JP5421913B2 - 関連するアプリケーションに対する故障パターンマッチング相互参照のためのファジー分類方法 - Google Patents
関連するアプリケーションに対する故障パターンマッチング相互参照のためのファジー分類方法 Download PDFInfo
- Publication number
- JP5421913B2 JP5421913B2 JP2010520226A JP2010520226A JP5421913B2 JP 5421913 B2 JP5421913 B2 JP 5421913B2 JP 2010520226 A JP2010520226 A JP 2010520226A JP 2010520226 A JP2010520226 A JP 2010520226A JP 5421913 B2 JP5421913 B2 JP 5421913B2
- Authority
- JP
- Japan
- Prior art keywords
- fuzzy
- parameter data
- residual
- fault
- failure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 73
- 230000006870 function Effects 0.000 claims description 33
- 238000012544 monitoring process Methods 0.000 claims description 22
- 238000011156 evaluation Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 8
- 238000003745 diagnosis Methods 0.000 claims description 6
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000003909 pattern recognition Methods 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000012806 monitoring device Methods 0.000 claims 6
- 238000013154 diagnostic monitoring Methods 0.000 claims 1
- 230000008569 process Effects 0.000 description 35
- 238000005259 measurement Methods 0.000 description 18
- 230000008859 change Effects 0.000 description 15
- 238000011109 contamination Methods 0.000 description 11
- 239000012530 fluid Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 230000007704 transition Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000013210 evaluation model Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001617 sequential probability ratio test Methods 0.000 description 2
- 238000000528 statistical test Methods 0.000 description 2
- 206010034960 Photophobia Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 208000013469 light sensitivity Diseases 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000011524 similarity measure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0275—Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
- G05B23/0278—Qualitative, e.g. if-then rules; Fuzzy logic; Lookup tables; Symptomatic search; FMEA
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
- G05B23/0254—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/24765—Rule-based classification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
- G06N5/025—Extracting rules from data
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Automation & Control Theory (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Fuzzy Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Quality & Reliability (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Testing And Monitoring For Control Systems (AREA)
Description
L(故障タイプI)=(0.6+1.0+0.85+0.5)/4=0.74
図5は本発明の1実施形態による故障パターンマッチングシステム500を示している。示されているように、故障パターンマッチングシステム500は3つの主要コンポーネント、即ち、故障パターンライブラリ505、故障パターンライブラリ505のパターンに関連されるファジー規則のセット510、ディスクリートな確率マッピングモジュール515を有する。故障パターンライブラリ505は残余シフトに関する故障特性と他の支持診断情報を規定する。ファジー規則は以下説明する表2のような予め定められた故障表に規定された残余シフトのパターンに基づいて規定される。故障パターン整合確率値はディスクリートな確率指数のセットにマップされ、これは最終的に故障通知を駆動する。
1.POS−正の残余シフト、
2.NEG−負の残余シフト、
3.NORM−残余に正または負のシフトはない、
4.NOT POS−残余に正のシフトはない、
5.NOT NEG−残余に負のシフトはない、
6.NOT NORM−残余に正または負のシフトが存在する。
1.しきい値Tpよりも下であるならば、Lp(rp)または、
2.二次および一次確率値の組合せ。
Claims (15)
- システムの既知の特性の参照パラメータデータ特性を使用することにより監視されているシステムにおいて監視されるパラメータについてのパラメータデータの評価を生成し、
生成されたパラメータデータの評価を測定されたパラメータデータと比較し、
パラメータデータの生成された評価と測定されたパラメータデータとの間の関係に基づいて各パラメータに対する残余を決定し、
予め定められた故障が存在する可能性を決定するための少なくとも1つのファジー分類規則を実行し、そのファジー分類規則は複数の故障タイプのそれぞれに対応する予め定められた故障の存在を示すために使用されるパラメータの残余のパターンとを規定する故障パターンと、前記残余の解析に使用される少なくとも1つのメンバーシップ関数とを使用している監視システムにおける故障の診断方法。 - ファジー分類規則を実行するステップはさらに、全ての故障と全ての残余に対して使用されるファジー分類規則の予め定められたセットからファジー分類規則を選択するステップを含んでいる請求項1記載の方法。
- 前記少なくとも1つのメンバーシップ関数は、予め定められた故障を示すために使用される少なくとも1つのパラメータに対する少なくとも1つのしきい値に関して残余シフトが真である可能性を規定する請求項1記載の方法。
- ファジー分類規則は以下のファジー記述子の少なくとも1つを決定するメンバーシップ関数を含んでおり、そのファジー記述子は、
正の残余シフトと、
負の残余シフトと、
正または負の残余シフトと、
正ではない残余シフトと、
負ではない残余シフトと、
正でも負でもない残余シフトである請求項3記載の方法。 - ファジー分類規則を実行するステップはさらに、
予め定められた故障を示すために使用されるパラメータの各メンバーシップ関数から出力を得て、
単一のスカラーファジー論理値を決定するために計算においてそれらの出力を組合せるステップを含んでいる請求項2記載の方法。 - さらに、いずれのパラメータが予め定められた故障を示すために使用されるかを決定するために故障パターンライブラリから前記故障パターンを検索するステップを含んでいる請求項1記載の方法。
- さらに、第1のしきい値を超えるファジー論理値を生成するファジー分類規則の実行に応答して第1の通知を発生するステップを含んでいる請求項1記載の方法。
- さらに、少なくとも1つの他のしきい値を超えるファジー論理値を生成するファジー分類規則の実行に応答して1以上の通知を発生するステップを含んでいる請求項7記載の方法。
- 参照パラメータデータおよび測定されたパラメータデータの階層にしたがってファジー分類規則を実行し、
最初に一次パラメータデータを解析し、
予め定められた故障に対応して少なくとも1つのファジー分類規則の一部に対応する一次パラメータデータに応答してのみ二次パラメータデータを解析するステップをさらに含んでいる請求項1記載の方法。 - システムの既知の特性の参照パラメータデータ特性を含んでいる参考ライブラリと、
ファジー論理エンジンとを具備し、そのファジー論理エンジンは、
システムの既知の特性の参照パラメータデータ特性によりシステムからパラメータデータの評価を生成し、
パラメータデータの生成された評価を測定されたパラメータデータと比較し、
パラメータデータの評価と測定されたパラメータデータとの間の関係に基づいて各パラメータの残余を決定し、出力のセットが予め定められた故障に対応するか否かを決定するために少なくとも1つのファジー分類規則を実行するように構成され、出力は複数の故障タイプのそれぞれに対応する各パラメータに対する残余のパターンとを規定する故障パターンと、前記残余の解析に使用される少なくとも1つのメンバーシップ関数とに基づいて生成されるシステムの故障を診断する監視装置。 - さらに、第1のしきい値を超えるファジー論理値を生成するファジー分類規則の実行に応答して第1の通知を発生するための通知エンジンを具備している請求項10記載の監視装置。
- 前記故障パターンに含まれるパラメータの重要性に応じてメンバーシップ関数の出力が異なって加重され、
通知エンジンは、少なくとも1つの他のしきい値を超えるファジー論理値を生成するファジー分類規則の実行に応答して少なくとも1つの通知を発生するように構成されている請求項10記載の監視装置。 - さらに、参照パラメータデータと測定されたパラメータデータの階層にしたがってファジー分類規則を実行するためのプロセッサをさらに具備し、一次パラメータデータは最初に解析され、二次パラメータデータは予め定められた故障に対応して少なくとも1つのファジー分類規則の一部に対応する一次パラメータデータに応答してのみ解析される請求項10記載の監視装置。
- パラメータデータの生成された評価と測定されたパラメータデータとの間の関係を表す残余を与え、その発生された評価はシステムの既知の特性の参照パラメータデータ特性に基づいている実時間データ処理モジュールと、
それぞれ予め定められた故障を示している故障パターンを記憶する故障モードデータベースと、
ファジーパターン認識モジュールと、
予め定められた故障が存在するという決定が行われるか否かおよび故障の分類に応じて動作する診断および行動出力モジュールとを具備し、
前記ファジーパターン認識モジュールは、
故障モードデータベースからの故障パターンと実時間データ処理モジュールからの残余を受信し、
出力のセットを計算するために複数の故障タイプのそれぞれに対応する残余のパターンとを規定する故障パターンと、前記残余の解析に使用される少なくとも1つのメンバーシップ関数とを使用する少なくとも1つのファジー分類規則を実行し、
出力が予め定められた故障が存在する確率を示すか否かを決定するように構成されているシステム中の故障を診断する監視装置。 - ファジーパターン認識モジュールは、故障パターンに関連される前記メンバーシップ関数のセットを具備している請求項14記載の監視装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95380007P | 2007-08-03 | 2007-08-03 | |
US60/953,800 | 2007-08-03 | ||
PCT/US2008/071934 WO2009020861A1 (en) | 2007-08-03 | 2008-08-01 | Fuzzy classification approach to fault pattern matching |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010536099A JP2010536099A (ja) | 2010-11-25 |
JP5421913B2 true JP5421913B2 (ja) | 2014-02-19 |
Family
ID=40339283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010520226A Expired - Fee Related JP5421913B2 (ja) | 2007-08-03 | 2008-08-01 | 関連するアプリケーションに対する故障パターンマッチング相互参照のためのファジー分類方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7941701B2 (ja) |
EP (1) | EP2171598B1 (ja) |
JP (1) | JP5421913B2 (ja) |
KR (1) | KR101491196B1 (ja) |
CA (1) | CA2695450C (ja) |
WO (1) | WO2009020861A1 (ja) |
Families Citing this family (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7818131B2 (en) * | 2005-06-17 | 2010-10-19 | Venture Gain, L.L.C. | Non-parametric modeling apparatus and method for classification, especially of activity state |
US8275577B2 (en) * | 2006-09-19 | 2012-09-25 | Smartsignal Corporation | Kernel-based method for detecting boiler tube leaks |
US8311774B2 (en) | 2006-12-15 | 2012-11-13 | Smartsignal Corporation | Robust distance measures for on-line monitoring |
US8260486B2 (en) * | 2008-02-01 | 2012-09-04 | GM Global Technology Operations LLC | Method and apparatus for diagnosis of sensors faults using adaptive fuzzy logic |
US8205122B1 (en) * | 2008-03-14 | 2012-06-19 | United Services Automobile Association (Usaa) | Systems and methods for monitoring and acting on logged system messages |
US7756678B2 (en) * | 2008-05-29 | 2010-07-13 | General Electric Company | System and method for advanced condition monitoring of an asset system |
US8326789B2 (en) | 2009-08-20 | 2012-12-04 | Uop Llc | Expert system integrated with remote performance management |
IT1397489B1 (it) * | 2009-12-19 | 2013-01-16 | Nuovo Pignone Spa | Metodo e sistema per diagnosticare compressori. |
AU2011205557A1 (en) | 2010-01-14 | 2012-09-06 | Venture Gain LLC | Multivariate residual-based health index for human health monitoring |
US9256224B2 (en) | 2011-07-19 | 2016-02-09 | GE Intelligent Platforms, Inc | Method of sequential kernel regression modeling for forecasting and prognostics |
US8660980B2 (en) | 2011-07-19 | 2014-02-25 | Smartsignal Corporation | Monitoring system using kernel regression modeling with pattern sequences |
US9250625B2 (en) | 2011-07-19 | 2016-02-02 | Ge Intelligent Platforms, Inc. | System of sequential kernel regression modeling for forecasting and prognostics |
US8620853B2 (en) | 2011-07-19 | 2013-12-31 | Smartsignal Corporation | Monitoring method using kernel regression modeling with pattern sequences |
GB2500388B (en) * | 2012-03-19 | 2019-07-31 | Ge Aviat Systems Ltd | System monitoring |
US9197934B2 (en) * | 2012-05-17 | 2015-11-24 | Stmicroelectronics, Inc. | Fault tolerant system with equivalence processing driving fault detection and backup activation |
FR2991072B1 (fr) | 2012-05-28 | 2014-06-20 | Snecma | Systeme et methode de traitement d'informations pour la surveillance d'un systeme complexe |
US9207671B2 (en) * | 2012-10-12 | 2015-12-08 | Rockwell Automation Technologies, Inc. | Error diagnostics and prognostics in motor drives |
US9842302B2 (en) * | 2013-08-26 | 2017-12-12 | Mtelligence Corporation | Population-based learning with deep belief networks |
US10409926B2 (en) | 2013-11-27 | 2019-09-10 | Falkonry Inc. | Learning expected operational behavior of machines from generic definitions and past behavior |
EP2887236A1 (en) * | 2013-12-23 | 2015-06-24 | D square N.V. | System and method for similarity search in process data |
US10037128B2 (en) | 2014-02-04 | 2018-07-31 | Falkonry, Inc. | Operating behavior classification interface |
US20160155098A1 (en) | 2014-12-01 | 2016-06-02 | Uptake, LLC | Historical Health Metrics |
CN104503434B (zh) * | 2014-12-01 | 2017-05-03 | 北京航天试验技术研究所 | 一种基于故障征兆主动推送的故障诊断方法 |
AU2015387477A1 (en) * | 2015-03-25 | 2017-09-07 | Landmark Graphics Corporation | Fuzzy logic flow regime identification and control |
US10043690B2 (en) * | 2015-03-31 | 2018-08-07 | Lam Research Corporation | Fault detection using showerhead voltage variation |
US9552222B2 (en) * | 2015-06-04 | 2017-01-24 | International Business Machines Corporation | Experience-based dynamic sequencing of process options |
US10176279B2 (en) | 2015-06-05 | 2019-01-08 | Uptake Technologies, Inc. | Dynamic execution of predictive models and workflows |
US10579750B2 (en) | 2015-06-05 | 2020-03-03 | Uptake Technologies, Inc. | Dynamic execution of predictive models |
US10254751B2 (en) | 2015-06-05 | 2019-04-09 | Uptake Technologies, Inc. | Local analytics at an asset |
US10878385B2 (en) | 2015-06-19 | 2020-12-29 | Uptake Technologies, Inc. | Computer system and method for distributing execution of a predictive model |
JP2018537747A (ja) | 2015-09-17 | 2018-12-20 | アップテイク テクノロジーズ、インコーポレイテッド | ネットワークを介してデータプラットフォーム間の資産関連情報を共有するためのコンピュータシステム及び方法 |
US9888371B1 (en) * | 2015-11-13 | 2018-02-06 | State Farm Mutual Automobile Insurance Company | Portable home and hotel security system |
WO2017100306A1 (en) | 2015-12-07 | 2017-06-15 | Uptake Technologies, Inc. | Local analytics device |
US11295217B2 (en) | 2016-01-14 | 2022-04-05 | Uptake Technologies, Inc. | Localized temporal model forecasting |
US10510006B2 (en) | 2016-03-09 | 2019-12-17 | Uptake Technologies, Inc. | Handling of predictive models based on asset location |
US10796235B2 (en) | 2016-03-25 | 2020-10-06 | Uptake Technologies, Inc. | Computer systems and methods for providing a visualization of asset event and signal data |
US10333775B2 (en) | 2016-06-03 | 2019-06-25 | Uptake Technologies, Inc. | Facilitating the provisioning of a local analytics device |
US10210037B2 (en) | 2016-08-25 | 2019-02-19 | Uptake Technologies, Inc. | Interface tool for asset fault analysis |
US10474932B2 (en) | 2016-09-01 | 2019-11-12 | Uptake Technologies, Inc. | Detection of anomalies in multivariate data |
US10228925B2 (en) | 2016-12-19 | 2019-03-12 | Uptake Technologies, Inc. | Systems, devices, and methods for deploying one or more artifacts to a deployment environment |
CN106765047A (zh) * | 2017-01-11 | 2017-05-31 | 中国神华能源股份有限公司 | 水位调节方法和装置 |
US10579961B2 (en) | 2017-01-26 | 2020-03-03 | Uptake Technologies, Inc. | Method and system of identifying environment features for use in analyzing asset operation |
US10671039B2 (en) | 2017-05-03 | 2020-06-02 | Uptake Technologies, Inc. | Computer system and method for predicting an abnormal event at a wind turbine in a cluster |
CN107133674B (zh) * | 2017-05-08 | 2021-12-17 | 中国电力科学研究院 | 一种确定换流阀整体状态的方法和系统 |
US10255526B2 (en) | 2017-06-09 | 2019-04-09 | Uptake Technologies, Inc. | Computer system and method for classifying temporal patterns of change in images of an area |
US11232371B2 (en) | 2017-10-19 | 2022-01-25 | Uptake Technologies, Inc. | Computer system and method for detecting anomalies in multivariate data |
US10552246B1 (en) | 2017-10-24 | 2020-02-04 | Uptake Technologies, Inc. | Computer system and method for handling non-communicative assets |
US10379982B2 (en) | 2017-10-31 | 2019-08-13 | Uptake Technologies, Inc. | Computer system and method for performing a virtual load test |
US10635519B1 (en) | 2017-11-30 | 2020-04-28 | Uptake Technologies, Inc. | Systems and methods for detecting and remedying software anomalies |
US10815966B1 (en) | 2018-02-01 | 2020-10-27 | Uptake Technologies, Inc. | Computer system and method for determining an orientation of a wind turbine nacelle |
US10554518B1 (en) | 2018-03-02 | 2020-02-04 | Uptake Technologies, Inc. | Computer system and method for evaluating health of nodes in a manufacturing network |
US10169135B1 (en) | 2018-03-02 | 2019-01-01 | Uptake Technologies, Inc. | Computer system and method of detecting manufacturing network anomalies |
AU2019244842B2 (en) * | 2018-03-28 | 2024-03-07 | L&T Technology Services Limited | System and method for monitoring health and predicting failure of an electro-mechanical machine |
US10635095B2 (en) | 2018-04-24 | 2020-04-28 | Uptake Technologies, Inc. | Computer system and method for creating a supervised failure model |
EP3776116A1 (en) * | 2018-05-18 | 2021-02-17 | Siemens Aktiengesellschaft | Online fault localization in industrial processes without utilizing a dynamic system model |
US10860599B2 (en) | 2018-06-11 | 2020-12-08 | Uptake Technologies, Inc. | Tool for creating and deploying configurable pipelines |
US10579932B1 (en) | 2018-07-10 | 2020-03-03 | Uptake Technologies, Inc. | Computer system and method for creating and deploying an anomaly detection model based on streaming data |
US11119472B2 (en) | 2018-09-28 | 2021-09-14 | Uptake Technologies, Inc. | Computer system and method for evaluating an event prediction model |
US11181894B2 (en) | 2018-10-15 | 2021-11-23 | Uptake Technologies, Inc. | Computer system and method of defining a set of anomaly thresholds for an anomaly detection model |
CN109116319B (zh) * | 2018-11-13 | 2023-02-28 | 北京无线电测量研究所 | 雷达系统的故障检测方法 |
CN109826626B (zh) * | 2019-01-08 | 2020-10-20 | 浙江大学 | 一种智能的采煤机切割模式识别系统 |
US11480934B2 (en) | 2019-01-24 | 2022-10-25 | Uptake Technologies, Inc. | Computer system and method for creating an event prediction model |
US11030067B2 (en) | 2019-01-29 | 2021-06-08 | Uptake Technologies, Inc. | Computer system and method for presenting asset insights at a graphical user interface |
US11797550B2 (en) | 2019-01-30 | 2023-10-24 | Uptake Technologies, Inc. | Data science platform |
US11687067B2 (en) | 2019-04-04 | 2023-06-27 | Honeywell International Inc. | Pattern classification system with smart data collection for environmental control system fault isolation |
US11208986B2 (en) | 2019-06-27 | 2021-12-28 | Uptake Technologies, Inc. | Computer system and method for detecting irregular yaw activity at a wind turbine |
US10975841B2 (en) | 2019-08-02 | 2021-04-13 | Uptake Technologies, Inc. | Computer system and method for detecting rotor imbalance at a wind turbine |
CN111881287B (zh) * | 2019-09-10 | 2021-08-17 | 马上消费金融股份有限公司 | 一种分类模糊性分析方法及装置 |
CN112526959A (zh) * | 2019-09-19 | 2021-03-19 | 北京国双科技有限公司 | 一种抽油泵故障诊断方法、装置、设备及存储介质 |
JP7381861B2 (ja) | 2019-11-29 | 2023-11-16 | 富士通株式会社 | 複合モデル生成プログラム及び方法、並びに情報処理システム |
US11818145B2 (en) * | 2019-12-09 | 2023-11-14 | International Business Machines Corporation | Characterizing user behavior in a computer system by automated learning of intention embedded in a system-generated event graph |
US11544527B2 (en) * | 2020-02-06 | 2023-01-03 | International Business Machines Corporation | Fuzzy cyber detection pattern matching |
EP3913451A1 (en) * | 2020-05-21 | 2021-11-24 | Tata Consultancy Services Limited | Predicting early warnings of an operating mode of equipment in industry plants |
CN111859635A (zh) * | 2020-07-03 | 2020-10-30 | 中国人民解放军海军航空大学航空作战勤务学院 | 一种基于多粒度建模技术的仿真系统及构建方法 |
US20220171374A1 (en) * | 2020-12-02 | 2022-06-02 | Noodle Analytics, Inc. | Defect profiling and tracking system for process-manufacturing enterprise |
US11892830B2 (en) | 2020-12-16 | 2024-02-06 | Uptake Technologies, Inc. | Risk assessment at power substations |
CN113283510B (zh) * | 2021-05-28 | 2023-05-30 | 国网浙江省电力有限公司杭州供电公司 | 一种基于全业务混合数据的二次设备健康状况分析方法 |
US12134484B2 (en) | 2021-06-02 | 2024-11-05 | The Boeing Company | System and method for contextually-informed fault diagnostics using structural-temporal analysis of fault propagation graphs |
CN113807653A (zh) * | 2021-08-12 | 2021-12-17 | 国网新疆电力有限公司巴州供电公司 | 一种基于模糊匹配的故障报修工单定位方法 |
US20230305551A1 (en) * | 2022-03-25 | 2023-09-28 | Yokogawa Electric Corporation | Method and system for automated fault detection |
CN115576199B (zh) * | 2022-09-29 | 2024-03-08 | 山东能源内蒙古盛鲁电力有限公司 | 一种火电机组深度调峰下辅机低负荷安全自动控制方法 |
CN115563549B (zh) * | 2022-10-27 | 2023-10-20 | 武汉理工大学 | 一种焊接缺陷成因诊断方法、系统及电子设备 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4402054A (en) * | 1980-10-15 | 1983-08-30 | Westinghouse Electric Corp. | Method and apparatus for the automatic diagnosis of system malfunctions |
JPH0692914B2 (ja) | 1989-04-14 | 1994-11-16 | 株式会社日立製作所 | 機器/設備の状態診断システム |
KR920002268A (ko) | 1990-07-17 | 1992-02-28 | 유끼노리 가까즈 | 인텔리젠트가공장치 |
JPH04209014A (ja) * | 1990-11-30 | 1992-07-30 | Fujita Corp | 無人走行車の走行状熊監視制御装置 |
FR2692037B1 (fr) * | 1992-06-03 | 1997-08-08 | Thomson Csf | Procede de diagnostic d'un processus evolutif. |
JPH08314530A (ja) * | 1995-05-23 | 1996-11-29 | Meidensha Corp | 故障予知装置 |
US5764509A (en) | 1996-06-19 | 1998-06-09 | The University Of Chicago | Industrial process surveillance system |
EP0851342B1 (en) | 1996-12-27 | 2003-05-14 | STMicroelectronics S.r.l. | Coding and memorizing method for fuzzy logic rules and circuit architecture for processing such rules |
KR100225637B1 (ko) * | 1997-05-23 | 1999-10-15 | 윤종용 | 공기조화기의 온도제어장치 |
US6826552B1 (en) * | 1999-02-05 | 2004-11-30 | Xfi Corporation | Apparatus and methods for a computer aided decision-making system |
US6957172B2 (en) * | 2000-03-09 | 2005-10-18 | Smartsignal Corporation | Complex signal decomposition and modeling |
US6898554B2 (en) | 2000-06-12 | 2005-05-24 | Scientific Monitoring, Inc. | Fault detection in a physical system |
US7539597B2 (en) * | 2001-04-10 | 2009-05-26 | Smartsignal Corporation | Diagnostic systems and methods for predictive condition monitoring |
US20020183971A1 (en) * | 2001-04-10 | 2002-12-05 | Wegerich Stephan W. | Diagnostic systems and methods for predictive condition monitoring |
US7089154B2 (en) * | 2001-08-09 | 2006-08-08 | Rovsing Dynamics A/S | Automatic machinery fault diagnostic method and apparatus |
US6839660B2 (en) * | 2002-04-22 | 2005-01-04 | Csi Technology, Inc. | On-line rotating equipment monitoring device |
US6795763B2 (en) * | 2002-10-30 | 2004-09-21 | Visteon Global Technologies, Inc. | Expert-type vehicle steering control system and method |
US7734400B2 (en) | 2003-07-24 | 2010-06-08 | Honeywell International Inc. | Fault detection system and method using augmented data and fuzzy logic |
US7451003B2 (en) * | 2004-03-04 | 2008-11-11 | Falconeer Technologies Llc | Method and system of monitoring, sensor validation and predictive fault analysis |
US7621141B2 (en) * | 2004-09-22 | 2009-11-24 | York International Corporation | Two-zone fuzzy logic liquid level control |
US8108136B2 (en) * | 2007-08-09 | 2012-01-31 | Ford Global Technologies, Llc. | Driver advisory system for fuel economy improvement of a hybrid electric vehicle |
-
2008
- 2008-08-01 JP JP2010520226A patent/JP5421913B2/ja not_active Expired - Fee Related
- 2008-08-01 US US12/184,575 patent/US7941701B2/en active Active
- 2008-08-01 EP EP08827018.6A patent/EP2171598B1/en active Active
- 2008-08-01 WO PCT/US2008/071934 patent/WO2009020861A1/en active Application Filing
- 2008-08-01 KR KR1020107004816A patent/KR101491196B1/ko not_active IP Right Cessation
- 2008-08-01 CA CA2695450A patent/CA2695450C/en active Active
Also Published As
Publication number | Publication date |
---|---|
KR20100054816A (ko) | 2010-05-25 |
US20090037772A1 (en) | 2009-02-05 |
JP2010536099A (ja) | 2010-11-25 |
CA2695450A1 (en) | 2009-02-12 |
US7941701B2 (en) | 2011-05-10 |
EP2171598A4 (en) | 2012-01-11 |
EP2171598A1 (en) | 2010-04-07 |
KR101491196B1 (ko) | 2015-02-06 |
WO2009020861A1 (en) | 2009-02-12 |
CA2695450C (en) | 2016-10-18 |
EP2171598B1 (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5421913B2 (ja) | 関連するアプリケーションに対する故障パターンマッチング相互参照のためのファジー分類方法 | |
Nan et al. | Real-time fault diagnosis using knowledge-based expert system | |
KR102618023B1 (ko) | 고장유형에 따른 패턴 분석을 통한 고장 예지 진단시스템 및 방법 | |
Chiang et al. | Diagnosis of multiple and unknown faults using the causal map and multivariate statistics | |
JP5179086B2 (ja) | 工業プロセスの監視方法及び監視システム | |
Korbicz et al. | Fault diagnosis: models, artificial intelligence, applications | |
Liu et al. | Fault diagnosis and cause analysis using fuzzy evidential reasoning approach and dynamic adaptive fuzzy Petri nets | |
Biagetti et al. | Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems | |
KR102501883B1 (ko) | 기계 학습 기반의 설비 이상 분류 시스템 및 방법 | |
Zhao et al. | Diagnosis of operational failures and on-demand failures in nuclear power plants: An approach based on dynamic Bayesian networks | |
Wei et al. | A novel deep learning model based on target transformer for fault diagnosis of chemical process | |
KR102501884B1 (ko) | 기계 학습 기반의 설비 이상 진단 시스템 및 방법 | |
WO2013041440A1 (en) | System and method for plant wide asset management | |
Peco Chacón et al. | State of the art of artificial intelligence applied for false alarms in wind turbines | |
Sarwar et al. | Hybrid intelligence for enhanced fault detection and diagnosis for industrial gas turbine engine | |
Di Maio et al. | Transient identification by clustering based on Integrated Deterministic and Probabilistic Safety Analysis outcomes | |
He et al. | Anomaly detection and early warning via a novel multiblock-based method with applications to thermal power plants | |
EP4254430A1 (en) | Device and method for tracking basis of abnormal state determination by using neural network model | |
Pinciroli et al. | A semi-supervised method for the characterization of degradation of nuclear power plants steam generators | |
Merkt | Predictive models for maintenance optimization: an analytical literature survey of industrial maintenance strategies | |
Zhang et al. | Assessment of the offshore wind turbine support structure integrity and management of multivariate hybrid probability frameworks | |
Lee et al. | Event diagnosis method for a nuclear power plant using meta-learning | |
Gay et al. | A short review on the integration of Expert Knowledge in prognostics for PHM in industrial applications | |
Abdul-Wahab et al. | Troubleshooting the brine heater of the MSF plant fuzzy logic-based expert system | |
Gullo | Design for Machine Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110801 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111216 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131122 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |