[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5402091B2 - 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法 - Google Patents

硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法 Download PDF

Info

Publication number
JP5402091B2
JP5402091B2 JP2009049187A JP2009049187A JP5402091B2 JP 5402091 B2 JP5402091 B2 JP 5402091B2 JP 2009049187 A JP2009049187 A JP 2009049187A JP 2009049187 A JP2009049187 A JP 2009049187A JP 5402091 B2 JP5402091 B2 JP 5402091B2
Authority
JP
Japan
Prior art keywords
resin composition
phenol resin
dihydroxynaphthalene
resin
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009049187A
Other languages
English (en)
Other versions
JP2010202750A (ja
Inventor
泰 佐藤
和郎 有田
一郎 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2009049187A priority Critical patent/JP5402091B2/ja
Publication of JP2010202750A publication Critical patent/JP2010202750A/ja
Application granted granted Critical
Publication of JP5402091B2 publication Critical patent/JP5402091B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は得られる硬化物の耐熱性、低熱膨張性に優れ、プリント配線基板、半導体封止材、塗料、注型用途等に好適に用いる事が出来る硬化性樹脂組成物、その硬化物及び新規フェノール樹脂、及びその製造方法に関する。
エポキシ樹脂とフェノール樹脂からなるエポキシ樹脂系硬化性樹脂組成物は、接着剤、成形材料、塗料、フォトレジスト材料、顕色材料等に用いられている他、得られる硬化物の優れた耐熱性や耐湿性などに優れる点から半導体封止材やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いられている。
これらの各種用途のうち、プリント配線板の分野では、電子機器の小型化・高性能化の流れに伴い、半導体装置の配線ピッチの狭小化による高密度化の傾向が著しく、これに対応した半導体実装方法として、はんだボールにより半導体装置と基板とを接合させるフリップチップ接続方式が広く用いられている。このフリップチップ接続方式では、配線板と半導体との間にはんだボールを配置、全体を加熱して溶融接合させる所謂リフロー方式による半導体実装方式であるため、はんだリフロー時に配線版自体が高熱環境に晒され、配線板の熱収縮により、配線板と半導体を接続するはんだボールに大きな応力が発生し、配線の接続不良を起こす場合があった。その為、プリント配線板に用いられる絶縁材料には、低熱膨張率の材料が求められている。
加えて、近年、環境問題に対する法規制等により、鉛を使用しない高融点はんだが主流となっており、この鉛フリーはんだは従来の共晶はんだよりも使用温度が約20〜40℃高くなることから、硬化性樹脂組成物にはこれまで以上に高い耐熱性が要求されている。
このようにプリント配線板用の絶縁材料には、高度な耐熱性、低熱膨張性が求められており、かかる要求に対応できる硬化性樹脂材料として、例えば、1,1−ビス(2,7−ジヒドロキシ−1−ナフチルアルカン)をグリシジルエーテル化した4官能型エポキシ樹脂を主剤として、また、フェノールノボラック樹脂等を硬化剤として用いる技術が知られている(特許文献1参照)。
然し乍ら、上記4官能型ナフタレン系エポキシ樹脂は、一般的なフェノールノボラック型エポキシ樹脂と比較して架橋密度が高く、エポキシ樹脂硬化物において優れた低熱線膨張性や耐熱性を発現するものの、プリント配線板製造に一般的に使用される溶剤への溶解性が低いことから、該プリント配線板への適用が出来ないものであった。
特許3137202号公報
従って、本発明が解決しようとする課題は、優れた耐熱性、低熱膨張性を発現し、さらに良好な溶剤溶解性を実現する硬化性樹脂組成物、その硬化物、耐熱性及び低熱膨張性に優れるプリント配線基板、これらの性能を与える新規フェノール樹脂、及びその製造方法を提供することにある。
本発明者らは、上記課題を解決するため、鋭意検討した結果、特定の条件で2,7−ジヒドロキシナフタレン類とホルムアルデヒドを反応させて得られた、カルボニル基を有するフェノール樹脂が、優れた耐熱性、低熱膨張性を発現し、さらに良好な溶剤溶解性を示すことを見出し、本発明を完成するに至った。
即ち、本発明は、エポキシ樹脂(A)と、分子構造中にナフタレン構造とシクロヘキサジエノン構造とがメチレン基を介して結節した骨格と、前記ナフタレン構造に結合する水酸基とを有するフェノール樹脂(B)を必須成分とすることを特徴とする硬化性樹脂組成物に関する。
本発明は、更に、前記硬化性樹脂組成物を硬化反応させてなることを特徴とする硬化物に関する。
本発明は、更に、前記硬化性樹脂組成物に、更に有機溶剤(C)を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板に関する。
本発明は、更に、分子構造中にナフタレン構造とシクロヘキサジエノン構造とがメチレン基を介して結節した骨格と、前記ナフタレン構造に結合する水酸基とを有するフェノール樹脂に関する。
本発明は、更に、2,7−ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7−ジヒドロキシナフタレン類1モルに対して、モル基準で0.2〜2.0倍量のアルカリ触媒の存在下に反応させることを特徴とするフェノール樹脂の製造方法に関する。
本発明によれば、優れた耐熱性、低熱膨張性を発現し、さらに良好な溶剤溶解性を実現する硬化性樹脂組成物、その硬化物、耐熱性及び低熱膨張性に優れるプリント配線基板、これらの性能を与える新規フェノール樹脂、及びその製造方法を提供できる。
図1は実施例1で得られたフェノール樹脂のGPCチャートである。 図2は実施例1で得られたフェノール樹脂の13C−NMRスペクトルである。 図3は実施例1で得られたフェノール樹脂のマススペクトルである。 図4は実施例1で得られたフェノール樹脂のHPLCチャートである。
以下、本発明を詳細に説明する。
本発明で用いるエポキシ樹脂(A)は、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、ジグリシジルオキシナフタレン、1,1−ビス(2,7−ジグリシジルオキシ−1−ナフチル)アルカン等の分子構造中にナフタレン骨格を有するエポキシ樹脂;リン原子含有エポキシ樹脂等が挙げられる。また、これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。
ここで、リン原子含有エポキシ樹脂としては、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(以下、「HCA」と略記する。)のエポキシ化物、HCAとキノン類とを反応させて得られるフェノール樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、クレゾールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、また、ビスフェノールA型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂、及びビスフェニールA型エポキシ樹脂を、HCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂等が挙げられる。
上記したエポキシ樹脂(A)のなかでも、特に耐熱性の点から、分子構造中にナフタレン骨格を有するエポキシ樹脂、分子構造中にリン原子を有するエポキシ樹脂が好ましく、また、溶剤溶解性の点からビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が好ましい。
本発明で用いるフェノール樹脂(B)は、分子構造中にナフタレン構造とシクロヘキサジエノン構造とがメチレン基を介して結節した骨格と、前記ナフタレン構造に結合する水酸基とを有することを特徴としている。即ち、分子構造中にナフタレン構造とシクロヘキサジエノン構造とがメチレン基を介して結節した骨格を有することから、フェノール樹脂(B)の化学構造的な非対称性から良好な溶剤溶解性を示すことができる。また、フェノール樹脂(B)中のシクロヘキサジエノン構造とフェノール性水酸基との反応による自己重合反応により強固な硬化物が得られ、硬化物における耐熱性と低熱膨張性が良好なものとなる。
ここで、シクロヘキサジエノン構造とは、具体的には、下記構造式k1及びk2
Figure 0005402091

で表される2,4−シクロヘキサジエノン構造、及び下記構造式k3
Figure 0005402091

で表される2,5−シクロヘキサジエノン構造が挙げられる。
これらのなかでも、前記構造式k1及びk2で表される2,4−シクロヘキサジエノン構造が耐熱性、低熱膨張性に顕著に優れる点から好ましく、特に前記構造式k1で表される2−ナフタレノン構造であることが好ましい。
前記フェノール樹脂(B)は、2,7−ジヒドロキシナフタレン類とホルムアルデヒドとをアルカリ触媒の存在下反応させる方法(方法1)、或いは、2,7−ジヒドロキシナフタレン類とホルムアルデヒドとフェノール類とをアルカリ触媒の存在下反応させる方法(方法2)によって製造することができ、種々の分子構造を有するフェノール樹脂を含み得るが、具体的には、ナフタレン構造と、前記構造式k1又はk2で表されるシクロヘキサジエノン構造とがメチレン基を介して結節した構造を基本骨格とし、その芳香核上の置換基として水酸基を有する化合物(a)を含有していることが好ましい。
かかる化合物(a)としては、具体的には、下記構造式(i)〜(iii)で表されるものが挙げられる。
Figure 0005402091

Figure 0005402091
Figure 0005402091
上記構造式(i)〜(iii)中、Rはそれぞれ独立して水素原子又は炭素原子数1〜4の炭化水素基又は炭素原子数1〜4のアルコキシ基であり、具体的には、上記構造式(i)で表される化合物としては以下のi−1〜i−8で表されるものが挙げられる。
Figure 0005402091

また、上記構造式(ii)で表される化合物としては以下のii−1〜ii−8で表されるものが挙げられる。
Figure 0005402091

また、上記構造式(iii)で表される化合物としては以下のiii−1〜iii−8で表されるものが挙げられる。
Figure 0005402091
これらの中でも特に下記構造式(i)
Figure 0005402091

(式中、Rは、それぞれ独立して水素原子、炭素原子数1〜4の炭化水素基、又は炭素原子数1〜4のアルコキシ基を示す。)
で表される化合物が、特に耐熱性、低熱膨張性に顕著に優れる点から好ましい。上記構造式(i)で表される化合物は、前記した通り、その分子構造中にシクロヘキサジエノン構造を有することから、化学構造的に非対称となって優れた溶剤溶解性を示すことができ、また、シクロヘキサジエノン構造自体がフェノール樹脂(B)との硬化反応に寄与することになるので、上記構造式(i)で表される化合物は、3官能のフェノール樹脂であるにも拘わらず、優れた耐熱性と低熱膨張性を発現することができる。
本発明では、これらの中でも特に耐熱性が高い点から構造式(i)におけるRが全て水素原子である下記構造式(i−α)
Figure 0005402091

で表される構造を有することが好ましい。
以上詳述したフェノール樹脂(B)を前記した方法1又は方法2によって、製造する場合、通常、前記化合物(a)の他、下記構造式(iv)
Figure 0005402091

で表される化合物(b)や、或いは、前記構造式(i)、前記構造式(ii)又は前記構造式(iii)における芳香核に更に、下記部分構造式(v)
Figure 0005402091

で表される構造部位が結合したオリゴマー(c)も生成するため、本発明のフェノール樹脂(B)は、これらの混合物として使用してもよい。
この際、フェノール樹脂(B)中、前記化合物(a)を5.0〜30.0質量%となる割合で含有することが好ましく、具体的には、前記化合物(a)を5.0〜30.0質量%、前記化合物(b)を15.0〜60.0質量%、その他前記オリゴマー(c)に代表されるオリゴマー成分を10〜80質量%となる割合で含有することが溶剤溶解性に優れる点から好ましい。
また、フェノール樹脂(B)は、該フェノール樹脂(B)中の水酸基当量が80〜200g/eq.の範囲であることが耐熱性、低熱膨張率が良好となる点から好ましい。
前記した通り、前記フェノール樹脂(B)は、前記方法1又は方法2によって製造することができるが、本発明では従来に比べてアルカリ触媒量が多いことに特徴があり、具体的には、2,7−ジヒドロキシナフタレン類に対して、又は、2,7−ジヒドロキシナフタレン類とフェノール類との合計モル数に対して、アルカリ触媒をモル基準で0.2〜2.0倍量となる割合で用いることにより、分子構造中にナフタレン構造とシクロヘキサジエノン構造とがメチレン基を介して結節した骨格を生成させることができる。これに対して、公知の化合物である下記構造式(2)
Figure 0005402091
で表される化合物は、2,7−ジヒドロキシナフタレンとホルムアルデヒドとを該2,7−ジヒドロキシナフタレンに対して、モル基準で0.01〜0.1倍量となる割合でアルカリ触媒を使用することによって製造することができるが、このような触媒量では、製造工程中、該構造式(2)で表される化合物が選択的に生成、析出して反応が停止する為、本発明の如くシクロヘキサジエノン構造が生成することはない。
ここで、方法1又は方法2で用いる2,7−ジヒドロキシナフタレン類は、2,7−ジヒドロキシナフタレン、メチル−2,7−ジヒドロキシナフタレン、エチル−2,7−ジヒドロキシナフタレン、t−ブチル−2,7−ジヒドロキシナフタレン、メトキシ−2,7−ジヒドロキシナフタレン、エトキシ−2,7−ジヒドロキシナフタレン等が挙げられる。
方法1又は方法2で用いるホルムアルデヒドは、ホルムアルデヒドは、水溶液の状態であるホルマリン溶液でも、固形状態であるパラホルムアルデヒドでもよい。
また、方法2で用いるフェノール類は、フェノール、o−クレゾール、p−クレゾール、2,4−キシレノール等が挙げられる。
また、方法1又は方法2で用いるアルカリ触媒は、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、金属ナトリウム、金属リチウム、水素化ナトリウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ類などが挙げられる。
前記したとおり、本発明では前記化合物(a)のうち上記構造式(i)で表される化合物が好ましく、よって、前記各方法のうち方法1の製造方法が好ましい。以下、方法1について詳述する。
前記方法1は、具体的には、2,7−ジヒドロキシナフタレン類とホルムアルデヒドとを実質的に同時に仕込み、適当な触媒の存在下で加熱撹拌して反応を行う方法、また、2,7−ジヒドロキシナフタレン類と適当な触媒の混合液に、ホルムアルデヒドを連続的乃至断続的に系内に加えることによって、反応を行う方法などが挙げられる。尚、ここで実質的に同時とは、加熱によって反応が加速されるまでの間に全ての原料を仕込むことを意味する。
ここで用いるアルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、金属ナトリウム、金属リチウム、水素化ナトリウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ類などが挙げられる。その使用量は、前記した通り2,7−ジヒドロキシナフタレン類のモル数に対して、モル基準で0.2〜2.0倍量となる範囲であることが好ましい。
2,7−ジヒドロキシナフタレン類とホルムアルデヒドとの反応仕込み比率としては、特に限定されないが、2,7−ジヒドロキシナフタレン類に対してホルムアルデヒドが、モル基準で0.6倍量以上であること、具体的には0.6〜2.0倍量となる割合であること、特に、耐熱性とフェノール樹脂の粘度のバランスに優れる点から、0.6〜1.5倍量となる割合であることが好ましい。
この反応を行う際、必要に応じて有機溶剤を使用することができる。使用できる有機溶剤は、具体的には、メチルセロソルブ、イソプロピルアルコール、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられるがこれらに限定されるものではない。有機溶剤の使用量としては仕込み原料の総質量に対して通常0.1倍量〜5倍量の範囲であり、特に0.3倍量〜2.5倍量の範囲であることが効率的に構造式(i)の構造が得られる点から好ましい。また反応温度としては20〜150℃の範囲であることが好ましく、特に60〜100℃の範囲であることがより好ましい。また反応時間は、特に制限されないが、通常、1〜10時間の範囲である。
反応終了後、反応混合物のpH値が4〜7になるまで中和あるいは水洗処理を行う。中和処理や水洗処理は常法にしたがって行えばよい。例えばアルカリ触媒を用いた場合は酢酸、燐酸、燐酸ナトリウム等の酸性物質を中和剤として用いることができる。中和あるいは水洗処理を行った後、減圧加熱下で有機溶剤を留去し生成物の濃縮を行い、カルボニル基含有フェノール化合物を得ることが出来る。また、反応終了後の処理操作のなかに、精密濾過工程を導入することが無機塩や異物類を精製除去することができる点から、より好ましい。
本発明の硬化性樹脂組成物において、前記フェノール樹脂(B)を単独で用いてもよいが、または本発明の効果を損なわない範囲で他のエポキシ樹脂を使用してもよい。具体的には、フェノール樹脂の全質量に対して前記フェノール樹脂(B)が30質量%以上、好ましくは40質量%以上となる範囲で他のフェノール樹脂を併用することができる。
本発明の硬化性樹脂組成物では、エポキシ樹脂(A)の硬化剤として前記フェノール樹脂(B)の他の硬化剤(B’)を併用してもよい。かかる他の硬化剤(B’)は、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などが挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。本発明では、このような他の硬化剤(B’)を併用することにより、フェノール樹脂(B)中のシクロヘキサジエノン構造が硬化反応に関与することにより強固な硬化物が得られ、硬化物における耐熱性と低熱膨張性が一層向上する。
これらの中でも、特に芳香族骨格を分子構造内に多く含むものが低熱膨張性の点から好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、アルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)が低熱膨張性に優れることから好ましい。
本発明の硬化性樹脂組成物におけるエポキシ樹脂(A)とフェノール樹脂(B)の配合量としては、特に制限されるものではないが、得られる硬化物特性が良好である点から、エポキシ樹脂(A)のエポキシ基の合計1当量に対して、フェノール樹脂(B)中の活性基が0.7〜1.5当量になる量が好ましい。
また必要に応じて本発明の硬化性樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
以上詳述した本発明の硬化性樹脂組成物は、前記した通り、優れた溶剤溶解性を発現することを特徴としている。従って、該硬化性樹脂組成物は、上記各成分の他に有機溶剤(C)を配合することが好ましい。ここで使用し得る前記有機溶剤(C)としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40〜80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤(C)として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30〜60質量%となる割合で使用することが好ましい。
また、上記熱硬化性樹脂組成物は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
それらの配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。
前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。
本発明の硬化性樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
本発明の硬化性樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
本発明の硬化性樹脂組成物が用いられる用途としては、プリント配線板材料、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム等が挙げられる。また、これら各種用途のうち、プリント配線板や電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高耐熱性、低熱膨張性、及び溶剤溶解性といった特性からプリント配線板材料やビルドアップ用接着フィルムに用いることが好ましい。
ここで、本発明の硬化性樹脂組成物からプリント回路基板を製造するには、前記有機溶剤(C)を含むワニス状の硬化性樹脂組成物を、更に有機溶剤(C)を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。
本発明の硬化性樹脂組成物をレジストインキとして使用する場合には、例えば該硬化性樹脂組成物のフェノール樹脂(B)としてカチオン重合触媒を用い、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
本発明の硬化性樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
本発明の硬化性樹脂組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
本発明の硬化性樹脂組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
ここで、多層プリント配線板のスルホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(X)を形成させることにより製造することができる。
形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。
なお、本発明における層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm2(9.8×104〜107.9×104N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
本発明の硬化物を得る方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。
従って、該フェノール樹脂を用いることによって、フェノール樹脂の溶剤溶解性が飛躍的に向上し、さらに硬化物とした際、耐熱性と低熱膨張率が発現でき、最先端のプリント配線板材料に適用できる。また、該フェノール樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、150℃における溶融粘度及びGPC、NMR、MSスペクトルは以下の条件にて測定した。
1)150℃における溶融粘度:ASTM D4287に準拠
2)軟化点測定法:JIS K7234
3)GPC:測定条件は以下の通り。
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
4)HPLC:測定条件は以下の通り。
測定装置 :東ソー株式会社製「LC−8020」、
カラム:ジーエルサイエンス株式会社製「Inertsil ODS−3」
検出器: UV(254nm)
データ処理:東ソー株式会社製「LC−8020モデルII」
測定条件: カラム温度 40℃
展開溶媒 アセトニトリル:水=1:1
流速 1.0ml/分
試料 : 樹脂固形分換算で0.2質量%のアセトニトリル溶液をマイクロフィルターでろ過したもの(20μl)。
5)NMR:日本電子株式会社製 NMR GSX270
6)MS :日本電子株式会社製 二重収束型質量分析装置 AX505H(FD505H)
実施例1
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7−ジヒドロキシナフタレンを240部(1.50モル)、37質量%ホルムアルデヒド水溶液85部(1.05モル)、イソプロピルアルコール376部、48%水酸化カリウム水溶液88部(0.75モル)を仕込み、室温下、窒素を吹き込みながら撹拌した。その後、75℃に昇温し2時間攪拌した。反応終了後、第1リン酸ソーダ108部を添加して中和した後、イソプロピルアルコールを減圧下除去し、メチルイソブチルケトン480部を加えた。得られた有機層を水200部で3回水洗を繰り返した後に、メチルイソブチルケトンを加熱減圧下に除去してフェノール樹脂(B−1)を245部得た。得られたフェノール樹脂の水酸基当量は84g/eq.であった。得られたフェノール樹脂のGPCチャートを図1に、C13NMRチャートを図2に、MSスペクトルを図3に、HPLCチャートを図4に示す。C13NMRチャートから203ppm付近にカルボニル基が生成していることを示すピークが検出され、またMSスペクトルから下記構造式(i−α)を示す344のピークが検出された。
Figure 0005402091
また、上記フェノール樹脂(B−1)は、前記構造式(i−α)で表される化合物を 19.5質量%、下記構造式(i−β)
Figure 0005402091

で表される化合物を54.3質量%、その他オリゴマー成分を26.2質量%含有するものであった。
実施例2
37%ホルムアルデヒド水溶液を122部(1.50モル)にした以外は実施例1と同様にして、目的のフェノール樹脂(B−2)245部を得た。得られたフェノール樹脂の水酸基当量は90g/eq.であった。
また、上記フェノール樹脂(B−2)は、前記構造式(i−α)で表される化合物を22.3質量%、下記構造式(i−β)で表される化合物を36.2質量%、その他オリゴマー成分を41.5質量%含有するものであった。
比較例1
温度計、冷却管、滴下ロート、攪拌器を取り付けた2リットルフラスコに、2,7−ジヒドロキシナフタレン160g(1モル)を水1600gに分散させ、40℃で49重量%水酸化ナトリウム4.1g(0.05モル)加えた。その後、80℃まで昇温しながら、41重量%ホルムアルデヒド水溶液40.2g(ホルムアルデヒド0.55モルを含む)を滴下ロートより0.5時間で連続的に添加した。滴下後80℃で1時間保温した後、36重量%塩酸5.1g加え中和した。その後、反応生成物を濾別し、温水で洗浄し、乾燥させ、下記構造式であるフェノール樹脂(B−3)を160g得た。水酸基当量は83グラム/当量であった。
Figure 0005402091
実施例3、4及び比較例2、3
下記表1記載の配合に従い、エポキシ樹脂として、フェノールノボラック型エポキシ樹脂(DIC(株)製「N−770」、エポキシ当量:185g/eq)及び下記構造式
Figure 0005402091

で表される4官能型ナフタレン系エポキシ樹脂(DIC(株)製「エピクロンHP−4700」エポキシ当量165グラム/当量)、硬化剤として前記フェノール樹脂(B−1)、前記フェノール樹脂(B−2)、前記フェノール樹脂(B−3)、及びフェノールノボラック型フェノール樹脂(DIC(株)製「TD−2090」、水酸基当量:105g/eq)、硬化促進剤として2−エチル−4−メチルイミダゾール(2E4MZ)を配合し、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して調整した。
次いで、下記の如き条件で硬化させて積層板を試作し、下記の方法で耐熱性及び熱膨張係数を評価した。結果を表1に示す。
<積層板作製条件>
基材:日東紡績株式会社製 ガラスクロス「#2116」(210×280mm)
プライ数:6 プリプレグ化条件:160℃
硬化条件:200℃、40kg/cmで1.5時間、成型後板厚:0.8mm
<耐熱性(ガラス転移温度)>
積層板を5mm×54mm×0.8mmのサイズに切り出し、これを試験片として粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、レクタンギュラーテンション法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。
<線膨張係数>
積層板を5mm×5mm×0.8mmのサイズに切り出し、これを試験片として熱機械分析装置(TMA:セイコーインスツルメント社製SS−6100)を用いて、圧縮モードで熱機械分析を行った。
測定条件
測定架重:88.8mN
昇温速度:3℃/分で2回
測定温度範囲:−50℃から300℃
上記条件での測定を同一サンプルにつき2回実施し、2回目の測定における、240℃から280℃の温度範囲における平均膨張係数を線膨張係数として評価した。
<溶剤溶解性>
各フェノール樹脂及びHP−4700を10質量部とメチルエチルケトン4.3質量部とをサンプル瓶中、密閉状態60℃で溶解させた。その後、25℃まで冷却し、結晶が析出するか評価した。結晶が析出しない場合は○、結晶が析出した場合は×として判定した。
Figure 0005402091

Claims (9)

  1. エポキシ樹脂(A)とフェノール樹脂(B)を必須成分とし、前記フェノール樹脂(B)が下記構造式(i)
    Figure 0005402091
    (式中、R は、それぞれ独立して水素原子、炭素原子数1〜4の炭化水素基、又は炭素原子数1〜2のアルコキシ基を示す。)
    で表される骨格を有する化合物(a)を含有することを特徴とする硬化性樹脂組成物。
  2. 前記フェノール樹脂(B)が、水酸基当量80〜200g/eq.のものである請求項記載の硬化性樹脂組成物。
  3. 前記フェノール樹脂(B)が、2,7−ジヒドロキシナフタレン類とホルムアルデヒドとを、2,7−ジヒドロキシナフタレンに対して、モル基準で0.2〜2.0倍量のアルカリ触媒の存在下に反応させて得られる分子構造を有するものである請求項1又は2に記載の硬化性樹脂組成物。
  4. 請求項1〜の何れか1つに記載の硬化性樹脂組成物を硬化反応させてなることを特徴とする硬化物。
  5. 請求項1〜の何れか1つに記載の組成物に、更に有機溶剤(C)を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板。
  6. 下記構造式(i)
    Figure 0005402091
    (式中、Rはそれぞれ独立して水素原子又は炭素原子数1〜4の炭化水素基又は炭素原子数1〜2のアルコキシ基を示す。)で表される構造を有するフェノール樹脂。
  7. 2,7−ジヒドロキシナフタレン類とホルムアルデヒドとを、仕込み原料の総質量に対して0.1〜5倍量の有機溶剤中、2,7−ジヒドロキシナフタレン類に対して、モル基準で0.2〜2.0倍量のアルカリ触媒の存在下に反応させて得られる分子構造を有するフェノール樹脂。
  8. 2,7−ジヒドロキシナフタレン類とホルムアルデヒドとを、仕込み原料の総質量に対して0.1〜5倍量の有機溶剤中、2,7−ジヒドロキシナフタレン類1モルに対して、モル基準で0.2〜2.0倍量のアルカリ触媒の存在下に反応させることを特徴とするフェノール樹脂の製造方法。
  9. 2,7−ジヒドロキシナフタレン類に対して、モル基準で0.6倍量以上のホルムアルデヒドを用いる請求項記載の製造方法。
JP2009049187A 2009-03-03 2009-03-03 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法 Active JP5402091B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049187A JP5402091B2 (ja) 2009-03-03 2009-03-03 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049187A JP5402091B2 (ja) 2009-03-03 2009-03-03 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法

Publications (2)

Publication Number Publication Date
JP2010202750A JP2010202750A (ja) 2010-09-16
JP5402091B2 true JP5402091B2 (ja) 2014-01-29

Family

ID=42964562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049187A Active JP5402091B2 (ja) 2009-03-03 2009-03-03 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法

Country Status (1)

Country Link
JP (1) JP5402091B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5262915B2 (ja) * 2009-03-30 2013-08-14 Dic株式会社 硬化性樹脂組成物、その硬化物、プリント配線基板、エステル化合物、エステル系樹脂、及びその製造方法
JP5326861B2 (ja) * 2009-06-26 2013-10-30 Dic株式会社 硬化性樹脂組成物、その硬化物、プリント配線基板
JP5515878B2 (ja) * 2010-03-09 2014-06-11 Dic株式会社 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6217165B2 (ja) * 2013-06-20 2017-10-25 住友ベークライト株式会社 プライマー層付きプリプレグ、プライマー層付き金属箔、金属張積層板、プリント配線基板、半導体パッケージおよび半導体装置
JP6710892B2 (ja) * 2014-09-01 2020-06-17 日油株式会社 硬化性樹脂組成物
US10815395B2 (en) 2015-07-10 2020-10-27 Aica Kogyo Co., Ltd. Decorative sheet
US20240270891A1 (en) * 2020-09-28 2024-08-15 Dic Corporation Phenolic hydroxy group-containing resin, resin composition for alkaline developable resist, resist curable resin composition, and method for producing phenolic hydroxy group-containing resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570556A (ja) * 1991-09-13 1993-03-23 Dai Ichi Kogyo Seiyaku Co Ltd エポキシ樹脂組成物
US8168731B2 (en) * 2008-10-22 2012-05-01 Dic Corporation Curable resin composition, cured product thereof, printed wiring board, epoxy resin, and process for producing the same

Also Published As

Publication number Publication date
JP2010202750A (ja) 2010-09-16

Similar Documents

Publication Publication Date Title
JP4591801B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、エポキシ樹脂、及びその製造方法
JP4930656B2 (ja) フェノール樹脂組成物、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5293911B1 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5557033B2 (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5776465B2 (ja) ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5402091B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法
JP5146793B2 (ja) リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5024642B2 (ja) 新規フェノール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2012201798A (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、及びナフトール樹脂
JP5516008B2 (ja) 新規エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5515878B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5454009B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5263039B2 (ja) エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6083169B2 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5929660B2 (ja) ビフェノール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6257020B2 (ja) フェニルフェノール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2013087212A (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2012201732A (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5348060B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6048035B2 (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6032476B2 (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5994404B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6002987B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5505703B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、ノボラック型エポキシ樹脂、及びその製造方法
JP2014024978A (ja) 硬化性組成物、硬化物、及びプリント配線基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250