[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5417023B2 - Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same - Google Patents

Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same Download PDF

Info

Publication number
JP5417023B2
JP5417023B2 JP2009103606A JP2009103606A JP5417023B2 JP 5417023 B2 JP5417023 B2 JP 5417023B2 JP 2009103606 A JP2009103606 A JP 2009103606A JP 2009103606 A JP2009103606 A JP 2009103606A JP 5417023 B2 JP5417023 B2 JP 5417023B2
Authority
JP
Japan
Prior art keywords
molecular weight
propylene
polymer
polypropylene
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009103606A
Other languages
Japanese (ja)
Other versions
JP2009299029A (en
Inventor
浩之 前原
英史 内野
正顕 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2009103606A priority Critical patent/JP5417023B2/en
Publication of JP2009299029A publication Critical patent/JP2009299029A/en
Application granted granted Critical
Publication of JP5417023B2 publication Critical patent/JP5417023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、ポリプロピレン系(多層)発泡シートおよびそれを用いた熱成形体に関し、さらに詳しくは、均一微細な発泡セルよりなる、外観、熱成形性に優れたポリプロピレン系(多層)発泡シートおよびそれを用いた熱成形体に関する。   The present invention relates to a polypropylene-based (multi-layer) foamed sheet and a thermoformed article using the same, and more specifically, a polypropylene-based (multi-layer) foamed sheet comprising uniform and fine foam cells and having excellent appearance and thermoformability, and the same. The present invention relates to a thermoformed article using

熱可塑性樹脂からなる発泡シートは、一般に、軽量で断熱性や、外部からの応力の緩和性が良好であり、真空成形、圧空成形などの熱成形法により、多くの二次成形品(製品)を得ることができることから、ポリスチレン系樹脂やポリエチレン系樹脂を中心に、緩衝材や食器容器、断熱材、自動車部品などの用途に、幅広く利用されている。
しかしながら、プロピレン系樹脂は、結晶性樹脂であり、溶融時の粘度および抗張力が低いため、発泡時に気泡壁の強度が十分に保持されず、外観が優れた、低い連続気泡率を維持することが困難であった。
Foamed sheets made of thermoplastic resin are generally lightweight, have good heat insulation properties, and have good stress relaxation properties. Many secondary molded products (products) are produced by thermoforming methods such as vacuum forming and pressure forming. Therefore, it is widely used for applications such as cushioning materials, tableware containers, heat insulating materials, and automobile parts, centering on polystyrene resins and polyethylene resins.
However, since the propylene-based resin is a crystalline resin and has low viscosity and tensile strength at the time of melting, the strength of the cell wall is not sufficiently maintained at the time of foaming, and the appearance can be maintained and a low open cell ratio can be maintained. It was difficult.

このような問題点を解決するために、用いるプロピレン系樹脂の溶融張力を高くし、均一微細な発泡セルを得るための手法として、プロピレン系樹脂に対し、電子線放射による自由末端長鎖分岐を持たせるという極めて特殊なプロピレン系樹脂を得る提案もなされている(例えば、特許文献1、2参照)。
この様なプロピレン系樹脂は、独立気泡率および外観等に優れた低密度の発泡体を得るのに適していると言われている。該プロピレン系樹脂は、特殊な改質工程を経ているため、経済性が悪く、樹脂自体に架橋反応が起こっているため、再び溶融混練りすると、ゲルが多量に発生し、そのリサイクル使用は、困難であるという欠点を有している。
In order to solve such problems, as a technique for increasing the melt tension of the propylene resin to be used and obtaining uniform and fine foam cells, free end long chain branching by electron beam radiation is applied to the propylene resin. Proposals have also been made to obtain very special propylene-based resins such as those described in Patent Documents 1 and 2.
Such a propylene-based resin is said to be suitable for obtaining a low-density foam excellent in closed cell ratio and appearance. Since the propylene-based resin has undergone a special reforming process, it is not economical and a crosslinking reaction occurs in the resin itself, so when melt-kneaded again, a large amount of gel is generated. It has the disadvantage of being difficult.

また、原料のプロピレン系樹脂に、架橋剤と架橋助剤および熱分解型発泡剤を添加して成形し、加熱することにより架橋と発泡を行わせる方法(特許文献3参照。)、プロピレン系樹脂に、架橋剤、架橋助剤および分解型発泡剤を添加して成形し、放射線架橋させた後に加熱発泡させる方法(特許文献4参照。)、また、近年ではシリル基を有するプロピレン系樹脂に熱分解型発泡剤を添加して成形し、水架橋の後に加熱発泡させる方法(特許文献5参照。)などの架橋発泡法が提案されている。
しかしながら、プロピレン系樹脂に、架橋と共に発泡性を付与する方法は、架橋工程を必要とし、連続的な発泡体の製造が困難であるばかりでなく、架橋度の制御が困難であるため、均一で美麗な発泡シートの製造が困難である。さらに架橋しているため、容器などの製品として使用したあと、リサイクルして再使用することが困難であるなどの欠点がある。
Also, a method of adding a cross-linking agent, a cross-linking auxiliary agent and a thermal decomposable foaming agent to a raw material propylene-based resin, molding and heating to perform cross-linking and foaming (see Patent Document 3), propylene-based resin. A method in which a crosslinking agent, a crosslinking aid and a decomposable foaming agent are added to the molded product, followed by radiation crosslinking, followed by heating and foaming (see Patent Document 4). In recent years, a propylene-based resin having a silyl group is heated. A cross-linking foaming method such as a method of adding a decomposable foaming agent to form and heating and foaming after water cross-linking (see Patent Document 5) has been proposed.
However, the method of imparting foamability to the propylene-based resin together with crosslinking requires a crosslinking step, which not only makes it difficult to produce a continuous foam, but also makes it difficult to control the degree of crosslinking. It is difficult to produce a beautiful foam sheet. Further, since it is cross-linked, there is a disadvantage that it is difficult to recycle and reuse after being used as a product such as a container.

特開昭62−121704号公報Japanese Patent Laid-Open No. 62-121704 特開平2−69533号公報JP-A-2-69533 特公昭45−40420号公報Japanese Examined Patent Publication No. 45-40420 特公昭42−26953号公報Japanese Patent Publication No.42-26953 特開平9−132662号公報Japanese Patent Laid-Open No. 9-132626

本発明の目的は、従来技術の現状に鑑み、均一微細な発泡セルよりなる、外観、熱成形性に優れたポリプロピレン系(多層)発泡シートおよびそれを用いた熱成形体を提供することにある。   An object of the present invention is to provide a polypropylene-based (multi-layer) foamed sheet having uniform appearance and thermoformability, and a thermoformed article using the same, which is made of uniform fine foam cells in view of the current state of the prior art. .

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、特定のプロピレン系重合体(X)に対し、発泡剤を配合したプロピレン系樹脂組成物は、押出成形において、高倍率であっても、均一微細な発泡セルを有し、外観が美麗なポリプロピレン系(多層)発泡シートおよび熱成形体が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a propylene-based resin composition containing a foaming agent with respect to a specific propylene-based polymer (X) has a high magnification in extrusion molding. Even so, the present inventors have found that a polypropylene-based (multi-layer) foamed sheet and a thermoformed article having uniform and fine foam cells and a beautiful appearance can be obtained, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、下記(i)〜(vi)に規定する要件を満たすプロピレン系重合体(X)と発泡剤(F)とからなるプロピレン系樹脂組成物を押出成形してなるポリプロピレン系発泡シートを、熱成形してなる熱成形体が提供される。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.1〜20g/10分である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5〜10.5である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上、10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
That is, according to the first invention of the present invention, a propylene-based resin composition comprising a propylene-based polymer (X) and a foaming agent (F) satisfying the requirements specified in the following (i) to (vi) is extruded. There is provided a thermoformed body obtained by thermoforming a polypropylene foam sheet formed by molding .
(I) Melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is 0.1 to 20 g / 10 min.
(Ii) The ratio (Q value) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 3.5 to 10.5.
(Iii) In the molecular weight distribution curve obtained by GPC, the ratio of the component having a molecular weight (M) of 2 million or more to the total amount is 0.4% by weight or more and less than 10% by weight.
(Iv) In temperature rising elution fractionation (TREF) with orthodichlorobenzene (ODCB), the component eluted at a temperature of 40 ° C. or less is 3.0% by weight or less.
(V) The isotactic triad fraction (mm) measured by 13 C-NMR is 95% or more.
(Vi) The strain hardening degree (λmax) in the measurement of the extensional viscosity is 6.0 or more.

本発明の第2の発明によれば、第1の発明において、プロピレン系重合体(X)は、さらに、下記要件(vii)を満たすことを特徴とする熱成形体が提供される。
(vii) (ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
According to the second invention of the present invention, there is provided a thermoformed product characterized in that, in the first invention, the propylene-based polymer (X) further satisfies the following requirement (vii).
(Vii) (ME) ≧ −0.26 × log (MFR) +1.9
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]

また、本発明の第3の発明によれば、第1又は2の発明において、プロピレン系重合体(X)は、さらに、下記要件(viii)を満たすことを特徴とする熱成形体が提供される。
(viii)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
According to the third invention of the present invention, there is provided a thermoformed article characterized in that, in the first or second invention, the propylene polymer (X) further satisfies the following requirement (viii): The
(Viii) In the molecular weight distribution curve obtained by GPC, the common logarithm of the molecular weight corresponding to the peak position is Tp, and the common logarithm of the molecular weight at the position where it is 50% of the peak height is L 50 and H 50 (L 50 is Tp Lower molecular weight side, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively, α / β is larger than 0.9 and 2 Less than 0.0.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、ポリプロピレン系発泡シートの平均気泡径が500μm以下であることを特徴とする熱成形体が提供される。
さらに、本発明の第5の発明によれば、第1〜4のいずれかの発明において、ポリプロピレン系発泡シートの連続気泡率が30%以下であることを特徴とする熱成形体が提供される。
According to a fourth aspect of the present invention, there is provided the thermoformed article according to any one of the first to third aspects, wherein the polypropylene foam sheet has an average cell diameter of 500 μm or less.
Furthermore, according to the fifth invention of the present invention, in any one of the first to fourth inventions, there is provided a thermoformed article, wherein the open cell ratio of the polypropylene foam sheet is 30% or less. .

また、本発明の第6の発明によれば、第1〜5のいずれかの発明に係るプロピレン系樹脂組成物からなる発泡層と熱可塑性樹脂組成物からなる非発泡層とを共押出成形してなるポリプロピレン系多層発泡シートを、熱成形してなる熱成形体が提供される。
さらに、本発明の第7の発明によれば、第6の発明において、前記熱可塑性樹脂組成物は、熱可塑性樹脂100重量部に対し、50重量部以下の無機充填剤を含有することを特徴とする熱成形体が提供される。
According to the sixth invention of the present invention, a foamed layer made of the propylene-based resin composition according to any one of the first to fifth inventions and a non-foamed layer made of the thermoplastic resin composition are coextruded. There is provided a thermoformed article obtained by thermoforming a polypropylene-based multilayer foamed sheet.
Furthermore, according to a seventh invention of the present invention, in the sixth invention, the thermoplastic resin composition contains 50 parts by weight or less of an inorganic filler with respect to 100 parts by weight of the thermoplastic resin. A thermoformed body is provided.

本発明は、上記した如く、熱成形体に係るものであるが、その好ましい態様としては、次のものが包含される。
(1)第1〜5のいずれかの発明において、プロピレン系重合体(X)は、さらに、下記要件(ix)及び/又は(x)を満たすことを特徴とする熱成形体
(ix) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(x) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。]
(2)第1〜5のいずれかの発明において、発泡剤(F)の配合量は、プロピレン系重合体(X)100重量部に対し、0.05〜6.0重量部であることを特徴とする熱成形体
(3)第1〜5のいずれかの発明において、発泡剤(F)は、物理発泡剤または分解性発泡剤(化学発泡剤)であることを特徴とする熱成形体
(4)第1〜5のいずれかの発明において、前記プロピレン系樹脂組成物は、発泡剤(F)が物理発泡剤である場合には、さらに、気泡調整剤を含有することを特徴とする熱成形体
As described above, the present invention relates to a thermoformed article, and preferred embodiments thereof include the following.
(1) In the first to fifth any one of the propylene polymer (X) is further thermoformed article, characterized by satisfying the following requirements (ix) and / or (x).
(Ix) (MT230 ° C.) ≧ 5 g
[In the formula, MT230 ° C. is measured using a melt tension tester, capillary: diameter 2.1 mm, cylinder diameter: 9.6 mm, cylinder extrusion speed: 10 mm / min, winding speed: 4.0 m / min, temperature: 230 It represents the melt tension when measured under the condition of ° C. ]
(X) (MaxDraw) ≧ 10 m / min [where MaxDraw (maximum winding speed) is the winding speed immediately before the resin breaks when the winding speed is increased in the measurement of the melt tension. Represent. ]
(2) In any one of the first to fifth inventions, the blending amount of the foaming agent (F) is 0.05 to 6.0 parts by weight with respect to 100 parts by weight of the propylene polymer (X). Characteristic thermoformed product .
(3) In the first to fifth any one of the blowing agent (F) is thermoformed article which is a physical foaming agent or a decomposable foaming agent (chemical blowing agent).
(4) In any one of the first to fifth inventions, when the foaming agent (F) is a physical foaming agent, the propylene-based resin composition further contains a cell regulator. Thermoformed body .

本発明のポリプロピレン系(多層)発泡シートおよびそれを用いた熱成形体は、特定のプロピレン系重合体(X)と発泡剤(F)とからなるプロピレン系樹脂組成物を、押出成形してなり、この構成により、均一微細な発泡セルが得られ、外観、熱成形性、耐衝撃性、軽量性、剛性、耐熱性、断熱性、耐油性等に優れている。そのため、トレー、皿、カップなどの食品容器や自動車ドアトリム、自動車トランクマットなどの車両内装材、包装、文具、建材などに好適に利用できる。   The polypropylene-based (multi-layer) foamed sheet of the present invention and a thermoformed article using the same are formed by extruding a propylene-based resin composition comprising a specific propylene-based polymer (X) and a foaming agent (F). With this configuration, uniform and fine foam cells can be obtained, and the appearance, thermoformability, impact resistance, lightness, rigidity, heat resistance, heat insulation, oil resistance, etc. are excellent. Therefore, it can be suitably used for food containers such as trays, dishes and cups, vehicle interior materials such as automobile door trims and automobile trunk mats, packaging, stationery, and building materials.

本発明に係るプロピレン系重合体(X)のGPCにおける分子量分布曲線の一例を示す図である。It is a figure which shows an example of the molecular weight distribution curve in GPC of the propylene-type polymer (X) based on this invention. GPCにおけるクロマトグラムのベースラインと区間の説明の図である。It is a figure of the description of the base line of a chromatogram in GPC, and an area. 本発明に係るプロピレン系重合体(X)のGPCにおける[A−1]由来、[A−2]由来の分子量分布の一例を示す図である。It is a figure which shows an example of the molecular weight distribution derived from [A-1] in GPC of the propylene-type polymer (X) which concerns on this invention, and [A-2]. 一軸伸長粘度計で測定された伸長粘度の一例を示すプロット図である。It is a plot figure which shows an example of the extensional viscosity measured with the uniaxial extensional viscometer. 本発明に係るプロピレン系重合体(X)のME(メモリーエフェクト)とMFRの相関を説明する図である。It is a figure explaining the correlation of ME (memory effect) and MFR of propylene polymer (X) concerning the present invention.

本発明のポリプロピレン系発泡シートは、下記(i)〜(vi)、またはそれらに加えてさらに、(vii)及び/又は(viii)、或いはそれらに加えてさらに、(ix)及び/又は(x)の特性・性状を有するプロピレン系重合体(X)と発泡剤(F)とからなるプロピレン系樹脂組成物を、押出成形することにより得られるものである。
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.1〜20g/10分である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5〜10.5である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上、10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
The polypropylene-based foamed sheet of the present invention includes the following (i) to (vi), or in addition to them, (vii) and / or (viii), or in addition to these, (ix) and / or (x ) Obtained by extrusion molding a propylene-based resin composition comprising a propylene-based polymer (X) having the properties and properties of () and a foaming agent (F).
(I) Melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is 0.1 to 20 g / 10 min.
(Ii) The ratio (Q value) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 3.5 to 10.5.
(Iii) In the molecular weight distribution curve obtained by GPC, the ratio of the component having a molecular weight (M) of 2 million or more to the total amount is 0.4% by weight or more and less than 10% by weight.
(Iv) In temperature rising elution fractionation (TREF) with orthodichlorobenzene (ODCB), the component eluted at a temperature of 40 ° C. or less is 3.0% by weight or less.
(V) The isotactic triad fraction (mm) measured by 13 C-NMR is 95% or more.
(Vi) The strain hardening degree (λmax) in the measurement of the extensional viscosity is 6.0 or more.

(vii) (ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
(viii)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
(Vii) (ME) ≧ −0.26 × log (MFR) +1.9
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]
(Viii) In the molecular weight distribution curve obtained by GPC, the common logarithm of the molecular weight corresponding to the peak position is Tp, and the common logarithm of the molecular weight at the position where it is 50% of the peak height is L 50 and H 50 (L 50 is Tp Lower molecular weight side, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively, α / β is larger than 0.9 and 2 Less than 0.0.

(ix) (MT230℃) ≧ 5g
[式中、MT230℃は、メルトテンションテスターを用いて、キャピラリー:直径2.1mm、シリンダー径:9.6mm、シリンダー押出速度:10mm/分、巻き取り速度:4.0m/分、温度:230℃の条件で測定したときの溶融張力を表す。]
(x) (MaxDraw) ≧ 10m/分
[式中、MaxDraw(最高巻き取り速度)は、上記溶融張力の測定において、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を表す。]
(Ix) (MT230 ° C.) ≧ 5 g
[In the formula, MT230 ° C. is measured using a melt tension tester, capillary: diameter 2.1 mm, cylinder diameter: 9.6 mm, cylinder extrusion speed: 10 mm / min, winding speed: 4.0 m / min, temperature: 230 It represents the melt tension when measured under the condition of ° C. ]
(X) (MaxDraw) ≧ 10 m / min [where MaxDraw (maximum winding speed) is the winding speed immediately before the resin breaks when the winding speed is increased in the measurement of the melt tension. Represent. ]

以下、プロピレン系樹脂組成物の構成成分、プロピレン系樹脂組成物の調製方法、ポリプロピレン系発泡シート等について、詳細に説明する。   Hereinafter, components of the propylene resin composition, a method for preparing the propylene resin composition, a polypropylene foam sheet, and the like will be described in detail.

I.プロピレン系樹脂組成物の構成成分
1.プロピレン系重合体(X)
本発明のポリプロピレン系発泡シートに用いられるプロピレン系樹脂組成物を構成するプロピレン系重合体(X)は、上記(i)〜(vi)、またはそれらに加えてさらに、(vii)及び(viii)、或いはそれらに加えてさらに、(ix)及び/又は(x)の特性・性状を有する。
以下、項目毎に、順次説明する。
I. Components of propylene-based resin composition Propylene polymer (X)
The propylene-based polymer (X) constituting the propylene-based resin composition used for the polypropylene-based foamed sheet of the present invention is the above (i) to (vi), or in addition to them, (vii) and (viii) Or (x) and / or (x) in addition to them.
Hereinafter, each item will be described sequentially.

(1)プロピレン系重合体(X)の構造、長鎖分岐構造の規定と同定方法
本発明に係るプロピレン系重合体(X)は、溶融流動性や溶融張力を制御した、物性と溶融加工性のバランスに優れた長鎖分岐型のプロピレン系重合体である。
本発明に係るプロピレン系重合体(X)は、上記長鎖分岐が導入されることにより、溶融物性が格段に向上していると、考察されている。
一般的には、分岐構造や分岐数の検出、定量には、13C−NMRが用いられる。また、分岐数や分岐分布の検出、定量には、13C−NMRやGPC−vis、GPC−mallsが用いられる。
しかしながら、上記手法では、長時間の測定が必要であったり定量限界が存在したりする。現時点においては、分岐を評価する方法としてはレオロジー的な方法が最も感度が高いと考えられている。例えば、線形粘弾性測定における流動の活性化エネルギーや、伸長粘度測定における歪硬化度を測定することが、微量の分岐を検出する方法としては現段階では一般的に用いられる。
分岐構造に関しては、長鎖分岐ができる機構、メカニズムを考慮して、本発明者らは、下記のように推察している。
(1) Structure of propylene polymer (X), definition of long chain branched structure and identification method The propylene polymer (X) according to the present invention has physical properties and melt processability with controlled melt fluidity and melt tension. It is a long-chain branched propylene polymer having an excellent balance.
It is considered that the propylene-based polymer (X) according to the present invention has a marked improvement in melt properties due to the introduction of the long chain branching.
In general, 13 C-NMR is used for detection and quantification of the branched structure and the number of branches. Further, 13 C-NMR, GPC-vis, and GPC-malls are used for detection and quantification of the number of branches and branch distribution.
However, the above method requires a long time measurement or has a limit of quantification. At present, rheological methods are considered to have the highest sensitivity as a method for evaluating branching. For example, measurement of flow activation energy in linear viscoelasticity measurement and strain hardening degree in elongational viscosity measurement are generally used at this stage as a method for detecting a small amount of branching.
Regarding the branched structure, the present inventors have inferred as follows in consideration of the mechanism and mechanism capable of long-chain branching.

すなわち、後述するプロピレン系重合体の製造方法で用いられる触媒成分[A−1]由来の活性種から、β−メチル脱離と一般に呼ばれる特殊な連鎖移動反応により、ポリマー片末端が主としてプロペニル構造を示し、所謂マクロマーが生成する。
βメチル脱離反応で停止した末端のプロペニル構造を下記に示す(参照文献:Macromol. Rapid Commun. 2000,21,1103―1107)。
That is, from the active species derived from the catalyst component [A-1] used in the method for producing a propylene-based polymer described later, one end of the polymer mainly has a propenyl structure by a special chain transfer reaction generally called β-methyl elimination. A so-called macromer is generated.
The terminal propenyl structure terminated by the β-methyl elimination reaction is shown below (Reference: Macromol. Rapid Commun. 2000, 21, 1103-1107).

Figure 0005417023
Figure 0005417023

このマクロマーは、より高分子量を生成することができ、より共重合性がよい触媒成分[A−2]由来の活性種に取り込まれ、マクロマー共重合が進行していると、推察している。
したがって、本発明に係るプロピレン系重合体(X)は、下記構造式(2)に示すような特定の分岐構造を有する。
構造式(2)において、Ca、Cb、Ccは、分岐炭素に隣接するメチレン炭素を示し、Cbrは、分岐鎖の根元のメチン炭素を示し、P、P、Pは、プロピレン系重合体残基を示す。
、P、Pは、それ自体の中に、構造式(2)に記載されたCbrとは、別の分岐炭素(Cbr)を含有することもあり得る。
It is speculated that this macromer is capable of producing a higher molecular weight and is taken in by the active species derived from the catalyst component [A-2] having a better copolymerization property, and the macromer copolymerization is proceeding.
Therefore, the propylene polymer (X) according to the present invention has a specific branched structure as shown in the following structural formula (2).
In Structural Formula (2), Ca, Cb, and Cc represent methylene carbon adjacent to the branched carbon, Cbr represents the methine carbon at the root of the branched chain, and P 1 , P 2 , and P 3 represent propylene-based heavy ions. Combined residues are indicated.
P 1 , P 2 , and P 3 may contain a branched carbon (Cbr) different from Cbr described in the structural formula (2) in itself.

Figure 0005417023
Figure 0005417023

このような分岐構造は、13C−NMR分析により同定される。各ピークの帰属は、Macromolecules,Vol.35、No.10.2002年、3839−3842頁の記載を参考にすることができる。すなわち、43.9〜44.1ppm,44.5〜44.7ppm及び44.7〜44.9ppmに、それぞれ1つ、合計3つのメチレン炭素(Ca、Cb、Cc)が観測され、31.5〜31.7ppmにメチン炭素(Cbr)が観測される。上記の31.5〜31.7ppmに観測されるメチン炭素を、以下、分岐炭素(Cbr)と略称することがある。
分岐メチン炭素Cbrに近接する3つのメチレン炭素が、ジアステレオトピックに非等価に3本に分かれて観測されることが特徴である。
Such a branched structure is identified by 13 C-NMR analysis. The assignment of each peak is described in Macromolecules, Vol. 35, no. 10. The description of 2002, pages 3839-3842 can be referred to. That is, a total of three methylene carbons (Ca, Cb, Cc) were observed, each at 43.9-44.1 ppm, 44.5-44.7 ppm, and 44.7-44.9 ppm. Methine carbon (Cbr) is observed at ˜31.7 ppm. Hereinafter, the methine carbon observed at 31.5 to 31.7 ppm may be abbreviated as branched carbon (Cbr).
It is characterized in that three methylene carbons adjacent to the branched methine carbon Cbr are observed in three non-equivalent diastereotopics.

本発明にいう13C−NMRで帰属される分岐鎖は、プロピレン系重合体の主鎖から分岐した炭素数5以上のプロピレン系重合体残基を示す。それと炭素数4以下の分岐とは、分岐炭素のピーク位置が異なることにより、区別できる(Macromol.chem.phys.2003年、Vol.204、1738頁参照)。 The branched chain assigned by 13 C-NMR referred to in the present invention represents a propylene polymer residue having 5 or more carbon atoms branched from the main chain of the propylene polymer. It can be distinguished from a branch having 4 or less carbon atoms by the difference in the peak position of the branched carbon (see Macromol. Chem. Phys. 2003, Vol. 204, page 1738).

一般的に、ポリマーの分岐の数と長さの規定について考察すると、分岐数が多いほど、溶融物性は、向上する。一方、分岐数が分子間で偏在すると、ゲルが発生してしまい、溶融物性向上の効果も小さくなると、考えられている。
分岐数は、上記の13C−NMRによる帰属を利用して、31.5〜31.7ppmに観測される分岐炭素(Cbr)の全骨格形成炭素1000個あたり個数を分岐数(密度)とする。但し、全骨格形成炭素とは、メチル炭素以外の全ての炭素原子を意味する。
In general, considering the definition of the number of branches and the length of the polymer, the higher the number of branches, the better the melt properties. On the other hand, it is considered that if the number of branches is unevenly distributed between the molecules, a gel is generated and the effect of improving the melt properties is reduced.
The number of branches is defined as the number of branches (density) per 1000 total skeleton-forming carbons of the branched carbon (Cbr) observed at 31.5 to 31.7 ppm using the assignment by 13 C-NMR. . However, the total skeleton-forming carbon means all carbon atoms other than methyl carbon.

本発明に係る改良された溶融物性を示すプロピレン系重合体(X)には、13C−NMRの測定の結果、微量の分岐成分が存在し、その量は、0.1個程度である。
一方、分岐の量が多すぎると、ゲルが生成して成形品の外観を損ねるという懸念がある。さらに、成形時に高速で延伸した場合に、溶融体が破断を起こすという、いわゆる溶融延展性の悪化を引き起こすという問題がある。
したがって、分岐数は、上限としては0.4個以下、好ましくは0.2個以下である。また、下限としては0.01個以上である。
現在の高磁場NMRの13C−NMRを用いた場合でも、非常に長時間の測定を行わないと0.1個程度の少量では、定量が困難である。分岐が少量の場合には、これに替えて、より感度の高いレオロジー的手法で分岐の評価をおこなった。その結果、得られる歪硬化度(λmax)が6.0以上と規定する。
As a result of measurement of 13 C-NMR, the propylene polymer (X) showing improved melt properties according to the present invention contains a trace amount of branched components, and the amount thereof is about 0.1.
On the other hand, when the amount of branching is too large, there is a concern that gel is generated and the appearance of the molded product is impaired. Furthermore, there is a problem that when the film is stretched at a high speed at the time of molding, so-called melt ductility is deteriorated, that is, the melt breaks.
Therefore, the upper limit of the number of branches is 0.4 or less, preferably 0.2 or less. The lower limit is 0.01 or more.
Even in the case of using the current 13 C-NMR of high magnetic field NMR, it is difficult to determine the amount with a small amount of about 0.1 unless measurement is performed for a very long time. When the amount of branching was small, instead of this, branching was evaluated by a more sensitive rheological method. As a result, the obtained strain hardening degree (λmax) is defined to be 6.0 or more.

また、本発明に係るプロピレン系重合体(X)は、分岐長に関して、ポリプロピレンの絡み合い分子量である7000以上が必要とされる。骨格炭素数に換算すると、約400以上に相当する。ここでいう骨格炭素とは、メチル炭素以外の全ての炭素原子を意味する。分岐長がより長くなると、溶融物性は、より向上すると考えられる。
したがって、本発明に係るプロピレン系重合体(X)の分岐鎖長は、骨格炭素数500(ポリプロピレン分子量換算:1.1万)以上であり、好ましくは骨格炭素数1000(ポリプロピレン分子量換算:2.1万)以上であり、更に好ましくは骨格炭素数2000(ポリプロピレン分子量換算:4.2万)以上である。
ここでいうポリプロピレン分子量換算値は、厳密にはGPCで測定される分子量値とは異なるものであるが、GPCで測定される数平均分子量(Mn)に近似している。
したがって、本発明に係るプロピレン系重合体(X)の分岐長は、GPCで測定される数平均分子量(Mn)で1.1万以上、好ましくは2.1万以上、さらに好ましくは4.2万以上と、置き換えられる。
In addition, the propylene polymer (X) according to the present invention needs to have a branching length of 7000 or more, which is an entangled molecular weight of polypropylene. When converted into skeleton carbon number, it corresponds to about 400 or more. As used herein, skeletal carbon means all carbon atoms other than methyl carbon. It is considered that the melt physical properties are further improved as the branch length becomes longer.
Therefore, the branched chain length of the propylene-based polymer (X) according to the present invention is 500 or more skeleton carbon atoms (polypropylene molecular weight conversion: 11,000), preferably 1000 skeleton carbon atoms (polypropylene molecular weight conversion: 2. 10,000) or more, and more preferably 2000 or more skeleton carbon atoms (polypropylene molecular weight conversion: 42,000).
The polypropylene molecular weight converted value here is strictly different from the molecular weight value measured by GPC, but approximates the number average molecular weight (Mn) measured by GPC.
Therefore, the branch length of the propylene-based polymer (X) according to the present invention is 11,000 or more, preferably 21,000 or more, more preferably 4.2 in terms of number average molecular weight (Mn) measured by GPC. Replaced with more than 10,000.

また、重合機構を考えた場合、触媒成分[A−1]由来の活性種から生成するマクロマーが主鎖に組み込まれて分岐構造を形成するので、マクロマーの平均分子量が、組み込まれた分岐鎖の平均分子量として、特徴付けられる。
例えば、本発明に係るプロピレン系重合体(X)では、[A−1]由来の活性種から生成するマクロマーの分子量は、数平均分子量で5万の場合、組み込まれた分岐鎖の平均分子量が5万あり、骨格炭素に換算すると2400個と、解釈される。
上記[A−1]由来の活性種から生成するマクロマーの数平均分子量は、GPCにおいて[A−1]由来の部分のピークトップ、または[A−1]単独で重合を行った場合の分子量から推定できる。
Further, when considering the polymerization mechanism, the macromer generated from the active species derived from the catalyst component [A-1] is incorporated into the main chain to form a branched structure, so that the average molecular weight of the macromer is that of the incorporated branched chain. Characterized as average molecular weight.
For example, in the propylene-based polymer (X) according to the present invention, when the molecular weight of the macromer generated from the active species derived from [A-1] is 50,000 in number average molecular weight, the average molecular weight of the incorporated branched chain is There are 50,000, and it is interpreted as 2400 when converted into skeleton carbon.
The number average molecular weight of the macromer generated from the active species derived from the above [A-1] is based on the molecular weight when the polymerization is carried out by the peak top of the portion derived from [A-1] in GPC or [A-1] alone. Can be estimated.

一方、ポリマーの分岐分布に関しては、GPC−visやGPC−mallsで測定が可能であるが、重合機構から考察すると、[A−1]由来のマクロマーが、より高分子量でより共重合性が高い成分[A−2]由来の活性種に取り込まれて、分岐が生成していると、考えられるため、[A−2]由来の分子量成分に、長鎖分岐が導入されていると、考察している。
触媒成分[A−2]由来の分子量成分は、[A−1]由来の分子量成分とくらべて、より高分子量であるので、分岐分布としては、高分子量側([A−2]由来側)にも、分岐が導入された分布形態になっていると、考察している。
また、[A−1]由来の分子量成分には、[A−1]自身でマクロマーを取り込んで、できた分岐構造も存在する。
上記[A−1]由来、[A−2]由来の分子量分布の一例を、図3に示す。
On the other hand, the branched distribution of the polymer can be measured by GPC-vis or GPC-malls, but considering the polymerization mechanism, the macromer derived from [A-1] has a higher molecular weight and higher copolymerization. Considered that long chain branching is introduced into the molecular weight component derived from [A-2] because it is considered that branching is generated by incorporation into the active species derived from component [A-2]. ing.
Since the molecular weight component derived from the catalyst component [A-2] is higher in molecular weight than the molecular weight component derived from [A-1], the branched distribution is high molecular weight side ([A-2] derived side). In addition, it is considered that the distribution form is introduced with branching.
In addition, the molecular weight component derived from [A-1] also has a branched structure formed by incorporating the macromer by [A-1] itself.
An example of the molecular weight distribution derived from [A-1] and [A-2] is shown in FIG.

分岐数と分岐分布の関係について説明すると、溶融物性を改良するためには、分岐数が多いことが一般に必要と考えられており、特開2007−154121号公報には、分岐数0.1/1000骨格炭素以上のプロピレン単独重合体が開示されている。
しかしながら、この開示されたプロピレン単独重合体の伸長粘度の測定のおける歪硬化度は6.0未満であり、本発明に係るプロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)が6.0以上と比べても、改良効果は十分ではない。これは単一の錯体で製造するため、望ましい分岐成分が十分に導入されていないためであり、分岐が単純に平均的に多くても、溶融物性改良の効果が小さいことを意味している。
本発明に係るプロピレン系重合体(X)は、分岐数(平均値)が従来の分岐型重合体に比べて必ずしも多くはないが、複数の錯体を組み合わせることで、分岐を高分子量側にも導入することにより、溶融物性が顕著に改良されたものである。
Describing the relationship between the number of branches and the branch distribution, it is generally considered that a large number of branches is necessary in order to improve the melt properties. Japanese Patent Application Laid-Open No. 2007-154121 discloses that the number of branches is 0.1 / A propylene homopolymer having 1000 skeleton carbons or more is disclosed.
However, the strain hardening degree in the measurement of the extensional viscosity of the disclosed propylene homopolymer is less than 6.0, and the strain hardening degree (λmax in the measurement of the extensional viscosity of the propylene-based polymer (X) according to the present invention). ) Is 6.0 or more, the improvement effect is not sufficient. This is because the desired branching component is not sufficiently introduced because it is produced from a single complex, meaning that the effect of improving the melt properties is small even if the number of branches is simply large on average.
The propylene-based polymer (X) according to the present invention does not necessarily have a larger number of branches (average value) than a conventional branched polymer, but by combining a plurality of complexes, branching can be performed on the high molecular weight side. By introducing it, the melt properties are remarkably improved.

また、側鎖の立体規則性について説明すると、主鎖および側鎖の立体規則性は、それぞれ用いる[A−1]および[A−2]のもつ立体規則能力によって決まる。側鎖の立体規則性が低いと、たとえ主鎖の結晶性が高くても、全体の結晶性を落としてしまう。そこでより高剛性の重合体を得るためには、側鎖、主鎖とも立体規則性が高いことが好ましい。その値としては、主鎖、側鎖とも、mm分率で95%以上である。特に好ましくは96%以上であり、更に好ましくは97%以上である。
側鎖の立体規則性は、[A−1]単独による重合体の立体規則性と等しいと考えられる。
Further, the stereoregularity of the side chain will be described. The stereoregularity of the main chain and the side chain is determined by the stereoregular ability of [A-1] and [A-2] used, respectively. If the stereoregularity of the side chain is low, even if the main chain has high crystallinity, the overall crystallinity is degraded. Therefore, in order to obtain a higher-rigidity polymer, it is preferable that the side chain and the main chain have high stereoregularity. As the value, both the main chain and the side chain are 95% or more in mm fraction. Especially preferably, it is 96% or more, More preferably, it is 97% or more.
The stereoregularity of the side chain is considered to be equal to the stereoregularity of the polymer by [A-1] alone.

(2)プロピレン系重合体(X)の物性
本発明に係るプロピレン系重合体(X)は、溶融流動性や溶融張力を制御した、物性と溶融加工性のバランスに優れている。プロピレン系重合体(X)の物性について、説明する。
(2) Physical Properties of Propylene Polymer (X) The propylene polymer (X) according to the present invention has an excellent balance between physical properties and melt processability with controlled melt fluidity and melt tension. The physical properties of the propylene polymer (X) will be described.

(2−1)メルトフローレート(MFR):
本発明に係るプロピレン系重合体(X)は、温度230℃、2.16Kg荷重で測定するメルトフローレート(MFR)が0.1〜20g/10分であることを必要とする。
プロピレン系重合体(X)のメルトフローレート(MFR)は、0.1〜20g/10分であり、MFRが0.1g/10分未満では、流動性が低下する上に、剛性も低下する。一方、MFRが20g/10分を超えると、溶融加工性が低下する。また、この範囲の中でも、好ましくは0.5〜15g/10分、更に好ましくは1〜10g/10分、特に好ましくは2〜5g/10分である。
(2-1) Melt flow rate (MFR):
The propylene polymer (X) according to the present invention requires that the melt flow rate (MFR) measured at a temperature of 230 ° C. and a load of 2.16 kg be 0.1 to 20 g / 10 minutes.
The melt flow rate (MFR) of the propylene polymer (X) is 0.1 to 20 g / 10 minutes, and if the MFR is less than 0.1 g / 10 minutes, the fluidity is lowered and the rigidity is also lowered. . On the other hand, when the MFR exceeds 20 g / 10 min, the melt processability decreases. Moreover, within this range, it is preferably 0.5 to 15 g / 10 minutes, more preferably 1 to 10 g / 10 minutes, and particularly preferably 2 to 5 g / 10 minutes.

尚、メルトフローレート(MFR)は、JIS K6921−2の「プラスチック−ポリプロピレン(PP)成形用及び押出用材料−第2部:試験片の作り方及び性質の求め方」に準拠して、試験条件:230℃、荷重2.16kgfで測定した値である。
プロピレン系重合体(X)のメルトフローレート(MFR)は、プロピレン系重合体(X)の重合条件である温度や圧力を調節したり、水素等の連鎖移動剤を重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。
The melt flow rate (MFR) is a test condition in accordance with JIS K6921-2 “Plastics—Polypropylene (PP) molding and extrusion materials—Part 2: How to make test pieces and properties”. : A value measured at 230 ° C. and a load of 2.16 kgf.
The melt flow rate (MFR) of the propylene polymer (X) is the amount of hydrogen added to adjust the temperature and pressure, which are the polymerization conditions of the propylene polymer (X), or to add a chain transfer agent such as hydrogen during the polymerization. Adjustment can be easily performed by controlling the above.

(2−2)GPCで測定する平均分子量及び分子量分布(Mw、Mn、Q値):
本発明に係るプロピレン系重合体(X)は、ゲルパーミエーションクロマトグラフィー(GPC)測定による重量平均分子量(Mw)と数平均分子量(Mn)の比、Mw/Mn(Q値)が、3.5〜10.5の範囲であることが必要である。
Q値は、分子量分布の広がりを表す指標であり、この値が大きいほど、分子量分布が広いことを意味する。Q値が小さすぎると、分布が狭い為に、溶融流動性と加工性のバランスが悪くなる。したがって、Q値は3.5以上が必要であり、好ましくは4.0以上である。更に好ましくは4.5以上である。一方、Q値が大きすぎると、必要としない(低)分子量成分の量が増えて、満足する物性のものが得られない。したがって、Q値は10.5以下が必要であり、好ましくは8.0以下であり、更に好ましくは7.5以下である。
プロピレン系重合体(X)のGPCで測定する平均分子量及び分子量分布(Mw、Mn、Q値)は、プロピレン重合の温度や圧力条件を変えるか、または、最も一般的な手法としては、水素等の連鎖移動剤をプロピレン重合時に添加する方法により、容易に調整を行なうことができる。さらに、使用するメタロセン錯体の種類、錯体を2種以上使用する場合は、その量比を変えることで制御することができる。
(2-2) Average molecular weight and molecular weight distribution (Mw, Mn, Q value) measured by GPC:
The propylene polymer (X) according to the present invention has a weight-average molecular weight (Mw) to number-average molecular weight (Mn) ratio, Mw / Mn (Q value) of 3 by gel permeation chromatography (GPC) measurement. It must be in the range of 5 to 10.5.
The Q value is an index representing the spread of the molecular weight distribution, and the larger the value, the wider the molecular weight distribution. If the Q value is too small, the distribution is narrow, and the balance between melt fluidity and workability becomes poor. Accordingly, the Q value needs to be 3.5 or more, preferably 4.0 or more. More preferably, it is 4.5 or more. On the other hand, if the Q value is too large, the amount of unnecessary (low) molecular weight components increases, and satisfactory physical properties cannot be obtained. Therefore, the Q value needs to be 10.5 or less, preferably 8.0 or less, and more preferably 7.5 or less.
The average molecular weight and molecular weight distribution (Mw, Mn, Q value) measured by GPC of the propylene polymer (X) can be changed by changing the temperature and pressure conditions of propylene polymerization, or the most common technique is hydrogen, etc. The chain transfer agent can be easily adjusted by adding the chain transfer agent during propylene polymerization. Furthermore, when using 2 or more types of the metallocene complex to be used and a complex, it can control by changing the quantity ratio.

(2−3)GPCによる分子量分布曲線から得られる分子量分布の広がりの高分子量側への偏り:
本発明に係るプロピレン系重合体(X)は、GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満であることが望ましい。ここで、α/βは、分子量分布の広がりの高分子量側への偏りを表す指標である。
分子量分布の広がり方に関しては、GPCによって得られる分子量分布曲線で示される。即ち、分子量(MW)の常用対数を横軸として、縦軸に、当該MWに相当する分子の相対微分質量をプロットしたグラフが作成される。
なお、ここにいう分子量(MW)とは、プロピレン単独重合体を構成する個々の分子の分子量であって、プロピレン単独重合体の重量平均分子量(Mw)とは、異なるものである。図1は、分子量分布曲線の一例を示す図である。作成したグラフからαおよびβが求められる。本発明においては、上記のように、α/βが0.9より大きく、2.0未満であることが望ましい。
(2-3) Bias of molecular weight distribution obtained from GPC molecular weight distribution curve toward high molecular weight side:
In the molecular weight distribution curve obtained by GPC, the propylene-based polymer (X) according to the present invention has a common logarithm of the molecular weight corresponding to the peak position as Tp and a common logarithm of the molecular weight at a position where the peak height is 50%. L 50 and H 50 (L 50 is lower molecular weight side than Tp, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively. It is desirable that / β is greater than 0.9 and less than 2.0. Here, α / β is an index representing the deviation of the molecular weight distribution toward the high molecular weight side.
The spread of the molecular weight distribution is indicated by a molecular weight distribution curve obtained by GPC. That is, a graph is created by plotting the common logarithm of molecular weight (MW) on the horizontal axis and the relative differential mass of the molecule corresponding to the MW on the vertical axis.
The molecular weight (MW) referred to here is the molecular weight of individual molecules constituting the propylene homopolymer, and is different from the weight average molecular weight (Mw) of the propylene homopolymer. FIG. 1 is a diagram showing an example of a molecular weight distribution curve. Α and β are obtained from the created graph. In the present invention, as described above, it is desirable that α / β is greater than 0.9 and less than 2.0.

通常、単一活性点を持つ触媒で均一な重合を行った場合、分子量分布は最も確からしい分布の形状となる。この最も確からしい分布のα/βは、0.9と算出される。
したがって、本発明に係るプロピレン系重合体(X)であるプロピレン単独重合体の分子量分布は、単一活性点で均一な重合をした重合体の分子量分布と比べて、より高分子量側に一層広がっていることを意味している。
α/βが0.9以下であると、相対的に高分子量成分の量が足りないため、溶融張力やスウェル比が小さくなり、成形性が悪化してしまう。例えば、押出発泡成形を行う場合、初期気泡のできる段階においては、粘度の低い方が気泡の核が多くできるため、粘度の低い成分が多い方がよい。他方、気泡のセルができて薄くなった状態では、その部分に強度がないと破泡してしまうため、分子量の高い成分が必要となる。このような事情を満足させるためには、低分子量側よりも高分子量側において、より一層広がっていることが重要である。
したがって、本発明に係るプロピレン系重合体(X)は、α/βが0.9より大きいことが望ましく、好ましくは1.0以上であり、更に好ましくは1.1以上である。
Usually, when uniform polymerization is carried out with a catalyst having a single active site, the molecular weight distribution has the most probable distribution shape. The most probable distribution α / β is calculated as 0.9.
Therefore, the molecular weight distribution of the propylene homopolymer, which is the propylene-based polymer (X) according to the present invention, further spreads to the higher molecular weight side than the molecular weight distribution of the polymer polymerized uniformly at a single active site. It means that
If α / β is 0.9 or less, the amount of the high molecular weight component is relatively insufficient, so that the melt tension and swell ratio become small, and the moldability deteriorates. For example, when extrusion foam molding is performed, in the stage where initial bubbles are formed, the lower the viscosity, the more the cores of the bubbles. On the other hand, in the state where the bubble cell is formed and thinned, if the portion is not strong, the bubble is broken, and thus a component having a high molecular weight is required. In order to satisfy such circumstances, it is important that the molecular weight is further spread on the high molecular weight side than on the low molecular weight side.
Accordingly, it is desirable that the propylene-based polymer (X) according to the present invention has α / β larger than 0.9, preferably 1.0 or more, and more preferably 1.1 or more.

一方、α/βが2.0以上であると、高分子量成分の量が多すぎて、流動性を悪化させてしまう。また、発泡成形を行う場合、高分子量成分が多すぎて粘度が高くなり、成形初期に充分な気泡セルを作れなくなる傾向がでる。また、熱成形時に引き伸ばされた場合に溶融体が破断を起こすという、いわゆる溶融延展性の悪化を引き起こす。
したがって、本発明に係るプロピレン系重合体(X)は、α/βが2.0未満であることが望ましく、好ましくは1.7未満であり、更に好ましくは1.6未満である。
なお、分子量分布曲線において、ピークが2つ以上現れることがある。その場合は、最大ピークを本発明のピークと置き換えることができる。また、H50が2つ以上現れる場合は、一番高分子量側の分子量で置き換えることができる。同様に、L50が2つ以上現れる場合は、一番低分子量側の分子量で置き換えることができる。
プロピレン系重合体(X)のGPCによる分子量分布曲線から得られる分子量分布の広がりの高分子量側への偏りは、2種使用するメタロセン錯体の一方として高分子量のポリマーが製造可能なものを選択したうえで、重合時に添加する水素添加量の制御により、容易に調整を行なうことができる。また、使用する2種のメタロセン錯体の量比を変えることでも調整することができる。
On the other hand, when α / β is 2.0 or more, the amount of the high molecular weight component is too large and the fluidity is deteriorated. In addition, when foam molding is performed, the viscosity is increased due to too much high molecular weight component, and there is a tendency that sufficient bubble cells cannot be formed at the initial stage of molding. Moreover, when stretched at the time of thermoforming, the melt causes breakage, that is, deterioration of so-called melt ductility.
Accordingly, the propylene-based polymer (X) according to the present invention desirably has an α / β value of less than 2.0, preferably less than 1.7, and more preferably less than 1.6.
In the molecular weight distribution curve, two or more peaks may appear. In that case, the maximum peak can be replaced with the peak of the present invention. Also, if the H 50 appears two or more may be replaced with the molecular weight of the lowest molecular weight side. Similarly, when two or more L 50 appear, the molecular weight on the lowest molecular weight side can be replaced.
The molecular weight distribution spread from the molecular weight distribution curve by GPC of the propylene-based polymer (X) was selected so that a high molecular weight polymer could be produced as one of the two types of metallocene complexes used. In addition, the adjustment can be easily performed by controlling the amount of hydrogen added during the polymerization. It can also be adjusted by changing the amount ratio of the two metallocene complexes used.

(2−4)GPCによる分子量分布曲線における分子量(M)が200万以上の成分の比率:
本発明に係るプロピレン系重合体(X)は、GPCによって得られる分子量分布曲線において、重合体全量に対して、分子量(M)が200万以上の成分の比率(W(200万以上))が0.4重量%以上、10重量%未満である。
上記200万以上の比率(W(200万以上))は、重合体中に含まれる非常に高い分子量成分の比率を示す指標である。
上記非常に高い分子量成分の比率であるW(200万以上)は、GPCによって得られる積分分子量分布曲線(全量を1に規格化)において、分子量(M)が200万(Log(M)=6.3)以下までの積分値を、1から減じた値として定義する。積分分子量分布曲線の一例を同じく図1に示す。
(2-4) Ratio of components having a molecular weight (M) of 2 million or more in the molecular weight distribution curve by GPC:
In the molecular weight distribution curve obtained by GPC, the propylene-based polymer (X) according to the present invention has a ratio of components having a molecular weight (M) of 2 million or more (W (2 million or more)) to the total amount of the polymer. 0.4 wt% or more and less than 10 wt%.
The ratio of 2 million or more (W (2 million or more)) is an index indicating the ratio of a very high molecular weight component contained in the polymer.
The very high molecular weight component ratio W (2 million or more) is an integral molecular weight distribution curve obtained by GPC (the total amount is normalized to 1), and the molecular weight (M) is 2 million (Log (M) = 6). .3) The integral value up to the following is defined as a value obtained by subtracting from 1. An example of the integrated molecular weight distribution curve is also shown in FIG.

前述のように、高分子量成分の量が足りないと、溶融張力やスウェル比が小さくなり、成形性が悪化してしまう。例えば、押出発泡成形を行う場合、破泡が起きて独立気泡率が高くならない。そこで、分子量の高い成分が必要であり、中でも非常に分子量の高い成分を少量含有することにより、効率的に成形性が改善される。この非常に分子量の高い成分には、前述したような分岐成分を含んでいると考えられる。
したがって、本発明に係るプロピレン系重合体(X)は、望ましくは、W(200万以上)が0.4重量%以上である必要があり、好ましくは1.0重量%以上であり、更に好ましくは2.0重量%以上である。
しかしながら、この成分の比率が高すぎると、流動性を悪化させてしまう。のみならず、非常に分子量の高い成分であるために、ゲルが生成してしまい、成形品の外観を損ねるという問題が生じる。また、この成分の比率が高すぎると、成形時に高速で延伸した場合に、溶融体が破断を起こすという、いわゆる溶融延展性の悪化を引き起こす。
そこで、本発明に係るプロピレン系重合体(X)は、望ましくは、W(200万以上)が10重量%未満である必要があり、好ましくは6.0重量%未満、更に好ましくは5重量%未満である。
プロピレン系重合体(X)のGPCによる分子量分布曲線における分子量(M)が200万以上の成分の比率は、使用するメタロセン錯体として高分子量のポリマーが製造可能なものを選択したうえで、低分子量側を製造するメタロセン錯体に対する量比、プロピレン重合時に添加する水素量や重合温度の制御により、容易に調整を行なうことができる。
これまでにMFR、Q値、α/βおよび分子量(M)が200万以上の成分の比率等のプロピレン系重合体の分子量に関する調整方法について説明してきた。例えば、共通する制御法として、水素量の制御を挙げることができる。水素量を増やすと、プロピレン系重合体のMFRは上がり、Q値、α/β、分子量(M)が200万以上の成分の比率は低下する傾向を示す。一方、重合温度を上げる、モノマー分圧を下げる方法でも、MFRを上げることが可能であり、その場合には、分子量(M)が200万以上の成分の比率は低下するが、Q値とα/βはあまり影響を受けない。また、MFRに対する分子量(M)が200万以上の成分の比率は、高分子量側を生成するメタロセン錯体の量や種類を変えることで制御することができる。この様に、使用する触媒や重合条件を変化させることでこれら規定の制御が可能である。
As described above, when the amount of the high molecular weight component is insufficient, the melt tension and the swell ratio are decreased, and the moldability is deteriorated. For example, when performing extrusion foam molding, bubble breakage occurs and the closed cell ratio does not increase. Therefore, a component having a high molecular weight is necessary, and the moldability is efficiently improved by containing a small amount of a component having a very high molecular weight. This very high molecular weight component is considered to contain a branched component as described above.
Therefore, the propylene polymer (X) according to the present invention desirably has W (2 million or more) of 0.4% by weight or more, preferably 1.0% by weight or more, and more preferably Is 2.0% by weight or more.
However, when the ratio of this component is too high, the fluidity is deteriorated. In addition, since it is a component having a very high molecular weight, a gel is generated, resulting in a problem that the appearance of the molded product is impaired. On the other hand, if the ratio of this component is too high, the melt will break when the film is stretched at a high speed during molding, so-called deterioration of melt ductility is caused.
Therefore, the propylene polymer (X) according to the present invention desirably has W (2 million or more) less than 10% by weight, preferably less than 6.0% by weight, more preferably 5% by weight. Is less than.
The ratio of the component having a molecular weight (M) of 2 million or more in the molecular weight distribution curve by GPC of the propylene-based polymer (X) is selected after a high molecular weight polymer can be produced as the metallocene complex to be used. Adjustment can be easily made by controlling the amount ratio of the metallocene complex to the metallocene complex, the amount of hydrogen added during propylene polymerization, and the polymerization temperature.
So far, adjustment methods related to the molecular weight of the propylene-based polymer such as the ratio of components having MFR, Q value, α / β and molecular weight (M) of 2 million or more have been described. For example, control of the amount of hydrogen can be given as a common control method. When the amount of hydrogen is increased, the MFR of the propylene polymer increases, and the ratio of components having a Q value, α / β, and molecular weight (M) of 2 million or more tends to decrease. On the other hand, it is possible to increase the MFR by increasing the polymerization temperature or decreasing the monomer partial pressure. In this case, the ratio of components having a molecular weight (M) of 2 million or more decreases, but the Q value and α / Β is not significantly affected. In addition, the ratio of components having a molecular weight (M) of 2 million or more with respect to MFR can be controlled by changing the amount and type of the metallocene complex that generates the high molecular weight side. In this way, the regulation can be controlled by changing the catalyst used and the polymerization conditions.

上記で定義される重量平均分子量(Mw)、Q値、α/β、及びW(200万以上)の値は、いずれも、ゲルパーミエーションクロマトグラフィー(GPC)によって得られるものであるが、その測定法、測定機器の詳細は、以下の通りである。
装置:Waters社製GPC(ALC/GPC、150C)
検出器:FOXBORO社製MIRAN、1A、IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒:o−ジクロロベンゼン(ODCB)
測定温度:140℃
流速:1.0ml/分
注入量:0.2ml
The weight average molecular weight (Mw), Q value, α / β, and W (over 2 million) values defined above are all obtained by gel permeation chromatography (GPC). Details of the measuring method and measuring equipment are as follows.
Equipment: GPC manufactured by Waters (ALC / GPC, 150C)
Detector: MIRAN, 1A, IR detector manufactured by FOXBORO (measurement wavelength: 3.42 μm)
Column: AD806M / S (3 pieces) manufactured by Showa Denko KK
Mobile phase solvent: o-dichlorobenzene (ODCB)
Measurement temperature: 140 ° C
Flow rate: 1.0 ml / min Injection volume: 0.2 ml

試料の調製は、試料をODCB(0.5mg/mLのBHTを含む)を用いて、1mg/mLの溶液を調製し、140℃で約1時間を要して、溶解させて行う。
なお、得られたクロマトグラムのベースラインと区間は、図2のように行う。
また、GPC測定で得られた保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは、何れも東ソー社製の以下の銘柄である。
銘柄:F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるように、ODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して、較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いる。
分子量への換算に使用する粘度式:[η]=K×Mαは、以下の数値を用いる。
PS:K=1.38×10−4、α=0.7
PP:K=1.03×10−4、α=0.78
The sample is prepared by preparing a 1 mg / mL solution using ODCB (containing 0.5 mg / mL BHT) and dissolving it at 140 ° C. for about 1 hour.
The baseline and section of the obtained chromatogram are performed as shown in FIG.
Further, the conversion from the retention capacity obtained by GPC measurement to the molecular weight is performed using a standard curve prepared in advance by standard polystyrene. The standard polystyrenes used are all the following brands manufactured by Tosoh Corporation.
Brand: F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000
Inject 0.2 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL to create a calibration curve. The calibration curve uses a cubic equation obtained by approximation by the least square method.
Viscosity formula used for conversion to molecular weight: [η] = K × M α uses the following numerical values.
PS: K = 1.38 × 10 −4 , α = 0.7
PP: K = 1.03 × 10 −4 , α = 0.78

(2−5)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF):
本発明に係るプロピレン系重合体(X)は、昇温溶出分別(TREF)測定によって得られる溶出曲線において、40℃以下の温度で溶出する成分が3.0重量%以下である。
40℃以下の温度で溶出する成分は、低結晶性成分であり、この成分の量が多いと、製品全体の結晶性が低下し、製品の剛性といった機械的強度が低下してしまう。
したがって、この量が3.0重量%以下である必要があり、好ましくは2.0重量%以下であり、更に好ましくは1.0重量%以下あり、非常に好ましくは0.5重量%以下である。
プロピレン系重合体(X)のオルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)は、メタロセン錯体を用いることにより、一般的に低く抑えることが可能であるが、触媒の純度を一定以上に保つことに加え、触媒の製造方法や重合時の反応条件を、極端に高温にしないことやメタロセン錯体に対する有機アルミニウム化合物の量比を上げすぎないことが必要である。
(2-5) Temperature rising elution fractionation with orthodichlorobenzene (ODCB) (TREF):
The propylene polymer (X) according to the present invention contains 3.0% by weight or less of a component that elutes at a temperature of 40 ° C. or lower in an elution curve obtained by temperature rising elution fractionation (TREF) measurement.
A component that elutes at a temperature of 40 ° C. or lower is a low crystalline component. If the amount of this component is large, the crystallinity of the entire product is lowered, and the mechanical strength such as the rigidity of the product is lowered.
Therefore, this amount should be 3.0% by weight or less, preferably 2.0% by weight or less, more preferably 1.0% by weight or less, and most preferably 0.5% by weight or less. is there.
The temperature rising elution fractionation (TREF) of the propylene polymer (X) with orthodichlorobenzene (ODCB) can generally be kept low by using a metallocene complex, but the purity of the catalyst is more than a certain level. In addition to maintaining the catalyst, it is necessary that the production method of the catalyst and the reaction conditions at the time of polymerization are not extremely high and the amount ratio of the organoaluminum compound to the metallocene complex is not excessively increased.

昇温溶出分別(TREF)による溶出成分の測定法の詳細は、以下の通りである。
試料を140℃でオルトジクロロベンゼンに溶解し溶液とする。これを140℃のTREFカラムに導入した後、8℃/分の降温速度で100℃まで冷却し、引き続き4℃/分の降温速度で40℃まで冷却後、10分間保持する。その後、溶媒であるオルトジクロロベンゼンを1mL/分の流速でカラムに流し、TREFカラム中で40℃のオルトジクロロベンゼンに溶解している成分を10分間溶出させ、次に昇温速度100℃/時間にてカラムを140℃までリニアに昇温し、溶出曲線を得る。
The details of the measurement method of the eluted component by temperature rising elution fractionation (TREF) are as follows.
A sample is dissolved in orthodichlorobenzene at 140 ° C. to obtain a solution. This is introduced into a 140 ° C. TREF column, cooled to 100 ° C. at a rate of 8 ° C./min, and then cooled to 40 ° C. at a rate of 4 ° C./min, and held for 10 minutes. Thereafter, orthodichlorobenzene as a solvent is caused to flow through the column at a flow rate of 1 mL / min, and components dissolved in 40 ° C orthodichlorobenzene are eluted in the TREF column for 10 minutes, and then the heating rate is 100 ° C / hour. The column is linearly heated to 140 ° C. to obtain an elution curve.

カラムサイズ:4.3mmφ×150mm
カラム充填材:100μm表面不活性処理ガラスビーズ
溶媒:オルトジクロロベンゼン
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速:1mL/分
検出器:波長固定型赤外検出器、FOXBORO社製、MIRAN、1A
測定波長:3.42μm
Column size: 4.3mmφ × 150mm
Column packing material: 100 μm surface inert treatment glass beads Solvent: Orthodichlorobenzene Sample concentration: 5 mg / mL
Sample injection volume: 0.1 mL
Solvent flow rate: 1 mL / min Detector: Fixed wavelength infrared detector, manufactured by FOXBORO, MIRAN, 1A
Measurement wavelength: 3.42 μm

(2−6)13C−NMRで測定するアイソタクチックトライアッド分率(mm):
本発明に係るプロピレン系重合体(X)は、13C−NMRによって得られるプロピレン単位3連鎖のmm分率が95%以上の立体規則性を有するものである。
mm分率は、ポリマー鎖中、頭−尾結合からなる任意のプロピレン単位3連鎖中、各プロピレン単位中のメチル分岐の方向が同一であるプロピレン単位3連鎖の割合である。このmm分率は、ポリプロピレン分子鎖中のメチル基の立体構造がアイソタクチックに制御されていることを示す値であり、高いほど、高度に制御されていることを意味する。
mm分率がこの値より小さいと、製品の弾性率が低下するなど機械的物性が低下してしまう。従って、mm分率は、好ましくは96%以上であり、さらに好ましくは97%以上である。
また、主鎖および側鎖の立体規則性は、後述するプロピレン系重合体(X)の製造方法で用いられる触媒成分[A−1]および[A−2]のもつ立体規則能力によって決まる。側鎖の立体規則性が低いと、例え主鎖の結晶性が高くても全体の結晶性を落としてしまう。そこでより高剛性の重合体を得るためには側鎖、主鎖とも立体規則性が高いことが好ましい。その値としては、主鎖、側鎖ともmm分率で95%以上である。特に好ましくは96%以上であり、更に好ましくは97%以上である。
プロピレン系重合体(X)の13C−NMRで測定するアイソタクチックトライアッド分率(mm)は、後述するメタロセン錯体の選択や重合温度および重合圧力により、調整を行なうことができる。
プロピレン系重合体(X)の13C−NMRで測定するアイソタクチックトライアッド分率(mm)は、後述するメタロセン錯体の選択や重合温度および重合圧力により、容易に調整を行なうことができる。
(2-6) Isotactic triad fraction (mm) measured by 13 C-NMR:
The propylene polymer (X) according to the present invention has a stereoregularity in which the mm fraction of the three propylene units obtained by 13 C-NMR is 95% or more.
The mm fraction is the ratio of three propylene unit chains in which the direction of methyl branching in each propylene unit is the same among arbitrary three propylene unit chains composed of head-to-tail bonds in the polymer chain. This mm fraction is a value indicating that the steric structure of the methyl group in the polypropylene molecular chain is controlled isotactically, and the higher the value, the higher the degree of control.
If the mm fraction is smaller than this value, mechanical properties such as a decrease in the elastic modulus of the product are deteriorated. Therefore, the mm fraction is preferably 96% or more, and more preferably 97% or more.
Further, the stereoregularity of the main chain and the side chain is determined by the stereoregular ability of the catalyst components [A-1] and [A-2] used in the production method of the propylene polymer (X) described later. If the stereoregularity of the side chain is low, even if the crystallinity of the main chain is high, the overall crystallinity is degraded. Therefore, in order to obtain a higher rigidity polymer, it is preferable that the side chain and the main chain have high stereoregularity. As the value, the main chain and the side chain are 95% or more in mm fraction. Especially preferably, it is 96% or more, More preferably, it is 97% or more.
The isotactic triad fraction (mm) measured by 13 C-NMR of the propylene polymer (X) can be adjusted by the selection of the metallocene complex described later, the polymerization temperature and the polymerization pressure.
The isotactic triad fraction (mm) measured by 13 C-NMR of the propylene polymer (X) can be easily adjusted by the selection of the metallocene complex described later, the polymerization temperature and the polymerization pressure.

13C−NMRによるプロピレン単位3連鎖のmm分率の測定法の詳細は、以下の通りである。
試料375mgをNMRサンプル管(10φ)中で重水素化1,1,2,2−テトラクロロエタン2.5mlに完全に溶解させた後、125℃においてプロトン完全デカップリング法で測定した。ケミカルシフトは、重水素化1,1,2,2−テトラクロロエタンの3本のピークの中央のピークを74.2ppmに設定した。他の炭素ピークのケミカルシフトはこれを基準とする。
フリップ角:90度
パルス間隔:10秒
共鳴周波数:100MHz以上
積算回数:10,000回以上
観測域:−20ppmから179ppm
データポイント数:32768
The detail of the measuring method of mm fraction of the propylene unit 3 chain | strand by 13 C-NMR is as follows.
A sample of 375 mg was completely dissolved in 2.5 ml of deuterated 1,1,2,2-tetrachloroethane in an NMR sample tube (10φ), and then measured at 125 ° C. by a proton complete decoupling method. The chemical shift was set to 74.2 ppm in the middle of the three peaks of deuterated 1,1,2,2-tetrachloroethane. The chemical shift of other carbon peaks is based on this.
Flip angle: 90 degrees Pulse interval: 10 seconds Resonance frequency: 100 MHz or more Integration frequency: 10,000 times or more Observation range: -20 ppm to 179 ppm
Number of data points: 32768

mm分率の測定は、前記の条件により測定された13C−NMRスペクトルを用いて行う。
スペクトルの帰属は、Macromolecules,(1975年)8卷,687頁やPolymer,30巻 1350頁(1989年)を参考に行った。
The mm fraction is measured using a 13 C-NMR spectrum measured under the above conditions.
The spectrum was assigned with reference to Macromolecules, (1975) 8 pp. 687 and Polymer, 30 vol. 1350 (1989).

以下に、mm分率決定のより具体的な方法を述べる。
プロピレン単位を中心として頭尾結合した3連鎖の中心プロピレンのメチル基に由来するピークは、その立体配置に応じて、3つの領域に生じる。
mm:約24.3〜約21.1ppm
mr:約21.2〜約20.5ppm
rr:約20.5〜約19.8ppm
各領域の化学シフト範囲は、分子量や、共重合体組成により若干シフトするが、上記3領域の識別は、容易である。
ここで、mm、mrおよびrrは、それぞれ下記の構造で表される。
A more specific method for determining the mm fraction will be described below.
Peaks derived from the methyl group of the three-chain central propylene bonded head-to-tail around the propylene unit are generated in three regions depending on the configuration.
mm: about 24.3 to about 21.1 ppm
mr: about 21.2 to about 20.5 ppm
rr: about 20.5 to about 19.8 ppm
The chemical shift range of each region slightly shifts depending on the molecular weight and copolymer composition, but the above three regions can be easily identified.
Here, mm, mr, and rr are each represented by the following structure.

Figure 0005417023
Figure 0005417023

mm分率は、次の数式(I)から、算出される。
mm分率=mm領域のピーク面積/(mm領域のピーク面積+mr領域のピーク面積+rr領域のピーク面積)×100 [%] (I)
The mm fraction is calculated from the following mathematical formula (I).
mm fraction = mm area peak area / (mm area peak area + mr area peak area + rr area peak area) × 100 [%] (I)

また、本発明に係るプロピレン系重合体(X)には、エチレン単位を含む以下の部分構造を持ち得る。   Moreover, the propylene polymer (X) according to the present invention may have the following partial structure containing an ethylene unit.

Figure 0005417023
Figure 0005417023

部分構造PPEの中心プロピレン単位のメチル基(PPE−メチル基)は、20.9ppm付近のmr領域で共鳴し、部分構造EPEの中心プロピレン単位のメチル基(EPE−メチル基)は、20.2ppm付近のrr領域で共鳴するため、このような部分構造を有する場合には、mr、rr両領域のピーク面積から、PPE−メチル基及びEPE−メチル基に基づくピーク面積を減ずる必要がある。PPE−メチル基に基づくピーク面積は、対応するメチン基(31.0ppm付近で共鳴)のピーク面積により評価でき、EPE−メチル基に基づくピーク面積は、対応するメチン基(33.3ppm付近で共鳴)のピーク面積により評価できる。   The methyl group (PPE-methyl group) of the central propylene unit of the partial structure PPE resonates in the mr region around 20.9 ppm, and the methyl group (EPE-methyl group) of the central propylene unit of the partial structure EPE is 20.2 ppm. Since resonance occurs in the vicinity of the rr region, in the case of having such a partial structure, it is necessary to reduce the peak areas based on the PPE-methyl group and the EPE-methyl group from the peak areas of both the mr and rr regions. The peak area based on the PPE-methyl group can be evaluated by the peak area of the corresponding methine group (resonance at around 31.0 ppm), and the peak area based on the EPE-methyl group is resonant at the corresponding methine group (around 33.3 ppm). ) Peak area.

また、位置不規則ユニットを含む部分構造として、下記構造(5−a)、構造(5−b)、構造(5−c)および構造(5−d)を有することがある。   Moreover, as a partial structure containing a position irregular unit, it may have the following structure (5-a), structure (5-b), structure (5-c), and structure (5-d).

Figure 0005417023
Figure 0005417023

このうち、炭素A、A’、A”ピークは、mr領域に、炭素B、B’ピークは、rr領域に現れる。さらに、炭素C、C’ピークは、16.8〜17.8ppmに現れる。
従って、式(I)においてmm分率を算出する場合には、それぞれmr領域のピーク面積、rr領域のピーク面積から、頭−尾結合した3連鎖に基づかないピークでmr及びrr領域に現れる炭素A、A’、A”、B、B’に基づくピーク面積を減ずる必要がある。
Among them, the carbon A, A ′, A ″ peaks appear in the mr region, and the carbon B, B ′ peaks appear in the rr region. Further, the carbon C, C ′ peaks appear in 16.8 to 17.8 ppm. .
Therefore, when calculating the mm fraction in the formula (I), the carbon appearing in the mr and rr regions from the peak area of the mr region and the peak area of the rr region, respectively, with peaks not based on the head-to-tail three-linkage. It is necessary to reduce the peak areas based on A, A ′, A ″, B, and B ′.

炭素Aに基づくピーク面積は、位置不規則部分構造[構造(5−a)]の炭素D(42.4ppm付近で共鳴)、炭素E及びG(36.0ppm付近で共鳴)及び炭素F(38.7ppm付近で共鳴)のピーク面積の和の1/4より評価できる。
炭素A’に基づくピーク面積は、位置不規則部分構造[構造(5−b)及び構造(5−c)]の炭素H及びI(34.7ppm付近及び35.0ppm付近で共鳴)と炭素J(34.1ppm付近で共鳴)のピーク面積の和の2/5と炭素K(33.7ppm付近で共鳴)のピーク面積の和により評価できる。
炭素A”に基づくピーク面積は、位置不規則部分構造[構造(5−d)]の炭素L(27.7ppm付近で共鳴)のピーク面積の和により評価できる。
炭素Bに基づくピーク面積は、炭素Jにより評価できる。また、炭素B’に基づくピーク面積は、炭素Kにより評価できる。
なお、炭素Cピーク及び炭素C’ピークの位置は、注目するmm、mr、rr領域と全く関与しないので考慮する必要はない。
以上により、mm、mrおよびrrのピーク面積を評価することができるので、上記数式(I)に従って、プロピレン単位を中心として頭−尾結合からなる3連鎖部のmm分率を求めることができる。
The peak areas based on carbon A are carbon D (resonance around 42.4 ppm), carbon E and G (resonance around 36.0 ppm) and carbon F (38 in the position irregular substructure [structure (5-a)]). It can be evaluated from 1/4 of the sum of the peak areas of resonance at around .7 ppm.
The peak areas based on carbon A ′ are carbon H and I (resonance around 34.7 ppm and around 35.0 ppm) and carbon J of the position irregular substructure [structure (5-b) and structure (5-c)]. It can be evaluated by 2/5 of the sum of peak areas (resonance around 34.1 ppm) and the sum of peak areas of carbon K (resonance around 33.7 ppm).
The peak area based on carbon A ″ can be evaluated by the sum of peak areas of carbon L (resonance in the vicinity of 27.7 ppm) of the position irregular partial structure [structure (5-d)].
The peak area based on carbon B can be evaluated by carbon J. The peak area based on carbon B ′ can be evaluated by carbon K.
Note that the positions of the carbon C peak and the carbon C ′ peak need not be considered because they are not related to the focused mm, mr, and rr regions.
As described above, since the peak areas of mm, mr, and rr can be evaluated, it is possible to obtain the mm fraction of the triple chain portion composed of the head-to-tail bond with the propylene unit as the center according to the above formula (I).

(2−7)伸長粘度の測定における歪硬化度(λmax):
本発明に係るプロピレン系重合体(X)は、伸長粘度の測定における歪硬化度(λmax)が6.0以上であることが必要である。
歪硬化度(λmax)は、溶融時強度を表す指標であり、この値が大きいと、溶融張力が向上する効果がある。その結果、発泡成形を行ったときに、独立気泡率を高く、かつ微細な発泡セルができる。
したがって、この歪硬化度は、6.0以上が必要であり、好ましくは10.0以上、より好ましくは15.0以上である。
また、この歪硬化度は、伸長粘度の非線形性を表す指標であり、通常、分子の絡み合いが多いほど、この値が大きくなると言われている。分子の絡み合いは、分岐の量、分岐鎖の長さに影響を受ける。したがって、分岐の量、分岐の長さが長いほど、歪硬化度は、大きくなる。
さらに、歪硬化度は、現時点において分岐を評価する上で最も感度が高い手法と考えられており、13C−NMRで直接分岐構造を評価するのが難しいために、その手法に替えて、歪硬化度を分岐の指標として用いた。
(2-7) Strain hardening degree (λmax) in measurement of elongational viscosity:
The propylene polymer (X) according to the present invention is required to have a strain hardening degree (λmax) of 6.0 or more in the measurement of elongational viscosity.
The strain hardening degree (λmax) is an index representing the strength at the time of melting, and when this value is large, there is an effect of improving the melt tension. As a result, when foam molding is performed, a closed cell ratio is high and fine foam cells can be formed.
Therefore, the strain hardening degree needs to be 6.0 or more, preferably 10.0 or more, more preferably 15.0 or more.
The degree of strain hardening is an index representing the nonlinearity of elongational viscosity, and it is usually said that this value increases as the molecular entanglement increases. Molecular entanglement is affected by the amount of branching and the length of the branched chain. Therefore, the greater the amount of branching and the length of branching, the greater the degree of strain hardening.
Furthermore, strain hardening is considered to be the most sensitive method for evaluating branching at the present time, and it is difficult to evaluate the branched structure directly by 13 C-NMR. The degree of cure was used as an index of branching.

一般的に、高い歪硬化度を示すには、分岐の長さとして、ポリプロピレンの絡みあい分子量である7,000以上が必要とされる。骨格炭素数に換算すると、約400以上に相当する。ここでいう骨格炭素とは、メチル炭素以外の全ての炭素原子を意味する。分岐長がより長くなると、溶融物性は、より向上すると考えられる。特により長い分岐鎖が導入されると、伸長粘度の測定において、より遅い歪速度領域においても、歪硬化が検出されようになると考えられている。
したがって、本発明に係るプロピレン系重合体(X)の分岐鎖長は、前記したとおり、骨格炭素数500(ポリプロピレン分子量換算:1.1万)以上であり、好ましくは骨格炭素数1000(ポリプロピレン分子量換算:2.1万)以上であり、更に好ましくは骨格炭素数2000(ポリプロピレン分子量換算:4.2万)以上である。
ここでいうポリプロピレン分子量換算値は、前記したとおり、厳密にはGPCで測定される分子量値とは異なるものであるが、GPCで測定される数平均分子量(Mn)に近似している。したがって、本発明に係るプロピレン系重合体(X)の分岐長は、GPCで測定される数平均分子量(Mn)で1.1万以上、好ましくは2.1万以上、さらに好ましくは4.2万以上と、置き換えて考えられる。
プロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)は、プロピレン重合に使用する触媒を構成する二種類のメタロセン錯体の選択やその量比、予備重合条件を制御することにより6.0以上と大きくすることが出来る。すなわち、2種類のメタロセン錯体の一方は、マクロマーを生成し易いものとし、もう一方は、マクロマーを重合体に取り込み易く且つ高分子量の重合体を生成可能なものを選択する。更に、予備重合を行うことにより、重合体粒子間で長鎖分岐が均一に分布させる。
In general, in order to show a high degree of strain hardening, a branching length of 7,000 or more, which is an entanglement molecular weight of polypropylene, is required. When converted into skeleton carbon number, it corresponds to about 400 or more. As used herein, skeletal carbon means all carbon atoms other than methyl carbon. It is considered that the melt physical properties are further improved as the branch length becomes longer. In particular, when a longer branched chain is introduced, strain hardening is considered to be detected even in a slower strain rate region in the measurement of elongational viscosity.
Therefore, the branched chain length of the propylene-based polymer (X) according to the present invention is, as described above, a skeleton carbon number of 500 (polypropylene molecular weight conversion: 11,000) or more, preferably a skeleton carbon number of 1000 (polypropylene molecular weight). Conversion: 21,000) or more, and more preferably 2000 or more skeleton carbon atoms (polypropylene molecular weight conversion: 42,000).
As described above, the polypropylene molecular weight conversion value here is strictly different from the molecular weight value measured by GPC, but approximates the number average molecular weight (Mn) measured by GPC. Therefore, the branch length of the propylene-based polymer (X) according to the present invention is 11,000 or more, preferably 21,000 or more, more preferably 4.2 in terms of number average molecular weight (Mn) measured by GPC. It can be replaced with over 10,000.
The degree of strain hardening (λmax) in the measurement of the extensional viscosity of the propylene polymer (X) can be determined by controlling the selection of two types of metallocene complexes constituting the catalyst used for propylene polymerization, the ratio of the amounts thereof, and the prepolymerization conditions. It can be increased to 6.0 or more. That is, one of the two types of metallocene complexes is selected so as to easily generate a macromer, and the other is selected so that the macromer can be easily incorporated into the polymer and can generate a high molecular weight polymer. Furthermore, by performing prepolymerization, long chain branches are uniformly distributed among the polymer particles.

ここで、歪硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも原理的に同一の値が得られるが、例えば、測定方法及び測定機器の詳細は、公知文献Polymer 42(2001)8663に記載の方法があるが、好ましい測定方法及び測定機器として、以下を挙げることができる。   Here, regarding the method for measuring the strain hardening degree, the same value can be obtained in principle by any method as long as the uniaxial extensional viscosity can be measured. For example, the details of the measuring method and measuring instrument are disclosed in Polymer 42. Although there are methods described in (2001) 8663, examples of preferable measuring methods and measuring instruments include the following.

測定方法1:
装置:Rheometorics社製 Ares
冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
Measuring method 1:
Apparatus: Ales manufactured by Rheometrics
Jig: EXTENSIONAL VISUALITY FIXTURE, manufactured by TA Instruments
Measurement temperature: 180 ° C
Strain rate: 0.1 / sec
Preparation of test piece: A sheet having a size of 18 mm × 10 mm and a thickness of 0.7 mm is formed by press molding.

測定方法2:
装置:東洋精機社製、Melten Rheometer
測定温度:180℃
歪み速度:0.1/sec
試験片の作成:東洋精機社製キャピログラフを用い、180℃で内径3mmのオリフィスを用いて、速度10〜50mm/minで押し出しストランドを作成する。
Measurement method 2:
Apparatus: Toyo Seiki Co., Ltd., Melten Rheometer
Measurement temperature: 180 ° C
Strain rate: 0.1 / sec
Preparation of test piece: Extruded strands are prepared at a speed of 10 to 50 mm / min using an orifice with an inner diameter of 3 mm at 180 ° C. using a Capillograph manufactured by Toyo Seiki Co., Ltd.

算出方法:
歪み速度:0.1/secの場合の伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度η(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で歪み硬化を起こす直前の粘度を直線で近似し、歪量が4.0となるまでの伸長粘度ηの最大値(ηmax)を求め、また、その時間までの近似直線上の粘度をηlinとする。
図4は、伸長粘度のプロット図の一例である。ηmax/ηlinを、λmaxと定義し、歪硬化度の指標とする。
なお、歪速度は、0.001/secから10.0/secの範囲で測定可能であり、歪硬化度は歪速度の違いで変化する。この歪硬化度の歪速度依存性は、導入された分岐の形態や長さで変化すると考えられる。
Calculation method:
The elongational viscosity at a strain rate of 0.1 / sec is plotted as a log-log graph of time t (second) on the horizontal axis and elongation viscosity η E (Pa · second) on the vertical axis. On the logarithmic graph, the viscosity immediately before the strain hardening is approximated by a straight line, and the maximum value (ηmax) of the extensional viscosity η E until the amount of strain becomes 4.0 is obtained, and the approximate straight line up to that time Let the upper viscosity be ηlin.
FIG. 4 is an example of a plot of elongational viscosity. ηmax / ηlin is defined as λmax and is used as an index of strain hardening degree.
The strain rate can be measured in the range of 0.001 / sec to 10.0 / sec, and the strain hardening degree varies depending on the difference in strain rate. The strain rate dependence of the strain hardening degree is considered to change depending on the form and length of the introduced branch.

(2−8)メモリーエフェクト(ME):
本発明に係るプロピレン系重合体(X)は、メモリーエフェクト(ME)が下記式(I−1)を満たすことが望ましい。
(ME) ≧ −0.26×log(MFR)+1.9 (I−1)
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
(2-8) Memory effect (ME):
In the propylene polymer (X) according to the present invention, the memory effect (ME) preferably satisfies the following formula (I-1).
(ME) ≧ −0.26 × log (MFR) +1.9 (I-1)
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]

本発明に係るプロピレン系重合体(X)は、好ましくは、ポリマー中の高分子量成分の存在比率を表す指標となるメモリーエフェクト(ME)とポリマーの平均分子量を表す指標であるMFRとの相関が特定の関係(上記式(I−1))にあることを特徴とする。
MEは、ポリマーの非ニュートン性を表す指標であり、MEが大きいことはその重合体に緩和時間の長い成分が存在することを示している。すなわち同一のMFRでMEが大きい場合には、より長期緩和成分が重合体に分布していることを意味する。
また、MEは、Log(MFR)と、1次の相関を有することが経験的に知られており、一般には、分子量が大きくなるほど(すなわちMFRの値が小さくなるほど)、MEの値は大きくなる。
The propylene-based polymer (X) according to the present invention preferably has a correlation between a memory effect (ME) that is an index that represents an abundance ratio of a high molecular weight component in a polymer and an MFR that is an index that represents an average molecular weight of the polymer. It has a specific relationship (the above formula (I-1)).
ME is an index representing the non-Newtonian property of a polymer, and a large ME indicates that a component having a long relaxation time exists in the polymer. That is, when ME is large with the same MFR, it means that the long-term relaxation component is distributed in the polymer.
Further, it is empirically known that ME has a first-order correlation with Log (MFR), and generally, the larger the molecular weight (that is, the smaller the MFR value), the larger the ME value. .

本発明に係るプロピレン系重合体(X)は、ポリマー鎖に分岐成分が存在することにより、図5に示されるように、MFR見合いでのMEが従来公知のポリマーと比較して、大きいことが特徴である。長期緩和成分の量が多いと、発泡セルの成長を抑制し、均一微細化になり、本発明に係るプロピレン系重合体(X)は、発泡成形特性に優れる。より好ましくは下記式(I−2)を満足することである。
(ME) ≧ −0.26×log(MFR)+2.20 (I−2)
更に好ましくは下記式(I−3)を満足することである。
(ME) ≧ −0.26×log(MFR)+2.40 (I−3)
The propylene-based polymer (X) according to the present invention has a large ME in MFR match as compared with conventionally known polymers, as shown in FIG. 5, due to the presence of a branching component in the polymer chain. It is a feature. When the amount of the long-term relaxation component is large, the growth of the foamed cells is suppressed and uniform refinement is achieved, and the propylene polymer (X) according to the present invention is excellent in foam molding characteristics. More preferably, the following formula (I-2) is satisfied.
(ME) ≧ −0.26 × log (MFR) +2.20 (I-2)
More preferably, the following formula (I-3) is satisfied.
(ME) ≧ −0.26 × log (MFR) +2.40 (I-3)

プロピレン系重合体(X)のメモリーエフェクト(ME)は、プロピレン系重合体(X)の重合に使用される、後述のメタロセン錯体の選択やその組み合わせ、およびその量比、ならびに予備重合条件を制御することにより、調整を行なうことができる。   The memory effect (ME) of the propylene-based polymer (X) controls the selection and combination of the metallocene complexes (to be described later) used in the polymerization of the propylene-based polymer (X), the amount ratio, and the prepolymerization conditions. By doing so, adjustment can be performed.

メモリーエフェクト(ME)の測定方法としては、タカラ社製のメルトインデクサーを用い、190℃でオリフィス径1.0mm、長さ8.0mm中を、荷重をかけて押し出し、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーを、エタノール中で急冷し、その際のストランド径の値をオリフィス径で除した値とする。   The memory effect (ME) was measured using a melt indexer manufactured by Takara, and extruded at 190 ° C. with an orifice diameter of 1.0 mm and length of 8.0 mm under a load. The extrusion speed was 0.1 g. At the time of / min, the polymer extruded from the orifice is quenched in ethanol, and the value of the strand diameter at that time is divided by the orifice diameter.

(2−9)溶融張力と溶融延展性:
本発明に係るプロピレン系重合体(X)は、制御された分岐構造(分岐量、分岐長、分岐分布)を持つために、溶融物性が顕著に改良される。すなわち、高い溶融張力を持ちながら、優れた溶融流動性をもつ。溶融張力と溶融流動性の指標として、以下の測定方法で測定する溶融張力(MT)と最高巻取速度(MaxDraw)のバランスで表すことができる。
(2-9) Melt tension and melt spreadability:
Since the propylene polymer (X) according to the present invention has a controlled branch structure (branch amount, branch length, branch distribution), the melt properties are remarkably improved. That is, it has excellent melt fluidity while having high melt tension. As an index of melt tension and melt fluidity, it can be expressed by a balance between melt tension (MT) and maximum winding speed (MaxDraw) measured by the following measurement method.

溶融張力(MT)および最高巻取速度(MaxDraw)の測定方法について説明する。
東洋精機社製キャピログラフ1Bを用い、下記の条件で樹脂を紐状に押し出して、ローラーに巻き取っていった時にプーリーに検出される張力を溶融張力(MT)とする。
キャピラリー:直径2.1mm
シリンダー径:9.6mm
シリンダー押出速度:10mm/分
巻き取り速度:4.0m/分
温度:230℃
A method for measuring the melt tension (MT) and the maximum winding speed (MaxDraw) will be described.
Using a Capillograph 1B manufactured by Toyo Seiki Co., Ltd., the tension detected by the pulley when the resin is extruded in a string shape under the following conditions and wound on a roller is defined as a melt tension (MT).
Capillary: 2.1mm in diameter
Cylinder diameter: 9.6mm
Cylinder extrusion speed: 10 mm / min Winding speed: 4.0 m / min Temperature: 230 ° C.

また、巻き取り速度を4.0m/分から徐々に上げていったとき(加速度:5.4cm/s)、紐状物が切断する直前の巻き取り速度を、最高巻取速度(MaxDraw)とする。
ここで、MTの値が大きい方が、溶融張力が高いことを意味し、MaxDrawが大きい方が、流動性や延展性が良いことを意味する。
本発明に係るプロピレン系重合体(X)は、分子量分布を広げ分岐を導入することにより、溶融張力が改善されており、したがって、MTは5g以上であり、好ましくは10g以上、更に好ましくは15g以上である。
When the winding speed is gradually increased from 4.0 m / min (acceleration: 5.4 cm / s 2 ), the winding speed immediately before the string-like material is cut is the maximum winding speed (MaxDraw). To do.
Here, a larger MT value means higher melt tension, and a larger MaxDraw means better fluidity and spreadability.
The propylene-based polymer (X) according to the present invention has improved melt tension by broadening the molecular weight distribution and introducing branching. Therefore, MT is 5 g or more, preferably 10 g or more, more preferably 15 g. That's it.

また、上述したように、高分子量成分を増やしたり、分岐数が多くすると、MTの値を大きくすることができるが、逆に、重合体の高分子量成分が多すぎたり、分岐が偏在したりすると、巻き取り中に粘度が高くなりすぎて、紐状物の破断を引き起こし、MaxDrawは大きくならない。すなわち溶融延展性が悪化してしまう。
本発明に係るプロピレン系重合体(X)は、分岐成分を制御することにより、高いMTを保ったまま、大きなMaxDrawを持つことができ、溶融張力と溶融延展性のバランスが改善されている。
したがって、本発明に係るプロピレン系重合体(X)は、MaxDrawが10m/分以上であり、好ましくは20m/分以上であり、更に好ましくは30m/分以上である。
プロピレン系重合体(X)の最高巻取速度(MaxDraw)は、ゲル等の不均質な成分を低減させることが重要であり、均質なプロピレン系重合体(X)を得るためには、ジエン等を使用しないマクロマー重合法で、使用する触媒の予備重合条件および水素濃度、温度等の重合条件を制御することにより、調整を行なうことができる。
In addition, as described above, when the high molecular weight component is increased or the number of branches is increased, the MT value can be increased, but conversely, the polymer has too many high molecular weight components or the branches are unevenly distributed. Then, the viscosity becomes too high during winding, causing breakage of the string-like material, and MaxDraw does not increase. That is, the melt ductility is deteriorated.
The propylene polymer (X) according to the present invention can have a large MaxDraw while maintaining a high MT by controlling the branched component, and the balance between melt tension and melt spreadability is improved.
Accordingly, the propylene polymer (X) according to the present invention has a MaxDraw of 10 m / min or more, preferably 20 m / min or more, and more preferably 30 m / min or more.
It is important for the maximum winding speed (MaxDraw) of the propylene-based polymer (X) to reduce non-homogeneous components such as a gel. In order to obtain a homogeneous propylene-based polymer (X), diene or the like In the macromer polymerization method using no catalyst, adjustment can be performed by controlling the prepolymerization conditions of the catalyst used and the polymerization conditions such as the hydrogen concentration and temperature.

上記で説明したように、本発明に係るプロピレン系重合体(X)は、溶融延展性や溶融張力を制御した、物性と加工性のバランスに優れる長鎖分岐型である。従来のプロピレン系重合体と対比すると、例えば、特開2007−154121号公報には、分岐数0.1/1000骨格炭素以上のプロピレン単独重合体が開示されているものの、伸長粘度の測定における歪硬化度(λmax)は6.0未満であり、本発明に係るプロピレン系重合体(X)の伸長粘度の測定における歪硬化度(λmax)が6.0以上と比べても、溶融物性改良の効果が十分ではない。また、電子線照射により架橋し、長鎖分枝度が高いポリプロピレンの市販品(バゼル社製の高溶融張力ポリプロピレン、「PF814」)は、前述した構造式(2)の分岐炭素が検出されなくて、13C−NMRによるアイソタクチックトライアッド分率(mm)が低く(92.5%)、さらに、電子線の照射時に架橋と同時に分子切断や異性化もおこってしまうと考えられ、その結果、溶媒可溶出成分も起こってしまい、低分子量成分が増加している。また、成形加工特性を制御する他の一般的な方法として、分子量分布の拡大による制御が行われるが、分子量分布を拡大した場合には、結果的に低分子量成分が増大し、その結果、成形体の表面特性の悪化や、機械物性の低下、ヒートシール性の低下などといったデメリットが発生する。
しかし、本発明に係るプロピレン系重合体(X)は、分子量分布を広げ分岐を導入することにより、分子量分布の拡大による制御が行われているが、低分子量成分が増大せずに、高分子量成分が増大するために、上記のようなデメリットが発生しない。
このように、本発明に係るプロピレン系重合体(X)は、長鎖分岐型であるために、従来のプロピレン系重合体にみられない溶融延展性や溶融張力を制御した、物性と加工性のバランスに優れたものとなっている。
As described above, the propylene-based polymer (X) according to the present invention is a long-chain branched type in which melt spreadability and melt tension are controlled and excellent in balance between physical properties and workability. In contrast to conventional propylene-based polymers, for example, Japanese Patent Application Laid-Open No. 2007-154121 discloses propylene homopolymers having a branch number of 0.1 / 1000 skeleton carbon or more, but distortion in measurement of elongational viscosity. The degree of cure (λmax) is less than 6.0, and even when the degree of strain hardening (λmax) in the measurement of the extensional viscosity of the propylene polymer (X) according to the present invention is 6.0 or more, the improvement in melt properties The effect is not enough. In addition, in the commercial product of polypropylene that is crosslinked by electron beam irradiation and has a high degree of long-chain branching (base melt high melt tension polypropylene, “PF814”), the branched carbon of the structural formula (2) described above is not detected. The isotactic triad fraction (mm) by 13 C-NMR is low (92.5%), and it is considered that molecular cutting and isomerization occur simultaneously with crosslinking upon irradiation with an electron beam. Solvent-soluble components also occur and low molecular weight components are increasing. In addition, as another general method for controlling the molding processing characteristics, control is performed by expanding the molecular weight distribution. However, when the molecular weight distribution is expanded, the low molecular weight component is increased, resulting in molding. Demerits such as deterioration of the surface characteristics of the body, deterioration of mechanical properties and heat sealability occur.
However, the propylene-based polymer (X) according to the present invention is controlled by expanding the molecular weight distribution by broadening the molecular weight distribution and introducing a branch, but the low molecular weight component does not increase and the high molecular weight is increased. Since the components increase, the above disadvantages do not occur.
As described above, since the propylene polymer (X) according to the present invention is a long-chain branched type, the physical properties and processability are controlled by controlling the melt ductility and the melt tension not found in the conventional propylene polymer. It has become an excellent balance.

(3)プロピレン系重合体(X)の製造方法
本発明に係るプロピレン系重合体(X)を製造する方法については、上記の溶融流動性や溶融張力を制御した、物性と加工性のバランスに優れる長鎖分岐型のプロピレン系重合体が得られる方法であればよく、特に制限はないが、例えば、制御した分岐成分を導入する方法としては、下記のような複数の錯体を用いる方法を挙げることができる。
(3) Propylene Polymer (X) Production Method About the method of producing the propylene polymer (X) according to the present invention, the balance between physical properties and processability is controlled by controlling the melt fluidity and melt tension. There is no particular limitation as long as it is a method for obtaining an excellent long-chain branched propylene-based polymer. For example, examples of a method for introducing a controlled branched component include a method using a plurality of complexes as described below. be able to.

すなわち、上記の長鎖分岐型のプロピレン系重合体を製造する方法であって、プロピレン重合触媒として、下記の触媒成分(A)、(B)及び(C)を用いることを特徴とするプロピレン系重合体の製造方法が挙げられる。
(A):下記一般式(a1)で表される化合物である成分[A−1]から少なくとも1種類、および一般式(a2)で表される化合物である成分[A−2]から少なくとも1種類、選んだ2種以上の周期律表4族の遷移金属化合物
成分[A−1]:一般式(a1)で表される化合物
成分[A−2]:一般式(a2)で表される化合物
(B):イオン交換性層状珪酸塩
(C):有機アルミニウム化合物
That is, a method for producing the long-chain branched propylene-based polymer, wherein the following catalyst components (A), (B), and (C) are used as propylene polymerization catalysts: The manufacturing method of a polymer is mentioned.
(A): at least one from component [A-1] which is a compound represented by the following general formula (a1) and at least one from component [A-2] which is a compound represented by general formula (a2) Two or more types of transition metal compounds selected from Group 4 of the periodic table Component [A-1]: Compound represented by general formula (a1) Component [A-2]: Represented by general formula (a2) Compound (B): Ion exchange layered silicate (C): Organoaluminum compound

以下、触媒成分(A)、(B)及び(C)について、詳細に説明する。
(イ)触媒成分(A)
(i)成分[A−1]:一般式(a1)で表される化合物
Hereinafter, the catalyst components (A), (B), and (C) will be described in detail.
(A) Catalyst component (A)
(I) Component [A-1]: Compound represented by general formula (a1)

Figure 0005417023
Figure 0005417023

[一般式(a1)中、各々R11およびR12は、独立して、炭素数4〜16の窒素または酸素、硫黄を含有する複素環基を示す。また、各々R13およびR14は、独立して、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい炭素数6〜16のアリール基、炭素数6〜16の窒素または酸素、硫黄を含有する複素環基を表す。さらに、X11及びY11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q11は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。] [In General Formula (a1), each of R 11 and R 12 independently represents a heterocyclic group containing nitrogen, oxygen, or sulfur having 4 to 16 carbon atoms. In addition, each of R 13 and R 14 is independently halogen, silicon, oxygen, sulfur, nitrogen, boron, phosphorus, or a C 6-16 aryl that may contain a plurality of hetero elements selected from these Represents a heterocyclic group containing a group, nitrogen or oxygen having 6 to 16 carbon atoms, and sulfur. X 11 and Y 11 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, or a halogenated group having 1 to 20 carbon atoms. Represents a hydrocarbon group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, Q 11 is a divalent hydrocarbon group having 1 to 20 carbon atoms, It represents a silylene group or a germylene group which may have a hydrocarbon group having 1 to 20 carbon atoms. ]

上記R11およびR12の炭素数4〜16の窒素または酸素、硫黄を含有する複素環基は、好ましくは2−フリル基、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基であり、さらに好ましくは、置換された2−フリル基である。
また、置換された2−フリル基、置換された2−チエニル基、置換された2−フルフリル基の置換基としては、メチル基、エチル基、プロピル基等の炭素数1〜6のアルキル基、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基、トリアルキルシリル基、が挙げられる。これらのうち、メチル基、トリメチルシリル基が好ましく、メチル基が特に好ましい。
さらに、R11およびR12として、特に好ましくは、2−(5−メチル)−フリル基である。また、R11およびR12は、互いに同一である場合が好ましい。
The heterocyclic group containing nitrogen, oxygen or sulfur having 4 to 16 carbon atoms of R 11 and R 12 is preferably a 2-furyl group, a substituted 2-furyl group, a substituted 2-thienyl group, or a substituted group. 2-furfuryl group, more preferably a substituted 2-furyl group.
Moreover, as a substituted 2-furyl group, a substituted 2-thienyl group, and a substituted 2-furfuryl group, an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, and a propyl group, Examples thereof include halogen atoms such as fluorine atom and chlorine atom, alkoxy groups having 1 to 6 carbon atoms such as methoxy group and ethoxy group, and trialkylsilyl groups. Of these, a methyl group and a trimethylsilyl group are preferable, and a methyl group is particularly preferable.
Further, R 11 and R 12 are particularly preferably a 2- (5-methyl) -furyl group. R 11 and R 12 are preferably the same as each other.

上記R13およびR14の炭素数6〜16の、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン、あるいは、これらから選択される複数のヘテロ元素を含有してもよいアリール基としては、炭素数6〜16になる範囲で、アリール環状骨格上に、1つ以上の、炭素数1〜6の炭化水素基、炭素数1〜6の珪素含有炭化水素基、炭素数1〜6のハロゲン含有炭化水素基を置換基として有していてもよい。
13およびR14としては、好ましくは少なくとも1つが、フェニル基、4−tブチルフェニル基、2,3―ジメチルフェニル基、3,5―ジtブチルフェニル基、4−フェニル−フェニル基、クロロフェニル基、ナフチル基、又はフェナンスリル基であり、更に好ましくはフェニル基、4−tブチルフェニル基、4−クロロフェニル基である。また、R13およびR14が互いに同一である場合が好ましい。
Carbon atoms 6 to 16 of the R 13 and R 14, halogen, silicon, oxygen, sulfur, nitrogen, boron, phosphorus, or, as the aryl group which may contain a plurality of hetero elements selected from these, In the range of 6 to 16 carbon atoms, on the aryl cyclic skeleton, one or more hydrocarbon groups having 1 to 6 carbon atoms, silicon-containing hydrocarbon groups having 1 to 6 carbon atoms, halogens having 1 to 6 carbon atoms You may have a containing hydrocarbon group as a substituent.
At least one of R 13 and R 14 is preferably a phenyl group, a 4-tbutylphenyl group, a 2,3-dimethylphenyl group, a 3,5-ditbutylphenyl group, a 4-phenyl-phenyl group, or a chlorophenyl. Group, a naphthyl group, or a phenanthryl group, and more preferably a phenyl group, a 4-tbutylphenyl group, and a 4-chlorophenyl group. Further, it is preferable that R 13 and R 14 are the same.

一般式(a1)中、X11およびY11は、補助配位子であり、成分(B)の助触媒と反応して、オレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限り、XとYは、配位子の種類が制限されるものではなく、それぞれ独立して、水素、ハロゲン基、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルアミド基、トリフルオロメタンスルホン酸基、炭素数1〜20のリン含有炭化水素基または炭素数1〜20のケイ素含有炭化水素基を示す。 In the general formula (a1), X 11 and Y 11 are auxiliary ligands and react with the cocatalyst of the component (B) to generate an active metallocene having an olefin polymerization ability. Therefore, as long as this purpose is achieved, X 1 and Y 1 are not limited to the type of ligand, and each independently represents hydrogen, a halogen group, a hydrocarbon group having 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, an alkylamide group having 1 to 20 carbon atoms, a trifluoromethanesulfonic acid group, a phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms or a silicon-containing hydrocarbon group having 1 to 20 carbon atoms is shown. .

一般式(a1)中、Q11は、二つの五員環を結合する、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基の何れかを示す。上述のシリレン基またはゲルミレン基上に2個の炭化水素基が存在する場合は、それらが互いに結合して環構造を形成していてもよい。
上記のQ11の具体例としては、メチレン、メチルメチレン、ジメチルメチレン、1,2−エチレン、等のアルキレン基;ジフェニルメチレン等のアリールアルキレン基;シリレン基;メチルシリレン、ジメチルシリレン、ジエチルシリレン、ジ(n−プロピル)シリレン、ジ(i−プロピル)シリレン、ジ(シクロヘキシル)シリレン等のアルキルシリレン基、メチル(フェニル)シリレン等の(アルキル)(アリール)シリレン基;ジフェニルシリレン等のアリールシリレン基;テトラメチルジシリレン等のアルキルオリゴシリレン基;ゲルミレン基;上記の2価の炭素数1〜20の炭化水素基を有するシリレン基のケイ素をゲルマニウムに置換したアルキルゲルミレン基;(アルキル)(アリール)ゲルミレン基;アリールゲルミレン基などを挙げることが出来る。これらの中では、炭素数1〜20の炭化水素基を有するシリレン基、または、炭素数1〜20の炭化水素基を有するゲルミレン基が好ましく、アルキルシリレン基、アルキルゲルミレン基が特に好ましい。
In the general formula (a1), Q 11 is a silylene that may have a divalent hydrocarbon group having 1 to 20 carbon atoms and a hydrocarbon group having 1 to 20 carbon atoms that connects two five-membered rings. Represents either a group or a germylene group. When two hydrocarbon groups are present on the above-mentioned silylene group or germylene group, they may be bonded to each other to form a ring structure.
Specific examples of Q 11 include alkylene groups such as methylene, methylmethylene, dimethylmethylene and 1,2-ethylene; arylalkylene groups such as diphenylmethylene; silylene groups; methylsilylene, dimethylsilylene, diethylsilylene, di Alkylsilylene groups such as (n-propyl) silylene, di (i-propyl) silylene, di (cyclohexyl) silylene, (alkyl) (aryl) silylene groups such as methyl (phenyl) silylene; arylsilylene groups such as diphenylsilylene; Alkyl oligosilylene groups such as tetramethyldisilene; germylene groups; alkylgermylene groups in which silicon in the above-mentioned divalent hydrocarbon groups having 1 to 20 carbon atoms is replaced with germanium; (alkyl) (aryl) Germylene group; arylgermylene Examples include groups. In these, the silylene group which has a C1-C20 hydrocarbon group, or the germylene group which has a C1-C20 hydrocarbon group is preferable, and an alkylsilylene group and an alkylgermylene group are especially preferable.

上記一般式(a1)で表される化合物のうち、好ましい化合物として、以下に具体的に例示する。
ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−トリメチルシリル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−フェニル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(4,5−ジメチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−ベンゾフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジフェニルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フルフリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−フルオロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−トリフルオロメチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(1−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル2−フリル)−4−(2−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−t−ブチル−2−フリル)−4−(9−フェナンスリル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレン(2−メチル−4−フェニル−インデニル){2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレン(2−メチル−4−フェニル−インデニル){2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、などを挙げることができる。
Of the compounds represented by the general formula (a1), preferred compounds are specifically exemplified below.
Dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-thienyl) -4-phenyl -Indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-diphenylsilylenebis {2 -(5-Methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl} ] Hafnium, dichloro [1,1'-dimethylgermylenebis {2- (5-methyl-2-thienyl) -4-phenyl-indenyl}] hafnium, dic B [1,1′-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5- Trimethylsilyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-phenyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [ 1,1′-dimethylsilylenebis {2- (4,5-dimethyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-benzofuryl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-diphenylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-i [Denyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furfuryl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl) -2-furyl) -4- (4-chlorophenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-fluorophenyl) -Indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-trifluoromethylphenyl) -indenyl}] hafnium, dichloro [1,1 '-Dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium, dichloro [1, '-Dimethylsilylenebis {2- (2-furyl) -4- (1-naphthyl) -indenyl}] hafnium, dichloro [1,1'-dimethylsilylenebis {2- (2-furyl) -4- (2 -Naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylene Bis {2- (2-furyl) -4- (9-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (1 -Naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (2-naphthyl) -indenyl}] haf , Dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2 -(5-Methyl-2-furyl) -4- (9-phenanthryl) -indenyl}] hafnium, dichloro [1,1'-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4 -(1-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-t-butyl-2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, Dichloro [1,1′-dimethylsilylenebis {2- (5-tert-butyl-2-furyl) -4- (2-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilane Rylenebis {2- (5-t-butyl-2-furyl) -4- (9-phenanthryl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylene (2-methyl-4-phenyl-indenyl) { 2- (5-Methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylene (2-methyl-4-phenyl-indenyl) {2- (5-methyl-2 -Thienyl) -4-phenyl-indenyl}] hafnium, and the like.

これらのうち、更に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−(5−メチル−2−チエニル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−クロロフェニル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−ナフチル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、である。   Of these, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethyl gel are more preferable. Mylenebis {2- (5-methyl-2-thienyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- ( 4-chlorophenyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-naphthyl-indenyl}] hafnium, dichloro [1,1′-dimethyl Silylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium.

また、特に好ましいのは、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−フェニル−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(2−ナフチル)−インデニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム、である。   Particularly preferred is dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4-phenyl-indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2- (5-Methyl-2-furyl) -4- (2-naphthyl) -indenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium.

(ii)成分[A−2]:一般式(a2)で表される化合物 (Ii) Component [A-2]: Compound represented by general formula (a2)

Figure 0005417023
Figure 0005417023

[一般式(a2)中、各々R21およびR22は、独立して、炭素数1〜6の炭化水素基であり、R23およびR24は、それぞれ独立して、ハロゲン、ケイ素、酸素、硫黄、窒素、ホウ素、リン又はこれらから選択される複数のヘテロ元素を含有してもよい炭素数6〜16のアリール基である。X21及びY21は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のケイ素含有炭化水素基、炭素数1〜20のハロゲン化炭化水素基、炭素数1〜20の酸素含有炭化水素基、アミノ基または炭素数1〜20の窒素含有炭化水素基を表し、Q21は、炭素数1〜20の二価の炭化水素基、炭素数1〜20の炭化水素基を有していてもよいシリレン基またはゲルミレン基を表す。M21は、ジルコニウムまたはハフニウムである。] [In General Formula (a2), R 21 and R 22 are each independently a hydrocarbon group having 1 to 6 carbon atoms, and R 23 and R 24 are each independently halogen, silicon, oxygen, It is a C6-C16 aryl group which may contain sulfur, nitrogen, boron, phosphorus, or a plurality of heteroelements selected from these. X 21 and Y 21 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon having 1 to 20 carbon atoms. Group, an oxygen-containing hydrocarbon group having 1 to 20 carbon atoms, an amino group, or a nitrogen-containing hydrocarbon group having 1 to 20 carbon atoms, Q 21 is a divalent hydrocarbon group having 1 to 20 carbon atoms, carbon number It represents a silylene group or a germylene group which may have 1 to 20 hydrocarbon groups. M 21 is zirconium or hafnium. ]

上記R21およびR22は、それぞれ独立して、炭素数1〜6の炭化水素基であり、好ましくはアルキル基であり、さらに好ましくは炭素数1〜4のアルキル基である。具体的な例としては、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、n−ペンチル、i−ペンチル、n−ヘキシル等が挙げられ、好ましくはメチル、エチル、n−プロピルである。 R 21 and R 22 are each independently a hydrocarbon group having 1 to 6 carbon atoms, preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms. Specific examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, n-pentyl, i-pentyl, n-hexyl, and preferably methyl. , Ethyl, n-propyl.

また、上記R23およびR24は、それぞれ独立して、炭素数6〜30の、好ましくは炭素数6〜24の、ハロゲン、ケイ素、あるいは、これらから選択される複数のヘテロ元素を含有してもよいアリール基である。好ましい例としてはフェニル、3−クロロフェニル、4−クロロフェニル、3−フルオロフェニル、4−フルオロフェニル、4−メチルフェニル、4−i−プロピルフェニル、4−t−ブチルフェニル、4−トリメチルシリルフェニル、4−(2−フルオロ−4−ビフェニリル)、4−(2−クロロ−4−ビフェニリル)、1−ナフチル、2−ナフチル、4−クロロ−2−ナフチル、3−メチル−4−トリメチルシリルフェニル、3,5−ジメチル−4−t−ブチルフェニル、3,5−ジメチル−4−トリメチルシリルフェニル、3,5−ジクロロ−4−トリメチルシリルフェニル等が挙げられる。 R 23 and R 24 each independently contain a halogen having 6 to 30 carbon atoms, preferably 6 to 24 carbon atoms, silicon, or a plurality of hetero elements selected from these. It is a good aryl group. Preferred examples include phenyl, 3-chlorophenyl, 4-chlorophenyl, 3-fluorophenyl, 4-fluorophenyl, 4-methylphenyl, 4-i-propylphenyl, 4-t-butylphenyl, 4-trimethylsilylphenyl, 4- (2-fluoro-4-biphenylyl), 4- (2-chloro-4-biphenylyl), 1-naphthyl, 2-naphthyl, 4-chloro-2-naphthyl, 3-methyl-4-trimethylsilylphenyl, 3,5 -Dimethyl-4-t-butylphenyl, 3,5-dimethyl-4-trimethylsilylphenyl, 3,5-dichloro-4-trimethylsilylphenyl and the like.

また、上記X21及びY21は、補助配位子であり、成分(B)の助触媒と反応してオレフィン重合能を有する活性なメタロセンを生成させる。したがって、この目的が達成される限りX21及びY21は、配位子の種類が制限されるものではなく、それぞれ独立して、水素、ハロゲン基、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数1〜20のアルキルアミド基、トリフルオロメタンスルホン酸基、炭素数1〜20のリン含有炭化水素基または炭素数1〜20のケイ素含有炭化水素基を示す。 Further, the X 21 and Y 21 are auxiliary ligands to generate an active metallocene having olefin polymerizability reacts with the cocatalyst component (B). Therefore, as long as this object is achieved, X 21 and Y 21 are not limited in the type of ligand, and are independently hydrogen, halogen group, hydrocarbon group having 1 to 20 carbon atoms, carbon An alkoxy group having 1 to 20 carbon atoms, an alkylamide group having 1 to 20 carbon atoms, a trifluoromethanesulfonic acid group, a phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms, or a silicon-containing hydrocarbon group having 1 to 20 carbon atoms is shown.

また、上記Q21は、二つの共役五員環配位子を架橋する結合性基であり、炭素数1〜20の2価の炭化水素基、炭素数1〜20の炭化水素基を有するシリレン基または炭素数1〜20の炭化水素基を有するゲルミレン基であり、好ましくは置換シリレン基あるいは置換ゲルミレン基である。ケイ素、ゲルマニウムに結合する置換基は、炭素数1〜12の炭化水素基が好ましく、二つの置換基が連結していてもよい。具体的な例としては、メチレン、ジメチルメチレン、エチレン−1,2−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルシリレン、ジエチルシリレン、ジフェニルシリレン、メチルフェニルシリレン、9−シラフルオレン−9,9−ジイル、ジメチルゲルミレン、ジエチルゲルミレン、ジフェニルゲルミレン、メチルフェニルゲルミレン等が挙げられる。 Q 21 is a binding group that crosslinks two conjugated five-membered ring ligands, and a silylene having a divalent hydrocarbon group having 1 to 20 carbon atoms and a hydrocarbon group having 1 to 20 carbon atoms. Or a germylene group having a hydrocarbon group having 1 to 20 carbon atoms, preferably a substituted silylene group or a substituted germylene group. The substituent bonded to silicon and germanium is preferably a hydrocarbon group having 1 to 12 carbon atoms, and two substituents may be linked. Specific examples include methylene, dimethylmethylene, ethylene-1,2-diyl, dimethylsilylene, diethylsilylene, diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylsilylene, diethylsilylene, Examples thereof include diphenylsilylene, methylphenylsilylene, 9-silafluorene-9,9-diyl, dimethylgermylene, diethylgermylene, diphenylgermylene, methylphenylgermylene and the like.

さらに、上記M21は、ジルコニウムまたはハフニウムであり、好ましくはハフニウムである。 Further, M 21 is zirconium or hafnium, preferably hafnium.

上記一般式(a2)で表されるメタロセン化合物の非限定的な例として、下記のものを挙げることができる。
ただし、煩雑な多数の例示を避けて代表的例示化合物のみ記載した。また中心金属がハフニウムの化合物を記載したが、同様のジルコニウム化合物も使用可能であり、種々の配位子や架橋結合基あるいは補助配位子を任意に使用しうることは自明である。
Non-limiting examples of the metallocene compound represented by the general formula (a2) include the following.
However, only representative exemplary compounds are described avoiding many complicated examples. Moreover, although the compound whose center metal is hafnium was described, it is obvious that the same zirconium compound can be used, and various ligands, crosslinking groups, or auxiliary ligands can be arbitrarily used.

ジクロロ{1,1’−ジメチルシリレンビス(2−メチル−4−フェニル−4−ヒドロアズレニル)}ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(1−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(2−クロロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(9−フェナントリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−n−プロピル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−クロロ−4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルゲルミレンビス{2−メチル−4−(4−t−ブチルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、などが挙げられる。   Dichloro {1,1′-dimethylsilylenebis (2-methyl-4-phenyl-4-hydroazurenyl)} hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4 -Hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2-methyl-4- (4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-t-butylphenyl)- 4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- ( -Methyl-4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-chloro-4-trimethylsilylphenyl) -4-hydroazurenyl} ] Hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2 -Methyl-4- (1-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [ 1,1′-dimethylsilylenebis {2-methyl-4- (4-chloro-2-naphthyl)- -Hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (2-fluoro-4-biphenylyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-Methyl-4- (2-chloro-4-biphenylyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (9-phenanthryl) -4-hydroazurenyl] }] Hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chlorophenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-n-propyl -4- (3-Chloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] huff Nitrogen, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (3-chloro-4-tert-butylphenyl) -4-hydroazulenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis { 2-ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2-methyl-4- (2-fluoro-4-biphenylyl) ) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylgermylenebis {2-methyl-4- (4-t-butylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′- (9-silafluorene-9,9-diyl) bis {2-ethyl-4- (4-chlorophenyl) -4-hydroazurenyl}] Funium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chloro-2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl -4- (2-fluoro-4-biphenylyl) -4-hydroazulenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3 5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, and the like.

これらの中で好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(3−クロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(4−クロロ−2−ナフチル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。   Of these, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2- Methyl-4- (3-chloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (2-fluoro-4-biphenylyl) -4 -Hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (4-chloro-2-naphthyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-Ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4-hydroazurenyl}] ha Dichloro, [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3,5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] hafnium, is there.

また、特に好ましくは、ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(2−フルオロ−4−ビフェニリル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−ジメチルシリレンビス{2−エチル−4−(3−メチル−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、ジクロロ[1,1’−(9−シラフルオレン−9,9−ジイル)ビス{2−エチル−4−(3,5−ジクロロ−4−トリメチルシリルフェニル)−4−ヒドロアズレニル}]ハフニウム、である。   Particularly preferably, dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl -4- (2-Fluoro-4-biphenylyl) -4-hydroazurenyl}] hafnium, dichloro [1,1′-dimethylsilylenebis {2-ethyl-4- (3-methyl-4-trimethylsilylphenyl) -4- Hydroazurenyl}] hafnium, dichloro [1,1 ′-(9-silafluorene-9,9-diyl) bis {2-ethyl-4- (3,5-dichloro-4-trimethylsilylphenyl) -4-hydroazurenyl}] Hafnium.

(ロ)触媒成分(B)
次に、本発明に係るプロピレン系重合体(X)の重合に用いられる触媒成分(B)は、イオン交換性層状珪酸塩である。
(i)イオン交換性層状珪酸塩の種類
本発明において、原料として使用するイオン交換性層状珪酸塩(以下、単に珪酸塩と略記する)とは、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、かつ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、成分(B)に含まれる。
尚、本発明の原料とは、後述する本発明の化学処理を行う前段階の珪酸塩をさす。また、本発明で使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよい。それらを含んでもよい。
(B) Catalyst component (B)
Next, the catalyst component (B) used for the polymerization of the propylene-based polymer (X) according to the present invention is an ion-exchange layered silicate.
(I) Types of ion-exchangeable layered silicate In the present invention, the ion-exchangeable layered silicate used as a raw material (hereinafter simply abbreviated as “silicate”) means that the surfaces formed by ionic bonds or the like have a binding force to each other. The silicate compound has a crystal structure stacked in parallel with each other, and the contained ions are exchangeable. Most silicates are naturally produced mainly as a main component of clay minerals, and therefore often contain impurities (quartz, cristobalite, etc.) other than ion-exchangeable layered silicates. But you can. Depending on the type, amount, particle diameter, crystallinity, and dispersion state of these impurities, it may be preferable to pure silicate, and such a complex is also included in component (B).
In addition, the raw material of this invention refers to the silicate of the previous stage which performs the chemical treatment of this invention mentioned later. Further, the silicate used in the present invention is not limited to a natural product, and may be an artificial synthetic product. You may include them.

珪酸塩の具体例としては、例えば、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
すなわち、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群等である。
Specific examples of the silicate include the following layered silicates described in Haruo Shiramizu “Clay Mineralogy” Asakura Shoten (1995).
That is, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, stemite and other smectites, vermiculite and other vermiculites, mica, illite, sericite and sea chlorite and other mica, attapulgite, sepiolite and palygorskite , Bentonite, pyrophyllite, talc, chlorite group, etc.

本発明で原料として使用する珪酸塩は、主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。層間カチオンの種類は、特に限定されないが、工業原料として比較的容易に且つ安価に入手し得る観点から、アルカリ金属あるいはアルカリ土類金属を層間カチオンの主成分とする珪酸塩が好ましい。   The silicate used as a raw material in the present invention is preferably a silicate in which the main component silicate has a 2: 1 type structure, more preferably a smectite group, and particularly preferably montmorillonite. The type of interlayer cation is not particularly limited, but a silicate containing an alkali metal or an alkaline earth metal as a main component of the interlayer cation is preferable from the viewpoint of being relatively easy and inexpensive to obtain as an industrial raw material.

(ii)イオン交換性層状珪酸塩の化学処理
本発明に係る触媒成分(B)のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。ここでイオン交換性層状珪酸塩の化学処理とは、表面に付着している不純物を除去する表面処理と粘土の構造に影響を与える処理のいずれをも用いることができ、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。
(Ii) Chemical treatment of ion-exchange layered silicate The ion-exchange layered silicate of the catalyst component (B) according to the present invention can be used as it is without any particular treatment, but it is preferable to perform a chemical treatment. . Here, the chemical treatment of the ion-exchange layered silicate may be any of a surface treatment for removing impurities adhering to the surface and a treatment that affects the structure of the clay. Treatment, alkali treatment, salt treatment, organic matter treatment and the like.

<酸処理>:
酸処理は、表面の不純物を取り除くほか、結晶構造のAl、Fe、Mg、等の陽イオンの一部または全部を溶出させることができる。
酸処理で用いられる酸は、好ましくは塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸から選択される。
処理に用いる塩類(次項で説明する)および酸は、2種以上であってもよい。塩類および酸による処理条件は、特には制限されないが、通常、塩類および酸濃度は、0.1〜50重量%、処理温度は、室温〜沸点、処理時間は、5分〜24時間の条件を選択して、イオン交換性層状珪酸塩から成る群より選ばれた少なくとも一種の化合物を構成している物質の少なくとも一部を溶出する条件で行うことが好ましい。また、塩類および酸は、一般的には水溶液で用いられる。
なお、本発明では、以下の酸類、塩類を組み合わせたものを処理剤として用いてもよい。また、これら酸類、塩類の組み合わせであってもよい。
<Acid treatment>:
In addition to removing impurities on the surface, the acid treatment can elute part or all of cations such as Al, Fe, Mg, etc. having a crystal structure.
The acid used in the acid treatment is preferably selected from hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and oxalic acid.
Two or more salts (described in the next section) and acid may be used for the treatment. The treatment conditions with salts and acids are not particularly limited. Usually, the salt and acid concentrations are 0.1 to 50% by weight, the treatment temperature is room temperature to boiling point, and the treatment time is 5 minutes to 24 hours. It is preferable to carry out the process under the condition of selecting and eluting at least a part of the substance constituting at least one compound selected from the group consisting of ion-exchangeable layered silicates. In addition, salts and acids are generally used in an aqueous solution.
In the present invention, a combination of the following acids and salts may be used as the treating agent. Moreover, the combination of these acids and salts may be sufficient.

<塩類処理>:
本発明においては、塩類で処理される前の、イオン交換性層状珪酸塩の含有する交換可能な1族金属の陽イオンの40%以上、好ましくは60%以上を、下記に示す塩類より解離した陽イオンと、イオン交換することが好ましい。
このようなイオン交換を目的とした塩類処理で用いられる塩類は、1〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンと、ハロゲン原子、無機酸および有機酸から成る群より選ばれた少なくとも一種の陰イオンとから成る化合物であり、更に好ましくは、2〜14族原子から成る群より選ばれた少なくとも一種の原子を含む陽イオンとCl、Br、I、F、PO、SO、NO、CO、C、ClO、OOCCH、CHCOCHCOCH、OCl、O(NO、O(ClO、O(SO)、OH、OCl、OCl、OOCH、OOCCHCH、CおよびCから成る群から選ばれる少なくとも一種の陰イオンとから成る化合物である。
<Salt treatment>:
In the present invention, 40% or more, preferably 60% or more of the exchangeable Group 1 metal cation contained in the ion-exchangeable layered silicate before being treated with salts is dissociated from the salts shown below. It is preferable to ion exchange with cations.
The salt used in the salt treatment for the purpose of ion exchange is a group consisting of a cation containing at least one atom selected from the group consisting of group 1 to 14 atoms, a halogen atom, an inorganic acid, and an organic acid. A compound comprising at least one anion selected from the group consisting of at least one anion selected from the group consisting of 2 to 14 atoms, and Cl, Br, I, F, PO. 4 , SO 4 , NO 3 , CO 3 , C 2 O 4 , ClO 4 , OOCCH 3 , CH 3 COCHCOCH 3 , OCl 2 , O (NO 3 ) 2 , O (ClO 4 ) 2 , O (SO 4 ), At least one anion selected from the group consisting of OH, O 2 Cl 2 , OCl 3 , OOCH, OOCCH 2 CH 3 , C 2 H 4 O 4 and C 5 H 5 O 7 Is a compound consisting of

このような塩類の具体例としては、LiF、LiCl、LiBr、LiI、LiSO、Li(CHCOO)、LiCO、Li(C)、LiCHO、LiC、LiClO、LiPO、CaCl、CaSO、CaC、Ca(NO、Ca(C、MgCl、MgBr、MgSO、Mg(PO、Mg(ClO、MgC、Mg(NO、Mg(OOCCH、MgC等が挙げられる。
また、Ti(OOCCH、Ti(CO、Ti(NO、Ti(SO、TiF、TiCl、Zr(OOCCH、Zr(CO、Zr(NO、Zr(SO、ZrF、ZrCl、ZrOCl、ZrO(NO、ZrO(ClO、ZrO(SO)、HF(OOCCH、HF(CO、HF(NO、HF(SO、HFOCl、HFF、HFCl、V(CHCOCHCOCH、VOSO、VOCl、VCl、VCl、VBr等が挙げられる。
Specific examples of such salts, LiF, LiCl, LiBr, LiI , Li 2 SO 4, Li (CH 3 COO), LiCO 3, Li (C 6 H 5 O 7), LiCHO 2, LiC 2 O 4 , LiClO 4 , Li 3 PO 4 , CaCl 2 , CaSO 4 , CaC 2 O 4 , Ca (NO 3 ) 2 , Ca 3 (C 6 H 5 O 7 ) 2 , MgCl 2 , MgBr 2 , MgSO 4 , Mg ( PO 4 ) 2 , Mg (ClO 4 ) 2 , MgC 2 O 4 , Mg (NO 3 ) 2 , Mg (OOCCH 3 ) 2 , MgC 4 H 4 O 4 and the like.
Further, Ti (OOCCH 3 ) 4 , Ti (CO 3 ) 2 , Ti (NO 3 ) 4 , Ti (SO 4 ) 2 , TiF 4 , TiCl 4 , Zr (OOCCH 3 ) 4 , Zr (CO 3 ) 2 , Zr (NO 3 ) 4 , Zr (SO 4 ) 2 , ZrF 4 , ZrCl 4 , ZrOCl 2 , ZrO (NO 3 ) 2 , ZrO (ClO 4 ) 2 , ZrO (SO 4 ), HF (OOCCH 3 ) 4 , HF (CO 3 ) 2 , HF (NO 3 ) 4 , HF (SO 4 ) 2 , HFOCl 2 , HFF 4 , HFCl 4 , V (CH 3 COCHCOCH 3 ) 3 , VOSO 4 , VOCl 3 , VCl 3 , VCl 4 , VBr 3 and the like.

また、Cr(CHCOCHCOCH、Cr(OOCCHOH、Cr(NO、Cr(ClO、CrPO、Cr(SO、CrOCl、CrF、CrCl、CrBr、CrI、Mn(OOCCH、Mn(CHCOCHCOCH、MnCO、Mn(NO、MnO、Mn(ClO、MnF、MnCl、Fe(OOCCH、Fe(CHCOCHCOCH、FeCO、Fe(NO、Fe(ClO、FePO、FeSO、Fe(SO、FeF3、FeCl、FeC等が挙げられる。 Also, Cr (CH 3 COCHCOCH 3 ) 3 , Cr (OOCCH 3 ) 2 OH, Cr (NO 3 ) 3 , Cr (ClO 4 ) 3 , CrPO 4 , Cr 2 (SO 4 ) 3 , CrO 2 Cl 2 , CrF 3 , CrCl 3 , CrBr 3 , CrI 3 , Mn (OOCCH 3 ) 2 , Mn (CH 3 COCHCOCH 3 ) 2 , MnCO 3 , Mn (NO 3 ) 2 , MnO, Mn (ClO 4 ) 2 , MnF 2 , MnCl 2 , Fe (OOCCH 3 ) 2 , Fe (CH 3 COCHCOCH 3 ) 3 , FeCO 3 , Fe (NO 3 ) 3 , Fe (ClO 4 ) 3 , FePO 4 , FeSO 4 , Fe 2 (SO 4 ) 3 , FeF 3 FeCl 3 , FeC 6 H 5 O 7 and the like.

また、Co(OOCCH、Co(CHCOCHCOCH、CoCO、Co(NO、CoC、Co(ClO、Co(PO、CoSO、CoF、CoCl、NiCO、Ni(NO、NiC、Ni(ClO、NiSO、NiCl、NiBr等が挙げられる。 In addition, Co (OOCCH 3 ) 2 , Co (CH 3 COCHCOCH 3 ) 3 , CoCO 3 , Co (NO 3 ) 2 , CoC 2 O 4 , Co (ClO 4 ) 2 , Co 3 (PO 4 ) 2 , CoSO 4 , CoF 2 , CoCl 2 , NiCO 3 , Ni (NO 3 ) 2 , NiC 2 O 4 , Ni (ClO 4 ) 2 , NiSO 4 , NiCl 2 , NiBr 2 and the like.

さらに、Zn(OOCCH、Zn(CHCOCHCOCH、ZnCO、Zn(NO、Zn(ClO、Zn(PO、ZnSO、ZnF、ZnCl、AlF、AlCl、AlBr、AlI、Al(SO、Al(C、Al(CHCOCHCOCH、Al(NO、AlPO、GeCl、GeBr、GeI等が挙げられる。 Furthermore, Zn (OOCCH 3 ) 2 , Zn (CH 3 COCHCOCH 3 ) 2 , ZnCO 3 , Zn (NO 3 ) 2 , Zn (ClO 4 ) 2 , Zn 3 (PO 4 ) 2 , ZnSO 4 , ZnF 2 , ZnCl 2 , AlF 3 , AlCl 3 , AlBr 3 , AlI 3 , Al 2 (SO 4 ) 3 , Al 2 (C 2 O 4 ) 3 , Al (CH 3 COCHCOCH 3 ) 3 , Al (NO 3 ) 3 , AlPO 4 , GeCl 4 , GeBr 4 , GeI 4 and the like.

<アルカリ処理>:
酸、塩処理の他に、必要に応じて下記のアルカリ処理や有機物処理を行ってもよい。アルカリ処理で用いられる処理剤としては、LiOH、NaOH、KOH、Mg(OH)、Ca(OH)、Sr(OH)、Ba(OH)などが例示される。
<Alkali treatment>:
In addition to acid and salt treatment, the following alkali treatment or organic matter treatment may be performed as necessary. Examples of the treating agent used in the alkali treatment include LiOH, NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 , Ba (OH) 2 and the like.

<有機物処理>:
また、有機物処理に用いられる有機処理剤の例としては、トリメチルアンモニウム、トリエチルアンモニウム、N,N−ジメチルアニリニウム、トリフェニルホスホニウム、等が挙げられる。
また、有機物処理剤を構成する陰イオンとしては、塩類処理剤を構成する陰イオンとして例示した陰イオン以外にも、例えばヘキサフルオロフォスフェート、テトラフルオロボレート、テトラフェニルボレートなどが例示されるが、これらに限定されるものではない。
<Organic treatment>:
Examples of the organic treatment agent used for organic treatment include trimethylammonium, triethylammonium, N, N-dimethylanilinium, triphenylphosphonium, and the like.
Examples of the anion constituting the organic treatment agent include hexafluorophosphate, tetrafluoroborate, and tetraphenylborate other than the anion exemplified as the anion constituting the salt treatment agent. It is not limited to these.

また、これらの処理剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。これらの組み合わせは、処理開始時に添加する処理剤について組み合わせて用いてもよいし、処理の途中で添加する処理剤について、組み合わせて用いてもよい。また化学処理は、同一または異なる処理剤を用いて複数回行うことも可能である。   Moreover, these processing agents may be used independently and may be used in combination of 2 or more types. These combinations may be used in combination for the treatment agent added at the start of the treatment, or may be used in combination for the treatment agent added during the treatment. The chemical treatment can be performed a plurality of times using the same or different treatment agents.

これらイオン交換性層状珪酸塩には、通常、吸着水および層間水が含まれる。本発明においては、これらの吸着水および層間水を除去して成分(B)として使用するのが好ましい。
イオン交換性層状珪酸塩の吸着水および層間水の加熱処理方法は、特に制限されないが、層間水が残存しないように、また、構造破壊を生じないよう条件を選ぶことが必要である。加熱時間は0.5時間以上、好ましくは1時間以上である。その際、除去した後の成分(B)の水分含有率が、温度200℃、圧力1mmHgの条件下で2時間脱水した場合の水分含有率を0重量%とした時、3重量%以下、好ましくは1重量%以下、であることが好ましい。
These ion-exchange layered silicates usually contain adsorbed water and interlayer water. In the present invention, it is preferable to remove these adsorbed water and interlayer water and use them as the component (B).
The heat treatment method of the ion-exchange layered silicate adsorbed water and interlayer water is not particularly limited, but it is necessary to select conditions so that interlayer water does not remain and structural destruction does not occur. The heating time is 0.5 hour or longer, preferably 1 hour or longer. At that time, the water content of the component (B) after removal is 3% by weight or less, preferably 0% by weight when the water content is 0% by weight when dehydrated for 2 hours under the conditions of a temperature of 200 ° C. and a pressure of 1 mmHg. Is preferably 1% by weight or less.

以上のように、本発明において、触媒成分(B)として、特に好ましいものは、塩類処理および/または酸処理を行って得られた、水分含有率が3重量%以下の、イオン交換性層状珪酸塩である。   As described above, in the present invention, the catalyst component (B) is particularly preferably an ion-exchange layered silicic acid having a water content of 3% by weight or less obtained by performing a salt treatment and / or an acid treatment. Salt.

イオン交換性層状珪酸塩は、触媒形成または触媒として使用する前に、後述する成分(C)で処理を行うことが可能で、好ましい。イオン交換性層状珪酸塩1gに対する成分(C)の使用量に制限は無いが、通常20mmol以下、好ましくは0.5mmol以上、10mmol以下で行う。処理温度や時間の制限は無く、処理温度は、通常0℃以上、70℃以下、処理時間は10分以上、3時間以下で行う。処理後に洗浄することも可能で、好ましい。溶媒は後述する予備重合やスラリー重合で使用する溶媒と同様の炭化水素溶媒を使用する。   The ion-exchange layered silicate can be treated with the component (C) described later before formation of the catalyst or use as a catalyst, which is preferable. Although there is no restriction | limiting in the usage-amount of the component (C) with respect to 1g of ion-exchange layered silicate, Usually, 20 mmol or less, Preferably it is 0.5 mmol or more and 10 mmol or less. There is no limitation on the treatment temperature and time, the treatment temperature is usually 0 ° C. or more and 70 ° C. or less, and the treatment time is 10 minutes or more and 3 hours or less. It is also possible and preferable to wash after the treatment. As the solvent, the same hydrocarbon solvent as that used in the preliminary polymerization and slurry polymerization described later is used.

また、成分(B)は、平均粒径が5μm以上の球状粒子を用いるのが好ましい。粒子の形状が球状であれば、天然物あるいは市販品をそのまま使用してもよいし、造粒、分粒、分別等により粒子の形状および粒径を制御したものを用いてもよい。   The component (B) is preferably a spherical particle having an average particle size of 5 μm or more. If the particle shape is spherical, a natural product or a commercially available product may be used as it is, or a particle whose particle shape and particle size are controlled by granulation, sizing, fractionation, or the like may be used.

ここで用いられる造粒法は、例えば攪拌造粒法、噴霧造粒法が挙げられるが、市販品を利用することもできる。
また、造粒の際に、有機物、無機溶媒、無機塩、各種バインダ−を用いてもよい。
上記のようにして得られた球状粒子は、重合工程での破砕や微粉の生成を抑制するためには0.2MPa以上、特に好ましくは0.5MPa以上の圧縮破壊強度を有することが望ましい。このような粒子強度の場合には、特に予備重合を行う場合に、粒子性状改良効果が有効に発揮される。
Examples of the granulation method used here include agitation granulation method and spray granulation method, but commercially available products can also be used.
Moreover, you may use organic substance, an inorganic solvent, inorganic salt, and various binders in the case of granulation.
The spherical particles obtained as described above desirably have a compressive fracture strength of 0.2 MPa or more, particularly preferably 0.5 MPa or more, in order to suppress crushing and generation of fine powder in the polymerization process. In the case of such particle strength, the effect of improving the particle properties is effectively exhibited especially when prepolymerization is performed.

(ハ)触媒成分(C)
本発明に係るプロピレン系重合体(X)の重合に用いられる触媒成分(C)は、有機アルミニウム化合物である。成分(C)として用いられる有機アルミニウム化合物は、一般式:(AlR11 3−qで示される化合物が適当である。
本発明では、この式で表される化合物を単独で、複数種混合してあるいは併用して使用することができることは言うまでもない。この式中、R11は、炭素数1〜20の炭化水素基を示し、Zは、ハロゲン、水素、アルコキシ基、アミノ基を示す。qは1〜3の、pは1〜2の整数を各々表す。R11としては、アルキル基が好ましく、またZは、それがハロゲンの場合には塩素が、アルコキシ基の場合には炭素数1〜8のアルコキシ基が、アミノ基の場合には炭素数1〜8のアミノ基が、好ましい。
(C) Catalyst component (C)
The catalyst component (C) used for the polymerization of the propylene polymer (X) according to the present invention is an organoaluminum compound. As the organoaluminum compound used as the component (C), a compound represented by the general formula: (AlR 11 q Z 3-q ) p is appropriate.
In the present invention, it goes without saying that the compounds represented by this formula can be used alone, in combination of two or more, or in combination. In this formula, R 11 represents a hydrocarbon group having 1 to 20 carbon atoms, and Z represents a halogen, hydrogen, an alkoxy group, or an amino group. q represents an integer of 1 to 3, and p represents an integer of 1 to 2, respectively. R 11 is preferably an alkyl group, and Z is a chlorine atom when it is a halogen atom, a C 1-8 alkoxy group when it is an alkoxy group, and a C 1 atom when it is an amino group. Eight amino groups are preferred.

有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。これらのうち、好ましくは、p=1、q=3のトリアルキルアルミニウム及びアルキルアルミニウムヒドリドである。さらに好ましくは、R11が炭素数1〜8であるトリアルキルアルミニウムである。 Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, trinormaldecylaluminum, diethylaluminum chloride, diethylaluminum. Examples thereof include sesquichloride, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, diisobutylaluminum hydride, and diisobutylaluminum chloride. Of these, trialkylaluminum and alkylaluminum hydride having p = 1 and q = 3 are preferable. More preferably, R 11 is a trialkylaluminum having 1 to 8 carbon atoms.

(ニ)触媒の形成・予備重合について
本発明による触媒は、上記の各成分を(予備)重合槽内で、同時にもしくは連続的に、あるいは一度にもしくは複数回にわたって、接触させることによって形成させることができる。
各成分の接触は、脂肪族炭化水素あるいは芳香族炭化水素溶媒中で行うのが普通である。接触温度は、特に限定されないが、−20℃から150℃の間で行うのが好ましい。接触順序としては、合目的的な任意の組み合わせが可能であるが、特に好ましいものを各成分について示せば次の通りである。
成分(C)を使用する場合、成分(A)と成分(B)を接触させる前に、成分(A)と、あるいは成分(B)と、または成分(A)及び成分(B)の両方に成分(C)を接触させること、または、成分(A)と成分(B)を接触させるのと同時に成分(C)を接触させること、または、成分(A)と成分(B)を接触させた後に成分(C)を接触させることが可能であるが、好ましくは、成分(A)と成分(B)を接触させる前に、成分(C)といずれかに接触させる方法である。
また、各成分を接触させた後、脂肪族炭化水素あるいは芳香族炭化水素溶媒にて洗浄することが可能である。
(D) Formation of catalyst / preliminary polymerization The catalyst according to the present invention is formed by bringing the above-mentioned components into contact with each other in a (preliminary) polymerization tank simultaneously or continuously, or once or several times. Can do.
The contact of each component is usually carried out in an aliphatic hydrocarbon or aromatic hydrocarbon solvent. Although a contact temperature is not specifically limited, It is preferable to carry out between -20 degreeC and 150 degreeC. As the contact order, any desired combination can be used. Particularly preferable ones for each component are as follows.
When using component (C), before contacting component (A) with component (B), component (A), or component (B), or both component (A) and component (B) The component (C) is contacted, or the component (A) and the component (B) are contacted at the same time as the component (C) is contacted, or the component (A) and the component (B) are contacted. Although it is possible to contact the component (C) later, a method of contacting the component (C) with any of the components (A) and the component (B) is preferable.
Moreover, after contacting each component, it is possible to wash with an aliphatic hydrocarbon or an aromatic hydrocarbon solvent.

本発明で使用する触媒成分(A)、(B)および(C)の使用量は任意である。例えば、成分(B)に対する成分(A)の使用量は、成分(B)1gに対し、好ましくは0.1μmol〜1000μmol、特に好ましくは0.5μmol〜500μmolの範囲である。成分(B)に対する成分(C)の使用量は、成分(B)1gに対し、好ましくはAlの量が0.01〜1000mmol、特に好ましくは0.05〜500mmolの範囲である。したがって、成分(A)に対する成分(C)の量は、遷移金属のモル比で、好ましくは0.01〜5×10、特に好ましくは0.1〜1×10、の範囲内が好ましい。 The amount of the catalyst components (A), (B) and (C) used in the present invention is arbitrary. For example, the amount of component (A) used relative to component (B) is preferably in the range of 0.1 μmol to 1000 μmol, particularly preferably 0.5 μmol to 500 μmol, relative to 1 g of component (B). The amount of component (C) used relative to component (B) is preferably such that the amount of Al is 0.01 to 1000 mmol, particularly preferably 0.05 to 500 mmol, relative to 1 g of component (B). Therefore, the amount of the component (C) to the component (A) is preferably in the range of 0.01 to 5 × 10 6 , particularly preferably 0.1 to 1 × 10 4 in terms of the molar ratio of the transition metal. .

本発明で使用する成分[A−1]と成分[A−2]の割合は、プロピレン系重合体(X)の特性を満たす範囲において任意であるが、成分[A−1]と成分[A−2]の合計量に対する成分[A−1]の遷移金属のモル比で、好ましくは0.30以上、0.99以下である。
この割合を変化させることで、溶融物性と触媒活性のバランスを調整することが可能である。つまり、成分[A−1]からは、低分子量の末端ビニルマクロマーを生成し、成分[A−2]からは、一部マクロマーを共重合した高分子量体を生成する。
したがって、成分[A−1]の割合を変化させることで、生成する重合体の平均分子量、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、歪硬化度、溶融張力、溶融延展性といった溶融物性を制御することができる。より高い触媒活性で効率的に、より高い歪硬化度のプロピレン系重合体を製造するために、成分[A−1]と成分[A−2]の合計量に対する成分[A−1]の遷移金属のモル比は、0.30以上が必要であり、好ましくは0.40以上であり、更に好ましくは0.5以上である。また、上限に関しては0.99以下であり、高い触媒活性で効率的に、本発明に係るプロピレン系重合体(X)を得るためには、好ましくは0.95以下であり、更に好ましくは0.90以下の範囲である。
また、上記範囲で成分[A−1]を使用することにより、水素量に対する、平均分子量と触媒活性のバランスを調整することが可能である。
Although the ratio of component [A-1] and component [A-2] used by this invention is arbitrary in the range with which the characteristic of propylene polymer (X) is satisfy | filled, component [A-1] and component [A] -2] is preferably a molar ratio of the transition metal of component [A-1] to the total amount of 0.30 or more and 0.99 or less.
By changing this ratio, it is possible to adjust the balance between melt physical properties and catalyst activity. That is, from the component [A-1], a low molecular weight terminal vinyl macromer is produced, and from the component [A-2], a high molecular weight body obtained by copolymerizing a part of the macromer is produced.
Therefore, by changing the ratio of the component [A-1], the average molecular weight, molecular weight distribution, bias of the molecular weight distribution toward the high molecular weight side, very high molecular weight component, branch (amount, length, Distribution) can be controlled, whereby the melt physical properties such as strain hardening degree, melt tension, and melt spreadability can be controlled. Transition of component [A-1] with respect to the total amount of component [A-1] and component [A-2] in order to produce a propylene polymer having a higher degree of strain hardening efficiently with higher catalytic activity The molar ratio of the metal needs to be 0.30 or more, preferably 0.40 or more, and more preferably 0.5 or more. Further, the upper limit is 0.99 or less, and in order to efficiently obtain the propylene-based polymer (X) according to the present invention with high catalytic activity, it is preferably 0.95 or less, more preferably 0. .90 or less.
In addition, by using component [A-1] within the above range, it is possible to adjust the balance between the average molecular weight and the catalytic activity with respect to the amount of hydrogen.

本発明に係る触媒は、これにオレフィンを接触させて少量重合されることからなる予備重合処理に付される。予備重合処理を行うことにより、本重合を行った際に、ゲルの生成を防止できる。その理由としては、本重合を行った際の重合体粒子間で長鎖分岐が均一に分布させることができるためと、考えられ、また、そのことにより溶融物性を向上することができる。   The catalyst according to the present invention is subjected to a prepolymerization treatment consisting of a small amount of polymerization by bringing an olefin into contact therewith. By performing the prepolymerization treatment, gel formation can be prevented when the main polymerization is performed. The reason is considered to be that long-chain branches can be uniformly distributed among the polymer particles when the main polymerization is performed, and the melt properties can be improved thereby.

予備重合時に使用するオレフィンは、特に限定はないが、プロピレン、エチレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等を例示することができる。オレフィンのフィード方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持するフィード方法やその組み合わせ、段階的な変化をさせる等、任意の方法が可能である。予備重合温度、時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合量は、予備重合ポリマー量が成分(B)に対し、好ましくは0.01〜100、さらに好ましくは0.1〜50である。また、予備重合時に成分(C)を添加、又は追加することもできる。また、予備重合終了後に洗浄することも可能である。   The olefin used in the prepolymerization is not particularly limited, but propylene, ethylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane, Styrene and the like can be exemplified. The olefin feed method may be any method such as a feed method for maintaining the olefin at a constant rate or a constant pressure in the reaction tank, a combination thereof, or a stepwise change. The prepolymerization temperature and time are not particularly limited, but are preferably in the range of −20 ° C. to 100 ° C. and 5 minutes to 24 hours, respectively. The amount of prepolymerization is preferably 0.01 to 100, more preferably 0.1 to 50 with respect to the component (B). Moreover, a component (C) can also be added or added at the time of prepolymerization. It is also possible to wash after the prepolymerization.

また、上記の各成分の接触の際もしくは接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカ、チタニア等の無機酸化物の固体を共存させる等の方法も可能である。   In addition, a method of coexisting a polymer such as polyethylene or polypropylene, or a solid of an inorganic oxide such as silica or titania, at the time of contacting or after contacting each of the above components is also possible.

(ホ)触媒の使用/プロピレン重合について
重合様式は、前記成分(A)、成分(B)及び成分(C)を含むオレフィン重合用触媒とモノマーが効率よく接触するならば、あらゆる様式を採用しうる。
具体的には、不活性溶媒を用いるスラリー法、不活性溶媒を実質的に用いずプロピレンを溶媒として用いる、所謂バルク法、溶液重合法あるいは実質的に液体溶媒を用いず各モノマーをガス状に保つ気相法などが採用できる。また、連続重合、回分式重合を行う方法も適用される。また、単段重合以外に、2段以上の多段重合することも可能である。
(E) Use of Catalyst / Propylene Polymerization Any polymerization method may be used as long as the olefin polymerization catalyst including the component (A), the component (B) and the component (C) is in efficient contact with the monomer. sell.
Specifically, a slurry method using an inert solvent, a so-called bulk method using a propylene as a solvent without using an inert solvent as a solvent, a solution polymerization method, or a monomer without using a liquid solvent substantially. A gas phase method can be used. Moreover, the method of performing continuous polymerization and batch type polymerization is also applied. In addition to single-stage polymerization, it is possible to carry out multistage polymerization of two or more stages.

スラリー重合の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。
また、重合温度は、0℃以上、150℃以下である。特に、バルク重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は80℃以下が好ましく、更に好ましくは75度以下である。
さらに、気相重合を用いる場合には、40℃以上が好ましく、更に好ましくは50℃以上である。また上限は100℃以下が好ましく、更に好ましくは90℃以下である。
In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene, toluene, or the like is used alone or as a polymerization solvent.
The polymerization temperature is 0 ° C. or higher and 150 ° C. or lower. In particular, when bulk polymerization is used, the temperature is preferably 40 ° C or higher, more preferably 50 ° C or higher. The upper limit is preferably 80 ° C. or lower, and more preferably 75 ° C. or lower.
Furthermore, when using vapor phase polymerization, 40 degreeC or more is preferable, More preferably, it is 50 degreeC or more. The upper limit is preferably 100 ° C. or lower, more preferably 90 ° C. or lower.

重合圧力は、1.0MPa以上、5.0MPa以下である。特に、バルク重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは2.0MPa以上である。また上限は4.0MPa以下が好ましく、更に好ましくは3.5MPa以下である。
さらに、気相重合を用いる場合には、1.5MPa以上が好ましく、更に好ましくは1.7MPa以上である。また上限は2.5MPa以下が好ましく、更に好ましくは2.3MPa以下である。
The polymerization pressure is 1.0 MPa or more and 5.0 MPa or less. In particular, when bulk polymerization is used, the pressure is preferably 1.5 MPa or more, more preferably 2.0 MPa or more. The upper limit is preferably 4.0 MPa or less, more preferably 3.5 MPa or less.
Furthermore, when using vapor phase polymerization, 1.5 MPa or more is preferable, and 1.7 MPa or more is more preferable. Further, the upper limit is preferably 2.5 MPa or less, and more preferably 2.3 MPa or less.

さらに、分子量調節剤として、また活性向上効果のために、補助的に水素をプロピレンに対してモル比で1.0×10−6以上、1.0×10−2以下の範囲で用いることができる。
また、使用する水素の量を変化させることで、生成する重合体の平均分子量の他に、分子量分布、分子量分布の高分子量側への偏り、非常に高い分子量成分、分岐(量、長さ、分布)を制御することができ、そのことにより、歪硬化度、溶融張力、溶融延展性といった溶融物性を制御することができる。
そこで水素は、プロピレンに対するモル比で、1.0×10−6以上で用いるのがよく、好ましくは1.0×10−5以上であり、さらに好ましくは1.0×10−4以上用いるのがよい。また上限に関しては、1.0×10−2以下で用いるのがよく、好ましくは0.9×10−2以下であり、更に好ましくは0.8×10−2以下である。
Further, as a molecular weight regulator and for an activity improving effect, hydrogen is supplementarily used in a molar ratio of 1.0 × 10 −6 or more and 1.0 × 10 −2 or less with respect to propylene. it can.
Also, by changing the amount of hydrogen used, in addition to the average molecular weight of the polymer to be produced, the molecular weight distribution, the deviation of the molecular weight distribution toward the high molecular weight side, very high molecular weight components, branching (amount, length, Distribution) can be controlled, whereby the melt physical properties such as strain hardening degree, melt tension, and melt spreadability can be controlled.
Therefore, hydrogen should be used at a molar ratio to propylene of 1.0 × 10 −6 or more, preferably 1.0 × 10 −5 or more, more preferably 1.0 × 10 −4 or more. Is good. Moreover, regarding an upper limit, it is good to use at 1.0 * 10 <-2> or less, Preferably it is 0.9 * 10 <-2> or less, More preferably, it is 0.8 * 10 <-2> or less.

また、プロピレンモノマー以外に、炭素数2〜20(モノマーとして使用するものを除く)のα−オレフィンをコモノマーとして使用する共重合を行ってもよい。プロピレン系重合体中の(総)コモノマー含量は、0モル%以上、20モル%以下の範囲であり、上記コモノマーを複数種使用することも可能である。具体的には、エチレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテンである。
この中では、本発明に係るプロピレン系重合体(X)を溶融物性と触媒活性をバランスよく得るためには、エチレンを5モル%以下で用いるのが好ましい。特に剛性の高い重合体を得るためには、重合体中に含まれるエチレンを1モル%以下になるように、エチレンを用いるのがよく、更に好ましくはプロピレン単独重合である。
Moreover, you may perform the copolymerization which uses C2-C20 (except what is used as a monomer) alpha olefin as a comonomer other than a propylene monomer. The (total) comonomer content in the propylene-based polymer is in the range of 0 mol% or more and 20 mol% or less, and a plurality of the above-mentioned comonomers can be used. Specifically, they are ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene.
Among these, in order to obtain the propylene polymer (X) according to the present invention in a good balance between melt physical properties and catalytic activity, it is preferable to use ethylene at 5 mol% or less. In order to obtain a polymer having particularly high rigidity, it is preferable to use ethylene so that ethylene contained in the polymer is 1 mol% or less, more preferably propylene homopolymerization.

(ヘ)重合メカニズムの考察
マクロマーの生成は、β−メチル脱離と一般に呼ばれる特殊な連鎖移動反応により生成すると、考察され、本発明では、特定の構造をもつ成分[A−1]は、比較的低温の温度領域(40℃〜80℃)で、成長停止反応中β−メチル脱離反応の選択性が高く、また、ポリマー成長反応に対するβ−メチル脱離反応の比が従来の構造の錯体と比べて、大きいことが、見出されている。
従来は、β−メチル脱離反応を優先的に起こすために、プロピレン濃度の薄いスラリー重合での特殊な条件下(低圧、高温重合、水素無添加)でしか製造できなかったのに対して、特定の構造をもつ成分[A−1]を用いることにより、工業的に有効なバルク重合や気相重合によって、しかも実用的な圧力条件(1.0〜3.0MPa)および温度条件(40℃〜80℃)下で、製造が可能であることが分かった。
(F) Consideration of polymerization mechanism It is considered that the formation of the macromer is caused by a special chain transfer reaction generally called β-methyl elimination, and in the present invention, the component [A-1] having a specific structure is compared. In a low temperature range (40 ° C. to 80 ° C.), the selectivity of the β-methyl elimination reaction during the growth termination reaction is high, and the ratio of the β-methyl elimination reaction to the polymer growth reaction is a complex having a conventional structure It has been found to be large compared to
Conventionally, in order to preferentially cause the β-methyl elimination reaction, it could only be produced under special conditions (low pressure, high temperature polymerization, no hydrogen addition) in slurry polymerization with a low propylene concentration, By using the component [A-1] having a specific structure, industrially effective bulk polymerization or gas phase polymerization, and practical pressure conditions (1.0 to 3.0 MPa) and temperature conditions (40 ° C. It was found that the production is possible under ˜80 ° C.).

さらに、驚くべきことに、水素を添加することで、従来の方法ではβ−メチル脱離反応よりも水素による連鎖移動反応が優勢となるのに対し、原因は不明であるが、本発明に係るプロピレン系重合体(X)の製造法では、水素を添加してもマクロマー生成と生長反応のバランスの変化が小さい特徴があり、水素存在下でもマクロマーの選択性は、殆ど変わらないことが分かった。しかも、水素は活性向上効果を有する。
このことは、従来は特殊な条件(低圧、高温、水素無添加)であるマクロマー生成工程を経た後に、マクロマー共重合を行う多段重合を行わなければならなかったのに対し、成分[A−2]と組み合わせることにより、マクロマー生成工程とマクロマー共重合工程を同条件で行うことができる、つまり、同時重合、単段重合できることが分かった。
Furthermore, surprisingly, by adding hydrogen, the chain transfer reaction by hydrogen is superior to the β-methyl elimination reaction in the conventional method, whereas the cause is unknown, but according to the present invention. The propylene-based polymer (X) production method is characterized by a small change in the balance between macromer formation and growth reaction even when hydrogen is added, and it has been found that the selectivity of the macromer remains almost unchanged even in the presence of hydrogen. . Moreover, hydrogen has an activity improving effect.
This is because, in the past, it has been necessary to carry out a multi-stage polymerization in which a macromer copolymerization is performed after a macromer production step which is a special condition (low pressure, high temperature, no hydrogen addition), whereas the component [A-2 ], It was found that the macromer production step and the macromer copolymerization step can be performed under the same conditions, that is, simultaneous polymerization and single-stage polymerization can be performed.

一方、成分[A−2]は、特定の構造をもつことにより、ビニル構造の末端を生成する能力はなくても、マクロマーの共重合する能力が高く、更に、成分[A−1]とくらべて、より高分子量の重合体を生成する能力を有する。また、水素を添加すると、活性向上し、水素による連鎖移動により分子量が低下する。
従来は、マクロマー生成とマクロマー共重合を単一の錯体で製造しているため、すなわち、成分[A−1]と成分[A−2]を同一の錯体で重合体を製造するため、マクロマー生成能力またはマクロマー共重合能力のどちらかが不十分であったり、高分子量側に分岐成分の導入量が不十分であったり、また、分子量の調整に水素を用いると、マクロマー自体の生成量が減少してしまうという問題点があった。
On the other hand, the component [A-2] has a specific structure, so that it has a high ability to copolymerize macromers even though it does not have the ability to form a terminal vinyl structure. And has the ability to produce higher molecular weight polymers. Further, when hydrogen is added, the activity is improved, and the molecular weight is lowered due to chain transfer by hydrogen.
Conventionally, macromer formation and macromer copolymerization are produced by a single complex, that is, in order to produce a polymer with the same complex of component [A-1] and component [A-2], If either the capacity or the macromer copolymerization capacity is insufficient, the amount of branching component introduced is insufficient on the high molecular weight side, or if hydrogen is used to adjust the molecular weight, the production amount of the macromer itself decreases. There was a problem of doing.

しかしながら、本発明では、マクロマー生成能力を有する特定の構造の成分[A−1]と、高分子量でマクロマー共重合能力を有する特定の構造の成分[A−2]を、特定の方法で組み合わせた触媒として、使用することにより、バルク重合や気相重合といった工業的に有効な方法で、特に実用的な圧力温度条件下の単段重合で、しかも、分子量調整剤である水素を用いて、目的とする物性を有する長鎖分岐含有プロピレン系重合体(X)の製造が可能である。
また、従来は、立体規則性の低いポリマーを生成する条件でしか分岐生成効率が上がらなかったが、本発明の方法では、充分に立体規則性の高い成分を、側鎖に簡便な方法で導入することが可能となった。
However, in the present invention, the component [A-1] having a specific structure having macromer generation ability and the component [A-2] having a specific structure having high molecular weight and macromer copolymerization ability are combined in a specific method. By using it as a catalyst, it is an industrially effective method such as bulk polymerization or gas phase polymerization, especially in single-stage polymerization under practical pressure-temperature conditions, and using hydrogen as a molecular weight regulator. It is possible to produce a long-chain branched propylene polymer (X) having the following physical properties:
In the past, the branching efficiency was increased only under conditions for producing a polymer with low stereoregularity, but in the method of the present invention, a sufficiently high stereoregularity component was introduced into the side chain by a simple method. It became possible to do.

2.発泡剤(F)
本発明のポリプロピレン系発泡シートに用いられるプロピレン系樹脂組成物は、前記のプロピレン系重合体(X)と発泡剤(F)とからなる。
本発明に係る発泡剤(F)は、プラスチックやゴム等に使用されている公知公用の発泡剤を問題なく使用できる。物理発泡剤、分解性発泡剤(化学発泡剤)、熱膨張剤を含有させたマイクロカプセル等、従来から使用されている発泡剤が使用される。
2. Foaming agent (F)
The propylene resin composition used for the polypropylene foam sheet of the present invention comprises the propylene polymer (X) and the foaming agent (F).
As the foaming agent (F) according to the present invention, a publicly known foaming agent used for plastics, rubber and the like can be used without any problem. Conventional foaming agents such as physical foaming agents, degradable foaming agents (chemical foaming agents), and microcapsules containing a thermal expansion agent are used.

物理発泡剤として、例えばプロパン、ブタン、ペンタン、ヘキサンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサンなどの脂環式炭化水素、クロロジフルオロメタン、ジフルオロメタン、トリフルオロメタン、トリクロロフルオロメタン、ジクロロジフルオロメタン、クロロメタン、ジクロロメタン、クロロエタン、ジクロロトリフルオロエタン、ジクロロフルオロエタン、クロロジフルオロエタン、ジクロロペンタフルオロエタン、テトラフルオロエタン、ジフルオロエタン、ペンタフルオロエタン、トリフルオロエタン、トリクロロトリフルオロエタン、ジクロロテトラフルオロエタン、クロロペンタフルオロエタン、パーフルオロシクロブタンなどのハロゲン化炭化水素、水、炭酸ガス、窒素などの無機ガスなどの1種または2種以上の組合せが挙げられる。なかでも、プロパン、ブタン、ペンタンのような脂肪族炭化水素および炭酸ガスが、安価かつプロピレン系重合体(X)への溶解性が高いという点から好ましい。炭酸ガスは7.4MPa以上、31℃以上で超臨界状態となり、重合体への拡散、溶解性に優れた状態になる。   Examples of physical blowing agents include aliphatic hydrocarbons such as propane, butane, pentane and hexane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, chlorodifluoromethane, difluoromethane, trifluoromethane, trichlorofluoromethane, dichlorodifluoromethane, Chloromethane, dichloromethane, chloroethane, dichlorotrifluoroethane, dichlorofluoroethane, chlorodifluoroethane, dichloropentafluoroethane, tetrafluoroethane, difluoroethane, pentafluoroethane, trifluoroethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, chloropenta One kind of halogenated hydrocarbons such as fluoroethane and perfluorocyclobutane, inorganic gases such as water, carbon dioxide and nitrogen, or It includes the species or more combinations. Of these, aliphatic hydrocarbons such as propane, butane, and pentane and carbon dioxide are preferable because they are inexpensive and have high solubility in the propylene-based polymer (X). Carbon dioxide gas becomes a supercritical state at 7.4 MPa or more and 31 ° C. or more, and is excellent in diffusion and solubility in the polymer.

前記物理発泡剤によるポリプロピレン系発泡シートを得るに際しては、必要に応じて気泡調整剤を使用することができる。
気泡調整剤としては、炭酸アンモニウム、重曹、重炭酸アンモニウム、亜硝酸アンモニウム等の無機系分解性発泡剤、アゾジカルボンアミド、アゾビスイソブチロニトリル及びジアゾアミノベンゼン等のアゾ化合物、N,N′−ジニトロソペンタンメチレンテトラミン及びN,N′−ジメチル−N,N′−ジニトロソテレフタルアミド等のニトロソ化合物、ベンゼンスルホニルヒドラジド、p−トルエンスルホニルヒドラジド、p,p′−オキシビスベンゼンスルホニルセミカルバジド、p−トルエンスルホニルセミカルバジド、トリヒドラジノトリアジン、バリウムアゾジカルボキシレート等の分解性発泡剤、タルク、シリカ等の無機粉末、多価カルボン酸等の酸性塩、多価カルボン酸と炭酸ナトリウム又は重曹との反応混合物等が挙げられ、これらは単独でも組み合わすこともできる。
In obtaining a polypropylene-based foamed sheet using the physical foaming agent, a cell regulator can be used as necessary.
Examples of the air conditioner include inorganic decomposable foaming agents such as ammonium carbonate, sodium bicarbonate, ammonium bicarbonate and ammonium nitrite, azo compounds such as azodicarbonamide, azobisisobutyronitrile and diazoaminobenzene, N, N′- Nitroso compounds such as dinitrosopentanemethylenetetramine and N, N'-dimethyl-N, N'-dinitrosotephthalamide, benzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide, p, p'-oxybisbenzenesulfonyl semicarbazide, p- Degradable foaming agents such as toluenesulfonyl semicarbazide, trihydrazinotriazine, barium azodicarboxylate, inorganic powders such as talc and silica, acid salts such as polyvalent carboxylic acids, reaction of polyvalent carboxylic acids with sodium carbonate or sodium bicarbonate Such as mixtures , These can also be combined alone.

また、分解性発泡剤(化学発泡剤)によりポリプロピレン系発泡シートを得るに際しては、分解性発泡剤(化学発泡剤)として、例えば重炭酸ソーダとクエン酸などの有機酸の混合物、アゾジカルボンアミド、アゾジカルボン酸バリウムなどのアゾ系発泡剤、N,N’−ジニトロソペンタメチレンテトラミン、N,N’−ジメチル−N,N’−ジニトロソテレフタルアミドなどのニトロソ系発泡剤、p,p’−オキシビスベンゼンスルホニルヒドラジド、p−トルエンスルホニルセミカルバジドなどのスルホヒドラジド系発泡剤、トリヒドラジノトリアジンなどが挙げられる。   When a polypropylene foam sheet is obtained with a degradable foaming agent (chemical foaming agent), for example, a mixture of organic acids such as sodium bicarbonate and citric acid, azodicarbonamide, azodicarbon can be used as the decomposable foaming agent (chemical foaming agent). Azo foaming agents such as barium acid, nitroso foaming agents such as N, N′-dinitrosopentamethylenetetramine, N, N′-dimethyl-N, N′-dinitrosotephthalamide, p, p′-oxybis Examples thereof include sulfohydrazide-based blowing agents such as benzenesulfonyl hydrazide and p-toluenesulfonyl semicarbazide, and trihydrazinotriazine.

本発明における発泡剤(F)の配合量は、前記プロピレン系重合体(X)100重量部に対し、0.05〜6.0重量部の範囲であり、好ましくは0.05〜3.0重量部、より好ましくは0.5〜2.5重量部、更に好ましくは1.0〜2.0重量部である。発泡剤の配合量が6.0重量部より著しく多いと、過発泡となり発泡セルの均一微細化が困難となり、一方、発泡剤の配合量が0.05重量部より著しく少ないと、発生するガス量が少なく好ましくない。
また、気泡調整剤を使用する際には、気泡調節剤の配合量は、前記プロピレン系重合体(X)100重量部に対して、純分で0.01〜5重量部の範囲とすることが好ましい。
The blending amount of the foaming agent (F) in the present invention is in the range of 0.05 to 6.0 parts by weight, preferably 0.05 to 3.0, with respect to 100 parts by weight of the propylene polymer (X). Parts by weight, more preferably 0.5 to 2.5 parts by weight, still more preferably 1.0 to 2.0 parts by weight. When the blending amount of the foaming agent is significantly larger than 6.0 parts by weight, over-foaming occurs and it becomes difficult to make the foamed cells uniform. On the other hand, when the blending amount of the foaming agent is significantly less than 0.05 parts by weight, the generated gas A small amount is not preferable.
Moreover, when using a bubble regulator, the blending amount of the bubble regulator should be in a range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the propylene polymer (X). Is preferred.

3.その他の配合剤
本発明のポリプロピレン系発泡シートに用いられるプロピレン系樹脂組成物には、前記プロピレン系重合体(X)および発泡剤(F)、必要に応じて気泡調整剤の他に、通常ポリオレフィンに使用する公知の重合体、酸化防止剤、中和剤、光安定剤、紫外線吸収剤、無機充填剤、滑剤、帯電防止剤、金属不活性剤などの各種添加剤を、本発明の目的を損なわない範囲で配合することができる。
3. Other compounding agents In addition to the propylene polymer (X) and the foaming agent (F), and if necessary, a cell regulator, the propylene resin composition used in the polypropylene foam sheet of the present invention is usually a polyolefin. Various additives such as known polymers, antioxidants, neutralizers, light stabilizers, ultraviolet absorbers, inorganic fillers, lubricants, antistatic agents and metal deactivators used in the present invention are used for the purpose of the present invention. It can mix | blend in the range which is not impaired.

上記重合体としては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、プロピレン−α−オレフィンコポリマー、ポリ−4−メチル−ペンテン−1等のα−ポリオレフィン、エチレン−プロピレンエラストマー等のオレフィン系エラストマー、またはこれらと共重合可能な他の単量体、例えば酢酸ビニル、塩化ビニル、(メタ)アクリル酸、(メタ)アクリル酸エステル等の共重合体および混合物等を挙げることができる。   Examples of the polymer include high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, propylene-α-olefin copolymer, α-polyolefin such as poly-4-methyl-pentene-1, ethylene-propylene elastomer, and the like. And other monomers copolymerizable therewith, such as copolymers and mixtures of vinyl acetate, vinyl chloride, (meth) acrylic acid, (meth) acrylic acid ester, and the like. .

酸化防止剤としては、フェノール系酸化防止剤、フォスファイト系酸化防止剤およびチオ系酸化防止剤などが例示でき、中和剤としては、ステアリン酸カルシウムやステアリン酸亜鉛などの高級脂肪酸塩類が例示でき、光安定剤および紫外線吸収剤としては、ヒンダードアミン類、ニッケル錯化合物、ベンゾトリアゾール類、ベンゾフェノン類などが例示できる。
また、無機充填剤としては、炭酸カルシウム、シリカ、ハイドロタルサイト、ゼオライト、ケイ酸アルミニウム、ケイ酸マグネシウムなどが例示でき、滑剤としては、ステアリン酸アマイドなどの高級脂肪酸アマイド類が例示できる。
更に、帯電防止剤としては、グリセリン脂肪酸モノエステルなどの脂肪酸部分エステル類が例示でき、金属不活性剤としては、トリアジン類、フォスフォン類、エポキシ類、トリアゾール類、ヒドラジド類、オキサミド類などが例示できる。
Examples of antioxidants include phenolic antioxidants, phosphite antioxidants, and thio antioxidants, and examples of neutralizing agents include higher fatty acid salts such as calcium stearate and zinc stearate. Examples of the light stabilizer and the ultraviolet absorber include hindered amines, nickel complex compounds, benzotriazoles, and benzophenones.
Examples of the inorganic filler include calcium carbonate, silica, hydrotalcite, zeolite, aluminum silicate, magnesium silicate and the like, and examples of the lubricant include higher fatty acid amides such as stearic acid amide.
Furthermore, examples of the antistatic agent include fatty acid partial esters such as glycerin fatty acid monoester, and examples of the metal deactivator include triazines, phosphones, epoxies, triazoles, hydrazides, and oxamides. it can.

II.プロピレン系樹脂組成物の調製方法
本発明で使用されるプロピレン系樹脂組成物の調製方法としては、パウダー状もしくはペレット状の前記プロピレン系重合体(X)、発泡剤および必要に応じて用いるその他の配合剤をドライブレンド、ヘンシェルミキサー等で混合する方法を挙げることができる。
また、状況に応じて、発泡剤のみ、ポリプロピレン系発泡シートの製造時に、別フィードしても良い。
II. Preparation method of propylene-based resin composition As a preparation method of the propylene-based resin composition used in the present invention, the propylene-based polymer (X) in the form of powder or pellets, a foaming agent, and other used as necessary The method of mixing a compounding agent with a dry blend, a Henschel mixer, etc. can be mentioned.
Further, depending on the situation, only the foaming agent may be separately fed during the production of the polypropylene foam sheet.

III.ポリプロピレン系(多層)発泡シート
本発明のポリプロピレン系発泡シートは、平均気泡径が500μm以下であることが好ましく、400μm以下がより好ましく、300μm以下が更に好ましい。平均気泡径が500μmを大きく超えると、ポリプロピレン系発泡シートや該シートを熱成形する際に熱成形体に対し、穴明き等の外観不良が発生するため好ましくない。
III. Polypropylene-based (multi-layer) foamed sheet The polypropylene-based foamed sheet of the present invention preferably has an average cell diameter of 500 μm or less, more preferably 400 μm or less, and even more preferably 300 μm or less. When the average cell diameter greatly exceeds 500 μm, an appearance defect such as perforation occurs in the polypropylene foam sheet or the thermoformed body when the sheet is thermoformed.

本発明のポリプロピレン系発泡シートは、連続気泡率が30%以下であることが好ましく、20%以下がより好ましく、10%以下が更に好ましい。連続気泡率が30%を大きく超えると、熱成形する際に、発泡シート内の発泡セルの膨張が生じないため、熱成形体の厚みが減ってしまうため好ましくない。   The polypropylene foam sheet of the present invention preferably has an open cell ratio of 30% or less, more preferably 20% or less, and still more preferably 10% or less. If the open cell ratio greatly exceeds 30%, expansion of the foamed cells in the foamed sheet does not occur during thermoforming, and the thickness of the thermoformed body is reduced, which is not preferable.

また、本発明のポリプロピレン系発泡シートの厚みは、特に限定しないが、0.3mm〜10mm程度が好ましい。更に好ましくは0.5mm〜5mmである。   The thickness of the polypropylene foam sheet of the present invention is not particularly limited, but is preferably about 0.3 mm to 10 mm. More preferably, it is 0.5 mm-5 mm.

本発明のポリプロピレン系発泡シートを得る方法としては、プロピレン系樹脂組成物を押出機で溶融し、押出機先端に設けられたダイスより押出される公知の押出成形法により得ることができる。押出機は、一軸押出機、二軸押出機のいずれであってもよい。
物理発泡にあっては、炭酸ガスなどの物理発泡剤を押出機シリンダーの途中から導入(圧入)する。押出機ダイは、Tダイでもよく、円形(サーキュラー)ダイでもよい。
The polypropylene foam sheet of the present invention can be obtained by a known extrusion method in which a propylene resin composition is melted with an extruder and extruded from a die provided at the tip of the extruder. The extruder may be either a single screw extruder or a twin screw extruder.
In physical foaming, a physical foaming agent such as carbon dioxide gas is introduced (press-fitted) from the middle of the extruder cylinder. The extruder die may be a T die or a circular (circular) die.

本発明のポリプロピレン系多層発泡シートは、前記プロピレン系樹脂組成物からなる発泡層と熱可塑性樹脂組成物からなる非発泡層とを、共押出成形することにより得ることができる。ポリプロピレン系多層発泡シートは、複数の押出機を用いたフィードブロックやマルチダイなどによる公知の共押出法により製造できる。   The polypropylene-based multilayer foamed sheet of the present invention can be obtained by coextrusion molding a foamed layer made of the propylene-based resin composition and a non-foamed layer made of a thermoplastic resin composition. The polypropylene-based multilayer foamed sheet can be produced by a known coextrusion method using a feed block or a multi die using a plurality of extruders.

本発明のポリプロピレン系多層発泡シートに用いられる非発泡層は、発泡層のいずれの面に設けられてもよく、また、発泡層を非発泡層の間に存在させた構成(サンドイッチ構造)とすることもできる。
非発泡層が設けられたポリプロピレン系多層発泡シートは、強度において優れたものとなり、少なくとも該発泡層の外側に非発泡層が設けられることにより、外観においても優れたものとなる。更に、非発泡層に機能性の熱可塑性樹脂を使用することにより、抗菌性、ソフト感、耐受傷性等の付加的機能をポリプロピレン系多層発泡シートに兼備させることが容易にできる点からも好ましい。
The non-foamed layer used in the polypropylene-based multilayer foamed sheet of the present invention may be provided on any surface of the foamed layer, and has a structure (sandwich structure) in which the foamed layer exists between the non-foamed layers. You can also
The polypropylene-based multilayer foam sheet provided with the non-foamed layer is excellent in strength, and is excellent in appearance by providing the non-foamed layer at least outside the foamed layer. Furthermore, the use of a functional thermoplastic resin for the non-foamed layer is also preferable from the viewpoint that the polypropylene-based multilayer foamed sheet can easily have additional functions such as antibacterial properties, soft feeling, and scratch resistance. .

非発泡層に用いられる熱可塑性樹脂組成物を構成する熱可塑性樹脂としては、本発明の効果を阻害しない範囲で、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、プロピレン―α―オレフィンコポリマー、ポリ−4−メチル−ペンテン−1等のα−ポリオレフィン、エチレン−プロピレンエラストマー等のオレフィン系エラストマー、またはこれらと共重合可能な他の単量体、例えば酢酸ビニル、塩化ビニル、(メタ)アクリル酸、(メタ)アクリル酸エステル等の共重合体および混合物等を選択することができる。中でも、リサイクル性、接着性、耐熱性、耐油性、剛性などの点からポリプロピレンが好適である。   As the thermoplastic resin constituting the thermoplastic resin composition used in the non-foamed layer, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polypropylene, propylene-α can be used as long as the effects of the present invention are not impaired. An olefin copolymer, an α-polyolefin such as poly-4-methyl-pentene-1, an olefinic elastomer such as an ethylene-propylene elastomer, or other monomers copolymerizable therewith, such as vinyl acetate, vinyl chloride, Copolymers and mixtures such as (meth) acrylic acid and (meth) acrylic acid esters can be selected. Among these, polypropylene is preferable from the viewpoints of recyclability, adhesiveness, heat resistance, oil resistance, rigidity, and the like.

また、非発泡層に用いられる熱可塑性樹脂組成物としては、熱可塑性樹脂100重量部に対し、無機充填剤50重量部以下を配合することが望ましく、50重量部を超えるとダイス出口でのメヤニを発生しシートの外観を損なう。
無機充填剤としては、タルク、炭酸カルシウム、シリカ、ハイドロタルサイト、ゼオライト、ケイ酸アルミニウム、ケイ酸マグネシウムなどが例示できる。
Further, as the thermoplastic resin composition used for the non-foamed layer, it is desirable to blend 50 parts by weight or less of an inorganic filler with respect to 100 parts by weight of the thermoplastic resin. And the appearance of the sheet is impaired.
Examples of the inorganic filler include talc, calcium carbonate, silica, hydrotalcite, zeolite, aluminum silicate, magnesium silicate and the like.

本発明のポリプロピレン系多層発泡シートの厚みは、特に限定しないが、0.3mm〜10mm程度が好ましい。更に好ましくは0.5mm〜5mmである。
また、ポリプロピレン系多層発泡シートにおける非発泡層の厚さは、得られるポリプロピレン系多層発泡シートの全厚みの1〜50%、より好ましくは5〜20%になるように形成することが望ましい。非発泡層の厚みが50%を超えると、発泡層の気泡の成長を妨げてしまう。
The thickness of the polypropylene multilayer foam sheet of the present invention is not particularly limited, but is preferably about 0.3 mm to 10 mm. More preferably, it is 0.5 mm-5 mm.
Moreover, it is desirable to form the non-foamed layer in the polypropylene-based multilayer foamed sheet so that the thickness is 1 to 50%, more preferably 5 to 20% of the total thickness of the resulting polypropylene-based multilayer foamed sheet. When the thickness of the non-foamed layer exceeds 50%, the growth of bubbles in the foamed layer is hindered.

また、本発明のポリプロピレン系(多層)発泡シートは、印刷性や塗装性などのために発泡シートの表面にコロナ放電処理、火炎処理、プラズマ処理等の表面処理をしても何ら差し支えない。   In addition, the polypropylene-based (multilayer) foamed sheet of the present invention may be subjected to surface treatment such as corona discharge treatment, flame treatment, plasma treatment, etc. on the surface of the foamed sheet for printability and paintability.

IV.熱成形体
本発明の熱成形体は、ポリプロピレン系(多層)発泡シートを、熱成形することによって得ることができる。
熱成形法としては、プラグ成形、マッチド・モールド成形、ストレート成形、ドレープ成形、プラグアシスト成形、プラグアシスト・リバースドロー成形、エアスリップ成形、スナップバック成形、リバースドロー成形、フリードローイング成形、プラグ・アンド・リッジ成形、リッジ成形などの方法があげられる。
IV. Thermoformed body The thermoformed body of the present invention can be obtained by thermoforming a polypropylene-based (multilayer) foamed sheet.
The thermoforming methods include plug molding, matched molding, straight molding, drape molding, plug assist molding, plug assist reverse drawing molding, air slip molding, snapback molding, reverse draw molding, free drawing molding, plug and -Examples of methods include ridge molding and ridge molding.

V.ポリプロピレン系(多層)発泡シートおよび熱成形体の用途
本発明のポリプロピレン系(多層)発泡シートおよび熱成形体は、均一微細な発泡セルが得られ、外観、熱成形性、耐衝撃性、軽量性、剛性、耐熱性、断熱性、耐油性等に優れていることより、トレー、皿、カップなどの食品容器や自動車ドアトリム、自動車トランクマットなどの車両内装材、包装、文具、建材などに好適に利用できる。
V. Applications of polypropylene-based (multi-layer) foamed sheet and thermoformed article The polypropylene-based (multi-layer) foamed sheet and thermoformed article of the present invention provide uniform and fine foam cells, and the appearance, thermoformability, impact resistance, and light weight. Excellent in rigidity, heat resistance, heat insulation, oil resistance, etc., suitable for food containers such as trays, dishes, cups, car interior trims such as car door trims, car trunk mats, packaging, stationery, building materials, etc. Available.

以下、本発明を実施例によって具体的に説明するが、本発明は、これらの実施例によって限定されるものではない。なお、実施例および比較例において、ポリプロピレン系(多層)発泡シートおよびその熱成形体またはその構成成分についての諸物性は、下記の評価方法に従って測定、評価し、使用した樹脂として下記のものを用いた。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, the physical properties of the polypropylene-based (multilayer) foamed sheet and its thermoformed article or its constituent components were measured and evaluated according to the following evaluation methods, and the following resins were used. It was.

1.評価方法
(1)メルトフローレート(MFR)[単位:g/10分]:
プロピレン系樹脂は、JIS K7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」のA法、条件M(230℃、2.16kg荷重)に準拠して測定した。
(2)分子量及び分子量分布(Mw、Mn、Q値、α/β、W(200万以上)):
ゲルパーミエーションクロマトグラフィー(GPC)により、上記本明細書記載の方法で、測定した。
(3)ME(メモリーエフェクト):
タカラ社製のメルトインデクサーを用い、190℃でオリフィス径1.0mm、長さ8.0mm中を、荷重をかけて押し出し、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーを、エタノール中で急冷し、その際のストランド径の値をオリフィス径で除した値として算出した。この値は、Log(MFR)と相関する値であり、この値が大きいと、スウェルが大きく射出成形したときの製品外観がよくなることを示す。
(4)mm分率:
日本電子社製、GSX−400、FT−NMRを用い、上記本明細書記載の方法で測定した。単位は%である。
(5)伸長粘度:
上記本明細書記載の方法で測定した。
1. Evaluation method (1) Melt flow rate (MFR) [unit: g / 10 min]:
The propylene-based resin conforms to JIS K7210: 1999 “Method of plastic-thermoplastic melt mass flow rate (MFR) and melt volume flow rate (MVR) test”, condition M (230 ° C., 2.16 kg load). Measured in conformity.
(2) Molecular weight and molecular weight distribution (Mw, Mn, Q value, α / β, W (2 million or more)):
It was measured by the method described in the present specification by gel permeation chromatography (GPC).
(3) ME (memory effect):
Polymer that was extruded through an orifice at a temperature of 190 ° C and an orifice diameter of 1.0 mm and a length of 8.0 mm under load at a temperature of 0.1 g / min. Was quenched in ethanol and calculated as a value obtained by dividing the value of the strand diameter at that time by the orifice diameter. This value correlates with Log (MFR), and a large value indicates that the product appearance is improved when the swell is large and injection molded.
(4) mm fraction:
The measurement was carried out by the method described in the present specification using GSX-400 and FT-NMR manufactured by JEOL. The unit is%.
(5) Elongation viscosity:
It was measured by the method described in the present specification.

(6)昇温溶出分別(TREF):
TREF測定方法は、下記の装置を用い、上記本明細書記載の方法である。
(i)TREF部
TREFカラム:4.3mmφ×150mmステンレスカラム
カラム充填材:100μm表面不活性処理ガラスビーズ
加熱方式:アルミヒートブロック
冷却方式:ペルチェ素子(ペルチェ素子の冷却は水冷)
温度分布:±0.5℃
温調器:(株)チノー デジタルプログラム調節計KP1000(バルブオーブン)
加熱方式:空気浴式オーブン
測定時温度:140℃
温度分布:±1℃
バルブ:6方バルブ 4方バルブ
(ii)試料注入部
注入方式:ループ注入方式
注入量:ループサイズ 0.1ml
注入口加熱方式:アルミヒートブロック
測定時温度:140℃
(iii)検出部
検出器:波長固定型赤外検出器 FOXBORO社製 MIRAN 1A
検出波長:3.42μm
高温フローセル:LC−IR用ミクロフローセル 光路長1.5mm 窓形状2φ×4mm長丸 合成サファイア窓板
測定時温度:140℃
(iv)ポンプ部
送液ポンプ:センシュウ科学社製 SSC−3461ポンプ
(v)測定条件
溶媒:o−ジクロロベンゼン(0.5mg/mLのBHTを含む)
試料濃度:5mg/mL
試料注入量:0.1mL
溶媒流速:1mL/分
(6) Temperature rising elution fractionation (TREF):
The TREF measurement method is the method described in the present specification using the following apparatus.
(I) TREF part TREF column: 4.3 mmφ × 150 mm stainless steel column Column filler: 100 μm surface inactive glass beads Heating method: Aluminum heat block Cooling method: Peltier element (Peltier element is cooled by water)
Temperature distribution: ± 0.5 ° C
Temperature controller: Chino Corporation Digital Program Controller KP1000 (Valve Oven)
Heating method: Air bath oven Measurement temperature: 140 ° C
Temperature distribution: ± 1 ° C
Valve: 6-way valve 4-way valve (ii) Sample injection part Injection method: Loop injection method Injection amount: Loop size 0.1ml
Inlet heating method: Aluminum heat block Measurement temperature: 140 ° C
(Iii) Detection unit Detector: Fixed wavelength infrared detector MIRAN 1A manufactured by FOXBORO
Detection wavelength: 3.42 μm
High-temperature flow cell: Micro flow cell for LC-IR Optical path length 1.5mm Window shape 2φ x 4mm oval Synthetic sapphire window Measurement temperature: 140 ° C
(Iv) Pump unit Liquid feed pump: SSC-3461 pump manufactured by Senshu Kagaku Co. (v) Measurement conditions Solvent: o-dichlorobenzene (including 0.5 mg / mL BHT)
Sample concentration: 5 mg / mL
Sample injection volume: 0.1 mL
Solvent flow rate: 1 mL / min

(7)溶融張力(MT)、最高(最大)巻取速度(MaxDraw):
口径2mmφ、長さ40mmのオリフィスを装着し、口径10mmφ、長さ350mmのシリンダーを有する東洋精機製キャピログラフを用い、230℃に加熱されたシリンダーに重合体を10g充填する。充填後5分間予熱し、重合体を十分溶融させた後、シリンダー上部にあるピストンを20mm/minの速度で降下させ、シリンダー内の溶融樹脂を押し出した。押し出された樹脂は、上記オリフィス内を通過し、外部に出される。押し出されたストランド状の樹脂を4m/minの速度で巻き取り、この際の荷重を溶融張力とした。また、最高(最大)巻取速度(MaxDraw)は、巻き取り速度を上げていったときの樹脂が破断する直前の巻き取り速度を測定した。
(7) Melt tension (MT), maximum (maximum) winding speed (MaxDraw):
A cylinder heated at 230 ° C. is filled with 10 g of polymer using a Toyo Seiki Capillograph equipped with a cylinder with a diameter of 2 mmφ and a length of 40 mm, and a cylinder with a diameter of 10 mmφ and a length of 350 mm. After preheating for 5 minutes after filling, the polymer was sufficiently melted, and then the piston at the top of the cylinder was lowered at a speed of 20 mm / min to extrude the molten resin in the cylinder. The extruded resin passes through the orifice and is discharged to the outside. The extruded strand-shaped resin was wound up at a speed of 4 m / min, and the load at this time was defined as melt tension. The maximum (maximum) winding speed (MaxDraw) was measured as the winding speed immediately before the resin breaks when the winding speed was increased.

(8)平均気泡径:
実体顕微鏡(ニコン製:SMZ−1000−2型)を用いて、実施各例および比較各例において得られたポリプロピレン系(多層)中空発泡成形体の平均気泡径は、発泡体の径方向に垂直な断面を5mm厚で切出し、切断面の拡大投影により断面中の気泡数と気泡径より算出した。
(9)密度:
実施各例および比較各例により得られたポリプロピレン系(多層)発泡シートから試験片を切出し、試験片重量(g)を、該試験片の外形寸法から求められる体積(cm)で割って求めた。JIS K7222に準じて測定し、密度を求めた
(10)連続気泡率:
実施各例および比較各例により得られたポリプロピレン系(多層)発泡シートから試験片を切出し、エアピクノメター(東京サイエンス(株)製)を用いて、ASTM D2856に記載の方法に準じて測定した。
(8) Average bubble diameter:
Using a stereomicroscope (Nikon: SMZ-1000-2 type), the average cell diameter of the polypropylene-based (multilayer) hollow foamed molding obtained in each of the examples and comparative examples is perpendicular to the radial direction of the foam. A simple cross section was cut out with a thickness of 5 mm, and was calculated from the number of bubbles and the bubble diameter in the cross section by an enlarged projection of the cut surface.
(9) Density:
A test piece was cut out from the polypropylene-based (multi-layer) foamed sheet obtained in each of Examples and Comparative Examples, and the test piece weight (g) was obtained by dividing by the volume (cm 3 ) obtained from the outer dimensions of the test piece. It was. The density was measured according to JIS K7222 (10) Open cell ratio:
A test piece was cut out from the polypropylene-based (multilayer) foamed sheet obtained in each of Examples and Comparative Examples, and measured according to the method described in ASTM D2856 using Air Pycnometer (manufactured by Tokyo Science Co., Ltd.).

(11)外観評価:
外観評価は、実施各例および比較各例により得られたポリプロピレン系(多層)発泡シートにおいて、以下の基準で評価した。
○:気泡形状が均一で厚み厚薄が少なく部分的な凹部(ヒケ)もない。
×:部分的な巨大気泡があり厚み厚薄が多く部分的な凹部(ヒケ)がある。
(11) Appearance evaluation:
Appearance evaluation was evaluated according to the following criteria in the polypropylene-based (multi-layer) foamed sheets obtained in the respective examples and comparative examples.
○: The bubble shape is uniform, the thickness is thin, and there is no partial recess (sink).
X: There are partial giant bubbles, many thicknesses and thin portions, and there are partial recesses (sinks).

(12)ドローダウン性:
実施各例および比較各例により得られたポリプロピレン系(多層)発泡シートから335mm×335mmの大きさの試験片を切出し、脇坂エンジニアリング社製FVT400単発成形機を用いて、300mm×300mmの枠に固定し、これをヒータが上下に配列してある成形機の加熱炉内に導いて60秒間加熱している間のサンプル中央部の垂れ下がり量を装置に設けられた光電管により距離をドローダウン(垂下がり)量として測定し、以下の基準で評価した。
○:垂下がり量が10mm以下である場合、ドローダウン性良好。
×:垂下がり量が10mmを超える場合、ドローダウン性不良。
(12) Drawdown property:
A test piece having a size of 335 mm × 335 mm was cut out from the polypropylene-based (multilayer) foamed sheet obtained in each of Examples and Comparative Examples, and fixed to a 300 mm × 300 mm frame using a FVT400 single molding machine manufactured by Wakisaka Engineering Co., Ltd. Then, the amount of sag in the center of the sample while it is heated for 60 seconds after being introduced into the heating furnace of the molding machine in which the heaters are arranged up and down is drawn down by the photoelectric tube provided in the apparatus. ) Measured as an amount and evaluated according to the following criteria.
○: When the amount of sag is 10 mm or less, the drawdown property is good.
X: If the amount of sag exceeds 10 mm, the drawdown property is poor.

(13)深絞り性:
実施各例および比較各例により得られたポリプロピレン系(多層)発泡シートを、内寸300×300mmの枠に固定した後、雰囲気温度200℃に温度調節した加熱炉に導き30秒間加熱した。加熱直後、60℃に温度調節した口径75mm×底径50mmとし深さの異なる金型を用いて、目視観察にて、全体および底部コーナーの外観に表面の荒れがなく、かつ成形可能な深さから、成形可能な絞り比(深さ/口径)を求めた。
(13) Deep drawability:
After fixing the polypropylene-based (multilayer) foamed sheet obtained in each of the examples and comparative examples to a frame having an inner size of 300 × 300 mm, the polypropylene sheet was introduced into a heating furnace adjusted to an atmospheric temperature of 200 ° C. and heated for 30 seconds. Immediately after heating, using a mold with a diameter of 75 mm × bottom diameter of 50 mm adjusted to 60 ° C. and having a different depth, the appearance of the entire and bottom corners is not rough, and the moldable depth From this, the drawable ratio (depth / caliber) was determined.

2.使用材料
(イ)プロピレン系重合体(X)
下記の製造例1〜5で製造した重合体(PP−1)〜重合体(PP−5)、および市販のポリプロピレン樹脂(PF814)を用いた。
2. Materials used (a) Propylene polymer (X)
The polymers (PP-1) to (PP-5) produced in the following Production Examples 1 to 5 and a commercially available polypropylene resin (PF814) were used.

[製造例1(PP−1)]
[触媒成分(A)の合成例1]:
(1)ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)インデニル}]ハフニウムの合成:(成分[A−1](錯体1)の合成):
(1−a)4−(4−t−ブチルフェニル)−インデンの合成:
1000mlのガラス製反応容器に、1−ブロモ−4−t−ブチル−ベンゼン(40g、0.19mol)、ジメトキシエタン(400ml)を加え、−70℃まで冷却した。ここに、t−ブチルリチウム−ペンタン溶液(260ml、0.38mol、1.46mol/L)を滴下した。滴下後、徐々に室温まで戻しながら5時間攪拌した。再び−70℃まで冷却し、そこにトリイソプロピルボレート(46ml、0.20mol)のジメトキシエタン溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液に蒸留水(100ml)を加え、30分間攪拌した後、炭酸ナトリウム50gの水溶液(150ml)、4−ブロモインデン(30g、0.15mol)、テトラキス(トリフェニルフォスフィノ)パラジウム(5g、4.3mmol)を順に加え、その後、低沸成分を除去し、80℃で5時間加熱した。
反応液を氷水(1L)中に注ぎ、そこから3回エーテル抽出を行い、エーテル層を飽和食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、4−(4−t−ブチルフェニル)−インデン(37g、収率98%)を淡黄色液体として得た。
[Production Example 1 (PP-1)]
[Synthesis example 1 of catalyst component (A)]:
(1) Synthesis of dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) indenyl}] hafnium: (component [A-1] (Synthesis of Complex 1):
(1-a) Synthesis of 4- (4-t-butylphenyl) -indene:
1-Bromo-4-t-butyl-benzene (40 g, 0.19 mol) and dimethoxyethane (400 ml) were added to a 1000 ml glass reaction vessel, and cooled to -70 ° C. A t-butyllithium-pentane solution (260 ml, 0.38 mol, 1.46 mol / L) was added dropwise thereto. After dropping, the mixture was stirred for 5 hours while gradually returning to room temperature. The mixture was cooled again to −70 ° C., and a dimethoxyethane solution (100 ml) of triisopropyl borate (46 ml, 0.20 mol) was added dropwise thereto. After dropping, the mixture was stirred overnight while gradually returning to room temperature.
Distilled water (100 ml) was added to the reaction solution, and the mixture was stirred for 30 minutes, and then sodium carbonate 50 g in water (150 ml), 4-bromoindene (30 g, 0.15 mol), tetrakis (triphenylphosphino) palladium (5 g, 4 g .3 mmol) was added in turn, after which the low boiling components were removed and heated at 80 ° C. for 5 hours.
The reaction solution was poured into ice water (1 L), from which ether was extracted three times, and the ether layer was washed with saturated brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel column to obtain 4- (4-tert-butylphenyl) -indene (37 g, yield 98%) as a pale yellow liquid.

(1−b)2−ブロモ−4−(4−t−ブチルフェニル)−インデンの合成:
1000mlのガラス製反応容器に、4−(4−t−ブチルフェニル)−インデン(37g、0.15mol)、ジメチルスルホキシド(400ml)、蒸留水(11ml)を加え、そこにN−ブロモスクシンイミド(35g、0.20mol)を徐々に加え、そのまま室温で1時間攪拌した。
反応液を氷水(1L)中に注ぎ、そこから3回トルエンで抽出を行った。トルエン層を飽和食塩水で洗浄し、p−トルエンスルホン酸(4.3g、22mmol)を加え、水分を除去しながら2時間加熱還流させた。
反応液を分液ロートに移し食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、2−ブロモ−4−(4−t−ブチルフェニル)−インデン(46g、収率95%)を淡黄色固体として得た。
(1-b) Synthesis of 2-bromo-4- (4-t-butylphenyl) -indene:
To a 1000 ml glass reaction vessel, 4- (4-t-butylphenyl) -indene (37 g, 0.15 mol), dimethyl sulfoxide (400 ml) and distilled water (11 ml) were added, and N-bromosuccinimide (35 g) was added thereto. , 0.20 mol) was gradually added, and the mixture was stirred at room temperature for 1 hour.
The reaction solution was poured into ice water (1 L), and extracted from it three times with toluene. The toluene layer was washed with saturated brine, p-toluenesulfonic acid (4.3 g, 22 mmol) was added, and the mixture was heated to reflux for 2 hours while removing moisture.
The reaction solution was transferred to a separatory funnel and washed with brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by a silica gel column to give 2-bromo-4- (4-t-butylphenyl) -indene (46 g, yield 95%) as a pale yellow solid. Obtained.

(1−c)4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデンの合成:
1000mlのガラス製反応容器に、メチルフラン(13.8g、0.17mol)、ジメトキシエタン(400ml)を加え、−70℃まで冷却した。ここにn−ブチルリチウム−ヘキサン溶液(111ml、0.17mol、1.52mol/L)を滴下した。滴下後、徐々に室温まで戻しながら3時間攪拌した。再び70℃まで冷却し、そこにトリイソプロピルボレート(41ml、0.18mol)を含むジメトキシエタン溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液に蒸留水(50ml)を加え、30分間攪拌した後、炭酸ナトリウム54gの水溶液(100ml)、2−ブロモ−4−(4−t−ブチルフェニル)−インデン(46g、0.14mol)、テトラキス(トリフェニルフォスフィノ)パラジウム(5g、4.3mmol)を順に加え、その後、低沸成分を除去しながら加熱し80℃で3時間加熱した。
反応液を氷水(1L)中に注ぎ、そこから3回エーテル抽出を行い、エーテル層を飽和食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ヘキサンで再結晶を行い4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデン(30.7g、収率66%)を無色結晶として得た。
Synthesis of (1-c) 4- (4-t-butylphenyl) -2- (5-methyl-2-furyl) -indene:
Methyl furan (13.8 g, 0.17 mol) and dimethoxyethane (400 ml) were added to a 1000 ml glass reaction vessel and cooled to -70 ° C. An n-butyllithium-hexane solution (111 ml, 0.17 mol, 1.52 mol / L) was added dropwise thereto. After dropping, the mixture was stirred for 3 hours while gradually returning to room temperature. The mixture was cooled again to 70 ° C., and a dimethoxyethane solution (100 ml) containing triisopropyl borate (41 ml, 0.18 mol) was added dropwise thereto. After dropping, the mixture was stirred overnight while gradually returning to room temperature.
Distilled water (50 ml) was added to the reaction solution, and the mixture was stirred for 30 minutes, and then an aqueous solution (100 ml) of sodium carbonate 54 g, 2-bromo-4- (4-t-butylphenyl) -indene (46 g, 0.14 mol), Tetrakis (triphenylphosphino) palladium (5 g, 4.3 mmol) was added in order, and then heated while removing low boiling components and heated at 80 ° C. for 3 hours.
The reaction solution was poured into ice water (1 L), from which ether was extracted three times, and the ether layer was washed with saturated brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, the residue was purified with a silica gel column, recrystallized with hexane, and 4- (4-t-butylphenyl) -2- (5-methyl-2-furyl)- Indene (30.7 g, 66% yield) was obtained as colorless crystals.

(1−d)ジメチルビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}シランの合成:
1000mlのガラス製反応容器に、4−(4−t−ブチルフェニル)−2−(5−メチル−2−フリル)−インデン(22g、66mmol)、THF(200ml)を加え、−70℃まで冷却した。ここにn−ブチルリチウム−ヘキサン溶液(42ml、67mmol、1.60mol/L)を滴下した。滴下後、徐々に室温まで戻しながら3時間攪拌した。再び−70℃まで冷却し、1−メチルイミダゾール(0.3ml、3.8mmol)を加え、ジメチルジクロロシラン(4.3g、33mmol)を含むTHF溶液(100ml)を滴下した。滴下後、徐々に室温に戻しながら一夜攪拌した。
反応液に蒸留水を加え、分液ロートに移し食塩水で中性になるまで洗浄した。ここに硫酸ナトリウムを加え一晩放置し反応液を乾燥させた。無水硫酸ナトリウムをろ過し、溶媒を減圧留去して、シリカゲルカラムで精製し、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル))−インデニル)シランの淡黄色固体(22g、収率92%)を得た。
Synthesis of (1-d) dimethylbis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl} silane:
4- (4-t-Butylphenyl) -2- (5-methyl-2-furyl) -indene (22 g, 66 mmol) and THF (200 ml) are added to a 1000 ml glass reaction vessel and cooled to -70 ° C. did. An n-butyllithium-hexane solution (42 ml, 67 mmol, 1.60 mol / L) was added dropwise thereto. After dropping, the mixture was stirred for 3 hours while gradually returning to room temperature. The mixture was cooled again to −70 ° C., 1-methylimidazole (0.3 ml, 3.8 mmol) was added, and a THF solution (100 ml) containing dimethyldichlorosilane (4.3 g, 33 mmol) was added dropwise. After dropping, the mixture was stirred overnight while gradually returning to room temperature.
Distilled water was added to the reaction solution, transferred to a separatory funnel, and washed with brine until neutral. Sodium sulfate was added thereto and left overnight to dry the reaction solution. Anhydrous sodium sulfate was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified with a silica gel column. Dimethylbis (2- (5-methyl-2-furyl) -4- (4-t-butylphenyl))-indenyl) A pale yellow solid of silane (22 g, 92% yield) was obtained.

(1−e)rac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウムの合成:
500mlのガラス製反応容器に、ジメチルビス(2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル)シラン9.6g(13.0ミリモル)、ジエチルエーテル300mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。ここに1.59モル/リットルのn−ブチルリチウム−ヘキサン溶液16ml(26ミリモル)を滴下した。滴下後、室温に戻し3時間攪拌した。反応液の溶媒を減圧で留去し、トルエン250ml、ジエチルエーテル10mlを加え、ドライアイス−メタノール浴で−70℃まで冷却した。そこに、四塩化ハフニウム4.2g(13.0ミリモル)を加えた。その後、徐々に室温に戻しながら一夜攪拌した。
溶媒を減圧留去し、ジクロロメタン/ヘキサンで再結晶を行い、ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウムのラセミ体(純度99%以上)を、黄橙色結晶として1.3g(収率22%)得た。
Synthesis of (1-e) rac-dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl) -indenyl}] hafnium:
In a 500 ml glass reaction vessel, 9.6 g (13.0 mmol) of dimethylbis (2- (5-methyl-2-furyl) -4- (4-tert-butylphenyl) -indenyl) silane, 300 ml of diethyl ether. And cooled to -70 ° C in a dry ice-methanol bath. 16 ml (26 mmol) of a 1.59 mol / liter n-butyllithium-hexane solution was added dropwise thereto. After dropping, the mixture was returned to room temperature and stirred for 3 hours. The solvent of the reaction solution was distilled off under reduced pressure, 250 ml of toluene and 10 ml of diethyl ether were added, and the solution was cooled to −70 ° C. in a dry ice-methanol bath. Thereto was added 4.2 g (13.0 mmol) of hafnium tetrachloride. Thereafter, the mixture was stirred overnight while gradually returning to room temperature.
The solvent was distilled off under reduced pressure, recrystallization was performed with dichloromethane / hexane, and dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t-butylphenyl)- Indenyl}] 1.3 g of hafnium racemate (purity 99% or more) was obtained as yellow-orange crystals (yield 22%).

得られたラセミ体についてのプロトン核磁気共鳴法(H−NMR)による同定値を以下に記す。
H−NMR(CDCl)同定結果]:
ラセミ体:δ0.95(s,6H),δ1.18(s,18H),δ2.09(s,6H),δ5.80(d,2H),δ6.37(d,2H),δ6.75(dd,2H),δ7.09(d,2H),δ7.34(s,2H),δ7.33(d,2H),δ7.35(d,4H),δ7.87(d,4H)。
The resulting proton nuclear magnetic resonance method for racemate identified value according to (1 H-NMR) are shown below.
[1 H-NMR (CDCl 3 ) identification results:
Racemate: δ 0.95 (s, 6H), δ 1.18 (s, 18H), δ 2.09 (s, 6H), δ 5.80 (d, 2H), δ 6.37 (d, 2H), δ6. 75 (dd, 2H), δ 7.09 (d, 2H), δ 7.34 (s, 2H), δ 7.33 (d, 2H), δ 7.35 (d, 4H), δ 7.87 (d, 4H ).

[触媒成分(A)の合成例2]:
(1)rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成:(成分[A−1](錯体2)の合成):
rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウムの合成は、特開平11―240909号公報の実施例1に記載の方法と同様に、実施した。
[Synthesis Example 2 of Catalyst Component (A)]:
(1) Synthesis of rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium: (synthesis of component [A-1] (complex 2) ):
The synthesis of rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium is carried out according to the method described in Example 1 of JP-A-11-240909. As well as.

(2)[触媒合成例1]
(2−1)イオン交換性層状珪酸塩の化学処理:
セパラブルフラスコ中で蒸留水3456gに96%硫酸(1044g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)600gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水2400g加えた後にろ過したところケーキ状固体1230gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム648g、蒸留水1800gを加え硫酸リチウム水溶液としたところへ、上記ケーキ上固体を全量投入し、更に蒸留水522gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水1980g加えた後にろ過し、更に蒸留水でpH3まで洗浄し、ろ過を行ったところ、ケーキ状固体1150gを得た。
得られた固体を窒素気流下130℃で2日間予備乾燥後、53μm以上の粗大粒子を除去し、更に215℃、窒素気流下、滞留時間10分の条件でロータリーキルン乾燥することにより、化学処理スメクタイト340gを得た。
この化学処理スメクタイトの組成は、Al:7.81重量%、Si:36.63重量%、Mg:1.27重量%、Fe:1.82重量%、Li:0.20重量%であり、Al/Si=0.222[mol/mol]であった。
(2) [Catalyst Synthesis Example 1]
(2-1) Chemical treatment of ion-exchange layered silicate:
In a separable flask, 96% sulfuric acid (1044 g) was added to 3456 g of distilled water, and then 600 g of montmorillonite (Mizusawa Chemical Benclay SL: average particle size 19 μm) was added as a layered silicate. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, added with 2400 g of distilled water and then filtered to obtain 1230 g of a cake-like solid.
Next, 648 g of lithium sulfate and 1800 g of distilled water were added to the separable flask to make a lithium sulfate aqueous solution, and the entire amount of the above solid on the cake was added, and 522 g of distilled water was further added. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, filtered after adding 1980 g of distilled water, further washed with distilled water to pH 3, and filtered to obtain 1150 g of cake-like solid.
The obtained solid was preliminarily dried at 130 ° C. for 2 days under a nitrogen stream, and then coarse particles of 53 μm or more were removed, and further, rotary kiln drying was performed under a condition of 215 ° C. under a nitrogen stream for a residence time of 10 minutes. 340 g was obtained.
The composition of this chemically treated smectite is Al: 7.81 wt%, Si: 36.63 wt%, Mg: 1.27 wt%, Fe: 1.82 wt%, Li: 0.20 wt%, Al / Si = 0.222 [mol / mol].

(2−2)触媒調製及び予備重合:
3つ口フラスコ(容積1L)中に、上で得られた化学処理スメクタイト10gを入れ、ヘプタン(65mL)を加えてスラリーとし、これにトリイソブチルアルミニウム(25mmol:濃度143mg/mLのヘプタン溶液を34.6mL)を加えて1時間攪拌後、ヘプタンで残液率が1/100になるまで洗浄し、全容量を100mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例1で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)インデニル}]ハフニウム(105μmol)をトルエン(30mL)に溶解し(溶液1)、更に、別のフラスコ(容積200mL)中で、前記触媒成分(A)の合成例2で作製したrac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(45μmol)をトルエン(12mL)に溶解した(溶液2)。
(2-2) Catalyst preparation and prepolymerization:
Into a three-necked flask (volume: 1 L), 10 g of the chemically treated smectite obtained above was added, and heptane (65 mL) was added to form a slurry, to which was added a triisobutylaluminum (25 mmol: heptane solution having a concentration of 143 mg / mL). 6 mL) and stirred for 1 hour, washed with heptane until the residual liquid ratio became 1/100, and heptane was added so that the total volume became 100 mL.
In another flask (volume: 200 mL), rac-dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl)-] prepared in Synthesis Example 1 of the catalyst component (A) was used. 4- (4-t-butylphenyl) indenyl}] hafnium (105 μmol) is dissolved in toluene (30 mL) (solution 1), and further, the catalyst component (A) is synthesized in another flask (volume 200 mL). Rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl) -4-hydroazurenyl}] hafnium (45 μmol) prepared in Example 2 was dissolved in toluene (12 mL) (Solution 2 ).

先ほどの化学処理スメクタイトが入った1Lフラスコにトリイソブチルアルミニウム(0.6mmol:濃度143mg/mLのヘプタン溶液を0.83mL)を加えた後、上記溶液1を加え、さらに5分後に上記溶液2加えて、1時間室温で攪拌した。
その後、ヘプタンを356mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのちプロピレンを10g/時の速度でフィードし、2時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、50℃に昇温し、オートクレーブ内の圧力が0.05MPaになるまで残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去した後、残った部分に、トリイソブチルアルミニウム(6mmol:濃度143mg/mLのヘプタン溶液を8.3mL)を加えて5分攪拌した。
この固体を2時間減圧乾燥することにより、乾燥予備重合触媒27.5gを得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.75であった(予備重合触媒1)。
After adding triisobutylaluminum (0.6 mmol: 0.83 mL of a heptane solution with a concentration of 143 mg / mL) to the 1 L flask containing the chemically treated smectite, add the above solution 1, and then add the above solution 2 after 5 minutes. And stirred at room temperature for 1 hour.
Thereafter, 356 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After the internal temperature of the autoclave was set to 40 ° C., propylene was fed at a rate of 10 g / hour, and prepolymerization was performed while maintaining 40 ° C. for 2 hours. Thereafter, the propylene feed was stopped, the temperature was raised to 50 ° C., and residual polymerization was performed until the pressure in the autoclave reached 0.05 MPa. After removing the supernatant of the resulting catalyst slurry by decantation, triisobutylaluminum (6 mmol: 8.3 mL of a heptane solution having a concentration of 143 mg / mL) was added to the remaining portion and stirred for 5 minutes.
This solid was dried under reduced pressure for 2 hours to obtain 27.5 g of a dry prepolymerized catalyst. The prepolymerization ratio (a value obtained by dividing the amount of the prepolymerized polymer by the amount of the solid catalyst) was 1.75 (preliminary polymerization catalyst 1).

(3)[重合]
内容積200リットルの攪拌式オートクレーブ内をプロピレンで十分に置換した後、十分に脱水した液化プロピレン40kgを導入した。これに水素5リットル(標準状態の体積として)、トリイソブチルアルミニウム・n−ヘプタン溶液500ml(0.12mol)を加えた後、内温を75℃まで昇温した。次いで、予備重合触媒1を4.0g(予備重合ポリマーを除いた重量で)、アルゴンで圧入して重合を開始させ、内部温度を75℃に維持した。3時間経過後に、エタノールを100ml圧入し、未反応のプロピレンをパージし、オートクレーブ内を窒素置換することにより、第一工程の重合を停止した。
得られたポリマーを90℃窒素気流下で1時間乾燥し、14.5kgの重合体(PP−1)を得た。触媒活性は、3630(g−PP/g−cat)であった。
得られた重合体5gを熱キシレンに溶解した後、大量のエタノールで析出させた。ろ過した後に減圧乾燥し、分析用サンプルとした。
(3) [Polymerization]
After sufficiently replacing the inside of the stirring autoclave having an internal volume of 200 liters with propylene, 40 kg of sufficiently dehydrated liquefied propylene was introduced. To this was added 5 liters of hydrogen (as a standard volume) and 500 ml (0.12 mol) of a triisobutylaluminum / n-heptane solution, and the internal temperature was raised to 75 ° C. Next, 4.0 g of the prepolymerized catalyst 1 (by weight excluding the prepolymerized polymer) was injected with argon to initiate polymerization, and the internal temperature was maintained at 75 ° C. After 3 hours, 100 ml of ethanol was injected under pressure, unreacted propylene was purged, and the inside of the autoclave was purged with nitrogen to stop the polymerization in the first step.
The obtained polymer was dried for 1 hour under a nitrogen stream at 90 ° C. to obtain 14.5 kg of a polymer (PP-1). The catalytic activity was 3630 (g-PP / g-cat).
5 g of the obtained polymer was dissolved in hot xylene and then precipitated with a large amount of ethanol. After filtration, it was dried under reduced pressure to obtain a sample for analysis.

[製造例2(PP−2)]
添加する水素を12.5リットル、使用する予備重合触媒1を3.0g(予備重合ポリマーを除いた重量で)で行う以外は、製造例1と同様に実施した。14.3kgの重合体(PP−2)を得た。触媒活性は、4770(g−PP/g−cat)であった。
[Production Example 2 (PP-2)]
The same procedure as in Production Example 1 was conducted except that 12.5 liters of hydrogen were added and 3.0 g of the prepolymerized catalyst 1 to be used (by weight excluding the prepolymerized polymer) was used. 14.3 kg of polymer (PP-2) was obtained. The catalytic activity was 4770 (g-PP / g-cat).

[製造例3(PP−3)]
(1)[触媒合成例2]
上記触媒合成例1の(1−2)触媒調製及び予備重合において、rac−ジクロロ[1,1’−ジメチルシリレンビス{2−(5−メチル−2−フリル)−4−(4−t−ブチルフェニル)−インデニル}]ハフニウム(75μmol)をトルエン(21mL)に溶解して、溶液1とし、rac−ジクロロ[1,1’−ジメチルシリレンビス{2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル}]ハフニウム(75μmol)をトルエン(21mL)に溶解して、溶液2として使用する以外は、触媒合成例1と同様の実験をおこなった。
そうしたところ、乾燥予備重合触媒(予備重合触媒2)30.9gを得た。予備重合倍率は2.09であった(予備重合触媒2)。
[Production Example 3 (PP-3)]
(1) [Catalyst synthesis example 2]
In (1-2) catalyst preparation and prepolymerization in Catalyst Synthesis Example 1, rac-dichloro [1,1′-dimethylsilylenebis {2- (5-methyl-2-furyl) -4- (4-t- Butylphenyl) -indenyl}] hafnium (75 μmol) is dissolved in toluene (21 mL) to form solution 1, and rac-dichloro [1,1′-dimethylsilylenebis {2-methyl-4- (4-chlorophenyl)- 4-hydroazurenyl}] hafnium (75 μmol) was dissolved in toluene (21 mL) and used as Solution 2, and the same experiment as in Catalyst Synthesis Example 1 was performed.
As a result, 30.9 g of a dry prepolymerization catalyst (preliminary polymerization catalyst 2) was obtained. The prepolymerization ratio was 2.09 (preliminary polymerization catalyst 2).

(2)〔重合〕
水素を7.5L(標準状態の体積として)導入し、予備重合触媒1の代わりに上記で合成した予備重合触媒2を、予備重合ポリマーを除いた重量で2.0g使用する以外は重合例1と同様の重合を行い、11.4kgの重合体(PP−3)を得た。触媒活性は、5700(g−PP/g−cat)であった。
(2) [Polymerization]
Example 1 Polymerization Example 1 except that 7.5 L (as a standard state volume) of hydrogen was introduced and 2.0 g of the prepolymerized catalyst 2 synthesized above was used instead of the prepolymerized catalyst 1 in a weight excluding the prepolymerized polymer. The same polymerization was carried out to obtain 11.4 kg of a polymer (PP-3). The catalytic activity was 5700 (g-PP / g-cat).

[製造例4(PP−4)]
水素を15L(標準状態の体積として)導入し、予備重合触媒1を、予備重合ポリマーを除いた重量で3.3g使用し、重合時間を1時間とする以外は重合例1と同様の重合を行い、14.0kgの重合体(PP−4)を得た。触媒活性は、4240(g−PP/g−cat)であった。
[Production Example 4 (PP-4)]
The same polymerization as in Polymerization Example 1 was carried out except that 15 L of hydrogen (as a volume in the standard state) was introduced, 3.3 g of the prepolymerized catalyst 1 was used in a weight excluding the prepolymerized polymer, and the polymerization time was 1 hour. 14.0 kg of polymer (PP-4) was obtained. The catalytic activity was 4240 (g-PP / g-cat).

[製造例5(PP−5)]:
[触媒成分(A)の合成例3]:
(1)ジクロロ[1,1’−ジメチルシリレンビス(2−エチル−4−フェニル−インデニル)]ジルコニウムの合成:
特開平8−208733号公報の実施例1に記載の方法に準じて、rac−ジクロロ[1,1’−ジメチルシリレンビス(2−エチル−4−フェニル−インデニル)]ジルコニウムを合成した。
[Production Example 5 (PP-5)]:
[Synthesis Example 3 of Catalyst Component (A)]:
(1) Synthesis of dichloro [1,1′-dimethylsilylenebis (2-ethyl-4-phenyl-indenyl)] zirconium:
In accordance with the method described in Example 1 of JP-A-8-208733, rac-dichloro [1,1′-dimethylsilylenebis (2-ethyl-4-phenyl-indenyl)] zirconium was synthesized.

(2)[触媒合成例3]:
(2−1)イオン交換性層状珪酸塩の化学処理:
セパラブルフラスコ中で蒸留水2260gに96%硫酸(1500g)を加えその後、層状珪酸塩としてモンモリロナイト(水沢化学社製ベンクレイSL:平均粒径19μm)600gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で480分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水でpH3まで洗浄した。得られた固体を窒素気流下130℃で2日間予備乾燥後53μm以上の粗大粒子を除去し、更に215℃、窒素気流下、滞留時間10分の条件でロータリーキルン乾燥することにより、化学処理スメクタイト295gを得た。
この化学処理スメクタイトの組成は、Al:2.72重量%、Si:43.48重量%、Mg:0.36重量%、Fe:0.61重量%であり、Al/Si=0.065[mol/mol]であった。
(2) [Catalyst synthesis example 3]:
(2-1) Chemical treatment of ion-exchange layered silicate:
In a separable flask, 96% sulfuric acid (1500 g) was added to 2260 g of distilled water, and then 600 g of montmorillonite (Mizusawa Chemical Benclay SL: average particle size 19 μm) was added as a layered silicate. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 480 minutes. The reaction slurry was cooled to room temperature in 1 hour and washed to pH 3 with distilled water. The resulting solid was preliminarily dried at 130 ° C. for 2 days under a nitrogen stream, and then coarse particles of 53 μm or more were removed, and further dried at 215 ° C. under a nitrogen stream under a rotary kiln condition for 295 g of chemically treated smectite. Got.
The composition of the chemically treated smectite is Al: 2.72% by weight, Si: 43.48% by weight, Mg: 0.36% by weight, Fe: 0.61% by weight, and Al / Si = 0.065 [ mol / mol].

(2−2)触媒調製及び予備重合:
3つ口フラスコ(容積1L)中に上で得られた化学処理スメクタイト20gを入れ、ヘプタン(114mL)を加えてスラリーとし、これにトリエチルアルミニウム(50mmol:濃度71mg/mLのヘプタン溶液を81mL)を加えて1時間攪拌後、ヘプタンで残液率が1/100になるまで洗浄し、全容量を200mLとなるようにヘプタンを加えた。
また、別のフラスコ(容積200mL)中で、ヘプタン(85mL)に、rac−ジクロロ[1,1’−ジメチルシリレンビス(2−エチル−4−フェニル−インデニル)]ジルコニウム(0.3mmol)を加えてスラリーとした後、トリイソブチルアルミニウム(0.6mmol:濃度140mg/mLのヘプタン溶液を0.85mL)を加えて60分室温で攪拌し反応させた。この溶液を、先ほどの化学処理スメクタイトが入った1Lフラスコに加えて、室温で60分攪拌した。その後ヘプタンを214mL追加し、このスラリーを1Lオートクレーブに導入した。
オートクレーブの内部温度を40℃にしたのち、プロピレンを20g/時の速度でフィードし2時間40℃を保ちつつ予備重合を行った。その後、プロピレンフィードを止めて、1時間残重合を行った。得られた触媒スラリーの上澄みをデカンテーションで除去し、残った部分にトリイソブチルアルミニウム(12mmol:濃度140mg/mLのヘプタン溶液を17mL)を加えて10分攪拌した。この固体を2時間減圧乾燥することにより乾燥予備重合触媒47.6g(予備重合触媒3)を得た。予備重合倍率(予備重合ポリマー量を固体触媒量で除した値)は1.38であった。
(2-2) Catalyst preparation and prepolymerization:
Into a three-necked flask (volume: 1 L), 20 g of the chemically treated smectite obtained above is added, and heptane (114 mL) is added to form a slurry, to which triethylaluminum (50 mmol: 81 mL of a heptane solution with a concentration of 71 mg / mL) is added. In addition, after stirring for 1 hour, the mixture was washed with heptane until the residual liquid ratio became 1/100, and heptane was added so that the total volume became 200 mL.
In another flask (volume 200 mL), rac-dichloro [1,1′-dimethylsilylenebis (2-ethyl-4-phenyl-indenyl)] zirconium (0.3 mmol) was added to heptane (85 mL). Then, triisobutylaluminum (0.6 mmol: 0.85 mL of a heptane solution having a concentration of 140 mg / mL) was added and reacted by stirring at room temperature for 60 minutes. This solution was added to the 1 L flask containing the chemically treated smectite and stirred for 60 minutes at room temperature. Thereafter, 214 mL of heptane was added, and this slurry was introduced into a 1 L autoclave.
After setting the internal temperature of the autoclave to 40 ° C., propylene was fed at a rate of 20 g / hour, and prepolymerization was performed while maintaining the temperature at 40 ° C. for 2 hours. Thereafter, propylene feed was stopped and residual polymerization was carried out for 1 hour. The supernatant of the resulting catalyst slurry was removed by decantation, and triisobutylaluminum (12 mmol: 17 mL of a heptane solution having a concentration of 140 mg / mL) was added to the remaining portion, followed by stirring for 10 minutes. This solid was dried under reduced pressure for 2 hours to obtain 47.6 g (preliminary polymerization catalyst 3) of a dry preliminary polymerization catalyst. The prepolymerization ratio (value obtained by dividing the amount of prepolymerized polymer by the amount of solid catalyst) was 1.38.

(3)プロピレン重合:
水素は添加しないで、予備重合触媒1の代わりに上記で合成した予備重合触媒3を、予備重合ポリマーを除いた重量で20g使用し、重合温度を70℃、3時間とする以外は重合例1と同様の重合を行い、6.9kgの重合体(PP−5)を得た。触媒活性は、345(g−PP/g−cat)であった。特に、このポリマーは、触媒活性が低いため、ポリマー中の触媒残渣量が多く、成形時の色相悪化が懸念される。
(3) Propylene polymerization:
Polymerization Example 1 except that 20 g of the prepolymerized catalyst 3 synthesized above was used instead of the prepolymerized catalyst 1 in a weight excluding the prepolymerized polymer and the polymerization temperature was set to 70 ° C. for 3 hours without adding hydrogen. The same polymerization was carried out to obtain 6.9 kg of a polymer (PP-5). The catalytic activity was 345 (g-PP / g-cat). In particular, since this polymer has low catalytic activity, the amount of catalyst residue in the polymer is large, and there is a concern that the hue deteriorates during molding.

(市販品)
PF814(電子線照射品):
バゼル社製の高溶融張力ポリプロピレン(MFR=2.5g/10min)を用いた。
(Commercial item)
PF814 (electron beam irradiated product):
High melt tension polypropylene (MFR = 2.5 g / 10 min) manufactured by Basel Co. was used.

(ロ)発泡剤(F)
発泡剤(F)または気泡調整剤として、以下のものを用いた。
無機系発泡剤:永和化成社製、ポリスレンEE405F(商品名)
無機系発泡剤:永和化成社製、ポリスレンEE275F(商品名)
物理発泡剤:二酸化炭素
(B) Foaming agent (F)
The following were used as the foaming agent (F) or the air bubble regulator.
Inorganic foaming agent: Polyslen EE405F (trade name) manufactured by Eiwa Kasei Co., Ltd.
Inorganic foaming agent: Polyslen EE275F (trade name), manufactured by Eiwa Kasei Co., Ltd.
Physical foaming agent: carbon dioxide

[実施例1]
製造例1で製造したプロピレン系樹脂(PP−1)100重量部に対し、フェノ−ル系酸化防止剤であるテトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネ−ト]メタン(商品名:IRGANOX1010、チバスペシャリティーケミカルズ社製)0.05重量部、フォスファイト系酸化防止剤であるトリス(2,4−ジ−t−ブチルフェニル)フォスファイト(商品名:IRGAFOS 168、チバスペシャリティーケミカルズ株式会社製)0.05重量部、並びに中和剤であるステアリン酸カルシウム(商品名:カルシウムステアレ−ト、日本油脂株式会社製)0.05重量部配合し、高速攪拌式混合機(ヘンシェルミキサ−、商品名)にて室温下で3分間混合した後、押出機にて溶融混練してペレットを得た。
[Example 1]
Tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4 ′), which is a phenolic antioxidant, with respect to 100 parts by weight of the propylene-based resin (PP-1) produced in Production Example 1. -Hydroxyphenyl) propionate] methane (trade name: IRGANOX 1010, manufactured by Ciba Specialty Chemicals) 0.05 parts by weight, tris (2,4-di-t-butylphenyl) phos, a phosphite antioxidant Fight (trade name: IRGAFOS 168, manufactured by Ciba Specialty Chemicals Co., Ltd.) 0.05 parts by weight, and calcium stearate as a neutralizing agent (trade name: calcium stearate, manufactured by Nippon Oil & Fats Co., Ltd.) 0.05 weight After mixing for 3 minutes at room temperature with a high-speed stirring mixer (Henschel mixer, trade name), melt kneading with an extruder To obtain pellets.

スクリュー径65mmΦ押出機に、前記ペレット100重量部と発泡剤として無機系発泡剤(商品名:ポリスレンEE405F、永和化成社製)0.2重量部をリボンブレンダーにより均一に攪拌混合し、樹脂温度190℃に加熱溶融可塑化し、プロピレン系樹脂組成物を得た。押出機先端に取付けられたTダイよりプロピレン系樹脂組成物を押出し、冷却ロールおよびエアナイフによりロールでの冷却および密着により、ポリプロピレン系発泡シートを形成した。
得られた該発泡シートは、厚みが1.0mm、密度が0.45g/cmであり、平均気泡径100μmの連続気泡率の低い緻密な気泡構造を有する外観良好なものであった。
Into an extruder having a screw diameter of 65 mm, 100 parts by weight of the pellets and 0.2 part by weight of an inorganic foaming agent (trade name: Polyslen EE405F, manufactured by Eiwa Kasei Co., Ltd.) as a foaming agent are stirred and mixed uniformly with a ribbon blender. The mixture was melted and plasticized by heating at 0 ° C. to obtain a propylene resin composition. A propylene-based resin composition was extruded from a T-die attached to the tip of the extruder, and a polypropylene-based foam sheet was formed by cooling and adhesion with a roll using a cooling roll and an air knife.
The obtained foamed sheet had a thickness of 1.0 mm, a density of 0.45 g / cm 3 , and a good appearance having a dense cell structure with an average cell diameter of 100 μm and a low open cell rate.

得られた該ポリプロピレン系発泡シートを、内寸300×300mmの枠に固定した後、ヒーター温度350℃に温度調節した加熱炉に導き60秒間加熱したときの、シートの垂下がり量は5mmと、ドローダウン性は良好なものであった。また、熱成形による容器を成形した際、深さ52mm、絞り比0.7の深い容器を成形できた。
用いた樹脂の物性を表1に示し、得られた該ポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
本発明の構成を満足するポリプロピレン系発泡シートは、連続気泡率が低く、緻密な気泡構造を有する外観良好なものであり、それを用いた熱成形容器は、外観良好な深い成形体が得られる良好な熱成形性であった。
The polypropylene foam sheet thus obtained was fixed to a frame with an inner dimension of 300 × 300 mm, and then led to a heating furnace adjusted to a heater temperature of 350 ° C. and heated for 60 seconds. The drawdown property was good. Further, when a container was formed by thermoforming, a container having a depth of 52 mm and a drawing ratio of 0.7 could be formed.
The physical properties of the resin used are shown in Table 1, and the evaluation results of the obtained polypropylene foam sheet and molded article are shown in Table 2.
The polypropylene foam sheet satisfying the constitution of the present invention has a low open cell ratio and a good appearance having a dense cell structure, and a thermoformed container using the same gives a deep molded article having a good appearance. Good thermoformability.

[実施例2]
プロピレン系樹脂(PP−1)の代わりに、製造例2で製造したプロピレン系樹脂(PP−2)を用いた以外は、実施例1と同様に実施し、ポリプロピレン系発泡シートを得た。厚みが1.0mm、密度が0.45g/cmであり、平均気泡径100μmの連続気泡率の低い緻密な気泡構造を有する外観良好なものであった。
また、得られた該ポリプロピレン系発泡シートは、垂下がり量の少ないドローダウン性が良好であり、熱成形で深い外観良好な容器が得られた。
用いた樹脂の物性を表1に示し、得られたポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
本発明の構成を満足するポリプロピレン系発泡シートは、連続気泡率が低く、緻密な気泡構造を有する外観良好なものであり、それを用いた熱成形容器は外観良好な深い成形体が得られる良好な熱成形性であった。
[Example 2]
A polypropylene foam sheet was obtained in the same manner as in Example 1 except that the propylene resin (PP-2) produced in Production Example 2 was used instead of the propylene resin (PP-1). The thickness was 1.0 mm, the density was 0.45 g / cm 3 , and the appearance was good with a dense cell structure with an average cell diameter of 100 μm and a low open cell rate.
Further, the obtained polypropylene foam sheet had a good draw-down property with a small amount of sag, and a container having a good deep appearance by thermoforming was obtained.
The physical properties of the resin used are shown in Table 1, and the evaluation results of the obtained polypropylene foam sheet and molded article are shown in Table 2.
The polypropylene-based foam sheet satisfying the constitution of the present invention has a low open cell ratio and a good appearance having a dense cell structure, and a thermoformed container using it has a good appearance with a good appearance. It was a good thermoformability.

[実施例3]
プロピレン系樹脂(PP−1)の代わりに、製造例3で製造したプロピレン系樹脂(PP−3)を用いた以外は、実施例1と同様に実施し、ポリプロピレン系発泡シートを得た。厚みが1.0mm、密度が0.45g/cmであり、平均気泡径100μmの連続気泡率の低い緻密な気泡構造を有する外観良好なものであった。
また、得られた該ポリプロピレン系発泡シートは、垂下がり量の少ないドローダウン性が良好であり、熱成形で深い外観良好な容器が得られた。
用いた樹脂の物性を表1に示し、得られた該ポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
本発明の構成を満足するポリプロピレン系発泡シートは、連続気泡率が低く、緻密な気泡構造を有する外観良好なものであり、それを用いた熱成形容器は、外観良好な深い成形体が得られる良好な熱成形性であった。
[Example 3]
A polypropylene foam sheet was obtained in the same manner as in Example 1 except that the propylene resin (PP-3) produced in Production Example 3 was used instead of the propylene resin (PP-1). The thickness was 1.0 mm, the density was 0.45 g / cm 3 , and the appearance was good with a dense cell structure with an average cell diameter of 100 μm and a low open cell rate.
Further, the obtained polypropylene foam sheet had a good draw-down property with a small amount of sag, and a container having a good deep appearance by thermoforming was obtained.
The physical properties of the resin used are shown in Table 1, and the evaluation results of the obtained polypropylene foam sheet and molded article are shown in Table 2.
The polypropylene foam sheet satisfying the constitution of the present invention has a low open cell ratio and a good appearance having a dense cell structure, and a thermoformed container using the same gives a deep molded article having a good appearance. Good thermoformability.

[実施例4]
プロピレン系樹脂(PP−1)100重量部と気泡調整剤として無機系発泡剤(商品名:ポリスレンEE405F、永和化成社製)0.1重量部をリボンブレンダーにより均一に攪拌混合した樹脂組成物を、バレル途中に気体発泡剤注入用のバレル孔を有するスクリュー径65mmΦ押出機に投入し、バレル途中より重合体(PP−1)100重量部に対して、二酸化炭素0.3重量部を圧入混練して樹脂温度170℃に加熱溶融可塑化し、発泡性溶融樹脂とした。先端に取り付けられたTダイス出口より押出し、冷却ロールおよびエアナイフによりロールでの冷却および密着により、単層のポリプロピレン系発泡シートを形成した。
得られた該ポリプロピレン系発泡シートは、厚みが1.3mm、密度が0.3g/cmであり、平均気泡径300μmの連続気泡率の低い緻密な気泡構造を有する外観良好なものであった。
また、得られた該ポリプロピレン系発泡シートは、垂下がり量の少ないドローダウン性が良好であり、熱成形で深い外観良好な容器が得られた。
用いた樹脂の物性を表1に示し、得られた該ポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
本発明の構成を満足するポリプロピレン系発泡シートは、連続気泡率が低く、緻密な気泡構造を有する外観良好なものであり、それを用いた熱成形容器は、外観良好な深い成形体が得られる良好な熱成形性であった。
[Example 4]
A resin composition obtained by uniformly stirring and mixing 100 parts by weight of a propylene resin (PP-1) and 0.1 parts by weight of an inorganic foaming agent (trade name: Polyslen EE405F, manufactured by Eiwa Kasei Co., Ltd.) as a bubble regulator , Put into a 65 mm diameter screw extruder having a barrel hole for injecting a gas blowing agent in the middle of the barrel, and press knead 0.3 parts by weight of carbon dioxide into 100 parts by weight of the polymer (PP-1) from the middle of the barrel Then, the resin was heated to melt plasticization at a resin temperature of 170 ° C. to obtain a foamable molten resin. A single-layer polypropylene-based foam sheet was formed by extrusion from a T-die outlet attached to the tip, and cooling and adhesion with a roll using a cooling roll and an air knife.
The obtained polypropylene-based foamed sheet had a thickness of 1.3 mm, a density of 0.3 g / cm 3 , and an excellent appearance having a dense cell structure with an average cell diameter of 300 μm and a low open cell rate. .
Further, the obtained polypropylene foam sheet had a good draw-down property with a small amount of sag, and a container having a good deep appearance by thermoforming was obtained.
The physical properties of the resin used are shown in Table 1, and the evaluation results of the obtained polypropylene foam sheet and molded article are shown in Table 2.
The polypropylene foam sheet satisfying the constitution of the present invention has a low open cell ratio and a good appearance having a dense cell structure, and a thermoformed container using the same gives a deep molded article having a good appearance. Good thermoformability.

[実施例5]
プロピレン系樹脂(PP−1)100重量部と気泡調整剤として無機系発泡剤(商品名:ポリスレンEE405F、永和化成社製)0.1重量部をリボンブレンダーにより均一に攪拌混合した樹脂組成物を、バレル途中に気体発泡剤注入用のバレル孔を有するスクリュー径65mmΦ押出機に投入し、バレル途中より重合体(PP−1)100重量部に対して、二酸化炭素0.5重量部を圧入混練して、樹脂温度170℃に加熱溶融可塑化し、発泡性溶融樹脂とした。先端に取り付けられたサーキュラーダイス出口より押出し、冷却筒および冷却エアにより、単層のポリプロピレン系発泡シートを形成した。
得られた該ポリプロピレン系発泡シートは、厚みが2.0mm、密度が0.18g/cmであり、平均気泡径300μmの連続気泡率の低い緻密な気泡構造を有する外観良好なものであった。
また、得られた該ポリプロピレン系発泡シートは、垂下がり量の少ないドローダウン性が良好であり、熱成形で深い外観良好な容器が得られた。
用いた樹脂の物性を表1に示し、得られた該ポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
本発明の構成を満足するポリプロピレン系発泡シートは、連続気泡率が低く、緻密な気泡構造を有する外観良好なものであり、それを用いた熱成形容器は外観良好な深い成形体が得られる良好な熱成形性であった。
[Example 5]
A resin composition obtained by uniformly stirring and mixing 100 parts by weight of a propylene resin (PP-1) and 0.1 parts by weight of an inorganic foaming agent (trade name: Polyslen EE405F, manufactured by Eiwa Kasei Co., Ltd.) as a bubble regulator , Put into a 65 mm diameter screw extruder having a barrel hole for injecting a gas blowing agent in the middle of the barrel, and press-knead 0.5 parts by weight of carbon dioxide to 100 parts by weight of the polymer (PP-1) from the middle of the barrel Then, it was melted and plasticized by heating to a resin temperature of 170 ° C. to obtain a foamable molten resin. Extrusion was performed from the outlet of a circular die attached to the tip, and a single-layer polypropylene foam sheet was formed by a cooling cylinder and cooling air.
The obtained polypropylene-based foamed sheet had a thickness of 2.0 mm, a density of 0.18 g / cm 3 , and an excellent appearance having a dense cell structure with an average cell diameter of 300 μm and a low open cell rate. .
Further, the obtained polypropylene foam sheet had a good draw-down property with a small amount of sag, and a container having a good deep appearance by thermoforming was obtained.
The physical properties of the resin used are shown in Table 1, and the evaluation results of the obtained polypropylene foam sheet and molded article are shown in Table 2.
The polypropylene-based foam sheet satisfying the constitution of the present invention has a low open cell ratio and a good appearance having a dense cell structure, and a thermoformed container using it has a good appearance with a good appearance. It was a good thermoformability.

[実施例6]
バレル途中に気体発泡剤注入用のバレル孔を有するスクリュー径50mmΦ押出機およびスクリュー径40mmΦ押出機よりなる共押出Tダイ多層シート成形機により、スクリュー径50mmφ押出機に、発泡層を得るために、プロピレン系樹脂(PP−1)100重量部と気泡調整剤として無機系発泡剤(商品名:ポリスレンEE275F、永和化成社製)0.1重量部とをリボンブレンダーにより均一に攪拌混合し、バレル途中より該混合物100重量部に対して、二酸化炭素を0.5重量部にて圧入混練して、樹脂温度170℃に加熱溶融可塑化し、プロピレン系樹脂組成物とした。
また、スクリュー径40mmΦ押出機には、非発泡層を得るために、プロピレン系樹脂(PP−1)100重量部からなる熱可塑性樹脂組成物を投入し、樹脂温度190℃にして、ダイス内で発泡層を非発泡層で挟む2種3層構造に積層した後、先端に取り付けられたTダイス出口より押出し、2種3層のポリプロピレン系多層発泡シートを形成した。
得られた該多層発泡シートは、非発泡層:発泡層:非発泡層の比率が1:8:1の層構成を有し、厚みが2.0mm、密度が0.18g/cmであり、気泡径の緻密で外観良好なものであった。
また、得られた該多層ポリプロピレン系発泡シートは、垂下がり量の少ないドローダウン性が良好であり、熱成形で深い外観良好な容器が得られた。
用いた樹脂の物性を表1に示し、得られた該多層ポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
本発明の構成を満足するポリプロピレン系発泡シートは、連続気泡率が低く、緻密な気泡構造を有する外観良好なものであり、それを用いた熱成形容器は、外観良好な深い成形体が得られる良好な熱成形性であった。
[Example 6]
In order to obtain a foam layer in a screw diameter 50 mmφ extruder by a co-extrusion T-die multilayer sheet molding machine comprising a screw diameter 50 mmΦ extruder and a screw diameter 40 mmΦ extruder having a barrel hole for gas blowing agent injection in the middle of the barrel, 100 parts by weight of a propylene resin (PP-1) and 0.1 parts by weight of an inorganic foaming agent (trade name: Polyslen EE275F, manufactured by Eiwa Kasei Co., Ltd.) as a bubble adjusting agent are stirred and mixed uniformly with a ribbon blender, and in the middle of the barrel Further, 0.5 parts by weight of carbon dioxide was press-kneaded with respect to 100 parts by weight of the mixture, and the mixture was heated and melt-plasticized at a resin temperature of 170 ° C. to obtain a propylene-based resin composition.
In addition, in order to obtain a non-foamed layer, a thermoplastic resin composition consisting of 100 parts by weight of a propylene-based resin (PP-1) was introduced into the extruder with a screw diameter of 40 mmΦ, and a resin temperature of 190 ° C. was set in the die. After laminating the foam layer in a two-kind three-layer structure sandwiched between non-foamed layers, it was extruded from a T-die outlet attached to the tip to form a two-kind three-layer polypropylene multilayer foam sheet.
The obtained multilayer foamed sheet has a layer configuration in which the ratio of non-foamed layer: foamed layer: non-foamed layer is 1: 8: 1, the thickness is 2.0 mm, and the density is 0.18 g / cm 3 . The cell diameter was fine and the appearance was good.
Further, the obtained multilayer polypropylene-based foam sheet had good draw-down property with a small amount of sag, and a container having a good deep appearance by thermoforming was obtained.
Table 1 shows the physical properties of the resin used, and Table 2 shows the evaluation results of the obtained multilayer polypropylene foam sheet and molded article.
The polypropylene foam sheet satisfying the constitution of the present invention has a low open cell ratio and a good appearance having a dense cell structure, and a thermoformed container using the same gives a deep molded article having a good appearance. Good thermoformability.

[実施例7]
実施例6において、非発泡層の重合体(PP−5)の代わりに、重合体(PP−5)100重量部に対し、タルク30重量部を配合した熱可塑性樹脂組成物を用いた以外は、実施例6と同様に実施し、2種3層のポリプロピレン系多層発泡シートを形成した。
得られた該多層ポリプロピレン系発泡シートは、非発泡層:発泡層:非発泡層の比率が1:8:1の層構成を有し、厚みが1.5mm、密度が0.45g/cmであり、剛性を有し、気泡径の緻密で外観良好なものであった。
また、得られた該多層ポリプロピレン系発泡シートは、垂下がり量の少ないドローダウン性が良好であり、熱成形で深い外観良好な容器が得られた。
用いた樹脂の物性を表1に示し、得られた該多層ポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
本発明の構成を満足するポリプロピレン系発泡シートは、連続気泡率が低く、緻密な気泡構造を有する外観良好なものであり、それを用いた熱成形容器は、外観良好な深い成形体が得られる良好な熱成形性であった。
[Example 7]
In Example 6, instead of the non-foamed layer polymer (PP-5), a thermoplastic resin composition in which 30 parts by weight of talc was blended with 100 parts by weight of the polymer (PP-5) was used. This was carried out in the same manner as in Example 6 to form a two-layer / three-layer polypropylene-based multilayer foam sheet.
The obtained multilayer polypropylene-based foam sheet has a layer configuration in which the ratio of non-foamed layer: foamed layer: non-foamed layer is 1: 8: 1, the thickness is 1.5 mm, and the density is 0.45 g / cm 3. It had rigidity, a fine cell diameter, and a good appearance.
Further, the obtained multilayer polypropylene-based foam sheet had good draw-down property with a small amount of sag, and a container having a good deep appearance by thermoforming was obtained.
Table 1 shows the physical properties of the resin used, and Table 2 shows the evaluation results of the obtained multilayer polypropylene foam sheet and molded article.
The polypropylene foam sheet satisfying the constitution of the present invention has a low open cell ratio and a good appearance having a dense cell structure, and a thermoformed container using the same gives a deep molded article having a good appearance. Good thermoformability.

[比較例1]
プロピレン系樹脂(PP−1)の代わりに、本発明において特定するプロピレン系重合体(X)とは異なるプロピレン系樹脂(PF814)を用いた以外は、実施例5と同様に実施し、単層のポリプロピレン系発泡シートを形成した。
得られた該ポリプロピレン系発泡シートは、厚みが2.0mm、密度が0.18g/cmであり、平均気泡径600μmの連続気泡率は低いが、粗い気泡構造を有する外観が凸凹なものであった。
また、得られた該ポリプロピレン系発泡シートは、垂下がり量の少ないドローダウン性が良好であり、熱成形で深い外観良好な容器が得られた。
用いた樹脂の物性を表1に示し、得られた該ポリプロピレン系発泡シートおよび成形体の評価結果を表2に示す。
[Comparative Example 1]
In the same manner as in Example 5 except that a propylene resin (PF814) different from the propylene polymer (X) specified in the present invention was used instead of the propylene resin (PP-1), a single layer was formed. A polypropylene foam sheet was formed.
The obtained polypropylene-based foam sheet has a thickness of 2.0 mm, a density of 0.18 g / cm 3 , and an open cell ratio with an average cell diameter of 600 μm is low, but the appearance having a rough cell structure is uneven. there were.
Further, the obtained polypropylene foam sheet had a good draw-down property with a small amount of sag, and a container having a good deep appearance by thermoforming was obtained.
The physical properties of the resin used are shown in Table 1, and the evaluation results of the obtained polypropylene foam sheet and molded article are shown in Table 2.

[比較例2]
プロピレン系樹脂(PP−1)の代わりに、本発明において特定するプロピレン系樹脂(X)とは異なるプロピレン系樹脂(PP−4)を用いた以外は、実施例5と同様に実施し、単層のポリプロピレン系発泡シートを形成した。
得られた該ポリプロピレン系発泡シートは、厚みが0.5mm、密度が0.85g/cmであり、気泡径が不均一かつ連続気泡の粗い気泡構造を有し、外観が凸凹なものであった。
また、得られた該ポリプロピレン系発泡シートは、垂下がり量が大きくドローダウン性が悪く、熱成形は不可能であった。
用いた樹脂の物性を表1に示し、得られた該ポリプロピレン系発泡シートの評価結果を表2に示す。
[Comparative Example 2]
The same procedure as in Example 5 was carried out except that a propylene resin (PP-4) different from the propylene resin (X) specified in the present invention was used instead of the propylene resin (PP-1). A layered polypropylene foam sheet was formed.
The obtained polypropylene foam sheet had a thickness of 0.5 mm, a density of 0.85 g / cm 3 , a non-uniform cell diameter, a rough cell structure of open cells, and an uneven appearance. It was.
Further, the obtained polypropylene foam sheet had a large amount of sag and poor drawdown property, and thermoforming was impossible.
Table 1 shows the physical properties of the resin used, and Table 2 shows the evaluation results of the obtained polypropylene foam sheet.

[比較例3]
プロピレン系樹脂(PP−1)の代わりに、本発明において特定するプロピレン系樹脂(X)とは異なるプロピレン系樹脂(PP−5)を用いた以外は、実施例5と同様に実施し、単層のポリプロピレン系発泡シートを形成した。樹脂温度を170℃にすることができず、良好なポリプロピレン系発泡シートを得ることができなかった。ダイス出口でメヤニが発生し、外観は凸凹の外観となった。
用いた樹脂の物性を表1に示し、評価結果を表2に示す。
[Comparative Example 3]
The same procedure as in Example 5 was performed, except that a propylene resin (PP-5) different from the propylene resin (X) specified in the present invention was used instead of the propylene resin (PP-1). A layered polypropylene foam sheet was formed. The resin temperature could not be 170 ° C., and a good polypropylene foam sheet could not be obtained. There was a crack at the die exit, and the appearance was uneven.
The physical properties of the resin used are shown in Table 1, and the evaluation results are shown in Table 2.

Figure 0005417023
Figure 0005417023

Figure 0005417023
Figure 0005417023

本発明のポリプロピレン系(多層)発泡シートおよびそれを用いた熱成形体は、均一微細な発泡セルが得られ、外観、熱成形性、耐衝撃性、軽量性、剛性、耐熱性、断熱性、耐油性等に優れていることより、トレー、皿、カップなどの食品容器や自動車ドアトリム、自動車トランクマットなどの車両内装材、包装、文具、建材などに好適に利用でき、工業的価値は極めて高い。   The polypropylene-based (multi-layer) foamed sheet of the present invention and a thermoformed article using the same can provide uniform and fine foamed cells. Appearance, thermoformability, impact resistance, lightness, rigidity, heat resistance, heat insulation, Because of its excellent oil resistance, it can be suitably used for food containers such as trays, dishes and cups, vehicle interior materials such as automobile door trims and automobile trunk mats, packaging, stationery, and building materials, and has extremely high industrial value. .

Claims (7)

下記(i)〜(vi)に規定する要件を満たすプロピレン系重合体(X)と発泡剤(F)とからなるプロピレン系樹脂組成物を押出成形してなるポリプロピレン系発泡シートを、熱成形してなる熱成形体
(i)メルトフローレート(MFR)(温度230℃、荷重2.16kg)が0.1〜20g/10分である。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)で測定する重量平均分子量(Mw)と数平均分子量(Mn)の比(Q値)が3.5〜10.5である。
(iii)GPCによって得られる分子量分布曲線において、全量に対して、分子量(M)が200万以上の成分の比率が0.4重量%以上、10重量%未満である。
(iv)オルトジクロロベンゼン(ODCB)による昇温溶出分別(TREF)において、40℃以下の温度で溶出する成分が3.0重量%以下である。
(v)13C−NMRで測定するアイソタクチックトライアッド分率(mm)が95%以上である。
(vi)伸長粘度の測定における歪硬化度(λmax)が6.0以上である。
A polypropylene foam sheet formed by extrusion molding a propylene resin composition comprising a propylene polymer (X) and a foaming agent (F) satisfying the requirements specified in the following (i) to (vi) is thermoformed. A thermoformed product .
(I) Melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is 0.1 to 20 g / 10 min.
(Ii) The ratio (Q value) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) measured by gel permeation chromatography (GPC) is 3.5 to 10.5.
(Iii) In the molecular weight distribution curve obtained by GPC, the ratio of the component having a molecular weight (M) of 2 million or more to the total amount is 0.4% by weight or more and less than 10% by weight.
(Iv) In temperature rising elution fractionation (TREF) with orthodichlorobenzene (ODCB), the component eluted at a temperature of 40 ° C. or less is 3.0% by weight or less.
(V) The isotactic triad fraction (mm) measured by 13 C-NMR is 95% or more.
(Vi) The strain hardening degree (λmax) in the measurement of the extensional viscosity is 6.0 or more.
プロピレン系重合体(X)は、さらに、下記要件(vii)を満たすことを特徴とする請求項1に記載の熱成形体
(vii) (ME) ≧ −0.26×log(MFR)+1.9
[式中、ME(メモリーエフェクト)は、オリフィスが長さ8.00mm、径1.00mmφのメルトインデクサーを用いて、シリンダー内温度を190℃に設定して、荷重をかけ、押し出し速度が0.1g/分の時に、オリフィスから押し出されたポリマーをエタノール中で急冷し、その際の押出物のストランド径をオリフィス径で除した値とする。]
The thermoformed body according to claim 1, wherein the propylene-based polymer (X) further satisfies the following requirement (vii).
(Vii) (ME) ≧ −0.26 × log (MFR) +1.9
[In the formula, ME (memory effect) uses a melt indexer with an orifice of 8.00 mm in length and a diameter of 1.00 mmφ, sets the temperature in the cylinder to 190 ° C., applies a load, and the extrusion speed is 0 At 1 g / min, the polymer extruded from the orifice is quenched in ethanol, and the strand diameter of the extrudate is divided by the orifice diameter. ]
プロピレン系重合体(X)は、さらに、下記要件(viii)を満たすことを特徴とする請求項1又は2に記載の熱成形体
(viii)GPCによって得られる分子量分布曲線において、ピーク位置に相当する分子量の常用対数をTp、ピーク高さの50%高さとなる位置の分子量の常用対数をL50及びH50(L50はTpより低分子量側、H50はTpより高分子量側)とし、α及びβをそれぞれα=H50−Tp、β=Tp−L50と定義したとき、α/βが0.9より大きく、2.0未満である。
The thermoformed body according to claim 1 or 2, wherein the propylene polymer (X) further satisfies the following requirement (viii).
(Viii) In the molecular weight distribution curve obtained by GPC, the common logarithm of the molecular weight corresponding to the peak position is Tp, and the common logarithm of the molecular weight at the position where it is 50% of the peak height is L 50 and H 50 (L 50 is Tp Lower molecular weight side, H 50 is higher molecular weight side than Tp), and α and β are defined as α = H 50 −Tp and β = Tp−L 50 , respectively, α / β is larger than 0.9 and 2 Less than 0.0.
ポリプロピレン系発泡シートの平均気泡径が500μm以下であることを特徴とする請求項1〜3のいずれかに記載の熱成形体 The thermoformed article according to any one of claims 1 to 3, wherein the polypropylene-based foamed sheet has an average cell diameter of 500 µm or less. ポリプロピレン系発泡シートの連続気泡率が30%以下であることを特徴とする請求項1〜4のいずれかに記載の熱成形体 The thermoformed article according to any one of claims 1 to 4, wherein the open-cell ratio of the polypropylene foam sheet is 30% or less. 請求項1〜5のいずれかに記載のプロピレン系樹脂組成物からなる発泡層と熱可塑性樹脂組成物からなる非発泡層とを共押出成形してなるポリプロピレン系多層発泡シートを、熱成形してなる熱成形体A polypropylene-based multilayer foamed sheet obtained by coextrusion molding of a foamed layer made of the propylene-based resin composition according to any one of claims 1 to 5 and a non-foamed layer made of a thermoplastic resin composition is thermoformed. Thermoformed body . 前記熱可塑性樹脂組成物は、熱可塑性樹脂100重量部に対し、50重量部以下の無機充填剤を含有することを特徴とする請求項6に記載の熱成形体The said thermoplastic resin composition contains 50 weight part or less inorganic filler with respect to 100 weight part of thermoplastic resins, The thermoforming body of Claim 6 characterized by the above-mentioned.
JP2009103606A 2008-05-16 2009-04-22 Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same Active JP5417023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009103606A JP5417023B2 (en) 2008-05-16 2009-04-22 Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008129022 2008-05-16
JP2008129022 2008-05-16
JP2009103606A JP5417023B2 (en) 2008-05-16 2009-04-22 Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same

Publications (2)

Publication Number Publication Date
JP2009299029A JP2009299029A (en) 2009-12-24
JP5417023B2 true JP5417023B2 (en) 2014-02-12

Family

ID=41546247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103606A Active JP5417023B2 (en) 2008-05-16 2009-04-22 Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same

Country Status (1)

Country Link
JP (1) JP5417023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117647A1 (en) * 2022-11-30 2024-06-06 롯데케미칼 주식회사 Polypropylene resin composition having excellent melt strength and method for preparing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422323B2 (en) * 2009-09-28 2014-02-19 日本ポリプロ株式会社 Polypropylene-based injection-foamed molded article and method for producing the same
JP5624851B2 (en) * 2010-11-08 2014-11-12 日本ポリプロ株式会社 Polypropylene resin composition for foam sheet molding and foam sheet
CN103890080B (en) * 2011-10-17 2016-04-27 日本聚丙烯株式会社 Polypropylene-based resin composition and expanded moldings
WO2013125702A1 (en) 2012-02-23 2013-08-29 日本ポリプロ株式会社 Polypropylene-based resin composition and foam sheet
US9284427B2 (en) 2012-02-23 2016-03-15 Japan Polypropylene Corporation Polypropylene-based resin composition and foam sheet
JP6705347B2 (en) * 2016-09-20 2020-06-03 日本ポリプロ株式会社 Multi-layer foam sheet made of polypropylene resin
JP6673157B2 (en) * 2016-11-21 2020-03-25 日本ポリプロ株式会社 Polypropylene resin multilayer foam sheet, foam container and method for producing the same
WO2020002654A1 (en) * 2018-06-28 2020-01-02 Borealis Ag Catalysts
CN115367757B (en) * 2022-09-28 2023-08-22 郑州大学 Supercritical CO 2 Preparation of Ti by solid phase etching with assistance 3 C 2 T x Method of nanoplatelets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028010B2 (en) * 2005-12-08 2012-09-19 日本ポリプロ株式会社 Propylene homopolymer and process for producing the same
JP4553966B2 (en) * 2008-04-15 2010-09-29 日本ポリプロ株式会社 Propylene polymer
JP5297838B2 (en) * 2008-04-18 2013-09-25 日本ポリプロ株式会社 Polypropylene expanded foam film
JP5342922B2 (en) * 2008-05-09 2013-11-13 日本ポリプロ株式会社 Extrusion foam molding resin composition and foam using the same
JP5297834B2 (en) * 2008-05-12 2013-09-25 日本ポリプロ株式会社 Polypropylene foam film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117647A1 (en) * 2022-11-30 2024-06-06 롯데케미칼 주식회사 Polypropylene resin composition having excellent melt strength and method for preparing same

Also Published As

Publication number Publication date
JP2009299029A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5417023B2 (en) Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same
JP5624851B2 (en) Polypropylene resin composition for foam sheet molding and foam sheet
JP6064668B2 (en) Polypropylene resin composition and foam sheet
JP6089765B2 (en) Polypropylene resin foam sheet and thermoformed article
JP4553966B2 (en) Propylene polymer
JP5342915B2 (en) Polypropylene thermoforming sheet and its deep-drawn molded body
JP2013010890A (en) Polypropylene resin composition and foamed sheet
JP5297838B2 (en) Polypropylene expanded foam film
JP5422323B2 (en) Polypropylene-based injection-foamed molded article and method for producing the same
JP6171717B2 (en) Polypropylene resin composition for extrusion foam molding
JP6458698B2 (en) Polypropylene resin for foam molding and molded body
JP5342922B2 (en) Extrusion foam molding resin composition and foam using the same
JP5297834B2 (en) Polypropylene foam film
JP4990218B2 (en) Propylene resin composition and molded article thereof
JP5124517B2 (en) Polypropylene blow molding
JP5256102B2 (en) Polypropylene injection blow molded body
JP5286147B2 (en) Polypropylene deep-drawn body
JP5315113B2 (en) Polypropylene hollow foam molding
JP5162329B2 (en) Polypropylene foam sheet, multilayer foam sheet, and thermoformed article using the same
JP6809564B2 (en) Manufacturing method of polypropylene resin foam molding material and molded product
JP2009299024A (en) Propylene-based composite resin composition and extruded product using the same
JP7331675B2 (en) Polypropylene resin composition and foamed sheet
JP7331676B2 (en) Polypropylene resin composition and foamed sheet
JP5171727B2 (en) Polypropylene-based injection-foamed molded article and method for producing the same
JP6232832B2 (en) Polypropylene resin composition for foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5417023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250