[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5488199B2 - Method for producing composite oxide powder - Google Patents

Method for producing composite oxide powder Download PDF

Info

Publication number
JP5488199B2
JP5488199B2 JP2010119285A JP2010119285A JP5488199B2 JP 5488199 B2 JP5488199 B2 JP 5488199B2 JP 2010119285 A JP2010119285 A JP 2010119285A JP 2010119285 A JP2010119285 A JP 2010119285A JP 5488199 B2 JP5488199 B2 JP 5488199B2
Authority
JP
Japan
Prior art keywords
powder
composite oxide
aqueous solution
precipitated
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010119285A
Other languages
Japanese (ja)
Other versions
JP2011246297A (en
Inventor
祐仁 金高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010119285A priority Critical patent/JP5488199B2/en
Publication of JP2011246297A publication Critical patent/JP2011246297A/en
Application granted granted Critical
Publication of JP5488199B2 publication Critical patent/JP5488199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は複合酸化物の製造方法に関し、詳しくは、セラミック電子部品用のセラミック原料として好適に用いることが可能な複合酸化物の製造方法に関する。   The present invention relates to a method for producing a complex oxide, and more particularly to a method for producing a complex oxide that can be suitably used as a ceramic raw material for a ceramic electronic component.

従来、セラミック原料として用いられるBaTiO3、BaZrO3、SrTiO3などの複合酸化物を製造(合成)する方法としては、原料を高温で焼成(仮焼)して複合酸化物を合成する固相反応法が広く知られている。しかしながら、この方法の場合、高温での熱処理(焼成)工程を経て製造されるため、粒径が大きく、しかも不均一になりやすいという問題点がある。 Conventionally, as a method for producing (synthesizing) composite oxides such as BaTiO 3 , BaZrO 3, and SrTiO 3 used as ceramic raw materials, a solid-phase reaction in which the composite oxides are synthesized by firing (calcining) the raw materials at a high temperature. The law is widely known. However, in this method, since it is manufactured through a heat treatment (firing) step at a high temperature, there is a problem that the particle size is large and the particle tends to be non-uniform.

そこで、このような問題点を解決する方法として、以下のように、溶液中での化学反応により複合酸化物を合成する方法が提案されている。   Therefore, as a method for solving such problems, a method of synthesizing a complex oxide by a chemical reaction in a solution has been proposed as follows.

(1)そのうちの1つは、BaTiO3やSrTiO3などのセラミック原料粉末の製造方法に関するものである(特許文献1参照)。
この特許文献1の方法の場合、硝酸塩や塩化物を出発原料に用い、これらを水に溶かした水溶液にアルカリを加えることにより、まず、Ti、ZrなどのBサイト元素を水酸化物として沈殿させた後、シュウ酸、クエン酸、酒石酸などの有機酸を加えることにより、Ba、Sr、CaなどのAサイト元素を有機酸塩として沈殿させ、濾過、水洗、乾燥して得られる粉末を仮焼、粉砕することによりセラミック原料粉末を得るようにしている。
(1) One of them relates to a method for producing a ceramic raw material powder such as BaTiO 3 or SrTiO 3 (see Patent Document 1).
In the case of the method of Patent Document 1, nitrates and chlorides are used as starting materials, and alkali is added to an aqueous solution in which these are dissolved in water. First, B site elements such as Ti and Zr are precipitated as hydroxides. After that, by adding an organic acid such as oxalic acid, citric acid, tartaric acid, etc., the A site element such as Ba, Sr, Ca, etc. is precipitated as an organic acid salt, and the powder obtained by calcination, washing with water and drying is calcined. The ceramic raw material powder is obtained by pulverization.

(2)また、溶液中での化学反応により複合酸化物を合成する他の方法として、上記特許文献1の方法に類似する方法が提案されている(特許文献2参照)。この特許文献2の方法の場合、第1の槽にてTi、ZrなどのBサイト元素の水酸化物を沈殿させ、第2の槽にてBa、Sr、CaなどのAサイト元素の有機酸塩を沈殿させた後、第1の槽のスラリーと第2の槽のスラリーを混合し、濾過、水洗、乾燥して得られる粉末を仮焼、粉砕することによりセラミック原料粉末を得るようにしている。   (2) As another method for synthesizing a composite oxide by a chemical reaction in a solution, a method similar to the method of Patent Document 1 has been proposed (see Patent Document 2). In the case of the method of Patent Document 2, B site element hydroxides such as Ti and Zr are precipitated in a first tank, and A site element organic acids such as Ba, Sr and Ca are precipitated in a second tank. After precipitating the salt, the slurry in the first tank and the slurry in the second tank are mixed, filtered, washed with water, and dried, and the powder obtained by calcination and pulverization is used to obtain a ceramic raw material powder. Yes.

(3)溶液中での化学反応により複合酸化物を合成するさらに他の方法は、いわゆるシュウ酸法によりBaTiO3粉末を合成する方法に関するものであり、TiイオンとBaイオンを、シュウ酸バリウムチタニルという化合物として沈殿させた後、洗浄、濾過、仮焼の工程を経てBaTiO3を得るようにしている(非特許文献1参照)。 (3) Still another method of synthesizing a composite oxide by a chemical reaction in a solution relates to a method of synthesizing BaTiO 3 powder by a so-called oxalic acid method. Ti ions and Ba ions are converted into barium titanyl oxalate. Then, BaTiO 3 is obtained through the steps of washing, filtration and calcination (see Non-Patent Document 1).

特公平2−10089号公報Japanese Patent Publication No.2-10089 特公平2−10091号公報Japanese Patent Publication No.2-10091

マテリアルインテグレーション vol.21 No.7 (2008) pp86−91 「シュウ酸法によるチタン酸バリウムのナノパウダー」Material integration vol. 21 No. 7 (2008) pp86-91 “Nanopowder of barium titanate by oxalic acid method”

しかしながら、上記特許文献1の方法の場合、Bサイト元素を先に沈殿させた後にAサイト元素を沈殿させており、AサイトとBサイトの各成分が別々に沈殿することになるため、沈殿粉全体における各元素の分散性は必ずしも良好ではなく、均一性が不十分になりやすいという問題点がある。   However, in the case of the method of Patent Document 1, since the A site element is precipitated after the B site element is first precipitated, the components of the A site and the B site are separately precipitated. The dispersibility of each element in the whole is not necessarily good, and there is a problem that the uniformity tends to be insufficient.

また、上記特許文献2の方法の場合も、上記特許文献1の場合と同様に、AサイトとBサイトの各成分を別々に沈殿させた後、両者を混合するようにしていることから、各元素の分散性、均一性は固相法と同程度にとどまり、必ずしも満足できるものではないという問題点がある。   Also, in the case of the method of Patent Document 2, as in the case of Patent Document 1, each component of the A site and B site is separately precipitated and then mixed together. There is a problem that the dispersibility and homogeneity of the elements are almost the same as those of the solid phase method and are not always satisfactory.

一方、引用文献3の方法の場合、AサイトとBサイトの各成分を1つの化合物(シュウ酸バリウムチタニル)として沈殿させるため、BaとTiの分散性は原子レベルで均一であるというメリットがある。
しかしながら、その化合物の組成でしか沈殿粉を得ることができず、組成の自由度が低いという問題点がある。
さらに沈殿粉は数十μm程度の凝集体であるため、仮焼後にこの凝集体骨格が残り、最終製品である複合酸化物(例えば、BaTiO3)に粗大粒子が残りやすいという問題点がある。
On the other hand, in the method of the cited document 3, since each component of the A site and the B site is precipitated as one compound (barium titanyl oxalate), there is an advantage that the dispersibility of Ba and Ti is uniform at the atomic level. .
However, a precipitate powder can be obtained only with the composition of the compound, and there is a problem that the degree of freedom in composition is low.
Furthermore, since the precipitated powder is an aggregate of about several tens of μm, there is a problem that this aggregate skeleton remains after calcination, and coarse particles tend to remain in the composite oxide (for example, BaTiO 3 ) that is the final product.

本発明は、上記課題を解決するものであり、組成の自由度が高く、目標とする組成を有し、微細で、かつ、各元素の均一分散性に優れた複合酸化物を効率よく製造することが可能な複合酸化物の製造方法を提供することを目的とする。   The present invention solves the above-described problems, and efficiently produces a complex oxide having a high degree of freedom in composition, having a target composition, and being fine and excellent in uniform dispersibility of each element. An object of the present invention is to provide a method for producing a composite oxide that can be used.

上記課題を解決するため、本発明の複合酸化物の製造方法は、
(a)Baの塩化物、Srの塩化物、Caの塩化物およびLaの塩化物からなる群より選ばれる少なくとも1種である物質Aと、Tiの塩化物およびZrの塩化物の少なくとも1種である物質Bと、酒石酸とを含む水溶液を調製する工程と、
(b)前記水溶液のpHをアルカリ側に調整することで、前記物質Aに由来するBa、Sr、CaおよびLaの少なくとも1種と、前記物質Bに由来するTiおよびZrの少なくとも1種とを含む複合酸化物前駆体を沈殿させる工程と、
(c)前記複合酸化物前駆体を熱処理して、Ba、Sr、CaおよびLaからなる群より選ばれる少なくとも1種と、TiおよびZrの少なくとも1種とを主成分とする複合酸化物を合成する工程と
を具備することを特徴としている。
In order to solve the above problems, the method for producing a composite oxide of the present invention comprises:
(a) at least one selected from the group consisting of Ba chloride, Sr chloride, Ca chloride and La chloride, and at least one of Ti chloride and Zr chloride A step of preparing an aqueous solution containing substance B and tartaric acid,
(b) By adjusting the pH of the aqueous solution to the alkali side, at least one of Ba, Sr, Ca and La derived from the substance A, and at least one of Ti and Zr derived from the substance B Precipitating a composite oxide precursor comprising:
(c) The composite oxide precursor is heat-treated to synthesize a composite oxide containing at least one selected from the group consisting of Ba, Sr, Ca and La and at least one of Ti and Zr as main components. And the step of performing.

また、本発明の複合酸化物の製造方法においては、前記酒石酸の添加量を、前記(a)の工程における前記水溶液に含まれる金属イオンのモル量の和の0.3〜2.0倍の範囲とすることが望ましい。   In the method for producing a composite oxide of the present invention, the amount of tartaric acid added is 0.3 to 2.0 times the sum of the molar amounts of metal ions contained in the aqueous solution in the step (a). A range is desirable.

また、本発明の複合酸化物の製造方法においては、前記水溶液のpHをアルカリ側に調整する方法として、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウムからなる群より選ばれる少なくとも1種を前記水溶液に添加する方法を用いることが望ましい。   In the method for producing a composite oxide of the present invention, the method for adjusting the pH of the aqueous solution to the alkali side is at least one selected from the group consisting of ammonium hydroxide, sodium hydroxide, potassium hydroxide, and lithium hydroxide. It is desirable to use a method of adding seeds to the aqueous solution.

本発明の複合酸化物の製造方法は、Baの塩化物、Srの塩化物、Caの塩化物およびLaの塩化物からなる群より選ばれる少なくとも1種である物質Aと、Tiの塩化物およびZrの塩化物の少なくとも1種である物質Bと、酒石酸とを含む水溶液のpHをアルカリ側に調整することで、物質Aに由来するBa、Sr、CaおよびLaの少なくとも1種と、物質Bに由来するTiおよびZrの少なくとも1種とを含む複合酸化物前駆体を沈殿させ、この複合酸化物前駆体を熱処理して、Ba、Sr、CaおよびLaからなる群より選ばれる少なくとも1種と、TiおよびZrの少なくとも1種とを主成分とする複合酸化物を合成するようにしているので、組成の自由度が高く、目標とする組成を有し、微細で、かつ、各元素の均一分散性に優れた複合酸化物を効率よく製造することが可能になる。   The method for producing a composite oxide of the present invention comprises a substance A that is at least one selected from the group consisting of Ba chloride, Sr chloride, Ca chloride, and La chloride, Ti chloride, and By adjusting the pH of an aqueous solution containing at least one of the Zr chlorides and the tartaric acid to the alkali side, at least one of Ba, Sr, Ca and La derived from the substance A, and the substance B And precipitating a composite oxide precursor containing at least one of Ti and Zr derived from the material, heat treating the composite oxide precursor, and at least one selected from the group consisting of Ba, Sr, Ca and La Since a composite oxide containing at least one of Ti and Zr as a main component is synthesized, the degree of freedom in composition is high, the target composition is fine, and each element is uniform. To dispersibility The becomes a composite oxide can be efficiently produced.

すなわち、本発明においては、上記の物質Aと物質Bが溶解した水溶液のpHをアルカリ側に調整することで、複合酸化物前駆体を沈殿させるようにしているので、各元素の均一分散性に優れた沈殿粉を得ることができる。
したがって、得られた複合酸化物前駆体を、例えば700〜800℃という比較的低い温度で熱処理(仮焼)することにより、目標とする組成の複合酸化物を合成することができる。
That is, in the present invention, the complex oxide precursor is precipitated by adjusting the pH of the aqueous solution in which the substances A and B are dissolved to the alkali side. Excellent precipitated powder can be obtained.
Therefore, a composite oxide having a target composition can be synthesized by heat-treating (calcining) the obtained composite oxide precursor at a relatively low temperature of 700 to 800 ° C., for example.

また、上記の熱処理を行うことにより得られる複合酸化物粉末(仮焼粉)は、100nm程度の微小な1次粒子からなる緩い凝集体であることから、仮焼後に解砕することにより、微細で粒径のそろった複合酸化物を得ることが可能になる。   In addition, the composite oxide powder (calcined powder) obtained by performing the above heat treatment is a loose agglomerate composed of fine primary particles of about 100 nm. Thus, it becomes possible to obtain a composite oxide having a uniform particle size.

また、本発明によれば、仕込み組成通りの沈殿粉(複合酸化物前駆体)が得られ、それを熱処理(仮焼)することにより、目標とする組成を有する複合酸化物を効率よく得ることができる。したがって本発明は、元素の均一分散性に優れていると同時に、組成の自由度が大きい点において、極めて有意義であるということができる。   In addition, according to the present invention, a precipitated powder (composite oxide precursor) according to the charged composition can be obtained, and the composite oxide having the target composition can be efficiently obtained by heat-treating (calcining) it. Can do. Therefore, it can be said that the present invention is extremely significant in that it is excellent in uniform dispersibility of elements and at the same time has a high degree of freedom in composition.

また、本発明の複合酸化物の製造方法において、酒石酸の添加量を、物質Aと物質Bと酒石酸とを含有する水溶液に含まれる金属イオンのモル量の和の0.3〜2.0倍(すなわち、モル比で0.3〜2.0倍)の範囲とすることにより、水溶液中の金属イオンのほとんどを沈殿物として回収することができるので、仕込み組成通りの沈殿粉(複合酸化物前駆体)を得ることが可能になり、また沈殿物中の金属イオンの分散性が高まるので、本願発明をより実効あらしめることができる。   In the method for producing a composite oxide of the present invention, the amount of tartaric acid added is 0.3 to 2.0 times the sum of the molar amounts of metal ions contained in the aqueous solution containing substance A, substance B and tartaric acid. (In other words, most of the metal ions in the aqueous solution can be recovered as a precipitate by adjusting the molar ratio to 0.3 to 2.0 times). (Precursor) can be obtained, and the dispersibility of the metal ions in the precipitate is increased, so that the present invention can be made more effective.

また、本発明の複合酸化物の製造方法においては、水溶液のpHをアルカリ側に調整する方法として、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウムからなる群より選ばれる少なくとも1種を前記水溶液に添加する方法を採用することにより、仕込み組成通りの沈殿粉(複合酸化物前駆体)を確実に沈殿させることが可能になる。
なお、本願発明においては、上述のように、アルカリを添加する方法に限らず、例えば、粉末の状態ではアルカリに該当しない尿素粉末を上記水溶液に添加して、下記の式のように加水分解させ、アルカリ(NH3)を発生させることにより、水溶液のpHをアルカリ側に調整するように構成することも可能である。
(NH22CO+H2O → 2NH3+CO2
In the method for producing the composite oxide of the present invention, as a method for adjusting the pH of the aqueous solution to the alkali side, at least one selected from the group consisting of ammonium hydroxide, sodium hydroxide, potassium hydroxide, and lithium hydroxide is used. By adopting the method of adding to the aqueous solution, it becomes possible to reliably precipitate the precipitated powder (complex oxide precursor) according to the charged composition.
In the present invention, as described above, the method is not limited to the method of adding alkali. For example, urea powder that does not correspond to alkali in the powder state is added to the aqueous solution and hydrolyzed as in the following formula. It is also possible to configure so that the pH of the aqueous solution is adjusted to the alkali side by generating alkali (NH 3 ).
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2

実施例1において得た沈殿粉(複合酸化物前駆体)のSEM像を示す図であり、(a)は5000倍、(b)は30000倍のものである。It is a figure which shows the SEM image of the precipitated powder (complex oxide precursor) obtained in Example 1, (a) is 5000 times and (b) is 30000 times. 実施例1において得た沈殿粉のWDX元素マッピング分析の結果を示す図である。It is a figure which shows the result of the WDX element mapping analysis of the precipitated powder obtained in Example 1. FIG. 実施例1において沈殿粉を仮焼して得た複合酸化物粉末のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the complex oxide powder obtained by calcining the precipitated powder in Example 1. 実施例1において沈殿粉を仮焼して得た複合酸化物粉末(BaTiO3粉末)のSEM像を示す図であり、(a)は5000倍、(b)は30000倍のものである。Is a diagram showing an SEM image of the composite oxide powder precipitated powder obtained by calcination (BaTiO 3 powder) in Example 1, is (a) 5000 times, (b) those of 30000 times. 比較例1において、バリウム原料として炭酸バリウムを用いて得た沈殿粉のWDX元素マッピング分析の結果を示す図である。In the comparative example 1, it is a figure which shows the result of the WDX element mapping analysis of the precipitated powder obtained using barium carbonate as a barium raw material. 比較例1において、バリウム原料として水酸化バリウムを用いて得た沈殿粉のWDX元素マッピング分析の結果を示す図である。In the comparative example 1, it is a figure which shows the result of the WDX element mapping analysis of the precipitation powder obtained using barium hydroxide as a barium raw material. 塩化バリウム、炭酸バリウム、水酸化バリウムの各種バリウム塩を用いて作製したBaとTiを含む沈殿粉のTG曲線を示す図である。It is a figure which shows the TG curve of the precipitated powder containing Ba and Ti produced using various barium salts of barium chloride, barium carbonate, and barium hydroxide. 実施例3において沈殿粉を仮焼して得た複合酸化物粉末(BaTiO3粉末)のSEM像を示す図であり、(a)は5000倍、(b)は30000倍のものである。Is a diagram showing an SEM image of the composite oxide powder precipitated powder obtained by calcination in Example 3 (BaTiO 3 powder) is (a) 5000 times, (b) those of 30000 times. 実施例4において得た沈殿粉のWDX元素マッピング分析の結果を示す図である。It is a figure which shows the result of the WDX elemental mapping analysis of the precipitated powder obtained in Example 4. 実施例4において沈殿粉を仮焼することにより得た複合酸化物粉末(BaZrO3粉末)のX線回折パターンを示す図である。It is a diagram showing an X-ray diffraction pattern of the composite oxide powder obtained by calcining the precipitate powder in Example 4 (BaZrO 3 powder). 実施例4において沈殿粉を仮焼することにより得た複合酸化物粉末のSEM像を示す図であり、(a)は5000倍、(b)は30000倍のものである。It is a figure which shows the SEM image of the complex oxide powder obtained by calcining the precipitated powder in Example 4, (a) is 5000 times, (b) is 30000 times. 実施例6において得た沈殿粉のWDX元素マッピング分析の結果を示す図である。It is a figure which shows the result of the WDX elemental mapping analysis of the precipitated powder obtained in Example 6. 実施例6において沈殿粉を仮焼することにより得た複合酸化物粉末(La2Zr27粉末)のSEM像を示す図であり、(a)は3000倍、(b)は30000倍のものである。Is a diagram showing an SEM image of the precipitate powder composite oxide powder obtained by calcination (La 2 Zr 2 O 7 powder) in Example 6, (a) is 3000 times, (b) is 30000 times Is.

以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。   Examples of the present invention will be described below to describe the features of the present invention in more detail.

(1)四塩化チタンの16%水溶液に水を加え、Ti濃度0.5mol/L(リットル)の水溶液を作製した。そして、この水溶液に塩化バリウム二水和物をBa濃度が0.5mol/Lになるように加え、透明な水溶液を得た。
次に、この水溶液に酒石酸を、水溶液中のBaとTiのモル数の和の0.5倍になるように加えて、Baの塩化物と、Tiの塩化物と、酒石酸とが溶解した水溶液を調製した。
(1) Water was added to a 16% aqueous solution of titanium tetrachloride to prepare an aqueous solution having a Ti concentration of 0.5 mol / L (liter). And barium chloride dihydrate was added to this aqueous solution so that Ba density | concentration might be 0.5 mol / L, and transparent aqueous solution was obtained.
Next, tartaric acid is added to the aqueous solution so as to be 0.5 times the sum of the moles of Ba and Ti in the aqueous solution, and an aqueous solution in which Ba chloride, Ti chloride, and tartaric acid are dissolved. Was prepared.

(2)それから、この水溶液にアンモニア水(水酸化アンモニウム28%水溶液)を滴下して、pHを約10に調整し、複合酸化物前駆体である沈殿粉を得た。
なお、上記(1)および(2)の操作は、いずれも常温で、撹拌しながら行った。
(2) Then, aqueous ammonia (ammonium hydroxide 28% aqueous solution) was added dropwise to this aqueous solution to adjust the pH to about 10 to obtain a precipitated powder as a composite oxide precursor.
The operations (1) and (2) were both performed at room temperature with stirring.

(3)次に、得られた沈殿粉をろ過、洗浄し、乾燥させた後、所定の条件(温度および時間)で仮焼することにより、仮焼粉(複合酸化物粉末)(この実施例ではBaTiO3粉末)を得た。 (3) Next, the obtained precipitated powder is filtered, washed and dried, and then calcined under predetermined conditions (temperature and time) to obtain a calcined powder (composite oxide powder) (this example) Then, BaTiO 3 powder) was obtained.

(評価)
上記(2)の工程で得た沈殿粉を走査型電子顕微鏡により観察した。沈殿粉のSEM像を図1(a)、(b)に示す。図1(a)、(b)より、1次粒子の粒径は数十nm程度であること、1次粒子が集まった凝集体は粒径が数μm程度になっていることがわかる。
(Evaluation)
The precipitated powder obtained in the step (2) was observed with a scanning electron microscope. SEM images of the precipitated powder are shown in FIGS. 1 (a) and 1 (b). 1 (a) and 1 (b), it can be seen that the primary particles have a particle size of about several tens of nanometers, and the aggregate in which the primary particles have gathered has a particle size of about several μm.

また、上記(2)の工程で得た沈殿粉を用いて成形体を作製し、その表面をWDX(波長分散型X線分析装置)にて元素のマッピング分析を行い、BaならびにTiの分散状態を評価した。その結果を図2に示す。
図2より、BaおよびTiのいずれについても濃度偏析は認められず、均一な分散状態が得られていることがわかる。
Moreover, a molded body is prepared using the precipitated powder obtained in the step (2), and the surface is subjected to element mapping analysis by WDX (wavelength dispersive X-ray analyzer), and the dispersed state of Ba and Ti. Evaluated. The result is shown in FIG.
FIG. 2 shows that no concentration segregation is observed in any of Ba and Ti, and a uniform dispersion state is obtained.

また、上記(2)の工程で得た沈殿粉と、上記(3)の工程で、500〜700℃で熱処理(仮焼)することにより得た仮焼粉(複合酸化物粉末)のX線回折パターンを図3に示す。なお、熱処理(仮焼)はいずれも最高温度(図3の縦軸の温度)で1hキープすることにより行った。   X-rays of the precipitated powder obtained in the step (2) and the calcined powder (composite oxide powder) obtained by heat treatment (calcined) at 500 to 700 ° C. in the step (3). The diffraction pattern is shown in FIG. The heat treatment (calcination) was performed by keeping for 1 h at the maximum temperature (temperature on the vertical axis in FIG. 3).

図3より、仮焼が行われていない沈殿粉(複合酸化物前駆体)は非晶質であることがわかる。また、熱処理(仮焼)温度500℃および600℃でも十分に単一相化していないことがわかる。
これに対し、熱処理(仮焼)温度を700℃とした場合には、BaTiO3の単一相が得られていることがわかる。
FIG. 3 shows that the precipitated powder (composite oxide precursor) that has not been calcined is amorphous. It can also be seen that the single phase is not sufficiently formed even at the heat treatment (calcination) temperatures of 500 ° C. and 600 ° C.
On the other hand, when the heat treatment (calcination) temperature is 700 ° C., it can be seen that a single phase of BaTiO 3 is obtained.

また、図4(a)、(b)に、900℃、3hの条件で熱処理(仮焼)した仮焼粉(複合酸化物粉末)のSEM像を示す。図4(a)、(b)より、仮焼粉(複合酸化物粉末)は100nm程度の1次粒子が緩やかに凝集した状態の粉末であることがわかる。なお、凝集体の大きさは、上述の図1(a)、(b)に示した沈殿粉の場合と同様、数μm程度である。   4 (a) and 4 (b) show SEM images of calcined powder (composite oxide powder) heat-treated (calcined) at 900 ° C. for 3 hours. 4 (a) and 4 (b), it is understood that the calcined powder (composite oxide powder) is a powder in which primary particles of about 100 nm are gradually aggregated. The size of the aggregate is about several μm as in the case of the precipitated powder shown in FIGS. 1 (a) and 1 (b).

<比較例>
実施例1の塩化バリウム二水和物の代わりに、炭酸バリウムおよび水酸化バリウム八水和物を用いた以外は、実施例1と同じ方法で沈殿粉を得た。
<Comparative example>
Precipitated powder was obtained in the same manner as in Example 1 except that barium carbonate and barium hydroxide octahydrate were used instead of barium chloride dihydrate in Example 1.

そして、炭酸バリウムを用いて得た沈殿粉と、水酸化バリウム八水和物を用いて得た沈殿粉のそれぞれについて、WDXにて元素マッピング分析を行った。その結果を図5および図6に示す。図5および図6に示すように、いずれの沈殿粉についても元素の偏析が認められた。   Then, element mapping analysis was performed by WDX for each of the precipitated powder obtained using barium carbonate and the precipitated powder obtained using barium hydroxide octahydrate. The results are shown in FIG. 5 and FIG. As shown in FIG. 5 and FIG. 6, element segregation was observed in any of the precipitated powders.

また、塩化バリウム、炭酸バリウム、水酸化バリウムの各種バリウム塩を用いて得た沈殿粉のTG曲線を図7に示す。   FIG. 7 shows TG curves of the precipitated powder obtained using various barium salts of barium chloride, barium carbonate, and barium hydroxide.

図7より、塩化バリウムを用いた場合は、700℃で重量減少が終了しているのに対し、炭酸バリウムと水酸化バリウムを用いた場合には、900℃まで重量減少が続いていることがわかる。実際にバリウム原料として、炭酸バリウムと水酸化バリウムを用いた沈殿粉を種々の温度で仮焼したところ、BaTiO3の単一相が得られるのはいずれも900℃以上の温度であることが確認された。 According to FIG. 7, when barium chloride is used, the weight reduction is completed at 700 ° C., whereas when barium carbonate and barium hydroxide are used, the weight reduction continues to 900 ° C. Recognize. As a result of pre-calcining the precipitated powder using barium carbonate and barium hydroxide as barium raw materials at various temperatures, it was confirmed that the single phase of BaTiO 3 was obtained at a temperature of 900 ° C. or higher. It was done.

この実施例1より、本発明の製造方法によれば、BaおよびTiのいずれについても濃度偏析は認められず、均一に分散した沈殿粉が得られることが確認された。
また、比較的低い温度で熱処理(仮焼)した場合にも、目的相の単一相が得られることが確認された。
From Example 1, it was confirmed that according to the production method of the present invention, no concentration segregation was observed in any of Ba and Ti, and a uniformly dispersed precipitated powder was obtained.
It was also confirmed that a single target phase was obtained even when heat treatment (calcination) at a relatively low temperature.

さらに、沈殿粉として、微粒な1次粒子が緩やかに凝集した沈殿粉が得られ、その結果、複合酸化物粉末(仮焼粉)としても、緩く凝集した複合酸化物粉末(仮焼粉)が得られ、仮焼後の解砕も容易であることが確認された。また、凝集粒子径は数μmであり、比較的小さいことも確認された。   Furthermore, as the precipitated powder, a precipitated powder in which fine primary particles are gently aggregated is obtained. As a result, the complex oxide powder (calcined powder) is also loosely aggregated (calcined powder). It was obtained and it was confirmed that crushing after calcination was easy. Moreover, the aggregated particle diameter was several μm, and it was confirmed that it was relatively small.

Ba/Ti比を0.95〜1.05の範囲で変化させたこと以外は、実施例1の場合と同じ方法で、複合酸化物前駆体である沈殿粉を得た。
それから、得られた沈殿粉を900℃、3hの条件で仮焼して仮焼粉(複合酸化物粉末)を得た。そして、この仮焼粉について、XRF(蛍光X線分析法)により組成分析を行った。仕込み組成と、XRFによる分析で求めた組成の関係を表1に示す。
A precipitated powder as a composite oxide precursor was obtained in the same manner as in Example 1 except that the Ba / Ti ratio was changed in the range of 0.95 to 1.05.
Then, the obtained precipitated powder was calcined at 900 ° C. for 3 hours to obtain a calcined powder (composite oxide powder). The calcined powder was subjected to composition analysis by XRF (fluorescence X-ray analysis). Table 1 shows the relationship between the charged composition and the composition determined by XRF analysis.

表1より、仕込み組成とほぼ同じ組成の仮焼粉(複合酸化物粉末)が得られていることがわかる。   From Table 1, it can be seen that calcined powder (composite oxide powder) having almost the same composition as the charged composition was obtained.

この実施例2より、本発明の方法によれば、目標組成が化学量論比から大きく外れている場合にも、目標組成の複合酸化物粉末を製造することが可能で、組成の自由度が大きいことが確認された。   From Example 2, according to the method of the present invention, it is possible to produce a complex oxide powder having a target composition even when the target composition deviates greatly from the stoichiometric ratio, and the degree of freedom in composition is increased. It was confirmed to be large.

上記実施例1では、アンモニア水を添加して、複合酸化物の前駆体である沈殿粉を析出させるようにしたが、この実施例3では、アンモニア水の代わりに水酸化ナトリウム水溶液(50%水溶液)を使用して沈殿粉を作製するとともに、沈殿粉を所定の条件で仮焼して複合酸化物粉末(BaTiO3粉末)を作製した。
なお、この実施例3では、アンモニア水の代わりに水酸化ナトリウム水溶液を用いたことを除いて、実施例1の場合と同じ方法、同じ条件で沈殿粉および複合酸化物粉末を作製した。
In Example 1 described above, ammonia water was added to precipitate the powder that was a precursor of the composite oxide. In Example 3, sodium hydroxide aqueous solution (50% aqueous solution) was used instead of ammonia water. ) Was used to prepare a precipitated powder, and the precipitated powder was calcined under predetermined conditions to prepare a composite oxide powder (BaTiO 3 powder).
In Example 3, precipitated powder and composite oxide powder were produced in the same manner and under the same conditions as in Example 1 except that an aqueous sodium hydroxide solution was used instead of aqueous ammonia.

この実施例3で作製した沈殿粉について、BaとTiの分散状態を実施例1の場合と同様の方法で評価したところ、BaおよびTiのいずれについても濃度偏析は認められず、均一な分散状態になっていることが確認された。   The precipitated powder prepared in Example 3 was evaluated for the dispersion state of Ba and Ti by the same method as in Example 1. As a result, no concentration segregation was observed in any of Ba and Ti, and the dispersion state was uniform. It was confirmed that

また、沈殿粉を900℃、3hの条件で仮焼することにより得た仮焼粉(複合酸化物粉末)について、X線回折により相の同定を行ったところ、BaTiO3単相になっていることが確認された。 Moreover, when the phase of the calcined powder (composite oxide powder) obtained by calcining the precipitated powder at 900 ° C. for 3 hours was identified by X-ray diffraction, it became a BaTiO 3 single phase. It was confirmed.

また、仮焼粉(複合酸化物粉末)のSEM像は、図8(a)、(b)に示す通りであり、アンモニア水を用いた実施例1の場合と同様、微小な1次粒子が緩やかな凝集体を形成していることが確認された。   Further, SEM images of the calcined powder (composite oxide powder) are as shown in FIGS. 8A and 8B, and in the same manner as in Example 1 using ammonia water, fine primary particles are present. It was confirmed that a gentle aggregate was formed.

この実施例3より、アンモニア水の代わりに水酸化ナトリウムを用いても同様の効果が得られることが確認された。   From Example 3, it was confirmed that the same effect was obtained even when sodium hydroxide was used instead of the ammonia water.

(1)塩化バリウム二水和物とオキシ塩化ジルコニウム八水和物を1:1のモル比で調合し、水を加えて両者を溶解して透明な水溶液を得た。水溶液中のBa濃度とZr濃度はともに0.5mol/Lとした。
なお、本発明においては、ジルコニウムの塩化物として、安定性などの見地からオキシ塩化物(ZrOCl2・8H2O)を用いることが望ましい。
それから、常温で撹拌しながら、この水溶液に酒石酸を加えた。酒石酸の添加量は、水溶液中のBaとZrのモル数の和の0.7倍とした。
(1) Barium chloride dihydrate and zirconium oxychloride octahydrate were prepared at a molar ratio of 1: 1, and water was added to dissolve both to obtain a transparent aqueous solution. Both the Ba concentration and the Zr concentration in the aqueous solution were 0.5 mol / L.
In the present invention, it is desirable to use oxychloride (ZrOCl 2 .8H 2 O) as zirconium chloride from the standpoint of stability.
Then, tartaric acid was added to this aqueous solution with stirring at room temperature. The amount of tartaric acid added was 0.7 times the sum of the moles of Ba and Zr in the aqueous solution.

(2)それから、酒石酸を加えた水溶液に対し、常温で攪拌を続けながら、アンモニア水(28%水溶液)を滴下することにより、pHを約9.5に調整し、沈殿粉を得た。   (2) Then, ammonia water (28% aqueous solution) was added dropwise to the aqueous solution to which tartaric acid was added while stirring at room temperature to adjust the pH to about 9.5 to obtain a precipitated powder.

(3)次に、得られた沈殿粉をろ過、洗浄し、乾燥させた後、所定の条件で仮焼して仮焼粉(複合酸化物粉末)(この実施例ではBaZrO3粉末)を得た。 (3) Next, the obtained precipitated powder is filtered, washed, dried, and then calcined under predetermined conditions to obtain a calcined powder (composite oxide powder) (in this example, BaZrO 3 powder). It was.

(評価)
沈殿粉について、BaとZrの分散状態を、実施例1の場合と同様の方法で評価した。その結果、図9に示すように、BaとZrに濃度偏析はなく、均一な分散状態が得られていることが確認された。
(Evaluation)
For the precipitated powder, the dispersion state of Ba and Zr was evaluated in the same manner as in Example 1. As a result, as shown in FIG. 9, it was confirmed that there was no concentration segregation in Ba and Zr, and a uniform dispersion state was obtained.

また、上記(2)の工程で得た沈殿粉ならびに、上記(3)の工程で、500〜700℃で熱処理(仮焼)することにより得た仮焼粉(複合酸化物粉末)のX線回折パターンを図10に示す。なお、熱処理(仮焼)はいずれも最高温度で1hキープすることにより行った。   Further, the X-ray of the precipitated powder obtained in the step (2) and the calcined powder (composite oxide powder) obtained by heat treatment (calcination) at 500 to 700 ° C. in the step (3). The diffraction pattern is shown in FIG. The heat treatment (calcination) was performed by keeping for 1 h at the maximum temperature.

図10より、沈殿粉は非晶質であることがわかる。また、熱処理(仮焼)温度700℃でBaZrO3の単一相が得られていることがわかる。 FIG. 10 shows that the precipitated powder is amorphous. It can also be seen that a BaZrO 3 single phase was obtained at a heat treatment (calcination) temperature of 700 ° C.

また、図11(a)、(b)に800℃、3hで熱処理(仮焼)することにより得た仮焼粉(複合酸化物粉末)のSEM像を示す。図11(a)、(b)より、この仮焼粉(複合酸化物粉末)は、微小な1次粒子が緩やかに凝集した状態の粉末であることがわかる。   11A and 11B show SEM images of calcined powder (composite oxide powder) obtained by heat treatment (calcination) at 800 ° C. for 3 hours. 11 (a) and 11 (b), it is understood that the calcined powder (composite oxide powder) is a powder in which fine primary particles are gently aggregated.

この実施例4より、複合酸化物粉末としてBaZrO3を製造する場合においても実施例1の場合と同様の効果が得られることが確認された。 From Example 4, it was confirmed that the same effect as in Example 1 was obtained when BaZrO 3 was produced as a composite oxide powder.

(1)四塩化チタンの16%水溶液に水を加え、Ti濃度1.0mol/Lの水溶液を作製した。その後、塩化ストロンチウム六水和物をSr濃度が1.0mol/Lになるように加え、透明な水溶液を得た。
それから、常温で撹拌しながら、この水溶液に酒石酸を加えた。酒石酸の添加量は、水溶液中のSrとTiのモル数の和の0.5倍とした。
(1) Water was added to a 16% aqueous solution of titanium tetrachloride to prepare an aqueous solution having a Ti concentration of 1.0 mol / L. Thereafter, strontium chloride hexahydrate was added so that the Sr concentration was 1.0 mol / L to obtain a transparent aqueous solution.
Then, tartaric acid was added to this aqueous solution with stirring at room temperature. The amount of tartaric acid added was 0.5 times the sum of the moles of Sr and Ti in the aqueous solution.

(2)それから、酒石酸を加えた水溶液に対し、常温で攪拌を続けながら、水酸化ナトリウム水溶液(50%水溶液)を滴下することにより、pHを約13に調整し、沈殿粉を得た。   (2) Then, a sodium hydroxide aqueous solution (50% aqueous solution) was added dropwise to the aqueous solution to which tartaric acid was added while stirring at room temperature, thereby adjusting the pH to about 13 to obtain a precipitated powder.

(3)次に、得られた沈殿粉をろ過、洗浄し、乾燥させた後、所定の条件で仮焼することにより仮焼粉(複合酸化物粉末)(この実施例ではSrTiO3粉末)を得た。 (3) Next, the obtained precipitated powder is filtered, washed, dried, and then calcined under predetermined conditions to obtain a calcined powder (composite oxide powder) (SrTiO 3 powder in this example). Obtained.

(評価)
沈殿粉について、SrとTiの分散状態を、実施例1の場合と同様の方法で評価した。その結果、SrとTiに濃度偏析はなく、均一な分散状態が得られていることが確認された。
(Evaluation)
For the precipitated powder, the dispersion state of Sr and Ti was evaluated in the same manner as in Example 1. As a result, it was confirmed that there was no concentration segregation in Sr and Ti, and a uniform dispersion state was obtained.

また、沈殿粉を800℃、3hの条件で仮焼して得た仮焼粉(複合酸化物粉末)について、X線回折により相の同定を行ったところ、SrTiO3単相になっていることが確認された。 In addition, regarding the calcined powder (composite oxide powder) obtained by calcining the precipitated powder at 800 ° C. for 3 hours, the phase was identified by X-ray diffraction, and it was found to be a single SrTiO 3 phase. Was confirmed.

この実施例5より、複合酸化物粉末としてSrTiO3を製造する場合においても実施例1の場合と同様の効果が得られることが確認された。 From Example 5, it was confirmed that the same effect as in Example 1 was obtained when SrTiO 3 was produced as a composite oxide powder.

(1)塩化ランタン七水和物とオキシ塩化ジルコニウム八水和物を1:1のモル比で調合し、水を加えて両者を溶解して透明な水溶液を得た。水溶液中のLa濃度とZr濃度はともに0.5mol/Lとした。
それから、この水溶液を常温で撹拌しながら、酒石酸を加えた。酒石酸の添加量は水溶液中のLaとZrのモル数の和の0.5倍とした。
(1) Lanthanum chloride heptahydrate and zirconium oxychloride octahydrate were prepared at a molar ratio of 1: 1, and water was added to dissolve both to obtain a transparent aqueous solution. Both the La concentration and the Zr concentration in the aqueous solution were 0.5 mol / L.
Then, tartaric acid was added while stirring the aqueous solution at room temperature. The amount of tartaric acid added was 0.5 times the sum of the moles of La and Zr in the aqueous solution.

(2)酒石酸を加えた水溶液に対し、常温で攪拌を続けながら、アンモニア水(28%水溶液)を滴下することにより、pHを約10に調整し、沈殿粉を得た。   (2) Aqueous ammonia (28% aqueous solution) was added dropwise to the aqueous solution to which tartaric acid was added while stirring at room temperature to adjust the pH to about 10 to obtain a precipitated powder.

(3)次に、得られた沈殿粉をろ過、洗浄し、乾燥させた後、所定の条件で仮焼することにより仮焼粉(複合酸化物粉末)(この実施例ではLa2Zr27粉末)を得た。 (3) Next, the obtained precipitated powder is filtered, washed and dried, and then calcined under predetermined conditions to obtain a calcined powder (composite oxide powder) (in this example, La 2 Zr 2 O 7 powder).

(評価)
沈殿粉について、LaとZrの分散状態を、実施例1の場合と同様の方法で評価した。その結果、図12に示すように、LaとZrに濃度偏析はなく、均一な分散状態が得られていることが確認された。
(Evaluation)
For the precipitated powder, the dispersion state of La and Zr was evaluated in the same manner as in Example 1. As a result, as shown in FIG. 12, it was confirmed that there was no concentration segregation in La and Zr and a uniform dispersion state was obtained.

また、沈殿粉を800℃、3hの条件で仮焼して得た仮焼粉(複合酸化物粉末)について、X線回折により相の同定を行ったところ、La2Zr27単相になっていることが確認された。 Moreover, about the calcined powder (composite oxide powder) obtained by calcining the precipitated powder at 800 ° C. for 3 hours, the phase was identified by X-ray diffraction. As a result, the La 2 Zr 2 O 7 single phase It was confirmed that

また、図13(a)、(b)に1300℃、3hで熱処理(仮焼)することにより得た仮焼粉(複合酸化物粉末)のSEM像を示す。この図13(a)、(b)より、仮焼粉(複合酸化物粉末)は、微小な1次粒子が緩やかに凝集した状態の粉末であることがわかる。また、凝集体の大きさも数μm程度になっていることがわかる。   FIGS. 13A and 13B show SEM images of calcined powder (composite oxide powder) obtained by heat treatment (calcination) at 1300 ° C. for 3 hours. 13 (a) and 13 (b), it can be seen that the calcined powder (composite oxide powder) is a powder in which minute primary particles are gently aggregated. Moreover, it turns out that the magnitude | size of the aggregate is also about several micrometers.

この実施例6より、複合酸化物粉末としてLa2Zr27を製造する場合においても実施例1の場合と同様の効果が得られることが確認された。 From Example 6, it was confirmed that the same effect as in Example 1 was obtained when La 2 Zr 2 O 7 was produced as the composite oxide powder.

(1)素原料として
a)塩化バリウム二水和物、
b)塩化ストロンチウム六水和物、
c)塩化カルシウム二水和物、
d)塩化ランタン七水和物、
e)四塩化チタンの16%水溶液、
f)オキシ塩化ジルコニウム八水和物
を準備し、表2の組成の欄に示す組成となるように各素原料を調合し、水を加えて水溶液を作製した。なお、各水溶液は、金属イオンのモル数が合計1mol/Lになるようにした。
(1) As raw materials a) Barium chloride dihydrate,
b) strontium chloride hexahydrate,
c) calcium chloride dihydrate,
d) lanthanum chloride heptahydrate,
e) 16% aqueous solution of titanium tetrachloride,
f) Zirconium oxychloride octahydrate was prepared, each raw material was prepared so as to have the composition shown in the composition column of Table 2, and water was added to prepare an aqueous solution. Each aqueous solution was adjusted so that the total number of moles of metal ions was 1 mol / L.

そして、この水溶液を常温で撹拌しながら酒石酸を加えた。酒石酸の添加量は表2に記載の通りとした。なお、表2の酒石酸量の値は、水溶液中の金属イオンのモル数の和の何倍に相当するかを示す値である。   And tartaric acid was added, stirring this aqueous solution at normal temperature. The amount of tartaric acid added was as shown in Table 2. In addition, the value of the tartaric acid amount in Table 2 is a value indicating how many times the sum of the number of moles of metal ions in the aqueous solution corresponds.

(2)それから、酒石酸を加えた水溶液に対し、常温で攪拌を続けながら、アンモニア水(28%水溶液)を滴下することにより、pHを約10に調整し、沈殿粉を得た。   (2) Then, ammonia water (28% aqueous solution) was added dropwise to the aqueous solution to which tartaric acid was added while stirring at room temperature to adjust the pH to about 10 to obtain a precipitated powder.

(3)次に、得られた沈殿粉をろ過、洗浄し、乾燥させた後、所定の条件で仮焼することにより仮焼粉(表2の組成の欄に示す組成を有する各複合酸化物粉末)を得た。   (3) Next, the obtained precipitated powder is filtered, washed, dried, and then calcined under predetermined conditions to obtain calcined powder (each composite oxide having the composition shown in the column of composition in Table 2). Powder).

(評価)
洗浄、乾燥させた各沈殿粉について、各元素の分散状態を、実施例1の場合と同様の方法で評価した。その結果、各元素に濃度偏析はなく、均一な分散状態が得られていることが確認された。
(Evaluation)
About each precipitation powder wash | cleaned and dried, the dispersion state of each element was evaluated by the method similar to the case of Example 1. FIG. As a result, it was confirmed that there was no concentration segregation in each element and a uniform dispersion state was obtained.

また、洗浄、乾燥させた各沈殿粉を800℃、3hの条件で仮焼して得た仮焼粉(複合酸化物粉末)について、X線回折により相の同定を行ったところ、いずれも目的相の単相になっていることが確認された。   Moreover, the phase of each calcined powder (composite oxide powder) obtained by calcining each of the washed and dried precipitated powders at 800 ° C. for 3 hours was identified by X-ray diffraction. It was confirmed that the phase was a single phase.

さらに、各仮焼粉(複合酸化物粉末)についてSEM観察を行った結果、微小な1次粒子からなる緩やかな凝集体になっていることが確認された。   Furthermore, as a result of performing SEM observation on each calcined powder (composite oxide powder), it was confirmed that the calcined powder was a loose aggregate composed of fine primary particles.

この実施例7より、表2に示すような種々の複合酸化物粉末を製造する場合においても実施例1の場合と同様の効果が得られることが確認された。   From Example 7, it was confirmed that the same effects as in Example 1 were obtained when various composite oxide powders as shown in Table 2 were produced.

(1)塩化バリウム二水和物とオキシ塩化ジルコニウム八水和物を1:1のモル比で調合し、水を加えて両者を溶解して透明な水溶液を得た。水溶液中のBa濃度とZr濃度はともに0.5mol/Lとした。
この水溶液を常温で撹拌しながら酒石酸を加えた。なお、この実施例では、表3に示すように、酒石酸の添加量を、水溶液中のBaとZrのモル数の和の0.2〜3.0倍の範囲で変化させた。なお、表3の酒石酸量の値は、水溶液中の金属イオンのモル数の和の何倍に相当するかを示す値である。
(1) Barium chloride dihydrate and zirconium oxychloride octahydrate were prepared at a molar ratio of 1: 1, and water was added to dissolve both to obtain a transparent aqueous solution. Both the Ba concentration and the Zr concentration in the aqueous solution were 0.5 mol / L.
Tartaric acid was added to the aqueous solution while stirring at room temperature. In this example, as shown in Table 3, the amount of tartaric acid added was changed in the range of 0.2 to 3.0 times the sum of the number of moles of Ba and Zr in the aqueous solution. In addition, the value of the tartaric acid amount in Table 3 is a value indicating how many times the sum of the number of moles of metal ions in the aqueous solution corresponds.

(2)それから、異なる割合で酒石酸を加えた各水溶液に対し、常温で攪拌を続けながら、アンモニア水(28%水溶液)を滴下することにより、pHを約9.5に調整し、沈殿粉を得た。   (2) Then, by adding dropwise ammonia water (28% aqueous solution) to each aqueous solution to which tartaric acid was added at different ratios while stirring at room temperature, the pH was adjusted to about 9.5, and the precipitated powder was Obtained.

(3)次に、得られた沈殿粉をろ過、洗浄し、乾燥させた後、1000℃、3hの条件で仮焼することにより仮焼粉(複合酸化物粉末)(この実施例ではBaZrO3粉末)を得た。 (3) Next, the obtained precipitated powder is filtered, washed and dried, and then calcined at 1000 ° C. for 3 hours to obtain a calcined powder (composite oxide powder) (BaZrO 3 in this example). Powder).

(評価)
得られた仮焼粉(複合酸化物粉末)について、X線回折により相の同定を行った結果を表3に示す。
なお、表3の「結果(異相の有無)」の欄に○(無)と記した試料は、BaZrO3の単相であることが確認された試料であり、×(有)と記した試料は、異相が認められた試料である。
(Evaluation)
Table 3 shows the results of phase identification of the obtained calcined powder (composite oxide powder) by X-ray diffraction.
In addition, the sample marked with ○ (no) in the column of “Result (existence / absence of heterogeneous phase)” in Table 3 is a sample confirmed to be a single phase of BaZrO 3 , and the sample marked with × (yes) Is a sample in which a heterogeneous phase was observed.

表3より、酒石酸の添加量は、水溶液中の金属イオンのモル数の和の0.3〜2.0倍の範囲とすることが望ましいことがわかる。
すなわち、酒石酸の添加量が0.3倍より少ない場合には、Baイオンのろ液中への溶出が多くなり、異相としてZrO2が多く生成してしまう。一方、酒石酸の添加量が2.0倍よりも多い場合には、Zrイオンのろ液中への溶出が多くなり、異相としてBaCO3が多く生成してしまうことになる。
なお、この傾向は、BaZrO3系の場合に限らず、どの組成系の場合にも同様の傾向があることが確認されている。
From Table 3, it can be seen that the amount of tartaric acid added is desirably 0.3 to 2.0 times the sum of the number of moles of metal ions in the aqueous solution.
That is, when the amount of tartaric acid added is less than 0.3 times, Ba ions are more eluted into the filtrate, and a large amount of ZrO 2 is produced as a different phase. On the other hand, when the amount of tartaric acid added is more than 2.0 times, the elution of Zr ions into the filtrate increases, and a large amount of BaCO 3 is produced as a different phase.
This tendency is not limited to the case of the BaZrO 3 system, and it has been confirmed that there is a similar tendency in any composition system.

なお、本発明は上記実施例に限定されるものではなく、酒石酸を含む原料水溶液の調製方法や成分濃度、沈殿粉(複合酸化物前駆体)を熱処理(仮焼)する際の条件(温度や時間)などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   In addition, this invention is not limited to the said Example, The conditions (temperature, etc.) at the time of heat-processing (calcination) the preparation method and component density | concentration of raw material aqueous solution containing tartaric acid, and precipitation powder (complex oxide precursor). Various applications and modifications can be made within the scope of the invention.

Claims (3)

(a)Baの塩化物、Srの塩化物、Caの塩化物およびLaの塩化物からなる群より選ばれる少なくとも1種である物質Aと、Tiの塩化物およびZrの塩化物の少なくとも1種である物質Bと、酒石酸とを含む水溶液を調製する工程と、
(b)前記水溶液のpHをアルカリ側に調整することで、前記物質Aに由来するBa、Sr、CaおよびLaの少なくとも1種と、前記物質Bに由来するTiおよびZrの少なくとも1種とを含む複合酸化物前駆体を沈殿させる工程と、
(c)前記複合酸化物前駆体を熱処理して、Ba、Sr、CaおよびLaからなる群より選ばれる少なくとも1種と、TiおよびZrの少なくとも1種とを主成分とする複合酸化物を合成する工程と
を具備することを特徴とする複合酸化物の製造方法。
(a) at least one selected from the group consisting of Ba chloride, Sr chloride, Ca chloride and La chloride, and at least one of Ti chloride and Zr chloride A step of preparing an aqueous solution containing substance B and tartaric acid,
(b) By adjusting the pH of the aqueous solution to the alkali side, at least one of Ba, Sr, Ca and La derived from the substance A, and at least one of Ti and Zr derived from the substance B Precipitating a composite oxide precursor comprising:
(c) The composite oxide precursor is heat-treated to synthesize a composite oxide containing at least one selected from the group consisting of Ba, Sr, Ca and La and at least one of Ti and Zr as main components. And a process for producing a composite oxide.
前記酒石酸の添加量を、前記(a)の工程における前記水溶液に含まれる金属イオンのモル量の和の0.3〜2.0倍の範囲とすることを特徴とする請求項1記載の複合酸化物の製造方法。   2. The composite according to claim 1, wherein the amount of tartaric acid added is in the range of 0.3 to 2.0 times the sum of the molar amounts of metal ions contained in the aqueous solution in the step (a). Production method of oxide. 前記水溶液のpHをアルカリ側に調整する方法が、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウムからなる群より選ばれる少なくとも1種を前記水溶液に添加する方法であることを特徴とする請求項1または2記載の複合酸化物の製造方法。   The method of adjusting the pH of the aqueous solution to the alkali side is a method of adding at least one selected from the group consisting of ammonium hydroxide, sodium hydroxide, potassium hydroxide, and lithium hydroxide to the aqueous solution. The method for producing a composite oxide according to claim 1 or 2.
JP2010119285A 2010-05-25 2010-05-25 Method for producing composite oxide powder Active JP5488199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119285A JP5488199B2 (en) 2010-05-25 2010-05-25 Method for producing composite oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119285A JP5488199B2 (en) 2010-05-25 2010-05-25 Method for producing composite oxide powder

Publications (2)

Publication Number Publication Date
JP2011246297A JP2011246297A (en) 2011-12-08
JP5488199B2 true JP5488199B2 (en) 2014-05-14

Family

ID=45412052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119285A Active JP5488199B2 (en) 2010-05-25 2010-05-25 Method for producing composite oxide powder

Country Status (1)

Country Link
JP (1) JP5488199B2 (en)

Also Published As

Publication number Publication date
JP2011246297A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP6368246B2 (en) Method for producing coated barium titanate fine particles
JP5445412B2 (en) Method for producing composite oxide powder
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP4702515B2 (en) Tetragonal barium titanate fine particle powder and production method thereof
JPS6153115A (en) Production of powdery raw material of easily sintering perovskite solid solution by multiple wet process
JPH06305729A (en) Fine powder of perovskite type compound and its production
JP5488199B2 (en) Method for producing composite oxide powder
US8431109B2 (en) Process for production of composition
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPS61186219A (en) Production of lead-containing fine powder
CN104528824B (en) A kind of produce Zirconium powder and the method for ammonium salt and product simultaneously
JP5765506B1 (en) Method for producing barium titanate powder
JP6005528B2 (en) Method for producing titanium dioxide solution and method for producing perovskite titanium composite oxide
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
JP2008156167A (en) Spherical peroxotitanium hydrate and spherical titanium oxide and method for producing the same
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
KR100483169B1 (en) Method for the preparation of multielement-based metal oxide powders
KR102411275B1 (en) Method for producing anatase-type titanium dioxide using titanium-containing hydrochloric acid solution and titanium dioxide crystal control method using titanium-contained hydrochloric acid solution
JPS6259529A (en) Production of powdery raw material of easily sinterable titanium-containing perovskite and solid solution thereof
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JPH10236824A (en) Titania-zirconia multiple oxide fine powder and its production
JPH0570124A (en) Electrically conductive crystal-oriented zinc oxide powder and its production
JP2023097229A (en) Method for producing zirconic acid compound, zirconic acid compound and sintered body of the same
JP2000044234A (en) Rare earth oxide and its production
JPH01122907A (en) Production of perovskite oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150