts of rare earth elements with respect to 100 mole parts of the main component.

本発明の誘電体セラミックは、主成分100モル部に対し、3モル部以下のマグネシウム(Mg)をさらに含むことが好ましい。   The dielectric ceramic of the present invention preferably further contains 3 mol parts or less of magnesium (Mg) with respect to 100 mol parts of the main component.

この発明に従った積層セラミックコンデンサは、積層された複数の誘電体セラミック層と誘電体セラミック層間の特定の界面に沿って形成された内部電極とを含む積層体と、内部電極の特定のものに電気的に接続されるように積層体の外表面上に形成された外部電極とを備え、誘電体セラミック層は、上記のいずれかの誘電体セラミックからなることが好ましい。   A multilayer ceramic capacitor according to the present invention includes a multilayer body including a plurality of laminated dielectric ceramic layers and an internal electrode formed along a specific interface between the dielectric ceramic layers, and a specific internal electrode. And an external electrode formed on the outer surface of the laminate so as to be electrically connected, and the dielectric ceramic layer is preferably made of any one of the above dielectric ceramics.

この発明は、特に、使用電界が25kV/mm以上100kV/mm以下であり、保証絶縁破壊電圧が90kV/mm以上である、積層セラミックコンデンサに対して有利に適用される。   In particular, the present invention is advantageously applied to a multilayer ceramic capacitor in which the electric field used is 25 kV / mm or more and 100 kV / mm or less and the guaranteed breakdown voltage is 90 kV / mm or more.

以上のように、この発明によれば、高い絶縁破壊電圧ばかりでなく、高い誘電率εを有し、信頼性も良好な誘電体セラミックを提供することができる。また、上述の誘電体セラミックを用いて構成される、中高圧用途に適した積層セラミックコンデンサを提供することができる。   As described above, according to the present invention, not only a high dielectric breakdown voltage but also a dielectric ceramic having a high dielectric constant ε and good reliability can be provided. In addition, it is possible to provide a multilayer ceramic capacitor that is configured using the above-described dielectric ceramic and that is suitable for medium to high voltage applications.

この発明の一実施形態による積層セラミックコンデンサを図解的に示す断面図である。1 is a cross-sectional view schematically showing a multilayer ceramic capacitor according to an embodiment of the present invention.

図1は、この発明の一実施形態による積層セラミックコンデンサを示す断面図である。   FIG. 1 is a cross-sectional view showing a multilayer ceramic capacitor according to an embodiment of the present invention.

積層セラミックコンデンサ1は、積層体2を備えている。積層体2は、積層された複数の誘電体セラミック層3と、複数の誘電体セラミック層3間の特定の複数の界面に沿ってそれぞれ形成された複数の内部電極4および内部電極5とから構成されている。   The multilayer ceramic capacitor 1 includes a multilayer body 2. The multilayer body 2 includes a plurality of laminated dielectric ceramic layers 3 and a plurality of internal electrodes 4 and internal electrodes 5 respectively formed along a plurality of specific interfaces between the plurality of dielectric ceramic layers 3. Has been.

内部電極4および内部電極5は、好ましくは、ニッケル(Ni)を主成分としている。内部電極4および内部電極5は、積層体2の外表面にまで到達するように形成されるが、積層体2の一方の端面6にまで引き出される内部電極4と他方の端面7にまで引き出される内部電極5とが、積層体2の内部において交互に配置されている。このように、積層セラミックコンデンサ1は、積層された複数の誘電体セラミック層3間の特定の界面に沿って形成された内部電極4と内部電極5とを含む積層体2を備える。   The internal electrode 4 and the internal electrode 5 are preferably composed mainly of nickel (Ni). The internal electrode 4 and the internal electrode 5 are formed so as to reach the outer surface of the multilayer body 2, but are extracted to the internal electrode 4 and the other end face 7 that are led out to one end face 6 of the multilayer body 2. The internal electrodes 5 are alternately arranged inside the stacked body 2. As described above, the multilayer ceramic capacitor 1 includes the multilayer body 2 including the internal electrodes 4 and the internal electrodes 5 formed along a specific interface between the plurality of dielectric ceramic layers 3 that are stacked.

積層体2の外表面であって、端面6および端面7上には、それぞれ、外部電極8および外部電極9が形成されている。外部電極8および外部電極9は、たとえば、銅(Cu)を主成分とする導電性ペーストを塗布し、焼付けることによって形成される。一方の外部電極8は、端面6上において、内部電極4と電気的に接続され、他方の外部電極9は、端面7上において、内部電極5と電気的に接続される。このように、積層セラミックコンデンサ1は、内部電極4と内部電極5の特定のものに電気的に接続されるように積層体2の外表面上に形成された外部電極8と外部電極9とを備える。   An outer electrode 8 and an outer electrode 9 are formed on the outer surface of the laminate 2 on the end surface 6 and the end surface 7, respectively. The external electrode 8 and the external electrode 9 are formed, for example, by applying and baking a conductive paste mainly composed of copper (Cu). One external electrode 8 is electrically connected to the internal electrode 4 on the end face 6, and the other external electrode 9 is electrically connected to the internal electrode 5 on the end face 7. As described above, the multilayer ceramic capacitor 1 includes the external electrode 8 and the external electrode 9 formed on the outer surface of the multilayer body 2 so as to be electrically connected to a specific one of the internal electrode 4 and the internal electrode 5. Prepare.

外部電極8および外部電極9上には、はんだ付け性を良好にするため、必要に応じて、ニッケル(Ni)などからなる第1のめっき膜10および第1のめっき膜11、さらにその上に、スズ(Sn)などからなる第2のめっき膜12および第2のめっき膜13がそれぞれ形成される。   On the external electrode 8 and the external electrode 9, in order to improve the solderability, the first plating film 10 and the first plating film 11 made of nickel (Ni) or the like are further formed on the external electrode 8 and the external electrode 9 as necessary. Second plating film 12 and second plating film 13 made of tin (Sn) or the like are formed.

このような積層セラミックコンデンサ1において、誘電体セラミック層3は、この発明に係る誘電体セラミック、すなわち、(Ba1−xCa)TiO(0.30≦x≦0.50)を主成分とする、誘電体セラミックから構成される。In such a multilayer ceramic capacitor 1, the dielectric ceramic layer 3 is mainly composed of the dielectric ceramic according to the present invention, that is, (Ba 1-x Ca x ) TiO 3 (0.30 ≦ x ≦ 0.50). And made of a dielectric ceramic.

この誘電体セラミックの主成分となる(Ba1−xCaTiOにおいて、BaTiOとCaTiOとは、全率固溶せず、2相に分離することがある。そして、BaTiOについては、単独では、絶縁破壊電圧(BDV)が低いが、誘電率εが高い。他方、CaTiOについては、単独では、BDVが高いが、εが低い。そこで、これら両者の存在モル比であるxを、上記のように、0.30≦x≦0.50の範囲に選ぶと、BaTiOとCaTiOとの平均ではなく、両者の相乗効果により、両者の長所を併せ持った特性が得られることがわかった。たとえば、εについては500以上の値を得ながら、120kV/mm以上のBDVを実現することができ、最低でも、90kV/mm以上のBDVを保証することができる。また、BaTiOとCaTiOとの混晶系においては、BaTiOの一部がカルシウム(Ca)で置換された結晶粒子が存在していてもよい。In (Ba 1-x Ca x ) m TiO 3 which is the main component of this dielectric ceramic, BaTiO 3 and CaTiO 3 are not completely dissolved and may be separated into two phases. And BaTiO 3 alone has a low dielectric breakdown voltage (BDV), but has a high dielectric constant ε. On the other hand, for CaTiO 3 alone, BDV is high but ε is low. Therefore, when x which is the molar ratio of both is selected in the range of 0.30 ≦ x ≦ 0.50 as described above, it is not an average of BaTiO 3 and CaTiO 3 , but a synergistic effect of both. It was found that characteristics with the advantages of both were obtained. For example, a BDV of 120 kV / mm or more can be realized while obtaining a value of 500 or more for ε, and a BDV of 90 kV / mm or more can be guaranteed at a minimum. In the mixed crystal system of BaTiO 3 and CaTiO 3 , there may exist crystal particles in which a part of BaTiO 3 is substituted with calcium (Ca).

また、主成分における(Ba1−xCa)/Tiのモル比は、好ましくは0.95以上1.025以下である。上記のモル比がこの範囲内にある場合、焼結挙動が安定するため、積層セラミックコンデンサの一層あたりの誘電体セラミックの厚みを薄くしてもショート不良や絶縁不良等が生じにくい。The molar ratio of (Ba 1-x Ca x ) / Ti in the main component is preferably 0.95 or more and 1.025 or less. When the above molar ratio is within this range, the sintering behavior is stabilized, so that short circuit failure, insulation failure, etc. are unlikely to occur even if the thickness of the dielectric ceramic per layer of the multilayer ceramic capacitor is reduced.

この主成分に添加されるバナジウム(V)の含有量は、主成分100モル部に対し、0.03モル部以上5モル部以下である。バナジウム(V)の含有量がこの範囲外になると、信頼性向上の効果が十分に得られない。   Content of vanadium (V) added to this main component is 0.03 mol part or more and 5 mol part or less with respect to 100 mol part of the main component. When the content of vanadium (V) is outside this range, the effect of improving reliability cannot be obtained sufficiently.

また、この主成分に添加されるケイ素(Si)の含有量は、主成分100モル部に対し、0.5モル部以上5モル部以下である。ケイ素(Si)の含有量が0.5モル部より少ない場合は十分にセラミックが焼結しない。また、ケイ素(Si)の含有量が5モル部より多い場合は所望のBDVが得られなくなる。   Further, the content of silicon (Si) added to the main component is 0.5 mol part or more and 5 mol part or less with respect to 100 mol parts of the main component. When the content of silicon (Si) is less than 0.5 mol part, the ceramic is not sufficiently sintered. Moreover, when there is more content of silicon (Si) than 5 mol part, desired BDV cannot be obtained.

また、この主成分には、さらにマンガン(Mn)が含まれてもよい。安定な焼結挙動を得るには、マンガン(Mn)の含有量が主成分100モル部に対して5モル部以下であることが好ましい。   Further, this main component may further contain manganese (Mn). In order to obtain a stable sintering behavior, the content of manganese (Mn) is preferably 5 mol parts or less with respect to 100 mol parts of the main component.

さらに、この主成分には、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)およびルテチウム(Lu)からなる群より選ばれた少なくとも1種の希土類元素を、上述の主成分100モル部に対して、0.5モル部以上4.5モル部以下含んでいてもよい。特に希土類元素の含有量がこの範囲内であるとき、高温負荷試験におけるMTTF(平均故障寿命)が非常に長くなる。   Further, the main components include yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium ( At least one rare earth element selected from the group consisting of Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu), You may contain 0.5 mol part or more and 4.5 mol part or less with respect to 100 mol part of components. In particular, when the rare earth element content is within this range, the MTTF (mean failure life) in the high temperature load test becomes very long.

また、この主成分には、さらにマグネシウム(Mg)が含まれてもよい。焼成時の粒成長を安定にしつつ、電気特性を安定化するには、マグネシウム(Mg)の含有量が主成分100モル部に対して3モル部以下であることが好ましい。   Further, this main component may further contain magnesium (Mg). In order to stabilize the electrical characteristics while stabilizing the grain growth during firing, the magnesium (Mg) content is preferably 3 parts by mole or less with respect to 100 parts by mole of the main component.

この発明に係る誘電体セラミックは、バリウム(Ba)およびカルシウム(Ca)が5モル%以下であれば、ストロンチウム(Sr)で置換されてもよく、また、チタン(Ti)が5モル%以下であれば、ジルコニウム(Zr)および/またはハフニウム(Hf)で置換されてもよい。   The dielectric ceramic according to the present invention may be substituted with strontium (Sr) if barium (Ba) and calcium (Ca) are 5 mol% or less, and titanium (Ti) is 5 mol% or less. If present, it may be substituted with zirconium (Zr) and / or hafnium (Hf).

積層セラミックコンデンサ1は、特に、使用電界が25kV/mm以上100kV/mm以下であり、保証絶縁破壊電圧が90kV/mm以上である、積層セラミックコンデンサに対して有利に適用される。   The multilayer ceramic capacitor 1 is advantageously applied particularly to a multilayer ceramic capacitor whose electric field used is 25 kV / mm or more and 100 kV / mm or less and whose guaranteed breakdown voltage is 90 kV / mm or more.

次に、この発明による効果を確認するために実施した実験例について説明する。   Next, experimental examples carried out to confirm the effects of the present invention will be described.

[実験例1]
まず、主成分の出発原料として、固相法によって合成したBaTiO粉末およびCaTiO粉末を用意した。また、副成分の出発原料として、V、MnOおよびSiOの各粉末を用意した。
[Experimental Example 1]
First, Ba m TiO 3 powder and Ca m TiO 3 powder synthesized by a solid phase method were prepared as starting materials for the main component. Also, as starting materials for the components, we were prepared powders of V 2 O 3, MnO and SiO 2.

次に、上記のように用意されたBaTiO粉末およびCaTiO粉末を、表1に示した組成となるように秤量し、これら粉末を混合するとともに、さらに、表1の組成となるように、副成分の出発原料粉末を添加した。表1において、バナジウム(V)、マンガン(Mn)およびケイ素(Si)の各酸化物粉末の添加量は、主成分100モル部に対するモル部で示している。Next, the Ba m TiO 3 powder and the Cam m TiO 3 powder prepared as described above were weighed so as to have the composition shown in Table 1, and these powders were mixed. As a result, the starting material powder of the accessory component was added. In Table 1, the addition amount of each oxide powder of vanadium (V), manganese (Mn), and silicon (Si) is shown in mol parts with respect to 100 mol parts of the main component.

次いで、上述した混合粉末を、直径2mmのPSZ(部分安定化ジルコニア)製メディアを用いて、ボールミルにより水中で16時間混合し、十分に分散させたスラリーを得た。このスラリーを乾燥し、誘電体セラミックの原料粉末を得た。   Next, the above-mentioned mixed powder was mixed in water for 16 hours by a ball mill using PSZ (partially stabilized zirconia) media having a diameter of 2 mm to obtain a sufficiently dispersed slurry. The slurry was dried to obtain a dielectric ceramic raw material powder.

Figure 0005423785
Figure 0005423785

次に、上記原料粉末に、ポリビニルブチラール系バインダおよびエタノールを加えて、ボールミルにより混合し、セラミックスラリーを得た。このセラミックスラリーをドクターブレード法によってシート成形し、セラミックグリーンシートを得た。   Next, a polyvinyl butyral binder and ethanol were added to the raw material powder and mixed by a ball mill to obtain a ceramic slurry. This ceramic slurry was formed into a sheet by a doctor blade method to obtain a ceramic green sheet.

次に、上記セラミックグリーンシート上に、ニッケル(Ni)を主成分とする導電性ペーストをスクリーン印刷し、内部電極となるべき導電性ペースト膜を形成した。そして、この導電性ペースト膜が形成された11枚のセラミックグリーンシートを、導電性ペースト膜が端面で露出して引き出される側が互い違いになるように積層し、生の積層体を得た。   Next, a conductive paste containing nickel (Ni) as a main component was screen-printed on the ceramic green sheet to form a conductive paste film to be an internal electrode. Then, the 11 ceramic green sheets on which the conductive paste film was formed were laminated so that the conductive paste films were exposed at the end faces and the drawn sides were alternated to obtain a raw laminate.

次に、生の積層体を、窒素雰囲気中において300℃の温度に加熱し、バインダを燃焼させた後、H−N−HOガスからなる還元性雰囲気中において、1150℃の温度で2時間焼成し、焼結した積層体を得た。この積層体は、セラミックグリーンシートを焼結して得られた誘電体層と、導電性ペースト膜を焼結して得られた内部電極とを備えているものである。Next, the raw laminate is heated to a temperature of 300 ° C. in a nitrogen atmosphere to burn the binder, and then a temperature of 1150 ° C. in a reducing atmosphere composed of H 2 —N 2 —H 2 O gas. Was fired for 2 hours to obtain a sintered laminate. This laminate includes a dielectric layer obtained by sintering a ceramic green sheet and an internal electrode obtained by sintering a conductive paste film.

次いで、積層体の両端面上に、ガラスフリットを含有するとともに銅(Cu)を主成分とする導電性ペーストを塗布し、窒素雰囲気中において800℃の温度で焼付け、内部電極と電気的に接続された外部電極を形成し、さらに、外部電極の上に、ニッケル(Ni)めっき膜およびスズ(Sn)めっき膜を形成し、各試料に係る積層セラミックコンデンサを得た。   Next, a conductive paste containing glass frit and containing copper (Cu) as a main component is applied to both end faces of the laminate, and baked at a temperature of 800 ° C. in a nitrogen atmosphere to be electrically connected to the internal electrodes. Then, a nickel (Ni) plating film and a tin (Sn) plating film were formed on the external electrode to obtain a multilayer ceramic capacitor according to each sample.

このようにして得られた積層セラミックコンデンサの外形寸法は、長さ2.0mm、幅1.2mmおよび厚さ0.5mmであり、内部電極間に介在する誘電体セラミック層の厚みは10μmであった。また、静電容量形成に有効な誘電体セラミック層の数は10であり、誘電体セラミック層1層当たりの対向電極面積は1.3mmであった。The outer dimensions of the multilayer ceramic capacitor thus obtained were 2.0 mm in length, 1.2 mm in width and 0.5 mm in thickness. The thickness of the dielectric ceramic layer interposed between the internal electrodes was 10 μm. It was. Further, the number of dielectric ceramic layers effective for capacitance formation was 10, and the counter electrode area per dielectric ceramic layer was 1.3 mm 2 .

上記の各試料に係る積層セラミックコンデンサにおける誘電体セラミック層を構成する誘電体セラミックの誘電率εを、25℃、1kHz、1Vrmsの条件下で測定した積層セラミックコンデンサの静電容量から求めた。The dielectric constant ε of the dielectric ceramic constituting the dielectric ceramic layer in the multilayer ceramic capacitor according to each of the above samples was determined from the capacitance of the multilayer ceramic capacitor measured under the conditions of 25 ° C., 1 kHz, and 1 V rms .

また、誘電体セラミック層を構成する誘電体セラミックの抵抗率ρを、25℃の温度にて300Vの電圧を60秒間チャージして測定した絶縁抵抗から求めた。   Further, the resistivity ρ of the dielectric ceramic constituting the dielectric ceramic layer was determined from the insulation resistance measured by charging a voltage of 300 V for 60 seconds at a temperature of 25 ° C.

また、積層セラミックコンデンサに、直流電圧を50V/秒の速さで昇圧しながら印加し、BDV(平均値)を求めた。   In addition, a DC voltage was applied to the multilayer ceramic capacitor while being boosted at a rate of 50 V / second to obtain BDV (average value).

さらに、170℃において40kV/mmの電界を印加することによって、高温負荷寿命試験におけるMTTFを求めた。   Furthermore, the MTTF in the high temperature load life test was determined by applying an electric field of 40 kV / mm at 170 ° C.

以上のようにして求められた誘電率ε、logρ、BDV、MTTFが表2に示されている。   Table 2 shows the dielectric constants ε, log ρ, BDV, and MTTF obtained as described above.

Figure 0005423785
Figure 0005423785

試料1〜4はCaTiOの含有モル比xが0.3より低いため、十分なBDVが得られなかった。また、試料9はCaTiOの含有モル比xが0.5より高いため、十分なεが得られなかった。In Samples 1 to 4, the CaTiO 3 content molar ratio x was lower than 0.3, so that a sufficient BDV could not be obtained. Moreover, since the sample 9 had a CaTiO 3 content molar ratio x higher than 0.5, sufficient ε could not be obtained.

試料12および15は、Vの含有量が適正でなかったため、十分なMTTFが得られなかった。   Samples 12 and 15 did not have sufficient MTTF because the V content was not appropriate.

試料19はSiの含有量が0.5モル部より低いため、焼結不足となった。また、試料22はSiの含有量が5モル部より高いため、十分なBDVが得られなかった。   Sample 19 had insufficient sintering because the Si content was lower than 0.5 mol part. Moreover, since the sample 22 had a Si content higher than 5 mol parts, a sufficient BDV could not be obtained.

残りの試料5〜11、13、14、16〜18、20、21の試料においては、良好なε、logρ、BDV、MTTFが得られた。   In the remaining samples 5 to 11, 13, 14, 16 to 18, 20, and 21, good ε, log ρ, BDV, and MTTF were obtained.

また、試料16〜18の結果より、マンガン(Mn)を含有させることによりMTTFがさらに改善されることがわかる。   Moreover, it turns out that MTTF is further improved by containing manganese (Mn) from the result of samples 16-18.

[実験例2]
まず、出発原料として、BaCO、CaCO、TiO、希土類酸化物、MgCO、V、MnO、SiOを用意し、それぞれ表3の組成となるよう秤量した。
[Experiment 2]
First, BaCO 3 , CaCO 3 , TiO 2 , rare earth oxide, MgCO 3 , V 2 O 3 , MnO, and SiO 2 were prepared as starting materials and weighed so as to have the compositions shown in Table 3, respectively.

秤量した出発原料のうち、BaCO、TiOの(1−x)分、希土類酸化物、MgCOの(1−x)分、のみを抽出し、ボールミルにて混合した。この混合物を乾燥した後、1000℃にて仮焼を行い、第1の仮焼粉を得た。Of the weighed starting materials, only the (1-x) content of BaCO 3 and TiO 2 and the (1-x) content of rare earth oxide and MgCO 3 were extracted and mixed in a ball mill. After drying this mixture, it was calcined at 1000 ° C. to obtain a first calcined powder.

次に、秤量した出発原料のうち、CaCO、TiOのx分、V、MgCOのx分、のみを抽出し、ボールミルにて混合した。これを乾燥した後、1000℃にて仮焼を行い、第2の仮焼粉を得た。Next, among the weighed starting materials, only the x component of CaCO 3 and TiO 2 and the x component of V 2 O 3 and MgCO 3 were extracted and mixed in a ball mill. After drying this, it calcined at 1000 degreeC and obtained the 2nd calcined powder.

そして、第1の仮焼粉、第2の仮焼粉、MnO、SiOを混合し、直径2mmのPSZ(部分安定化ジルコニア)製メディアを用いて、ボールミルにより水中で16時間混合し、十分に分散させたスラリーを得た。このスラリーを乾燥し、誘電体セラミックの原料粉末を得た。Then, the first calcined powder, the second calcined powder, MnO, and SiO 2 are mixed and mixed in water with a ball mill for 16 hours using a PSZ (partially stabilized zirconia) medium having a diameter of 2 mm. A slurry dispersed in was obtained. The slurry was dried to obtain a dielectric ceramic raw material powder.

Figure 0005423785
Figure 0005423785

この原料粉末を用い、実験例1と同じ方法において、積層セラミックコンデンサを作製し、同様に、誘電率ε、logρ、BDV、MTTFを評価した。結果を表4に示す。   Using this raw material powder, a multilayer ceramic capacitor was produced in the same manner as in Experimental Example 1, and the dielectric constant ε, log ρ, BDV, and MTTF were similarly evaluated. The results are shown in Table 4.

Figure 0005423785
Figure 0005423785

試料101〜131の結果より、種々の希土類元素を含有させることにより、MTTFが大きく向上した。   From the results of Samples 101 to 131, the MTTF was greatly improved by containing various rare earth elements.

また、試料107〜109の結果より、さらにマグネシウム(Mg)を含有させることで、MTTFが改善された。   Further, from the results of samples 107 to 109, MTTF was improved by further containing magnesium (Mg).

以上に開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものである。   It should be considered that the embodiments and examples disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and includes all modifications and variations within the meaning and scope equivalent to the scope of claims.

本発明の誘電体セラミック、および積層セラミックコンデンサは、250〜1000Vという比較的高い電圧のかかる容量素子として有用である。   The dielectric ceramic and multilayer ceramic capacitor of the present invention are useful as a capacitive element having a relatively high voltage of 250 to 1000V.

1:積層セラミックコンデンサ、2:積層体、3:誘電体セラミック層、4,5:内部電極、8,9:外部電極。   1: multilayer ceramic capacitor, 2: laminate, 3: dielectric ceramic layer, 4, 5: internal electrode, 8, 9: external electrode.

Claims (6)

チタン酸バリウムとチタン酸カルシウムとの混晶系を主成分とし、前記混晶系においては、前記チタン酸バリウムの一部がカルシウムで置換された結晶粒子が存在していてもよく、前記混晶系中におけるバリウムとカルシウムの合計モル量に対するカルシウムの存在モル比xが0.30≦x≦0.50の範囲であり、前記主成分100モル部に対し、バナジウムを0.03モル部以上5モル部以下、ケイ素を0.5モル部以上5モル部以下含む、誘電体セラミック。 The mixed crystal system of barium titanate and calcium titanate is a main component, and in the mixed crystal system, there may exist crystal particles in which a part of the barium titanate is replaced with calcium. The molar ratio x of calcium to the total molar amount of barium and calcium in the system is in the range of 0.30 ≦ x ≦ 0.50 , and 0.03 mol part or more of vanadium with respect to 100 mol parts of the main component. A dielectric ceramic comprising not more than mol parts and not less than 0.5 mol parts and not more than 5 mol parts of silicon. 前記主成分100モル部に対し、5モル部以下のマンガンをさらに含む、請求項1に記載の誘電体セラミック。   The dielectric ceramic according to claim 1, further comprising 5 mol parts or less of manganese with respect to 100 mol parts of the main component. イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムからなる群より選ばれた少なくとも1種の希土類元素を、前記主成分100モル部に対して、0.5モル部以上4.5モル部以下さらに含む、請求項1または請求項2に記載の誘電体セラミック。   100 mol parts of the main component, at least one rare earth element selected from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium The dielectric ceramic according to claim 1, further comprising 0.5 mol part or more and 4.5 mol part or less. 前記主成分100モル部に対し、3モル部以下のマグネシウムをさらに含む、請求項1から請求項3までのいずれか1項に記載の誘電体セラミック。   The dielectric ceramic according to any one of claims 1 to 3, further comprising 3 mol parts or less of magnesium with respect to 100 mol parts of the main component. 積層された複数の誘電体セラミック層と前記誘電体セラミック層間の特定の界面に沿って形成された内部電極とを含む積層体と、
前記内部電極の特定のものに電気的に接続されるように前記積層体の外表面上に形成された外部電極とを備え、
前記誘電体セラミック層は請求項1から請求項3までのいずれか1項に記載の誘電体セラミックからなる、積層セラミックコンデンサ。
A laminate including a plurality of laminated dielectric ceramic layers and internal electrodes formed along a specific interface between the dielectric ceramic layers;
An external electrode formed on the outer surface of the laminate so as to be electrically connected to a specific one of the internal electrodes,
The said dielectric ceramic layer is a multilayer ceramic capacitor which consists of a dielectric ceramic of any one of Claim 1- Claim 3.
使用電界が25kV/mm以上100kV/mm以下であり、保証絶縁破壊電圧が90kV/mm以上である、請求項5に記載の積層セラミックコンデンサ。   The multilayer ceramic capacitor according to claim 5, wherein the electric field used is 25 kV / mm or more and 100 kV / mm or less, and the guaranteed breakdown voltage is 90 kV / mm or more.
JP2011502609A 2009-03-03 2010-02-05 Dielectric ceramic and multilayer ceramic capacitors Expired - Fee Related JP5423785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011502609A JP5423785B2 (en) 2009-03-03 2010-02-05 Dielectric ceramic and multilayer ceramic capacitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009049096 2009-03-03
JP2009049096 2009-03-03
PCT/JP2010/000700 WO2010100827A1 (en) 2009-03-03 2010-02-05 Dielectric ceramic and laminated ceramic capacitor
JP2011502609A JP5423785B2 (en) 2009-03-03 2010-02-05 Dielectric ceramic and multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPWO2010100827A1 JPWO2010100827A1 (en) 2012-09-06
JP5423785B2 true JP5423785B2 (en) 2014-02-19

Family

ID=42709400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011502609A Expired - Fee Related JP5423785B2 (en) 2009-03-03 2010-02-05 Dielectric ceramic and multilayer ceramic capacitors

Country Status (2)

Country Link
JP (1) JP5423785B2 (en)
WO (1) WO2010100827A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5420603B2 (en) * 2010-08-06 2014-02-19 サムソン エレクトロ−メカニックス カンパニーリミテッド. Reduction-resistant dielectric composition and ceramic electronic component including the same
KR101179295B1 (en) 2010-08-06 2012-09-03 삼성전기주식회사 Non-reducible dielectric composition and ceramic electronic component
WO2012114877A1 (en) 2011-02-23 2012-08-30 株式会社 村田製作所 Laminated ceramic capacitor
KR20230016372A (en) * 2021-07-26 2023-02-02 삼성전기주식회사 Dielectric ceramic composition and capacitor component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330160A (en) * 1997-05-30 1998-12-15 Taiyo Yuden Co Ltd Dielectric substance ceramic and its production
JP3323801B2 (en) * 1998-02-05 2002-09-09 太陽誘電株式会社 Porcelain capacitors
JP2002321983A (en) * 2001-04-27 2002-11-08 Tdk Corp Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor
JP2006199534A (en) * 2005-01-20 2006-08-03 Tdk Corp Dielectric ceramic composition and electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330160A (en) * 1997-05-30 1998-12-15 Taiyo Yuden Co Ltd Dielectric substance ceramic and its production
JP3323801B2 (en) * 1998-02-05 2002-09-09 太陽誘電株式会社 Porcelain capacitors
JP2002321983A (en) * 2001-04-27 2002-11-08 Tdk Corp Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor
JP2006199534A (en) * 2005-01-20 2006-08-03 Tdk Corp Dielectric ceramic composition and electronic component

Also Published As

Publication number Publication date
WO2010100827A1 (en) 2010-09-10
JPWO2010100827A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5455164B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP4831142B2 (en) Dielectric ceramic and multilayer ceramic capacitors
KR101380132B1 (en) Dielectric ceramic and laminated ceramic capacitor
JP5316353B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP5234035B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP5109872B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5423682B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP4191496B2 (en) Dielectric porcelain composition and electronic component
JP4525680B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5482747B2 (en) Dielectric ceramic composition and ceramic electronic component
JP5423785B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP4576807B2 (en) Dielectric porcelain composition and electronic component
KR101423990B1 (en) Laminated ceramic capacitor
JP5153288B2 (en) Dielectric porcelain composition and electronic component
JP4548423B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP5307554B2 (en) Multilayer ceramic capacitor
KR20140006991A (en) Dielectric ceramic and single-plate capacitor
JP2005263508A (en) Dielectric ceramic composition, laminated porcelain capacitor, and method for producing the capacitor
WO2010021087A1 (en) Dielectric ceramic and laminated ceramic capacitor
JP4752327B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5729419B2 (en) Multilayer ceramic capacitor
JP2005272263A (en) Dielectric ceramic composition, multilayer ceramic capacitor and its manufacturing method
JP6680457B2 (en) Monolithic ceramic capacitors
JP2007186365A (en) Method of manufacturing dielectric ceramic composition and multilayer ceramic capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R150 Certificate of patent or registration of utility model

Ref document number: 5423785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees