JP5499309B2 - Method for producing metal fine particles from metal oxide by microwave irradiation - Google Patents
Method for producing metal fine particles from metal oxide by microwave irradiation Download PDFInfo
- Publication number
- JP5499309B2 JP5499309B2 JP2009155455A JP2009155455A JP5499309B2 JP 5499309 B2 JP5499309 B2 JP 5499309B2 JP 2009155455 A JP2009155455 A JP 2009155455A JP 2009155455 A JP2009155455 A JP 2009155455A JP 5499309 B2 JP5499309 B2 JP 5499309B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- microwave
- dispersion
- fine particles
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 94
- 239000002184 metal Substances 0.000 title claims description 93
- 239000010419 fine particle Substances 0.000 title claims description 90
- 150000004706 metal oxides Chemical class 0.000 title claims description 50
- 229910044991 metal oxide Inorganic materials 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 38
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 39
- 229910052709 silver Inorganic materials 0.000 claims description 39
- 239000004332 silver Substances 0.000 claims description 39
- 239000006185 dispersion Substances 0.000 claims description 36
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 30
- 239000000194 fatty acid Substances 0.000 claims description 30
- 229930195729 fatty acid Natural products 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 28
- 125000004432 carbon atom Chemical group C* 0.000 claims description 26
- 150000004665 fatty acids Chemical class 0.000 claims description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 16
- 229910001111 Fine metal Inorganic materials 0.000 claims description 15
- 239000002923 metal particle Substances 0.000 claims description 15
- 239000002612 dispersion medium Substances 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 239000004215 Carbon black (E152) Substances 0.000 claims description 12
- 150000005846 sugar alcohols Polymers 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000011859 microparticle Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 45
- 239000002245 particle Substances 0.000 description 43
- 239000002904 solvent Substances 0.000 description 32
- 239000003960 organic solvent Substances 0.000 description 31
- 239000003607 modifier Substances 0.000 description 26
- 239000012046 mixed solvent Substances 0.000 description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 21
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- 238000009826 distribution Methods 0.000 description 20
- AUHZEENZYGFFBQ-UHFFFAOYSA-N 1,3,5-trimethylbenzene Chemical compound CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 16
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 16
- 229910000000 metal hydroxide Inorganic materials 0.000 description 15
- 239000000725 suspension Substances 0.000 description 15
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 14
- 239000002105 nanoparticle Substances 0.000 description 13
- 150000004692 metal hydroxides Chemical class 0.000 description 11
- 239000011882 ultra-fine particle Substances 0.000 description 11
- TWJNQYPJQDRXPH-UHFFFAOYSA-N 2-cyanobenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C#N TWJNQYPJQDRXPH-UHFFFAOYSA-N 0.000 description 10
- 235000021360 Myristic acid Nutrition 0.000 description 10
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 10
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- -1 fatty acid salts Chemical class 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 238000006722 reduction reaction Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 230000001603 reducing effect Effects 0.000 description 8
- 238000010992 reflux Methods 0.000 description 8
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 229910001923 silver oxide Inorganic materials 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 239000013307 optical fiber Substances 0.000 description 6
- 238000003917 TEM image Methods 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 235000003441 saturated fatty acids Nutrition 0.000 description 4
- 150000004671 saturated fatty acids Chemical class 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 2
- 239000005750 Copper hydroxide Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- OCKPCBLVNKHBMX-UHFFFAOYSA-N butylbenzene Chemical compound CCCCC1=CC=CC=C1 OCKPCBLVNKHBMX-UHFFFAOYSA-N 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001956 copper hydroxide Inorganic materials 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N propylbenzene Chemical compound CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- GWHJZXXIDMPWGX-UHFFFAOYSA-N 1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1 GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000001293 FEMA 3089 Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- DDXCBBLSEWZIJW-UHFFFAOYSA-N copper;tetradecanoic acid Chemical compound [Cu].CCCCCCCCCCCCCC(O)=O DDXCBBLSEWZIJW-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KXUHSQYYJYAXGZ-UHFFFAOYSA-N isobutylbenzene Chemical compound CC(C)CC1=CC=CC=C1 KXUHSQYYJYAXGZ-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- ZJMWRROPUADPEA-UHFFFAOYSA-N sec-butylbenzene Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- YRSQDSCQMOUOKO-KVVVOXFISA-M silver;(z)-octadec-9-enoate Chemical compound [Ag+].CCCCCCCC\C=C/CCCCCCCC([O-])=O YRSQDSCQMOUOKO-KVVVOXFISA-M 0.000 description 1
- OIZSSBDNMBMYFL-UHFFFAOYSA-M silver;decanoate Chemical compound [Ag+].CCCCCCCCCC([O-])=O OIZSSBDNMBMYFL-UHFFFAOYSA-M 0.000 description 1
- ORYURPRSXLUCSS-UHFFFAOYSA-M silver;octadecanoate Chemical compound [Ag+].CCCCCCCCCCCCCCCCCC([O-])=O ORYURPRSXLUCSS-UHFFFAOYSA-M 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
本発明は、金属微粒子の製造方法に関し、さらに詳しくはマイクロ波を吸収し易い有機溶媒とマイクロ波を吸収し難い有機溶媒の混合溶媒中に金属酸化物および金属元素に対して等モル量以下の有機修飾剤を含有する反応媒体をマイクロ波加熱することにより金属微粒子を製造する技術に関するものである。本発明により、光触媒、金属触媒などの種々の触媒、導電膜用材料、記憶材料、発光材料、オプトエレクトロニクスなどの広範な分野における基本材料として使用することのできるナノサイズの金属微粒子を効率よく製造し提供することができる。 The present invention relates to a method for producing metal fine particles, more particularly less equimolar amounts with respect to the metal oxide and the metal element in a mixed solvent of hard organic solvent to absorb the absorbed easily organic solvent and microwave microwave The present invention relates to a technique for producing metal fine particles by microwave heating a reaction medium containing the organic modifier. The present invention efficiently produces nano-sized metal fine particles that can be used as basic materials in various fields such as various catalysts such as photocatalysts and metal catalysts, conductive film materials, memory materials, light-emitting materials, and optoelectronics. Can be provided.
粒子をどんどん小さくしてナノサイズ化すると、触媒効果や量子サイズ効果などの全く新しい特性が発現し、従来では考えられなかった様々な用途展開が可能となる。例えば、融点が1063℃の金を2nmまでのナノサイズ化すると融点が300℃にまで低下し、物質固有の性質が劇的に変化して容易に融解・凝集が起こるようになることが知られている。また、これらの超微粒子は高い触媒作用をもつことが知られ、今後いろいろな分野で新しい可能性を持つ材料として期待されている。 When the particles are made smaller and nano-sized, completely new properties such as a catalytic effect and a quantum size effect are exhibited, and various applications that could not be considered in the past can be developed. For example, it is known that when gold with a melting point of 1063 ° C. is nanosized to 2 nm, the melting point decreases to 300 ° C., and the inherent properties of the substance change dramatically, and melting and aggregation easily occur. ing. In addition, these ultrafine particles are known to have a high catalytic action, and are expected as materials having new possibilities in various fields in the future.
今や、マイクロエレクトロニクス分野では、数μmから数nmの幅を有する結晶の表面や粒界面の特異的な機能を利用した高性能化、高機能化が進んでおり、また、ファインセラミックス分野では製品の幅や厚さが年々微細化し、数十μmの部品が見受けられるようになってきている。このように、金属微粒子は、電子材料用の配線形成材料として、低温焼結ペースト等への応用が考えられ、また、光触媒や金属触媒等の種々の触媒、記憶材料、発光材料、オプトエレクトロニクス等の広範な分野における基本材料として重要視されている。しかしながら、ナノサイズで粒径を制御し、かつ粒径分布の狭い粒子を調製することは極めて困難であった。 Now, in the microelectronics field, high performance and high functionality using the specific functions of the crystal surface and grain interface with a width of several μm to several nm are progressing. The width and thickness have become finer year by year, and parts of several tens of micrometers can be seen. In this way, the metal fine particles can be applied to low-temperature sintering pastes as wiring forming materials for electronic materials, and various catalysts such as photocatalysts and metal catalysts, memory materials, light-emitting materials, optoelectronics, etc. It is regarded as important as a basic material in a wide range of fields. However, it has been extremely difficult to control the particle size with nano-size and to prepare particles with a narrow particle size distribution.
従来、原料となる金属を真空中、または若干のガスの存在下で蒸発させることによって気相中から金属の超微粒子を得るなどの気相法が知られている。ところが、この方法では、一般に一度に得られる超微粒子の生成量が少ない。また、金属を蒸発させるために電子ビーム、プラズマ、レーザー、誘導加熱などの装置と大量のエネルギーが必要であり、生産コスト上の問題もあることから、大量生産に適しているとは言い難い。しかも、これらの気相法により得られる超微粒子は、粒径分布の制御が困難で分布が広くなり易い、比較的凝集し易いという物性面上での欠点もある。また、粉砕などによる固相法が知られているが製造に長時間を要し、粒径のバラツキが大きく、超微粒子の製造には適していない。 Conventionally, a vapor phase method is known in which ultrafine particles of metal are obtained from a vapor phase by evaporating a metal as a raw material in a vacuum or in the presence of some gas. However, with this method, the amount of ultrafine particles produced at a time is generally small. Further, in order to evaporate the metal, a device such as an electron beam, plasma, laser, induction heating, etc. and a large amount of energy are required, and there is a problem in production cost, so it is difficult to say that it is suitable for mass production. Moreover, the ultrafine particles obtained by these vapor phase methods also have drawbacks in terms of physical properties, such as difficulty in controlling the particle size distribution, resulting in a wide distribution and relatively easy aggregation. Further, a solid phase method using pulverization or the like is known, but it takes a long time for production, and there is a large variation in particle size, which is not suitable for production of ultrafine particles.
これに対し、液相中から超微粒子を調製する液相法としては、例えば、疎水性反応液中で金属化合物を還元して銀超微粒子を製造する方法が知られている。しかしながら、こうした液相法により得られる超微粒子も凝集性が比較的強いことがあり、安定に分散させるために界面活性剤を加えて保護コロイド化する必要があるが、そうしても分散安定性という面ではなお改善の余地がある。 On the other hand, as a liquid phase method for preparing ultrafine particles from a liquid phase, for example, a method of producing silver ultrafine particles by reducing a metal compound in a hydrophobic reaction solution is known. However, the ultrafine particles obtained by such a liquid phase method may have relatively strong agglomeration properties, and it is necessary to add a surfactant to form a protective colloid for stable dispersion. There is still room for improvement.
脂肪酸塩類から分散安定性に優れた超微粒子を工業的な規模で製造することを目的とした技術がいくつか提案されている。例えば、オレイン酸銀、ステアリン酸銀などの金属有機化合物をオイルバス中で長時間加熱して熱分解させることにより製造した、周囲を有機化合物により取り囲まれている銀の超微粒子(特許文献1参照)や、ミリスチン酸銅などの銅の脂肪酸塩をアルコールなどの還元性を示す有機溶媒中でマイクロ波加熱することにより銅塩に由来する有機成分を有する銅超微粒子の製造(特許文献2参照)が提案されている。 Several techniques aimed at producing ultrafine particles having excellent dispersion stability from fatty acid salts on an industrial scale have been proposed. For example, silver ultrafine particles produced by heating and thermally decomposing a metal organic compound such as silver oleate and silver stearate in an oil bath for a long time (see Patent Document 1) ), And the production of ultrafine copper particles having an organic component derived from a copper salt by microwave heating of a fatty acid salt of copper such as copper myristic acid in an organic solvent having a reducing property such as alcohol (see Patent Document 2) Has been proposed.
その他の脂肪酸塩類を原料とする貴金属の超微粒子の製造では、カプリン酸銀を還元性溶媒である炭素数4から8のアルコール中でマイクロ波により加熱して、ナノサイズで粒径分布の狭い貴金属微粒子を製造する方法が提案されている(特許文献3参照)。また、金属微粒子の出発物として、金属水酸化物の使用が提案され、水酸化ニッケルを還元性の有機溶媒であるエチレングリコールにポリビニルピロリドンと共に分散させ、触媒の存在下でマイクロ波により加熱してニッケル超微粒子を製造することが提案されている(特許文献4参照)。更に、硝酸銀などの銀塩を、還元性溶媒としてのアルコール、ポリオールと、極性抑制剤としての炭化水素との混合溶媒に溶解し、有機保護剤としての脂肪酸、アミノ化合物の存在下にオイルバスなどの加熱方式により長時間加熱して銀粒子粉末を製造する方法が提案されている(特許文献5参照)。 In the production of ultrafine particles of noble metals using other fatty acid salts as raw materials, silver caprate is heated by microwaves in alcohol having 4 to 8 carbon atoms, which is a reducing solvent, and noble metals with a narrow particle size distribution are nano-sized. A method for producing fine particles has been proposed (see Patent Document 3). In addition, the use of metal hydroxides has been proposed as a starting material for metal fine particles. Nickel hydroxide is dispersed together with polyvinylpyrrolidone in ethylene glycol, which is a reducing organic solvent, and heated by microwaves in the presence of a catalyst. It has been proposed to produce ultrafine nickel particles (see Patent Document 4). Further, a silver salt such as silver nitrate is dissolved in a mixed solvent of an alcohol or polyol as a reducing solvent and a hydrocarbon as a polar inhibitor, and an oil bath or the like in the presence of a fatty acid or amino compound as an organic protective agent. There has been proposed a method for producing silver particle powder by heating for a long time by using this heating method (see Patent Document 5).
特に、上記したような従来の液相法において、オイルバスなどの加熱方式を採用すると、反応に4時間以上の長時間を要し粒径分布が粗くなる傾向を示した。また、マイクロ波加熱によると反応は短時間で達成されるが収率が低いなどの問題があった。有機修飾剤などの高級カルボン酸類を共存させて生成した金属微粒子の高濃度化を図ると、余剰の有機修飾剤が溶媒中に残存し析出して固まるなどの現象が生ずることがあり、有機修飾剤の添加量は極力抑えて還元反応を進行させることが必要である。また、有機修飾剤にアミンなどのN原子を含む物質を使用すると、Si半導体などの分野に使用できなくなる問題があった。 In particular, in the conventional liquid phase method as described above, when a heating method such as an oil bath is employed, the reaction takes a long time of 4 hours or more and the particle size distribution tends to become coarse. Moreover, the reaction was achieved in a short time by microwave heating, but there was a problem that the yield was low. Increasing the concentration of fine metal particles produced by the coexistence of higher carboxylic acids such as organic modifiers may result in excess organic modifier remaining in the solvent and precipitating and solidifying. It is necessary to advance the reduction reaction while suppressing the amount of the agent added. In addition, when a substance containing an N atom such as an amine is used as the organic modifier, there is a problem that it cannot be used in the field of Si semiconductor and the like.
このような状況の中で、本発明者らは、上記の従来技術に鑑みて、簡単に入手可能な金属化合物を原料として、短時間の反応時間により単分散性の金属微粒子を製造する技術の開発を目標に鋭意研究を積み重ねることにより、金属の酸化物または水酸化物を原料として、少量の有機修飾剤の存在下に混合溶媒中でマイクロ波加熱すると効率よく金属微粒子を製造できることを見出し、更に研究を積み重ねることにより本発明を完成させるに至った。 In such a situation, in view of the above-described conventional technology, the present inventors have developed a technology for producing monodisperse metal fine particles with a short reaction time using a readily available metal compound as a raw material. By accumulating earnest research with the goal of development, we found that metal oxides or hydroxides can be used as raw materials to efficiently produce fine metal particles when microwave heated in a mixed solvent in the presence of a small amount of organic modifier. The present invention has been completed by further research.
本発明の目的は、従来のオイルバス、電熱などの間接加熱方式を採用すると、反応に数時間以上の長時間を要し、また粒径分布が粗くなる傾向を示す問題を解決するものである。また、本発明の目的は、マイクロ波加熱による還元反応では短時間で金属微粒子の製造が達成されるが収率が低い、特殊な原料化合物を必要とするなどの問題があったのを解決し、簡便で効率的な金属微粒子を製造し提供することにある。また、本発明の目的は、金属微粒子の単分散性の向上を図るとともに、溶媒中に残存し析出して生成物である金属微粒子が固まるなどの現象が生ずる原因ともなっている有機修飾剤の添加量を極力抑えることができる金属微粒子の製造方法および装置を提供することにある。また、本発明の目的は、平均粒径が4nmで単分散性を有する金属微粒子を短時間で製造することにある。また、本発明の目的は、半導体の分野で有害となるN、PやSを含まない有機修飾剤を少量使用することにより金属微粒子を製造することにある。 The object of the present invention is to solve the problem that the reaction requires a long time of several hours or more and the particle size distribution tends to become coarse when a conventional indirect heating system such as an oil bath or electric heating is adopted. . In addition, the object of the present invention is to solve the problems that the reduction reaction by microwave heating achieves the production of fine metal particles in a short time, but the yield is low and a special raw material compound is required. It is to produce and provide simple and efficient metal fine particles. Another object of the present invention is to improve the monodispersity of the metal fine particles, and to add an organic modifier that causes a phenomenon that the metal fine particles that are the product remain and precipitate in the solvent to solidify. An object of the present invention is to provide a method and apparatus for producing fine metal particles capable of suppressing the amount as much as possible. Another object of the present invention is to produce metal fine particles having an average particle diameter of 4 nm and monodispersibility in a short time. Another object of the present invention is to produce fine metal particles by using a small amount of an organic modifier containing no N, P or S, which is harmful in the field of semiconductors.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
本発明は、金属酸化物を分散したマイクロ波吸収性溶媒とマイクロ波非吸収性溶媒の混合溶媒をマイクロ波加熱することにより金属微粒子を製造する方法に係るものである。
(1)金属酸化物を分散媒に分散した分散系にマイクロ波を照射して加熱することにより金属微粒子を製造する方法であって、該分散媒が、炭素数7以下の1価アルコールまたは多価アルコールと炭素数8以上の1価アルコールまたは炭化水素の混合分散媒からなり、該分散系中に金属酸化物の金属元素に対して、炭素数10以上の脂肪酸を(金属酸化物の金属元素):(該脂肪酸)の値がモル比で1.05:1〜6:1の範囲となるように含有することを特徴とする金属微粒子の製造方法。
(2)金属酸化物が、銀、銅、ニッケルから選ばれた1種またはそれ以上の金属である上記(1)に記載の金属微粒子の製造方法。
(3)該分散媒中に含まれている、(炭素数7以下の1価アルコールまたは多価アルコール):(炭素数8以上の1価アルコールまたは炭化水素)の値が容積比で9:1〜1:9の範囲にある上記(1)または(2)に記載の金属微粒子の製造方法。
(4)マイクロ波を該分散系にのみ照射する上記(1)、(2)または(3)に記載の金属微粒子の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
The present invention relates to a method for producing metal fine particles by microwave heating a microwave absorbing solvent and a mixed solvent of a microwave non-absorbent solvent containing dispersed metal oxides.
(1) A method of producing fine metal particles by irradiating a microwave to a dispersion system in which a metal oxide is dispersed in a dispersion medium and heating the dispersion , wherein the dispersion medium is a monohydric alcohol having a carbon number of 7 or less or a polyvalent alcohol. It consists polyhydric alcohol and mixed dispersion medium of monohydric alcohol or a hydrocarbon having 8 or more carbon atoms, with respect to the metal element of the metal oxide in the dispersion, metal elements the number 10 or more fatty acids carbon (metal oxide ): (The fatty acid) is contained so that the molar ratio is in the range of 1.05: 1 to 6: 1 .
(2) a metal oxide, silver, copper, method for producing metal fine particles according to (1) is one or more metals selected from nickel.
(3) The value of ( monohydric alcohol or polyhydric alcohol having 7 or less carbon atoms ) :( monohydric alcohol or hydrocarbon having 8 or more carbon atoms ) contained in the dispersion medium is 9: 1 by volume. The method for producing fine metal particles according to the above (1) or (2) , which is in the range of ˜1: 9.
(4) The method for producing metal fine particles according to the above (1) , (2) or (3) , wherein only the dispersion system is irradiated with microwaves.
また、本発明は以下に記載のマイクロ波照射による金属微粒子の製造方法に係るものである。
(5)マイクロ波発生装置から照射されるマイクロ波の照射領域内に設置されたマイクロ波透過材料からなる容器中に、金属酸化物を炭素数7以下の1価アルコールまたは多価アルコールと炭素数8以上の1価アルコールまたは炭化水素の混合分散媒に分散する分散系であって、該分散系中に金属酸化物の金属元素に対して、炭素数10以上の脂肪酸を(金属酸化物の金属元素):(該脂肪酸)の値がモル比で1.05:1〜6:1の範囲となるように含有する分散系を収納し、容器内で該分散系が収納されていない空間部をマイクロ波遮蔽部材で覆うように設置してマイクロ波を照射することを特徴とする金属微粒子の製造方法。
(6)マイクロ波透過材料からなる容器中に、金属酸化物を炭素数7以下の1価アルコールまたは多価アルコールと炭素数8以上の1価アルコールまたは炭化水素の混合分散媒に分散する分散系であって、該分散系中に金属酸化物の金属元素に対して、炭素数10以上の脂肪酸を(金属酸化物の金属元素):(該脂肪酸)の値がモル比で1.05:1〜6:1の範囲となるように含有する分散系を収納し、容器内で該分散系が収納されている部分にのみ直接マイクロ波が導波管により照射されることを特徴とするマイクロ波による金属微粒子の製造方法。
(7)複数の導波管が設置されている上記(6)に記載のマイクロ波による金属微粒子の製造方法。
(8)容器を構成するマイクロ波透過部分は、その面積が導波管の断面積よりも広く、該分散系の規定量を容器内に投入した時にマイクロ波透過部分の全面が該分散系と接触状態となる位置にあり、該導波管の外側にはマイクロ波漏洩防止部材を配置している上記(6)に記載のマイクロ波による金属微粒子の製造方法。
(9)マイクロ波発生装置から照射されるマイクロ波の照射領域内に設置されたマイクロ波が照射される箇所のみがマイクロ波透過材料から形成された容器中に、金属酸化物を炭素数7以下の1価アルコールまたは多価アルコールと炭素数8以上の1価アルコールまたは炭化水素の混合分散媒に分散する分散系であって、該分散系中に金属酸化物の金属元素に対して、炭素数10以上の脂肪酸を(金属酸化物の金属元素):(該脂肪酸)の値がモル比で1.05:1〜6:1の範囲となるように含有する分散系を収納してマイクロ波を照射することを特徴とするマイクロ波による金属微粒子の製造方法。
The present invention also relates to a method for producing fine metal particles by microwave irradiation as described below.
(5) In a container made of a microwave transmitting material installed in a microwave irradiation region irradiated from a microwave generator, the metal oxide is monohydric alcohol having 7 or less carbon atoms or polyhydric alcohol and carbon number. A dispersion that is dispersed in a mixed dispersion medium of 8 or more monohydric alcohols or hydrocarbons, and in the dispersion, a fatty acid having 10 or more carbon atoms (metal oxide metal) with respect to the metal element of the metal oxide. Element): (the fatty acid) contains a dispersion containing the molar ratio of 1.05: 1 to 6: 1, and a space in the container where the dispersion is not contained. A method for producing metal fine particles, characterized in that it is placed so as to be covered with a microwave shielding member and irradiated with microwaves.
(6) A dispersion system in which a metal oxide is dispersed in a mixed dispersion medium of a monohydric alcohol or polyhydric alcohol having 7 or less carbon atoms and a monohydric alcohol or hydrocarbon having 8 or more carbon atoms in a container made of a microwave transmitting material. In the dispersion, a fatty acid having 10 or more carbon atoms with respect to the metal element of the metal oxide (metal element of the metal oxide) :( the fatty acid) has a molar ratio of 1.05: 1. A microwave containing a dispersion system containing up to -6: 1, and directly irradiating a microwave to a portion of the container in which the dispersion system is stored. Method for producing metal fine particles by
(7) The method for producing metal fine particles by the microwave according to (6), wherein a plurality of waveguides are installed.
(8) The microwave transmitting portion constituting the container has an area larger than the cross-sectional area of the waveguide, and when the prescribed amount of the dispersion system is put into the container, the entire surface of the microwave transmitting portion is the same as the dispersion system. The method for producing metal fine particles by microwaves as described in (6) above, wherein the microwave leakage prevention member is disposed outside the waveguide at a position where they are in contact with each other.
(9) A metal oxide is placed in a container formed of a microwave transmitting material only in a portion irradiated with microwaves installed in a microwave irradiation region irradiated from a microwave generator. A dispersion of a monohydric alcohol or polyhydric alcohol and a monohydric alcohol or hydrocarbon having 8 or more carbon atoms dispersed in a dispersion medium, the number of carbon A microwave containing a dispersion containing 10 or more fatty acids such that the value of (metal element of metal oxide) :( the fatty acid) is in a molar ratio of 1.05: 1 to 6: 1 Irradiation, a method for producing metal fine particles by microwaves.
本発明により次のような効果が奏される。
(1)金属微粒子の製造原料として、入手が容易な金属酸化物あるいは金属水酸化物を利用することができる。
(2)従来のオイルバス加熱などの間接加熱では、数時間以上の反応時間を要したが、マイクロ波加熱を利用することにより数分間の反応時間で金属微粒子が製造できる。
(3)単分散性で約4nmのナノサイズ金属微粒子を製造することができる。
(4)マイクロ波を吸収し難い溶媒とマイクロ波を吸収し易い溶媒との混合溶媒を採用することにより、金属微粒子の生成反応を制御することができる。
(5)有機修飾剤の量を低減することができるので、生成した金属微粒子の取り扱いが簡便となる。
(6)反応液以外にマイクロ波が照射されない構造の照射装置の採用により反応時における反応容器の破損などの問題が解消される。
The following effects are exhibited by the present invention.
(1) An easily available metal oxide or metal hydroxide can be used as a raw material for producing metal fine particles.
(2) Indirect heating such as conventional oil bath heating required a reaction time of several hours or more, but by using microwave heating, metal fine particles can be produced in a reaction time of several minutes.
(3) Nano-sized metal fine particles having a monodispersity of about 4 nm can be produced.
(4) By employing a mixed solvent of a solvent that hardly absorbs microwaves and a solvent that easily absorbs microwaves, the formation reaction of metal fine particles can be controlled.
(5) Since the amount of the organic modifier can be reduced, the generated metal fine particles can be handled easily.
(6) By adopting an irradiation apparatus having a structure that does not irradiate microwaves other than the reaction solution, problems such as breakage of the reaction vessel during the reaction are solved.
本発明は、金属酸化物または金属水酸化物(両者を総称して「金属酸化物」とも言う。)を分散した有機溶媒にマイクロ波を照射して加熱することにより金属微粒子を製造するにあたり、有機溶媒を、マイクロ波を吸収し易い有機溶媒とマイクロ波を吸収し難い有機溶媒の混合溶媒とし、この混合溶媒中に分散させた金属酸化物または金属水酸化物の金属元素に対し当量以下の有機修飾剤を含有させる金属微粒子の製造方法に関するものである。また、本発明は、マイクロ波発生装置、マイクロ波透過材料からなる容器、マイクロ波発生装置からマイクロ波を容器に誘導する導波管を有し、導波管は容器内のマイクロ波を金属酸化物または金属水酸化物を分散した混合溶媒が収納されている部分にのみ直接マイクロ波を照射するように設置されているマイクロ波照射装置に関するものである。本発明により、ナノサイズの金属微粒子を簡便に再現性よく製造することが可能となり、容易に入手できる製造原料を使用して短時間で単分散性の金属微粒子を製造することが可能となる。また、生成した金属微粒子には有機修飾剤などの存在を極力低下させることができる。 The present invention is to produce fine metal particles by irradiating and heating an organic solvent in which metal oxides or metal hydroxides (both are collectively referred to as “metal oxides”) are irradiated with microwaves. The organic solvent is a mixed solvent of an organic solvent that easily absorbs microwaves and an organic solvent that hardly absorbs microwaves, and the amount of the organic solvent is equal to or less than the metal element of the metal oxide or metal hydroxide dispersed in the mixed solvent. The present invention relates to a method for producing fine metal particles containing an organic modifier. The present invention also includes a microwave generator, a container made of a microwave transmitting material, and a waveguide that guides the microwave from the microwave generator to the container. The present invention relates to a microwave irradiation apparatus installed so as to directly irradiate a microwave only to a portion in which a mixed solvent in which a product or a metal hydroxide is dispersed is stored. According to the present invention, nano-sized metal fine particles can be easily produced with good reproducibility, and monodisperse metal fine particles can be produced in a short time using readily available production raw materials. In addition, the presence of an organic modifier or the like can be reduced as much as possible in the generated metal fine particles.
次に、本発明について詳細に説明する。
本発明の微粒子の製造方法は、少なくとも1種またはそれ以上の金属酸化物または水酸化物を溶媒中に分散させた溶液を用いる。上記金属元素の種類は特に限定されることはなく、金属微粒子を構成する所望の金属の種類に応じていかなる種類のものをも単独で、また組み合わせて使用することができる。生成する金属微粒子の粒径は約3から7nmであり、その収率は80から100%を達成することができる。
例えば、微粒子を構成する金属が銀の場合はAg2O、亜鉛の場合はZn(OH)2、ニッケルの場合はNi(OH)2 、銅の場合は水酸化銅などを原料として用いることができる。その他、微粒子を構成する金属が鉛、鉄、コバルト、ルテニウム、銀、インジウム、パラジウム、カドミウムなどそれぞれの酸化物、水酸化物を単独または組み合わせて用いることができる。また、それらの金属酸化物、水酸化物の製造方法や履歴などには関係なく本発明に原料として利用できる。これらの金属酸化物または水酸化物は、その反応性、生成する金属微粒子の粒径などを考慮すると、その粒径が40から80μmであることが好適である。金属酸化物の濃度が低すぎると生産量が少なくなり経済的ではなく、高濃度になると還元反応が不十分となったり、生成した金属微粒子の凝集が起こる可能性が大きくなるため好ましくない。
Next, the present invention will be described in detail.
The method for producing fine particles of the present invention uses a solution in which at least one or more metal oxides or hydroxides are dispersed in a solvent. The kind of the metal element is not particularly limited, and any kind of metal element can be used alone or in combination depending on the kind of desired metal constituting the metal fine particles. The particle size of the generated metal fine particles is about 3 to 7 nm, and the yield can be achieved from 80 to 100%.
For example, Ag 2 O when the metal constituting the fine particles is silver, Zn (OH) 2 when zinc is used, Ni (OH) 2 when nickel is used, and copper hydroxide when copper is used as a raw material. it can. In addition, the metal which comprises microparticles | fine-particles can use each oxide, hydroxide, such as lead, iron, cobalt, ruthenium, silver, indium, palladium, and cadmium, individually or in combination. Moreover, it can utilize as a raw material for this invention irrespective of the manufacturing method, the log | history, etc. of those metal oxides and hydroxides. These metal oxides or hydroxides preferably have a particle size of 40 to 80 μm in view of their reactivity, the particle size of the generated metal fine particles, and the like. If the concentration of the metal oxide is too low, the production amount is reduced and it is not economical. If the concentration is too high, the reduction reaction becomes insufficient and the possibility of aggregation of the generated metal fine particles increases.
金属酸化物または金属水酸化物は溶媒中で還元されて微細粒子の金属に変換されるが、有機溶媒としては、(a)マイクロ波を吸収し難い有機溶媒と(b)マイクロ波を吸収し易い有機溶媒との混合溶媒が使用される。混合有機溶媒中には、金属酸化物または金属水酸化物を金属にまで還元することができる溶媒を必要とし、還元性の溶媒としてはアルコール類が好適に用いられる。本発明で使用する混合溶媒中では、(b)マイクロ波を吸収し易い有機溶媒が還元性有機溶媒に該当する場合が多い。(a)マイクロ波を吸収し難い有機溶媒と(b)マイクロ波を吸収し易い有機溶媒とは相溶性の組み合わせであることが好適である。 A metal oxide or metal hydroxide is reduced in a solvent and converted to a fine particle metal. As an organic solvent, (a) an organic solvent that hardly absorbs microwaves and (b) absorbs microwaves. Mixed solvents with easy organic solvents are used. In the mixed organic solvent, a solvent capable of reducing the metal oxide or metal hydroxide to a metal is required, and alcohols are preferably used as the reducing solvent. In the mixed solvent used in the present invention, (b) an organic solvent that easily absorbs microwaves often corresponds to a reducing organic solvent. It is preferable that (a) an organic solvent that hardly absorbs microwaves and (b) an organic solvent that easily absorbs microwaves have a compatible combination.
〔マイクロ波を吸収し難い有機溶媒(a)〕
マイクロ波を吸収し難い有機溶媒としては特に限定されないが、炭素数8以上の1価アルコールまたは炭化水素から選ばれることが好適である。炭素数8以上の1価のアルコールとしては、オクタノール、デカノール、ドデカノール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等が挙げられる。炭化水素としては沸点150℃以上の炭化水素が好適であり、例えば、1,3,5−トリメチルベンゼン、1,2,3−トリメチルベンゼン、1,3,4−トリメチルベンゼン、1,2,4,5-テトラメチルベンゼン、n−プロピルベンゼン、n−ブチルベンゼン、イソブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン、テレビン油等が挙げられる。
[Organic solvent that is difficult to absorb microwaves (a)]
The organic solvent that hardly absorbs microwaves is not particularly limited, but is preferably selected from monohydric alcohols or hydrocarbons having 8 or more carbon atoms. Examples of the monovalent alcohol having 8 or more carbon atoms include octanol, decanol, dodecanol, myristyl alcohol, cetyl alcohol, stearyl alcohol and the like. As the hydrocarbon, a hydrocarbon having a boiling point of 150 ° C. or more is suitable, and examples thereof include 1,3,5-trimethylbenzene, 1,2,3-trimethylbenzene, 1,3,4-trimethylbenzene, 1,2,4. , 5-tetramethylbenzene, n-propylbenzene, n-butylbenzene, isobutylbenzene, sec-butylbenzene, tert-butylbenzene, turpentine oil and the like.
〔マイクロ波を吸収し易い有機溶媒(b)〕
マイクロ波を吸収し易い有機溶媒としては特に限定されないが、炭素数7以下の1価アルコールまたは多価アルコールから選ばれることが好適である。例えば、1価のアルコールとしては、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、ペンタノール、ヘキサノール、ヘプタノールが挙げられる。多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、グリセリン、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオールを挙げることができる。これら2種類の溶媒からなる混合溶媒は、その沸点が、常圧で120℃以上であることが好適である。マイクロ波加熱により溶媒を高温に維持することにより、反応を迅速に、より完全に進行させることができる。
[Organic solvent that easily absorbs microwaves (b)]
The organic solvent that easily absorbs microwaves is not particularly limited, but is preferably selected from monohydric alcohols or polyhydric alcohols having 7 or less carbon atoms. For example, examples of monohydric alcohols include n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, pentanol, hexanol, and heptanol. Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, glycerin, propylene glycol, 1,4-butanediol, and 1,5-pentanediol. The mixed solvent composed of these two solvents preferably has a boiling point of 120 ° C. or higher at normal pressure. By maintaining the solvent at a high temperature by microwave heating, the reaction can proceed more rapidly and more completely.
マイクロ波を吸収し易い有機溶媒(b)はマイクロ波を吸収して反応系の温度を上昇させる機能を有している。したがって、マイクロ波を吸収し易い有機溶媒(b)が少ないと反応系が十分に高温とならないため還元反応が生起しない場合がある。マイクロ波を吸収し難い有機溶媒(a)は、反応系の温度上昇には直接寄与はしないが、生成した金属微粒子の収率は有機溶媒(a)が多いほど向上し、生成したナノ粒子の分散性も向上するという作用効果を呈する。マイクロ波を吸収し難い溶媒でマイクロ波を吸収し易い溶媒を希釈することにより、マイクロ波が容器内の表面部に存在する溶媒に吸収されてしまうことが少なくなり、内部にまでマイクロ波が透過できるようになるため、溶媒中に分散している金属酸化物にも効果的にマイクロ波が吸収されるようになり、その結果として反応が促進されることとなる(図16参照)。
例えば、ドデカノール単独を有機溶媒として使用すると、反応系の温度が還元反応に十分な高温に上昇することがないため酸化金属の還元反応が進行しなかった。また、エチレングリコール単独を有機溶媒として使用すると、反応系の温度は195℃と還元反応に十分な温度に上昇したが、金属微粒子の収率は20%以下となり実用的ではなかった。有機溶剤(a):有機溶媒(b)の容積比は、9:1から1:9が好適であり、更に6:1から1:6の範囲がより好適である。
The organic solvent (b) that easily absorbs microwaves has a function of absorbing microwaves and raising the temperature of the reaction system. Therefore, if the amount of the organic solvent (b) that easily absorbs microwaves is small, the reaction system does not reach a sufficiently high temperature, and the reduction reaction may not occur. The organic solvent (a) that hardly absorbs the microwave does not directly contribute to the temperature rise of the reaction system, but the yield of the generated metal fine particles is improved as the organic solvent (a) is increased. The effect of improving dispersibility is exhibited. By diluting a solvent that is difficult to absorb microwaves with a solvent that is difficult to absorb microwaves, the microwaves are less likely to be absorbed by the solvent present on the surface of the container, and the microwaves penetrate inside. As a result, microwaves are also effectively absorbed by the metal oxide dispersed in the solvent, and as a result, the reaction is accelerated (see FIG. 16).
For example, when dodecanol alone was used as the organic solvent, the temperature of the reaction system did not rise to a high temperature sufficient for the reduction reaction, and the metal oxide reduction reaction did not proceed. When ethylene glycol alone was used as the organic solvent, the temperature of the reaction system rose to 195 ° C., a temperature sufficient for the reduction reaction, but the yield of metal fine particles was 20% or less, which was not practical. The volume ratio of organic solvent (a): organic solvent (b) is preferably 9: 1 to 1: 9, and more preferably 6: 1 to 1: 6.
〔有機修飾剤〕
有機修飾剤は、生成した金属微粒子の凝集力を抑制し安定な一次粒子の形成に寄与するものであるが、他に生成後の粒子の酸化を防止する機能をも有する。有機修飾剤は金属微粒子からすると不純物であるからその使用量は必要最小限にすることが好適である。有機修飾剤としては高級脂肪酸類が主として用いられ、例えば、カプリン酸(C=10)、ラウリン酸(C=12)、ミリスチン酸(C=14)、パルミチン酸(C=16)、ステアリン酸(C=18)などの飽和脂肪酸、オレイン酸(C=18、二重結合1個)、リノール酸(C=18、二重結合2個)、リノレン酸(C=18、二重結合3個)などの不飽和脂肪酸、分岐状脂肪酸(C=16、主鎖側の炭素数が9)、他に環状脂肪酸、ヒドロキシル脂肪酸などが挙げられる。これらのなかでも、飽和脂肪酸が好適である。
有機修飾剤は、金属酸化物または金属水酸化物の金属元素に対し等モル量以下で使用される。すなわち、金属酸化物または金属水酸化物中に含まれる金属元素1モルに対して、例えば、1モル以下の脂肪酸が混合溶媒に添加される。金属元素:脂肪酸のモル比が、1.05:1から6:1の範囲が好適であり、更に好適な範囲としては3:1から6:1が挙げられる。モル比がこの上限を超えると、生成した金属微粒子に余剰の脂肪酸が残存することとなる。このとき、高融点の脂肪酸を使用した場合には脂肪酸が析出することにより生成物が反応容器内で固化してしまい金属微粒子を利用する際に、更に処理を行なう必要が発生することがあり好ましくない。また、下限値より少なくなると有機修飾剤としての機能を果たすことはできない場合がある。本発明の有機修飾剤としては、NやP元素を含まない化合物が好適に使用され、アミン化合物やリン酸化合物などの使用は避けるのがよい。このことは、生成した金属微粒子中に僅かでもこれらの元素が含有されると、金属微粒子の用途が制限されるからであり、例えば、半導体の技術分野での使用に適さなくなる。
(Organic modifier)
The organic modifier contributes to the formation of stable primary particles by suppressing the cohesive force of the generated metal fine particles, but also has a function of preventing oxidation of the generated particles. Since the organic modifier is an impurity in the case of metal fine particles, it is preferable to use the organic modifier in the minimum necessary amount. As the organic modifier, higher fatty acids are mainly used. For example, capric acid (C = 10), lauric acid (C = 12), myristic acid (C = 14), palmitic acid (C = 16), stearic acid ( Saturated fatty acids such as C = 18), oleic acid (C = 18, 1 double bond), linoleic acid (C = 18, 2 double bonds), linolenic acid (C = 18, 3 double bonds) Unsaturated fatty acids such as, branched fatty acids (C = 16, 9 carbon atoms on the main chain side), cyclic fatty acids, hydroxyl fatty acids and the like. Of these, saturated fatty acids are preferred.
The organic modifier is used in an equimolar amount or less with respect to the metal element of the metal oxide or metal hydroxide. That is, for example, 1 mol or less of fatty acid is added to the mixed solvent with respect to 1 mol of the metal element contained in the metal oxide or metal hydroxide. The molar ratio of metal element: fatty acid is preferably in the range of 1.05: 1 to 6: 1, and more preferably in the range of 3: 1 to 6: 1. When the molar ratio exceeds this upper limit, excess fatty acid remains in the generated metal fine particles. At this time, when a high melting point fatty acid is used, the product is solidified in the reaction vessel due to the precipitation of the fatty acid, and it may be necessary to perform further treatment when using the metal fine particles. Absent. Moreover, when it becomes less than a lower limit, the function as an organic modifier may not be able to be fulfilled. As the organic modifier of the present invention, a compound containing no N or P element is preferably used, and the use of an amine compound or a phosphoric acid compound should be avoided. This is because the use of the metal fine particles is limited if these elements are contained in the generated metal fine particles, even if they are a little, for example, not suitable for use in the technical field of semiconductors.
本発明における還元反応が進行する温度範囲は、140℃から240℃が好適であり、更に好適には、150℃から195℃の温度範囲を挙げることができる。反応温度が低いと、還元反応が生起したとしても反応速度が遅く経済的ではない。また、反応温度は混合溶媒の沸点によって上限は制限される。反応系は、減圧、常圧、加圧のいずれでもよく必要に応じて選択することができる。 The temperature range at which the reduction reaction proceeds in the present invention is preferably 140 ° C. to 240 ° C., and more preferably a temperature range of 150 ° C. to 195 ° C. If the reaction temperature is low, even if a reduction reaction occurs, the reaction rate is slow and not economical. The upper limit of the reaction temperature is limited by the boiling point of the mixed solvent. The reaction system may be any of reduced pressure, normal pressure and increased pressure, and can be selected as necessary.
〔マイクロ波照射装置〕
本発明で使用されるマイクロ波照射装置は、容器内に収納された金属酸化物を含む混合溶媒を所定の温度に加熱させることができるものであればいずれの装置でも差し支えないが、例えば、四国計測工業株式会社製のキャビティ型マイクロ波反応装置(SMW−107)などにより、ガラス製の容器内で金属微粒子の生成反応を実施することができる。
特に、金属微粒子を製造する際に起こることがある容器の破損問題を解決するには、反応の遂行全般にわたり、金属酸化物を含有する混合溶媒にのみ常にマイクロ波を照射することが重要である。
[Microwave irradiation equipment]
The microwave irradiation apparatus used in the present invention may be any apparatus as long as it can heat the mixed solvent containing the metal oxide contained in the container to a predetermined temperature. Using a cavity microwave reactor (SMW-107) manufactured by Keiki Kogyo Co., Ltd., a metal fine particle production reaction can be carried out in a glass container.
In particular, it is important to always irradiate only the mixed solvent containing the metal oxide with microwaves throughout the performance of the reaction in order to solve the container breakage problem that may occur when producing the metal fine particles. .
容器の破損が発生したときの状態は図11に示す。こうした容器の破損現象は次のようにして発生するものと考えられる。すなわち、容器中に金属酸化物を含む混合溶媒(反応混合物)を収納してこれにマイクロ波を照射すると、反応混合物はマイクロ波を吸収して温度が上昇するに伴って体積が増加し、容器中の液面が上昇する。更にマイクロ波を照射して反応を進行させ続けると、加熱された混合溶媒が蒸発などにより揮散して溶媒の体積がある程度減少し液面が低下する。このとき、液面近くで生成していた金属微粒子が容器内壁面に付着したまま残されることがある。そのような状態で更にマイクロ波が照射され続けると、内壁面に付着した金属微粒子がマイクロ波により赤熱されて容器が局部的に高温に加熱されることになり、ガラスが破損する現象が発生することがある。 The state when the container is broken is shown in FIG. Such a container breakage phenomenon is considered to occur as follows. That is, when a mixed solvent (reaction mixture) containing a metal oxide is contained in a container and irradiated with microwaves, the reaction mixture absorbs microwaves and the volume increases as the temperature rises. The liquid level inside rises. When the reaction is further continued by irradiation with microwaves, the heated mixed solvent is volatilized by evaporation or the like, the volume of the solvent is reduced to some extent, and the liquid level is lowered. At this time, the metal fine particles generated near the liquid surface may remain attached to the inner wall surface of the container. If microwaves continue to be irradiated in such a state, the fine metal particles adhering to the inner wall surface are red-heated by the microwaves, and the container is locally heated to a high temperature, causing a phenomenon that the glass is broken. Sometimes.
このような容器の破損を防止するには、例えば、図12に示すように、マイクロ波発生装置1、該マイクロ波発生装置から照射されるマイクロ波の照射領域内に設置されたマイクロ波透過材料からなる容器3、マイクロ波遮蔽部材5を有し、該マイクロ波遮蔽部材5が容器3内で金属酸化物または金属水酸化物を分散した混合溶媒(反応液)4が収納されていない空間部を覆うように設置されているマイクロ波発生装置が好適に用いられる。容器内の空間部を覆うように設置されたマイクロ波遮蔽部材5(スカート部)は容器内壁に付着し取り残された金属微粒子にマイクロ波が照射されないように遮蔽して過加熱による容器の破損を防止する。 In order to prevent such breakage of the container, for example, as shown in FIG. 12, the microwave generator 1, and a microwave transmitting material installed in the irradiation region of the microwave irradiated from the microwave generator A space 3 in which a mixed solvent (reaction solution) 4 in which a metal oxide or a metal hydroxide is dispersed in the container 3 is not accommodated. A microwave generator installed so as to cover is preferably used. The microwave shielding member 5 (skirt part) installed so as to cover the space in the container shields the metal fine particles adhering to the inner wall of the container from being irradiated with microwaves, and damages the container due to overheating. To prevent.
また、マイクロ波発生装置、マイクロ波透過材料からなる容器、マイクロ波発生装置からマイクロ波を容器に誘導する導波管を有し、導波管は容器内のマイクロ波を金属酸化物または金属水酸化物を分散した混合溶媒(反応液)が収納されている部分にのみ直接マイクロ波を照射するように設置されているマイクロ波照射装置やマイクロ波発生装置1、該マイクロ波発生装置1から照射されるマイクロ波の照射領域内に設置された容器3からなり、該容器3でマイクロ波が照射される箇所のみがマイクロ波透過材料7から形成されているマイクロ波照射装置により容器の破損を防止することが可能となる(図13参照)。 In addition, a microwave generator, a container made of a microwave transmitting material, and a waveguide for guiding the microwave from the microwave generator to the container, the waveguide converts the microwave in the container to metal oxide or metal water. Irradiated from the microwave generator 1 or the microwave generator 1 installed so as to directly irradiate the microwave only to the portion containing the mixed solvent (reaction liquid) in which the oxide is dispersed. The container 3 is disposed in the microwave irradiation area, and the microwave irradiation device in which only the portion irradiated with the microwave is formed of the microwave transmitting material 7 prevents the container from being damaged. (See FIG. 13).
次に、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。なお、実施例5は参考例である。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples. Note that Example 5 is a reference example.
還流管を取り付けた1Lのセパラブル容器に1−ドデカノール143ml、エチレングリコール32mlの混合溶媒を加えた後、酸化銀9g、ミリスチン酸(C13H27COOH)17gを添加し、分散した。この懸濁液に四国計測工業株式会社製キャビティ型マイクロ波反応装置(SMW−107)を用いて、マイクロ波(2.45GHz)を照射し、反応温度195℃まで30℃/minで昇温した。195℃に到達した後、10分間その温度を保持し、反応を終了した。加熱の間、メカニカル撹拌機で撹拌を行い、反応温度は安立計器株式会社製光ファイバー温度計(FL−2000)のファイバープローブを懸濁液中に浸漬することで計測・制御を行った。生成物をヘキサンに分散し、透過型電子顕微鏡(TEM)観察を行った結果、ナノサイズの銀微粒子が生成していることが確認された。銀微粒子の収率は90%以上であった。得られた画像から粒径分布を計測した結果、粒径4nmにピークを持つ平均粒径4.0nmの銀微粒子が生成していた。図1にTEM画像を示し、図2に粒径分布を示す。
ここで、1−ドデカノールは、マイクロ波非吸収溶媒であり、エチレングリコールはマイクロ波吸収溶媒である。銀/ミリスチン酸(有機修飾剤)のモル比は1.05であった。
After adding 143 ml of 1-dodecanol and 32 ml of ethylene glycol to a 1 L separable container equipped with a reflux tube, 9 g of silver oxide and 17 g of myristic acid (C 13 H 27 COOH) were added and dispersed. This suspension was irradiated with microwaves (2.45 GHz) using a cavity type microwave reactor (SMW-107) manufactured by Shikoku Keiki Kogyo Co., Ltd., and the temperature was raised to 195 ° C at 30 ° C / min. . After reaching 195 ° C., the temperature was maintained for 10 minutes to complete the reaction. During heating, stirring was performed with a mechanical stirrer, and the reaction temperature was measured and controlled by immersing the fiber probe of an optical fiber thermometer (FL-2000) manufactured by Anritsu Keiki Co., Ltd. in the suspension. As a result of dispersing the product in hexane and observing with a transmission electron microscope (TEM), it was confirmed that nano-sized silver fine particles were generated. The yield of silver fine particles was 90% or more. As a result of measuring the particle size distribution from the obtained image, silver fine particles having an average particle size of 4.0 nm having a peak at a particle size of 4 nm were generated. FIG. 1 shows a TEM image, and FIG. 2 shows a particle size distribution.
Here, 1-dodecanol is a microwave non-absorbing solvent, and ethylene glycol is a microwave absorbing solvent. The molar ratio of silver / myristic acid (organic modifier) was 1.05.
還流管を取り付けた1Lのセパラブル容器に1,3,5−トリメチルベンゼン105mlと1−ヘキサノール35mlの混合溶媒を加えた後、酸化銀9g、ミリスチン酸(C13H27COOH)17gを添加して分散させた。この懸濁液に四国計測工業株式会社製キャビティ型マイクロ波反応装置(SMW−107)を用いて、マイクロ波(2.45GHz)を照射し、反応温度157℃まで30℃/minで昇温した。157℃に到達した後、10分間その温度を保持し、反応を終了した。加熱の間、メカニカル撹拌機で撹拌を行い、反応温度は安立計器株式会社製光ファイバー温度計(FL−2000)のファイバープローブを懸濁液中に浸漬することで温度の計測および制御を行った。生成物をヘキサンに分散し、TEM観察を行った結果、ナノサイズの銀微粒子が生成していることが確認された。銀微粒子の収率は90%以上であった。得られた画像から粒径分布を計測した結果、粒径4nmにピークを持つ平均粒径4.0nmの銀微粒子が生成していた。図3にTEM画像を示し、図4に粒径分布を示す。
マイクロ波非吸収溶媒として、1,3,5−トリメチルベンゼンを使用し、マイクロ波吸収溶媒として、1−ヘキサノールを使用した。銀/ミリスチン酸(有機修飾剤)のモル比は1.05であった。
After adding a mixed solvent of 105 ml of 1,3,5-trimethylbenzene and 35 ml of 1-hexanol to a 1 L separable container equipped with a reflux tube, 9 g of silver oxide and 17 g of myristic acid (C 13 H 27 COOH) were added. Dispersed. This suspension was irradiated with microwaves (2.45 GHz) using a cavity type microwave reactor (SMW-107) manufactured by Shikoku Keiki Kogyo Co., Ltd., and the temperature was raised to 157 ° C. at 30 ° C./min. . After reaching 157 ° C., the temperature was maintained for 10 minutes to complete the reaction. During the heating, stirring was performed with a mechanical stirrer, and the reaction temperature was measured and controlled by immersing a fiber probe of an optical fiber thermometer (FL-2000) manufactured by Anritsu Keiki Co., Ltd. in the suspension. As a result of dispersing the product in hexane and TEM observation, it was confirmed that nano-sized silver fine particles were generated. The yield of silver fine particles was 90% or more. As a result of measuring the particle size distribution from the obtained image, silver fine particles having an average particle size of 4.0 nm having a peak at a particle size of 4 nm were generated. FIG. 3 shows a TEM image, and FIG. 4 shows a particle size distribution.
1,3,5-trimethylbenzene was used as the microwave non-absorbing solvent, and 1-hexanol was used as the microwave absorbing solvent. The molar ratio of silver / myristic acid (organic modifier) was 1.05.
還流管を取り付けた1Lのセパラブル容器に種々の混合割合で混合した1,3,5−トリメチルベンゼンおよび1−ヘキサノールを表1、2に記載の溶媒の混合割合(容量比)と成るように加えた後、酸化銀9gおよび種々の量のミリスチン酸(C13H27COOH)3〜17gを表1および2に記載のモル比となるように添加して分散した。この懸濁液に四国計測工業株式会社製キャビティ型マイクロ波反応装置(SMW−107)を用いて、マイクロ波(2.45GHz)を照射し、反応温度157℃まで30℃/minで昇温した。157℃に到達した後、10分間その温度を保持し、反応を終了した。加熱の間、メカニカル撹拌機で撹拌を行い、反応温度は安立計器株式会社製光ファイバー温度計(FL−2000)のファイバープローブを懸濁液中に浸漬することで温度の計測および制御を行った。生成物をヘキサンに分散し、TEM観察を行った結果、ナノサイズの銀微粒子が生成していることが確認された。得られた画像から粒径分布を計測した結果、いずれの試料においても粒径4nmにピークを持つ銀微粒子が生成していた。銀微粒子の収率は90%以上であった。 1,3,5-trimethylbenzene and 1-hexanol mixed at various mixing ratios were added to a 1 L separable container equipped with a reflux tube so that the mixing ratios (volume ratios) of the solvents described in Tables 1 and 2 were obtained. Thereafter, 9 g of silver oxide and 3 to 17 g of various amounts of myristic acid (C 13 H 27 COOH) were added and dispersed so that the molar ratios shown in Tables 1 and 2 were obtained. This suspension was irradiated with microwaves (2.45 GHz) using a cavity type microwave reactor (SMW-107) manufactured by Shikoku Keiki Kogyo Co., Ltd., and the temperature was raised to 157 ° C. at 30 ° C./min. . After reaching 157 ° C., the temperature was maintained for 10 minutes to complete the reaction. During the heating, stirring was performed with a mechanical stirrer, and the reaction temperature was measured and controlled by immersing a fiber probe of an optical fiber thermometer (FL-2000) manufactured by Anritsu Keiki Co., Ltd. in the suspension. As a result of dispersing the product in hexane and TEM observation, it was confirmed that nano-sized silver fine particles were generated. As a result of measuring the particle size distribution from the obtained image, silver fine particles having a peak at a particle size of 4 nm were generated in any sample. The yield of silver fine particles was 90% or more.
図5には、生成した銀微粒子のTEM画像(銀/有機修飾剤=6、1,3,5−トリメチルベンゼン/1-ヘキサノール=3)を示し、図6にはその粒径分布を示す。表1には、種々の銀/有機修飾剤で合成した銀ナノ粒子の平均粒径を示し、表2には、溶媒の混合比を変えて合成した銀ナノ粒子の平均粒径を示した。表3には、脂肪酸の鎖長を変えて合成した銀ナノ粒子の平均粒径を示した。 FIG. 5 shows a TEM image (silver / organic modifier = 6, 1,3,5-trimethylbenzene / 1-hexanol = 3) of the generated silver fine particles, and FIG. 6 shows the particle size distribution. Table 1 shows average particle diameters of silver nanoparticles synthesized with various silver / organic modifiers, and Table 2 shows average particle diameters of silver nanoparticles synthesized by changing the mixing ratio of the solvents. Table 3 shows the average particle diameter of silver nanoparticles synthesized by changing the chain length of the fatty acid.
還流管を取り付けた1Lのセパラブル容器に、マイクロ波非吸収溶媒である1,3,5−トリメチルベンゼン105mlと、マイクロ波吸収溶媒である1−ヘキサノール35mlの混合溶媒を加えた後、酸化銀9g、アルキル鎖長の異なる直鎖飽和脂肪酸(炭素数10〜18)を銀/有機修飾剤のモル比が6となるように添加して分散させた。この懸濁液に四国計測工業株式会社製キャビティ型マイクロ波反応装置(SMW−107)を用いて、マイクロ波(2.45GHz)を照射し、反応温度157℃まで30℃/minで昇温した。157℃に到達した後、10分間その温度を保持し、反応を終了した。加熱の間、メカニカル撹拌機で撹拌を行い、反応温度は安立計器株式会社製光ファイバー温度計(FL−2000)のファイバープローブを懸濁液中に浸漬することで温度の計測および制御を行った。生成物をヘキサンに分散し、TEM観察を行った結果、ナノサイズの銀微粒子が生成していることが確認された。銀微粒子の収率は90%以上であった。図7には、生成した銀微粒子のTEM画像を示し、図8にはその粒径分布を示す。アルキル鎖の異なる直鎖飽和脂肪酸を有機修飾剤とした場合の生成した銀微粒子の平均粒径を表3に示す。 After adding 105 ml of 1,3,5-trimethylbenzene, which is a microwave non-absorbing solvent, and 35 ml of 1-hexanol, which is a microwave absorbing solvent, to a 1 L separable container equipped with a reflux tube, 9 g of silver oxide is added. Further, linear saturated fatty acids having different alkyl chain lengths (10 to 18 carbon atoms) were added and dispersed so that the molar ratio of silver / organic modifier was 6. This suspension was irradiated with microwaves (2.45 GHz) using a cavity type microwave reactor (SMW-107) manufactured by Shikoku Keiki Kogyo Co., Ltd., and the temperature was raised to 157 ° C. at 30 ° C./min. . After reaching 157 ° C., the temperature was maintained for 10 minutes to complete the reaction. During the heating, stirring was performed with a mechanical stirrer, and the reaction temperature was measured and controlled by immersing a fiber probe of an optical fiber thermometer (FL-2000) manufactured by Anritsu Keiki Co., Ltd. in the suspension. As a result of dispersing the product in hexane and TEM observation, it was confirmed that nano-sized silver fine particles were generated. The yield of silver fine particles was 90% or more. FIG. 7 shows a TEM image of the generated silver fine particles, and FIG. 8 shows the particle size distribution. Table 3 shows the average particle diameter of the silver fine particles produced when linear saturated fatty acids having different alkyl chains are used as the organic modifier.
還流管を取り付けた1Lのセパラブル容器に1,3,5−トリメチルベンゼン105ml、1−ヘキサノール35mlの混合溶媒を加えた後,水酸化銅3g、ミリスチン酸(C13H27COOH)3.5gを添加し,銅/有機修飾剤のモル比が2となるように添加して分散させた。この懸濁液に四国計測工業株式会社製キャビティ型マイクロ波反応装置(SMW−107)を用いて、マイクロ波(2.45GHz)を照射し,反応温度を157℃まで30℃/minで昇温した.157℃到達後、10分間その温度を保持し,反応を終了した。加熱の間、メカニカル撹拌機で撹拌を行い、反応温度は安立計器株式会社製光ファイバー温度計(FL−2000)のファイバープローブを懸濁液中に浸漬することで計測、制御を行った。生成物をヘキサンに分散し、TEM観察を行った結果,ナノサイズの銅微粒子が生成していることが確認された。得られた画像から粒径分布を計測した結果、粒径3nmにピークを持つ平均粒径4.0nmの銅微粒子が生成していることが確認された。図9には生成した銅微粒子のTEM画像を示し、図10にはその粒径分布を示す。 After adding a mixed solvent of 105 ml of 1,3,5-trimethylbenzene and 35 ml of 1-hexanol to a 1 L separable container equipped with a reflux tube, 3 g of copper hydroxide and 3.5 g of myristic acid (C 13 H 27 COOH) were added. The copper / organic modifier was added and dispersed so that the molar ratio of copper / organic modifier was 2. This suspension was irradiated with microwaves (2.45 GHz) using a cavity type microwave reactor (SMW-107) manufactured by Shikoku Keiki Kogyo Co., Ltd., and the reaction temperature was increased to 157 ° C. at 30 ° C./min. did. After reaching 157 ° C., the temperature was maintained for 10 minutes to complete the reaction. During heating, stirring was performed with a mechanical stirrer, and the reaction temperature was measured and controlled by immersing the fiber probe of an optical fiber thermometer (FL-2000) manufactured by Anritsu Keiki Co., Ltd. in the suspension. As a result of dispersing the product in hexane and performing TEM observation, it was confirmed that nano-sized copper fine particles were generated. As a result of measuring the particle size distribution from the obtained image, it was confirmed that copper fine particles having an average particle size of 4.0 nm having a peak at a particle size of 3 nm were generated. FIG. 9 shows a TEM image of the generated copper fine particles, and FIG. 10 shows the particle size distribution.
(比較例1)
還流管を取り付けた1Lのセパラブル容器に1−ドデカノール175mlのみを加えた後、酸化銀9g、ミリスチン酸(C13H27COOH)17gを添加し、分散した。この懸濁液に四国計測工業株式会社製キャビティ型マイクロ波反応装置(SMW−107)を用いて、マイクロ波(2.45GHz)を照射し、反応温度の195℃まで加熱することを試みたが所定温度まで昇温せず、銀の微粒子は生成しなかった。このように、マイクロ波非吸収溶媒のみを溶媒とする反応系では温度上昇はできなかった。
(Comparative Example 1)
After adding only 175 ml of 1-dodecanol to a 1 L separable container equipped with a reflux tube, 9 g of silver oxide and 17 g of myristic acid (C 13 H 27 COOH) were added and dispersed. Although this suspension was irradiated with microwaves (2.45 GHz) using a cavity type microwave reactor (SMW-107) manufactured by Shikoku Keiki Kogyo Co., Ltd., it was attempted to heat to the reaction temperature of 195 ° C. The temperature was not raised to a predetermined temperature, and silver fine particles were not produced. Thus, the temperature could not be increased in the reaction system using only the microwave non-absorbing solvent as a solvent.
(比較例2)
還流管を取り付けた1Lのセパラブル容器にエチレングリコール175mlを加えた後、酸化銀9g、ミリスチン酸(C13H27COOH)17gを添加し、分散した。この懸濁液に四国計測工業株式会社製キャビティ型マイクロ波反応装置(SMW−107)を用いて、マイクロ波(2.45GHz)を照射し、反応温度195℃まで30℃/minで昇温した。195℃到達後、10分間その温度を保持し、反応を終了した。加熱の間メカニカル撹拌機で撹拌を行い、反応温度は安立計器株式会社製光ファイバー温度計(FL−2000)のファイバープローブを懸濁液中に浸漬することで温度の計測および制御を行った。生成物をヘキサンに分散しTEM観察を行った結果、ナノサイズの銀微粒子が生成していることが確認された。マイクロ波を吸収し易い有機溶媒であるエチレングリコールのみを媒体としても銀微粒子は生成したが、その収率は20%以下であり、効率的な金属微粒子の製造はできなかった。
(Comparative Example 2)
After adding 175 ml of ethylene glycol to a 1 L separable container equipped with a reflux tube, 9 g of silver oxide and 17 g of myristic acid (C 13 H 27 COOH) were added and dispersed. This suspension was irradiated with microwaves (2.45 GHz) using a cavity type microwave reactor (SMW-107) manufactured by Shikoku Keiki Kogyo Co., Ltd., and the temperature was raised to 195 ° C at 30 ° C / min. . After reaching 195 ° C., the temperature was maintained for 10 minutes to complete the reaction. Stirring was performed with a mechanical stirrer during heating, and the reaction temperature was measured and controlled by immersing a fiber probe of an optical fiber thermometer (FL-2000) manufactured by Anritsu Keiki Co., Ltd. in the suspension. As a result of TEM observation by dispersing the product in hexane, it was confirmed that nano-sized silver fine particles were generated. Although silver fine particles were produced using only ethylene glycol, which is an organic solvent that easily absorbs microwaves, as a medium, the yield was 20% or less, and efficient metal fine particles could not be produced.
(比較例3)
還流管を取り付けた300mlの丸底フラスコに1,3,5−トリメチルベンゼン30mlと1−ヘキサノール10mlの混合溶媒を加えた後、酸化銀3g、ミリスチン酸(C13H27COOH)1gを添加して分散させた。この懸濁液をマントルヒーターで反応温度157℃まで最大出力で昇温した。157℃に到達した後、10分間その温度を保持したが、反応は完全に終了しておらず、図14に示すように固形物が残存していた。さらに4時間157℃で保持することにより固形物はなくなったが、生成物をヘキサンに分散しTEM観察を行った結果、図15に示すように数100nm程度の凝集物が認められた.加熱の間、メカニカル撹拌機で撹拌を行い、反応温度はK熱電対を懸濁液中に浸漬することで温度の計測および制御を行った。
(Comparative Example 3)
After adding a mixed solvent of 30 ml of 1,3,5-trimethylbenzene and 10 ml of 1-hexanol to a 300 ml round bottom flask equipped with a reflux tube, 3 g of silver oxide and 1 g of myristic acid (C 13 H 27 COOH) were added. And dispersed. This suspension was heated to a reaction temperature of 157 ° C. with a mantle heater at the maximum output. After reaching 157 ° C., the temperature was maintained for 10 minutes, but the reaction was not completely completed, and solid matter remained as shown in FIG. Further, the solid matter disappeared by maintaining at 157 ° C. for 4 hours. However, as a result of TEM observation after dispersing the product in hexane, an aggregate of about several hundred nm was observed as shown in FIG. During the heating, stirring was performed with a mechanical stirrer, and the reaction temperature was measured and controlled by immersing a K thermocouple in the suspension.
本発明は、金属酸化物または金属水酸化物を分散した有機溶媒にマイクロ波を照射して加熱することにより金属微粒子を製造する方法であって、入手が容易な金属酸化物あるいは金属水酸化物を利用して数分から十数分間の短時間の反応で単分散性、約4nmのナノサイズ金属微粒子を製造することができる。金属ナノ粒子のこれまで開発のメインは金、銀であったが、最近では銅ナノ粒子など各種の金属微粒子が注目され、高密度磁気記録媒体、高感度ガスセンサー等への応用、超微粒子として選択性の高い触媒や高効率水素吸蔵材などへの応用、セラミックス、ポリマーなどとの複合化による新機能材としての応用研究がなされている有望な材料である。 The present invention relates to a method for producing metal fine particles by irradiating an organic solvent in which a metal oxide or metal hydroxide is dispersed with microwaves and heating the metal solvent. Can be used to produce monodisperse, nano-sized metal microparticles of about 4 nm in a short reaction time of several minutes to several tens of minutes. The main development of metal nanoparticles so far has been gold and silver, but recently, various metal fine particles such as copper nanoparticles have attracted attention, and are applied to high-density magnetic recording media, high-sensitivity gas sensors, etc. It is a promising material that has been applied to high-selectivity catalysts and high-efficiency hydrogen storage materials, and has been studied as a new functional material by combining with ceramics and polymers.
金属微粒子は極小であることから、例えば、金では粒子径が10nm以下になると融点が大きく低下するなど、元の金属とは異なる性質を示すといった特性や、表面積が大きくなることで高活性となり高い触媒作用を持つなどの様々な特徴的な物性に基づいて新機能材などの用途が開発されている材料である。本発明は、このような有望な材料を製造するための新しい技術を開発し提供するものであり、幅広い用途分野において利用される金属微粒子の製造技術として有用である。 Since the metal fine particles are extremely small, for example, gold exhibits a property different from the original metal, such as a melting point greatly decreasing when the particle diameter is 10 nm or less, and a high surface area and high activity. It is a material for which applications such as new functional materials have been developed based on various characteristic properties such as having a catalytic action. The present invention develops and provides a new technique for producing such a promising material, and is useful as a technique for producing metal fine particles used in a wide range of application fields.
1:マイクロ波発生装置
2:マイクロ波導波管
3:反応容器
4:反応液
5:マイクロ波遮蔽部材(スカート)
6:マイクロ波漏洩防止部材
7:マイクロ波透過材料
1: Microwave generator 2: Microwave waveguide 3: Reaction vessel 4: Reaction liquid 5: Microwave shielding member (skirt)
6: Microwave leakage prevention member 7: Microwave transmission material
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009155455A JP5499309B2 (en) | 2009-06-30 | 2009-06-30 | Method for producing metal fine particles from metal oxide by microwave irradiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009155455A JP5499309B2 (en) | 2009-06-30 | 2009-06-30 | Method for producing metal fine particles from metal oxide by microwave irradiation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011012290A JP2011012290A (en) | 2011-01-20 |
JP5499309B2 true JP5499309B2 (en) | 2014-05-21 |
Family
ID=43591475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009155455A Expired - Fee Related JP5499309B2 (en) | 2009-06-30 | 2009-06-30 | Method for producing metal fine particles from metal oxide by microwave irradiation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5499309B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5782885B2 (en) * | 2011-07-15 | 2015-09-24 | 国立大学法人東京工業大学 | Production of metal fine particles by microwave heating |
JP5909125B2 (en) * | 2011-08-09 | 2016-04-26 | 大阪瓦斯株式会社 | Method for producing metal particles using solvothermal reaction |
US20130178404A1 (en) * | 2012-01-06 | 2013-07-11 | Chemtura Corporation | Microwave Process for Preparing Stable Metal Oxide Dispersions |
JP2018135549A (en) * | 2017-02-20 | 2018-08-30 | トヨタ自動車株式会社 | Method of producing metal nanoparticle |
IL282119B (en) * | 2018-10-12 | 2022-07-01 | Kao Corp | Fine metal particle dispersion production method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3005683B1 (en) * | 1999-03-05 | 2000-01-31 | 大阪大学長 | Method for producing ultrafine particles and ultrafine particles |
JP4194482B2 (en) * | 2003-12-08 | 2008-12-10 | 東洋アルミエコープロダクツ株式会社 | Cooking aid for microwave oven and method of heating food using the same |
JP2005298918A (en) * | 2004-04-13 | 2005-10-27 | Rikogaku Shinkokai | ONE STEP SYNTHESIS METHOD FOR REGULARIZED Fe-Pt ALLOY FINE PARTICLE |
JP2007169680A (en) * | 2005-12-19 | 2007-07-05 | Osaka Univ | Method for producing metal particulate and metal particulate produced thereby |
JP5066690B2 (en) * | 2006-02-01 | 2012-11-07 | 和宏 永田 | Blast furnace and method for producing pig iron using the same |
JP2007303740A (en) * | 2006-05-11 | 2007-11-22 | Toshiba Corp | Heating cooker |
KR100809982B1 (en) * | 2006-09-21 | 2008-03-06 | 삼성전기주식회사 | Method for manufacturing copper nanoparticles using microwave |
-
2009
- 2009-06-30 JP JP2009155455A patent/JP5499309B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011012290A (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Microwave-assisted preparation of inorganic nanostructures in liquid phase | |
Mourdikoudis et al. | Oleylamine in nanoparticle synthesis | |
Li et al. | Microwave‐assisted polyol process for synthesis of Ni nanoparticles | |
TWI518036B (en) | Copper-based nanoparticles and method for the production thereof | |
JP5499309B2 (en) | Method for producing metal fine particles from metal oxide by microwave irradiation | |
JP5068614B2 (en) | Method for producing copper nanoparticles using microwaves | |
Wang et al. | Recent progress in syntheses and applications of dumbbell‐like nanoparticles | |
Wu et al. | One-step green route to narrowly dispersed copper nanocrystals | |
Fereshteh et al. | Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds | |
US20180297121A1 (en) | Method for producing copper nanoparticles and use of said particles | |
Park et al. | ZnO–CuO core–branch nanocatalysts for ultrasound-assisted azide–alkyne cycloaddition reactions | |
Çelik et al. | Retracted Article: Highly monodisperse Pt (0)@ AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB | |
WO2012094221A2 (en) | Composite nanoparticles and methods for making the same | |
JP2008248298A (en) | Method for producing metal nanoparticle, silver/copper nanoparticle, and electrically conductive paste | |
Dou et al. | Facile synthesis of nearly monodisperse AgCu alloy nanoparticles with synergistic effect against oxidation and electromigration | |
JP5830010B2 (en) | Method for producing nickel-cobalt nanoparticles | |
Sekiguchi et al. | Synthesis of palladium nanoparticles and palladium/spherical carbon composite particles in the solid–liquid system of palladium oxide–alcohol by microwave irradiation | |
WO2013035366A1 (en) | Method for producing copper nanoparticles having high dispersion stability | |
JP2011184725A (en) | Method for synthesizing cobalt nanoparticle by hydrothermal reduction process | |
KR101330021B1 (en) | Manufacturing method of metal/silica catalyst support via branched metal silicate structures and metal/silica catalyst support thereof | |
JP5707133B2 (en) | Method for producing composite nanoparticles | |
JP5782885B2 (en) | Production of metal fine particles by microwave heating | |
Songping et al. | Preparation of ultra-fine copper–nickel bimetallic powders with hydrothermal–reduction method | |
JP2006348345A (en) | Method for manufacturing ultrafine silver particle, silver powder, and ultrafine silver particle-dispersion liquid | |
JP2008221207A (en) | Manufacturing method of nanoparticle with particle size of 200 nm or less |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120601 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5499309 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |