[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5482119B2 - Fatigue damage evaluation method and apparatus - Google Patents

Fatigue damage evaluation method and apparatus Download PDF

Info

Publication number
JP5482119B2
JP5482119B2 JP2009256635A JP2009256635A JP5482119B2 JP 5482119 B2 JP5482119 B2 JP 5482119B2 JP 2009256635 A JP2009256635 A JP 2009256635A JP 2009256635 A JP2009256635 A JP 2009256635A JP 5482119 B2 JP5482119 B2 JP 5482119B2
Authority
JP
Japan
Prior art keywords
frequency band
fatigue
specific frequency
crack
count
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009256635A
Other languages
Japanese (ja)
Other versions
JP2011102700A (en
Inventor
伸和 井戸
稔 田上
達夫 辻
謙治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009256635A priority Critical patent/JP5482119B2/en
Publication of JP2011102700A publication Critical patent/JP2011102700A/en
Application granted granted Critical
Publication of JP5482119B2 publication Critical patent/JP5482119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、構造物の繰返し荷重が作用する部位の疲労状態を評価する疲労損傷評価方法及びその装置に関するものである。   The present invention relates to a fatigue damage evaluation method and apparatus for evaluating a fatigue state of a site where a repeated load of a structure acts.

構造物、例えばLNGタンクでは、LNGをタンクに貯溜し、又LNGを消費することで、タンク内のLNGの液位が上下し、タンク、特にタンク側壁と底板との接合部(隅部)には大きな繰返し荷重が作用する。   In a structure such as an LNG tank, LNG is stored in the tank and consumed, so that the liquid level of the LNG in the tank rises and falls, and the tank, particularly at the junction (corner) between the tank side wall and the bottom plate. A large cyclic load acts.

この為、隅部に疲労による亀裂が発生する可能性があり、隅部の疲労損傷状態を検査する必要がある。   For this reason, cracks due to fatigue may occur at the corners, and it is necessary to inspect the fatigue damage state at the corners.

従来、亀裂損傷を検査する為には、タンクを開放し、タンク内部から検査する必要があった。タンクを開放する為には、タンク内に貯溜されたLNGを仮に移す予備タンクが必要であり、又内部に人が入り全周検査する為、多くの時間と労力を必要とし、検査コストが掛っていた。更に、従来の検査方法では、損傷の位置は推定できるが、損傷の程度は推定できないものであった。   Conventionally, in order to inspect crack damage, it was necessary to open the tank and inspect from the inside of the tank. In order to open the tank, a spare tank that temporarily transfers the LNG stored in the tank is necessary. Also, since a person enters the inside and inspects the entire circumference, a lot of time and labor are required, and the inspection cost is high. It was. Furthermore, in the conventional inspection method, the position of damage can be estimated, but the degree of damage cannot be estimated.

又、複雑な構造物で、検査対象部位迄立入ることができない、或は狭小な空間で検査装置を設置できない等、検査すること自体が困難な場合もあった。   Further, in some cases, it is difficult to inspect itself because a complicated structure cannot enter a part to be inspected or an inspection apparatus cannot be installed in a narrow space.

特開平10−26613号公報JP-A-10-26613 特開2008−180558号公報JP 2008-180558 A

本発明は斯かる実情に鑑み、作業者が直接検査対象部位について検査する必要がなく、又構造物の現状を変えることなく、現状を維持したままで、疲労亀裂の検出が可能であると共に疲労亀裂の程度の推定が可能な疲労損傷評価方法及びその装置を提供するものである。   In view of such circumstances, the present invention eliminates the need for an operator to directly inspect a site to be inspected, and allows the detection of fatigue cracks while maintaining the current status without changing the current status of the structure, and fatigue. A fatigue damage evaluation method and apparatus capable of estimating the degree of cracks are provided.

本発明は、検査部位についてのAE検出曲線を経時的に取得し、該AE検出曲線の内亀裂進行により発せられるAEに対応する特定周波数帯でのAEカウント数に基づき疲労亀裂の発生、亀裂進展状態を判断する疲労損傷評価方法に係るものである。   The present invention acquires an AE detection curve for an examination site over time, and generates fatigue cracks and crack progress based on the AE count number in a specific frequency band corresponding to the AE generated by the progress of internal cracks in the AE detection curve. The present invention relates to a fatigue damage evaluation method for judging a state.

又本発明は、前記特定周波数帯でのAEカウント数の経時的増加に基づき疲労亀裂の発生、亀裂進展状態を判断する疲労損傷評価方法に係るものである。   The present invention also relates to a fatigue damage evaluation method for judging the occurrence of fatigue cracks and the progress of cracks based on an increase in the number of AE counts in the specific frequency band over time.

又本発明は、検査部位をモデル化した試験部材により、予め前記AE検出曲線を取得して参照データとし、検査部位の特定周波数帯での前記AEカウント数と参照データとの対比により疲労亀裂の発生、亀裂進展状態を判断する疲労損傷評価方法に係るものである。   Further, the present invention obtains the AE detection curve in advance by using a test member that models the inspection site as reference data, and compares the AE count number in the specific frequency band of the inspection site with the reference data to determine fatigue cracks. The present invention relates to a fatigue damage evaluation method for judging the occurrence and crack propagation state.

又本発明は、前記AE検出曲線の特定周波数帯部分の特定周波数帯面積を求め、該特定周波数帯面積に基づき疲労亀裂の発生、亀裂進展状態を判断する疲労損傷評価方法に係るものである。   The present invention also relates to a fatigue damage evaluation method for obtaining a specific frequency band area of a specific frequency band portion of the AE detection curve and determining the occurrence of fatigue cracks and crack progress based on the specific frequency band area.

又本発明は、前記AE検出曲線の面積S0、及び前記特定周波数帯面積Sを求めると共に面積比S/S0を求め、該面積比S/S0に基づき疲労亀裂の発生、亀裂進展状態を判断する疲労損傷評価方法に係るものである。   In addition, the present invention obtains the area S0 of the AE detection curve and the specific frequency band area S and obtains the area ratio S / S0, and determines the occurrence of fatigue cracks and the crack propagation state based on the area ratio S / S0. This relates to a fatigue damage evaluation method.

又本発明は、前記AE検出曲線面積と前記特定周波数帯面積との比(S/S0)と亀裂進展速度との関連から、前記面積比に基づき亀裂進展速度を求める疲労損傷評価方法に係るものである。   The present invention also relates to a fatigue damage evaluation method for obtaining a crack growth rate based on the area ratio from the relationship between the ratio of the AE detection curve area and the specific frequency band area (S / S0) and the crack growth rate. It is.

又本発明は、検査対象部位に取付けられたAEセンサと、該AEセンサからAE信号が入力される疲労亀裂進展判断部とを具備し、該疲労亀裂進展判断部は前記AE信号に基づき該AE信号の内亀裂進行に対応する特定周波数帯での特定周波数帯AEカウント数を演算し、該特定周波数帯AEカウント数に基づき疲労亀裂の発生、亀裂進展状態を判断する疲労損傷評価装置に係るものである。   The present invention further includes an AE sensor attached to a site to be inspected, and a fatigue crack progress determination unit to which an AE signal is input from the AE sensor. The fatigue crack progress determination unit is based on the AE signal. According to a fatigue damage evaluation apparatus for calculating a specific frequency band AE count in a specific frequency band corresponding to an internal crack progress of a signal and judging the occurrence of fatigue cracks and crack progress based on the specific frequency band AE count It is.

又本発明は、前記疲労亀裂進展判断部は、AE信号から得られる総AEカウント数と前記特定周波数帯AEカウント数との比を求めると共に(特定周波数帯AEカウント数/総AEカウント数)の比を求め、該比に基づき疲労亀裂の発生、亀裂進展状態を判断する疲労損傷評価装置に係るものである。   In the present invention, the fatigue crack growth determination unit obtains a ratio between the total AE count obtained from the AE signal and the specific frequency band AE count (specific frequency band AE count / total AE count). The present invention relates to a fatigue damage evaluation apparatus that obtains a ratio and determines the occurrence of fatigue cracks and the progress of cracks based on the ratio.

更に又本発明は、前記検査対象部位に取付けられた複数のAEセンサを具備し、前記疲労亀裂進展判断部は、複数のAEセンサからの信号の受信時間差に基づき発生した亀裂の位置を特定する疲労損傷評価装置に係るものである。   Furthermore, the present invention includes a plurality of AE sensors attached to the inspection target part, and the fatigue crack progress determining unit identifies a position of a crack generated based on a reception time difference of signals from the plurality of AE sensors. The present invention relates to a fatigue damage evaluation apparatus.

本発明によれば、検査部位についてのAE検出曲線を経時的に取得し、該AE検出曲線の内亀裂進行により発せられるAEに対応する特定周波数帯でのAEカウント数に基づき疲労亀裂の発生、亀裂進展状態を判断するので、構造物について現状を維持したままで、又人手による検査を必要としないので、検査期間、検査コストを大幅に低減できる。   According to the present invention, an AE detection curve for an examination site is acquired over time, and the occurrence of fatigue cracks based on the AE count number in a specific frequency band corresponding to the AE generated by the progress of internal cracks in the AE detection curve, Since the crack propagation state is determined, the current state of the structure is maintained and no manual inspection is required, so that the inspection period and inspection cost can be greatly reduced.

本発明によれば、検査対象部位に取付けられたAEセンサと、該AEセンサからAE信号が入力される疲労亀裂進展判断部とを具備し、該疲労亀裂進展判断部は前記AE信号に基づき該AE信号の内亀裂進行に対応する特定周波数帯での特定周波数帯AEカウント数を演算し、該特定周波数帯AEカウント数に基づき疲労亀裂の発生、亀裂進展状態を判断するので、構造物について現状を維持したままで、又人手による検査を必要としないので、検査期間、検査コストを大幅に低減できるという優れた効果を発揮する。   According to the present invention, an AE sensor attached to a site to be inspected and a fatigue crack growth determination unit to which an AE signal is input from the AE sensor, the fatigue crack growth determination unit is based on the AE signal. Since a specific frequency band AE count in a specific frequency band corresponding to the progress of an internal crack in the AE signal is calculated and the occurrence of fatigue cracks and crack progress are determined based on the specific frequency band AE count, The inspection period and inspection cost can be greatly reduced since the inspection is maintained and no manual inspection is required.

(A)はアルミ合金について常温での疲労試験を行った場合のAE検出グラフであり、(B)はアルミ合金について低温での疲労試験を行った場合のAE検出グラフである。(A) is an AE detection graph when an aluminum alloy is subjected to a fatigue test at room temperature, and (B) is an AE detection graph when an aluminum alloy is subjected to a fatigue test at low temperature. (A)は、9%Ni鋼について常温での疲労試験を行った場合のAE検出グラフであり、(B)は9%Ni鋼について低温での疲労試験を行った場合のAE検出グラフである。(A) is an AE detection graph when a 9% Ni steel is subjected to a fatigue test at room temperature, and (B) is an AE detection graph when a 9% Ni steel is subjected to a fatigue test at low temperature. . 本発明に係る疲労損傷評価装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the fatigue damage evaluation apparatus which concerns on this invention. AEと閾値との関係、AEカウント数との関係を示すグラフである。It is a graph which shows the relationship between AE and a threshold value, and the relationship with AE count number. AE発生についての説明図である。It is explanatory drawing about AE generation | occurrence | production. AE検出曲線面積比と疲労亀裂進展速度との関係を示す図である。It is a figure which shows the relationship between AE detection curve area ratio and fatigue crack growth rate. 疲労亀裂進展速度とΔKに関連する安全設計曲線の一例を示す図である。It is a figure which shows an example of the safety design curve relevant to fatigue crack growth rate and (DELTA) K.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

材料の変形や破壊の際に歪みエネルギの開放により発生する弾性波(Acoustic Emission アコウスティク・エミッション)(以下AEと称す)があり、AEは疲労亀裂の進展、酸化膜破壊、FRP繊維の破断等で発生する。   There is elastic wave (Acoustic Emission) (hereinafter referred to as AE) generated by releasing strain energy when the material is deformed or broken. AE is fatigue crack growth, oxide film breakage, FRP fiber breakage, etc. Occurs.

本発明は、AE波を検出してタンク外部から疲労亀裂の検出及び疲労亀裂の程度の推定を可能とする。   The present invention enables detection of fatigue cracks from the outside of the tank and estimation of the degree of fatigue cracks by detecting AE waves.

先ず、本発明の原理について説明する。   First, the principle of the present invention will be described.

本発明者が、部材の疲労試験を行いAEセンサによりAEを検出し、検出結果を検討した結果、疲労損傷の進行と共に特定周波数部分でのAEカウント数(AE検出信号中で所定の閾値より大きいもののカウント数)が増加することを見出した。これは、亀裂進展速度が大きくなると、開放されるエネルギが大きくなり、振幅値のより大きいAEが発生する様になり、又高い周波数成分を持ったAEが頻繁に発生すると考えられる。換言すると、特定周波数でのAEカウント数の増加が疲労亀裂の発生、疲労亀裂の進展に関連するものであると考えられる。   The present inventor conducted a fatigue test of the member, detected AE by the AE sensor, and examined the detection result. As a result of the progress of fatigue damage, the number of AE counts at a specific frequency portion (greater than a predetermined threshold in the AE detection signal) We have found that the count of things increases. It is considered that when the crack growth rate increases, the released energy increases, AE having a larger amplitude value is generated, and AE having a high frequency component is frequently generated. In other words, an increase in the AE count at a specific frequency is considered to be related to the occurrence of fatigue cracks and the progress of fatigue cracks.

従って、本発明者は、特定周波数部分でのAEカウント数の経時的増加に基づき、疲労亀裂の検出及び疲労亀裂の程度、疲労亀裂の進展状態の推定を行う方法及び装置を提案するものである。   Therefore, the present inventor proposes a method and an apparatus for detecting a fatigue crack, estimating the degree of fatigue crack, and estimating the progress state of the fatigue crack based on an increase in the AE count in the specific frequency portion over time. .

以下、材料の代表的な材質である鉄合金、アルミ合金について疲労試験を行った場合のAE検出結果を示す。   Hereinafter, AE detection results when a fatigue test is performed on iron alloys and aluminum alloys, which are representative materials, are shown.

図1(A)は、アルミ合金の常温での試験部材の疲労試験を行った場合の、周波数に対応するAEカウント数を表すAE検出曲線を時間経過と共に表した3次元のAE検出グラフであり、図中、X軸はAEの周波数、Y軸は繰返し荷重の繰返し回数(時間:手前から奥に向って繰返し回数が増加、即ち時間が経過する)、Z軸はAEカウント数である。尚、繰返し回数は0〜90000回とした。尚、図1(A)には、試験部材が破断する直前迄のAE検出曲線が示されている。   FIG. 1A is a three-dimensional AE detection graph showing an AE detection curve representing an AE count number corresponding to a frequency with time when a fatigue test of a test member at a room temperature of an aluminum alloy is performed. In the figure, the X-axis is the AE frequency, the Y-axis is the number of repetitions of the repeated load (time: the number of repetitions increases from the front to the back, that is, the time elapses), and the Z-axis is the AE count number. The number of repetitions was 0 to 90000 times. FIG. 1A shows an AE detection curve until just before the test member breaks.

このAE検出グラフから分る様に、繰返し回数A(0〜10000)、繰返し回数B(50000〜60000)、繰返し回数C(70000〜80000)、繰返し回数D(80000〜90000)と移行する程に、AEカウント数を示す曲線に経時的な変化が見られる周波数帯がある。即ち、160kHz〜180kHzの周波数帯では、AEカウント数が経時的に増大している。特に、160kHz〜170kHzの周波数帯では、顕著なAEカウント数の増大が確認できる。又、繰返し回数D以上で試験部材が破断したことが分る。   As can be seen from this AE detection graph, the number of repetitions A (0 to 10,000), number of repetitions B (50000 to 60000), number of repetitions C (70000 to 80000), and number of repetitions D (80000 to 90000) are shifted. There is a frequency band in which a change with time is seen in the curve showing the AE count number. That is, in the frequency band of 160 kHz to 180 kHz, the AE count number increases with time. In particular, in the frequency band of 160 kHz to 170 kHz, a significant increase in the AE count can be confirmed. It can also be seen that the test member broke when the number of repetitions was D or more.

図1(B)は、アルミ合金の低温(約−160℃)での試験部材の疲労試験を行った場合のAEの検出結果を示した3次元グラフである。   FIG. 1B is a three-dimensional graph showing the detection result of AE when a fatigue test is performed on a test member at a low temperature (about −160 ° C.) of an aluminum alloy.

このAE検出グラフが示す様に、低温であっても特定の周波数帯、190kHz〜230kHzでAEカウント数の経時的な増大が見られる。又、繰返し回数A(0〜10000)、繰返し回数B(50000〜60000)、繰返し回数C(100000〜110000)、繰返し回数D(130000〜137000)である。   As this AE detection graph shows, an increase in the AE count over time is observed in a specific frequency band of 190 kHz to 230 kHz even at a low temperature. The number of repetitions A (0 to 10000), the number of repetitions B (50000 to 60000), the number of repetitions C (100,000 to 110000), and the number of repetitions D (130,000 to 137000).

図2(A)は、9%Ni鋼の常温での試験部材の疲労試験を行った場合のAEの検出結果を示した3次元グラフであり、繰返し回数は2000回〜60000回とした。   FIG. 2 (A) is a three-dimensional graph showing the detection result of AE when a fatigue test is performed on a test member of 9% Ni steel at room temperature, and the number of repetitions is 2000 to 60000 times.

このAE検出グラフから分る様に、繰返し回数A(2000〜12000)、繰返し回数B(32000〜42000)、繰返し回数C(42000〜52000)、繰返し回数D(57000〜60000)と移行する程に、160kHz〜220kHzの周波数帯では、AEカウント数が経時的に増大している。特に、180kHz〜200kHzの周波数帯では、顕著なAEカウント数の増大が確認できる。又、繰返し回数D以上で試験部材が破断したことが分る。   As can be seen from this AE detection graph, the number of repetitions A (2000 to 12000), number of repetitions B (32000 to 42000), number of repetitions C (42000 to 52000), and number of repetitions D (57000 to 60000) are shifted. In the frequency band of 160 kHz to 220 kHz, the AE count number increases with time. In particular, in the frequency band of 180 kHz to 200 kHz, a significant increase in the AE count number can be confirmed. It can also be seen that the test member broke when the number of repetitions was D or more.

図2(B)は、9%Ni鋼の低温(約−160℃)での試験部材の疲労試験を行った場合のAEの検出結果を示した3次元グラフである。   FIG. 2B is a three-dimensional graph showing the detection result of AE when a fatigue test is performed on a test member at a low temperature (about −160 ° C.) of 9% Ni steel.

このAE検出グラフが示す様に、9%Ni鋼は低温であっても特定の周波数帯、170kHz〜250kHzでAEカウント数の経時的な増大が見られる。又、繰返し回数A(0〜10000)、繰返し回数B(20000〜30000)、繰返し回数C(40000〜50000)、繰返し回数D(60000〜70000)である。   As shown in this AE detection graph, 9% Ni steel shows an increase in the AE count over time in a specific frequency band of 170 kHz to 250 kHz even at a low temperature. The number of repetitions A (0 to 10,000), the number of repetitions B (20,000 to 30,000), the number of repetitions C (40000 to 50,000), and the number of repetitions D (60000 to 70000).

上述した様に疲労試験を行った場合、材料の相違に拘らず、更に環境温度の相違に拘らず、試験部材には疲労亀裂の発生、疲労亀裂の進展に伴い、特定周波数帯でのAEカウント数の経時的増加が確認できる。   When the fatigue test is performed as described above, the AE count in a specific frequency band is generated in accordance with the occurrence of fatigue cracks and the development of fatigue cracks in the test member regardless of the difference in materials and the difference in environmental temperature. An increase in the number over time can be confirmed.

従って、構造物の繰返し荷重が作用する部位をモデル化した試験部材により、予め疲労試験を実施し、繰返し回数を増大させた場合の、所定繰返し回数毎のAE検出曲線を取得し、AE検出グラフを作成し、該AE検出グラフを参照データとして取得しておく。   Therefore, when a fatigue test is performed in advance using a test member that models a site where a repeated load of a structure acts, an AE detection curve is obtained for each predetermined number of repetitions when the number of repetitions is increased, and an AE detection graph And the AE detection graph is acquired as reference data.

実際の検査では、構造物の検査対象部位又は検査対象部位の近傍にAEセンサを設け、該AEセンサで検出されるAEカウント数内、特定周波数のAEカウント数を監視し、参照データと比較することで、疲労亀裂の検出及び疲労亀裂の程度及び疲労亀裂の進展状態の推定を行うことができる。   In the actual inspection, an AE sensor is provided in the inspection target part of the structure or in the vicinity of the inspection target part, and the AE count number of a specific frequency is monitored within the AE count number detected by the AE sensor and compared with the reference data. Thus, it is possible to detect the fatigue crack and estimate the degree of fatigue crack and the progress of the fatigue crack.

図3に於いて、本発明に係る疲労損傷評価装置1について、概略を説明する。   In FIG. 3, an outline of the fatigue damage evaluation apparatus 1 according to the present invention will be described.

図3中、2は構造物の検査対象部位であり、3は前記検査対象部位2の表面に取付けられたAEセンサ、5は制御演算部、6は該制御演算部5に接続された記憶部、7は前記制御演算部5に接続された操作入力部、8は前記制御演算部5に接続された出力部である。   In FIG. 3, 2 is an inspection target part of the structure, 3 is an AE sensor attached to the surface of the inspection target part 2, 5 is a control calculation unit, and 6 is a storage unit connected to the control calculation unit 5. , 7 is an operation input unit connected to the control calculation unit 5, and 8 is an output unit connected to the control calculation unit 5.

該AEセンサ3からの信号は、信号処理部4に於いて増幅及びA/D変換等所要の信号処理がなされる。例えば、図4は前記AEセンサ3が検出したAE信号を示しており、該AE信号の内、閾値9であり、前記信号処理部4は前記閾値9を超えた信号(以下AEカウント信号11と称す)について前記制御演算部5に出力される。   The signal from the AE sensor 3 is subjected to necessary signal processing such as amplification and A / D conversion in the signal processing unit 4. For example, FIG. 4 shows an AE signal detected by the AE sensor 3, which is a threshold value 9 among the AE signals, and the signal processing unit 4 is a signal exceeding the threshold value 9 (hereinafter referred to as an AE count signal 11). Is output to the control calculation unit 5.

前記制御演算部5は前記閾値9を超えた信号について、該信号の持つ周波数と関連付けてカウントし、前記記憶部6に記録する。尚、前記信号処理部4は、AE信号の増幅のみを行い、前記閾値9を超えた信号の検出は、前記制御演算部5で行ってもよい。   The control calculation unit 5 counts the signal exceeding the threshold 9 in association with the frequency of the signal and records it in the storage unit 6. The signal processing unit 4 may only amplify the AE signal, and the control calculation unit 5 may detect the signal exceeding the threshold value 9.

前記記憶部6は、データ格納部及びプログラム格納部を有し、前記データ格納部には前記AEカウント信号11及び予め取得した参照データが格納され、前記プログラム格納部には前記AEカウント信号11に基づきAE検出曲線を作成するAE検出曲線作成プログラム、更にAE検出曲線よりAE検出グラフを作成するAE検出グラフ作成プログラム、前記AEカウント信号11或は前記AE検出グラフより特定周波数或は特定周波数帯を検出する特定周波数帯検出プログラム、前記AE検出曲線より、該AE検出曲線が占める面積を演算するAE面積演算プログラム、AE検出曲線が占める面積及び参照データから亀裂進展状態を判断する亀裂判断プログラム等が格納される。   The storage unit 6 includes a data storage unit and a program storage unit, and the data storage unit stores the AE count signal 11 and previously acquired reference data, and the program storage unit stores the AE count signal 11. AE detection curve creation program for creating an AE detection curve based on this, AE detection graph creation program for creating an AE detection graph from the AE detection curve, a specific frequency or a specific frequency band from the AE count signal 11 or the AE detection graph A specific frequency band detection program to be detected, an AE area calculation program for calculating an area occupied by the AE detection curve from the AE detection curve, a crack determination program for determining a crack progress state from the area occupied by the AE detection curve and reference data, and the like Stored.

前記制御演算部5は、前記AE検出曲線作成プログラム、前記AE検出グラフ作成プログラム、前記特定周波数帯検出プログラム、前記AE面積演算プログラム、前記亀裂判断プログラムを作動させ、得られたデータは前記記憶部6に記録する。   The control calculation unit 5 operates the AE detection curve generation program, the AE detection graph generation program, the specific frequency band detection program, the AE area calculation program, and the crack determination program, and the obtained data is stored in the storage unit Record in 6.

尚、前記制御演算部5及び前記AE検出曲線作成プログラム、前記AE検出グラフ作成プログラム、前記特定周波数帯検出プログラム、前記AE面積演算プログラム、前記亀裂判断プログラム等は疲労亀裂進展判断部12を構成する。   The control calculation unit 5, the AE detection curve generation program, the AE detection graph generation program, the specific frequency band detection program, the AE area calculation program, the crack determination program, and the like constitute the fatigue crack progress determination unit 12. .

前記操作入力部7からは、予め取得した参照データを設定入力し、又前記AEセンサ3からのデータ取得条件を設定する。該データ取得条件としては、例えば、繰返し回数が、A(2000〜12000)、繰返し回数B(32000〜42000)、繰返し回数C(42000〜52000)、繰返し回数D(57000〜60000)である時にAE信号を取得する、或は、所定時間間隔、所定日時間隔でAE信号を取得する、或は閾値を設定する等である。   From the operation input unit 7, reference data acquired in advance is set and input, and data acquisition conditions from the AE sensor 3 are set. As the data acquisition condition, for example, when the number of repetitions is A (2000 to 12000), number of repetitions B (32000 to 42000), number of repetitions C (42000 to 52000), number of repetitions D (57000 to 60000). A signal is acquired, an AE signal is acquired at a predetermined time interval and a predetermined date and time interval, or a threshold value is set.

尚、AE信号取得時期について、例えば橋梁の様に常時振動している場合には、常時連続して、或は短い時間間隔でAE信号を取得し、又LNGタンク等ではLNGの増減の周期に合わせる等してAE信号を取得する。   As for the AE signal acquisition time, for example, when it is constantly oscillating like a bridge, the AE signal is acquired continuously or at a short time interval. The AE signal is acquired by combining them.

前記出力部8は、ディスプレイ、プリンタ、或は外部記録媒体(FD、MO、メモリカード等)に記録する記録部等であり、前記出力部8には作成されたAE検出曲線、前記AE検出グラフ、疲労亀裂進展判断等が表示、或は出力される。   The output unit 8 is a display, a printer, or a recording unit for recording on an external recording medium (FD, MO, memory card, etc.). The output unit 8 includes a created AE detection curve and the AE detection graph. , Fatigue crack growth judgment, etc. are displayed or output.

以下、作用について説明する。   The operation will be described below.

繰返し荷重が作用する部材から発生されるAEとしては、図5に示される様に、亀裂の進展により発生する弾性波、塑性変形時に発生する弾性波、破面が接触した際に発生する弾性波、酸化皮膜が剥離、破壊した際に発生する弾性波が含まれる。上記した様に、AEの内、亀裂進展により発生する弾性波は、他の弾性波に比べて高い周波数を有し、亀裂の進展と共にAEカウント数が増大する。   As shown in FIG. 5, AE generated from a member to which a repeated load is applied includes an elastic wave generated by the progress of a crack, an elastic wave generated at the time of plastic deformation, and an elastic wave generated when a fracture surface comes into contact. Elastic waves generated when the oxide film peels and breaks are included. As described above, the elastic wave generated by crack propagation in AE has a higher frequency than other elastic waves, and the AE count increases with the progress of crack.

前記疲労亀裂進展判断部12は、各繰返し回数でのAE検出曲線から高周波部分で、経時的に増大している特定周波数帯を検出し、参照データと比較し、増大の傾向により、疲労亀裂及び亀裂進展の状態を判断する(例えば、図1(A))。   The fatigue crack progress determination unit 12 detects a specific frequency band that increases with time in the high frequency portion from the AE detection curve at each repetition count, and compares it with reference data. The state of crack growth is determined (for example, FIG. 1A).

疲労亀裂及び亀裂進展の状態を判断する方法の1つとして、特定周波数帯の占める面積、即ち特定周波数帯面積(S)を演算し、周波数帯面積の増大傾向により判断する。   As one method for determining the state of fatigue cracks and crack growth, an area occupied by a specific frequency band, that is, a specific frequency band area (S) is calculated and determined based on an increasing tendency of the frequency band area.

又疲労亀裂及び亀裂進展の状態を判断する他の方法として、各繰返し回数でのAE検出曲線が占める面積、即ちAE検出曲線面積(S0)と特定周波数帯面積との比(S/S0)を求め、面積比の増大傾向により判断する。   As another method for judging the state of fatigue cracks and crack growth, the area occupied by the AE detection curve at each number of repetitions, that is, the ratio of the AE detection curve area (S0) to the specific frequency band area (S / S0) is used. Determined by the increasing tendency of the area ratio.

更に、図6に示す様に、面積比(S/S0)と疲労亀裂進展速度とは相関関係があり、予め、各材料について各温度についての面積比(S/S0)と疲労亀裂進展速度の参照データを取得し、得られた面積比(S/S0)と対応する条件の参照データとの比較で疲労亀裂進展がどの様な状態であるかを判断する。即ち、面積比(S/S0)を求めることで、疲労亀裂進展速度を取得、或は推察することができる。   Further, as shown in FIG. 6, there is a correlation between the area ratio (S / S0) and the fatigue crack growth rate, and the ratio of the area ratio (S / S0) and the fatigue crack growth rate for each temperature in advance for each material. Reference data is acquired, and the state of fatigue crack growth is determined by comparing the obtained area ratio (S / S0) with the reference data of the corresponding conditions. That is, by obtaining the area ratio (S / S0), the fatigue crack growth rate can be obtained or estimated.

尚、図6は、アルミ合金の低温、9%Ni鋼の低温での面積比(S/S0)と疲労亀裂進展速度の関係を示している。   FIG. 6 shows the relationship between the area ratio (S / S0) of the aluminum alloy at a low temperature and the low temperature of 9% Ni steel and the fatigue crack growth rate.

又、疲労亀裂進展速度と安全設計上の視標となるΔKは図7に示される周知の関係があり、疲労亀裂進展速度が分ることで、構造物を設計する際のデータとして使用することもできる。   Also, the fatigue crack growth rate and ΔK, which is a target for safety design, have the well-known relationship shown in FIG. 7 and should be used as data when designing a structure by knowing the fatigue crack growth rate. You can also.

又、AEは物質によってAEの伝播速度(音速)が決定されるので、伝播速度を利用して亀裂発生位置を特定することができる。即ち、一次元の位置を特定するには、所定距離離れた2つのAEセンサでAEを検出し、検出時間差を求め、検出時間差と音速で1次元の位置が特定できる。同様にして、2次元の位置を特定するには3つのAEセンサを設け、又3次元の位置を特定するには4つのAEセンサを設ければよい。   In addition, since the propagation speed (sound speed) of AE is determined by the substance, the crack generation position can be specified using the propagation speed. That is, in order to specify a one-dimensional position, AE is detected by two AE sensors separated by a predetermined distance, a detection time difference is obtained, and a one-dimensional position can be specified by the detection time difference and the sound speed. Similarly, three AE sensors may be provided to specify a two-dimensional position, and four AE sensors may be provided to specify a three-dimensional position.

尚、本発明は、繰返し荷重が作用する構造物に限らず、材料の腐食を検出する場合でも実施可能であり、更に本発明は、原油タンク腐食調査、圧力容器耐圧試験、橋脚モニタリング、回転機械の異常監視、航空機の飛行中の部材の調査、材料試験等種々の構造物、分野に適用可能である。   Note that the present invention is not limited to structures subjected to repeated loads, and can be implemented even when detecting corrosion of materials. Further, the present invention can be applied to crude oil tank corrosion investigation, pressure vessel pressure test, pier monitoring, rotating machinery. It can be applied to various structures and fields such as abnormal monitoring of aircraft, investigation of aircraft in flight, material testing, etc.

又本発明をタンクの疲労損傷評価に実施すれば、タンクを開放することなく、タンク外部から疲労亀裂の検出、疲労亀裂の程度の推定、疲労亀裂の位置が特定できるので、検査期間、検査コストを大幅に低減できる。   In addition, if the present invention is applied to the evaluation of fatigue damage of a tank, it is possible to detect the fatigue crack, estimate the degree of fatigue crack, and specify the position of the fatigue crack from the outside of the tank without opening the tank. Can be greatly reduced.

1 疲労損傷評価装置
2 検査対象部位
3 AEセンサ
4 信号処理部
5 制御演算部
6 記憶部
7 操作入力部
8 出力部
9 閾値
11 AEカウント信号
12 疲労亀裂進展判断部
DESCRIPTION OF SYMBOLS 1 Fatigue damage evaluation apparatus 2 Inspection object part 3 AE sensor 4 Signal processing part 5 Control operation part 6 Storage part 7 Operation input part 8 Output part 9 Threshold value 11 AE count signal 12 Fatigue crack progress judgment part

Claims (8)

検査部位についてのAE検出曲線を経時的に順次取得し、取得した該AE検出曲線を経時的に順次比較し、該AE検出曲線のAEカウント数が経時的に増大する周波数帯を検出し、検出した周波数帯を特定周波数帯とし、該特定周波数帯でのAEカウント数の増大傾向に基づき疲労亀裂の発生、亀裂進展状態を判断することを特徴とする疲労損傷評価方法。 AE detection curves for the examination site are sequentially acquired over time, the acquired AE detection curves are sequentially compared, and a frequency band in which the AE count number of the AE detection curve increases with time is detected and detected. the frequency band to a specific frequency band, the generation of fatigue cracks on the basis of the AE count increasing tendency in the specific frequency band, the fatigue damage evaluation method characterized by determining the crack growth state. 検査部位をモデル化した試験部材により、予め疲労試験を実施し、予め前記AE検出曲線を経時的に取得して参照データとし、該参照データより前記検査部位の特定周波数帯を検出し、該検査部位の特定周波数帯での前記AEカウント数と前記参照データとを比較し、前記AEカウント数の増大傾向により疲労亀裂の発生、亀裂進展状態を判断する請求項1の疲労損傷評価方法。 A fatigue test is performed in advance using a test member that models the test site, the AE detection curve is acquired in advance over time as reference data, a specific frequency band of the test site is detected from the reference data, and the test is performed. comparing the AE count and the reference data at a particular frequency band of sites, the generation of fatigue cracks by the increasing tendency of the AE count, fatigue damage evaluation method according to claim 1 for determining the crack growth state. 前記AE検出曲線の特定周波数帯部分の特定周波数帯面積を求め、該特定周波数帯面積の増大傾向に基づき疲労亀裂の発生、亀裂進展状態を判断する請求項1の疲労損傷評価方法。 The fatigue damage evaluation method according to claim 1, wherein a specific frequency band area of a specific frequency band portion of each AE detection curve is obtained, and the occurrence of fatigue cracks and the crack progress state are determined based on an increasing tendency of the specific frequency band area. 前記AE検出曲線の面積S0、及び前記特定周波数帯面積Sを求めると共に面積比S/S0を求め、該面積比S/S0の増大傾向に基づき疲労亀裂の発生、亀裂進展状態を判断する請求項の疲労損傷評価方法。 Claiming the area S0 and the specific frequency band area S of each AE detection curve, obtaining the area ratio S / S0 , and determining the occurrence of fatigue cracks and the crack propagation state based on the increasing tendency of the area ratio S / S0 Item 3. The fatigue damage evaluation method according to Item 3 . 前記AE検出曲線面積と前記特定周波数帯面積との比(S/S0)と亀裂進展速度との関連から、前記面積比に基づき亀裂進展速度を求める請求項の疲労損傷評価方法。 The fatigue damage evaluation method according to claim 4 , wherein a crack growth rate is obtained based on the area ratio based on a relationship between a ratio (S / S0) between each AE detection curve area and the specific frequency band area and a crack growth rate. 検査対象部位に取付けられたAEセンサと、該AEセンサからAE信号が入力される疲労亀裂進展判断部とを具備し、該疲労亀裂進展判断部は、検査部位についてのAE検出曲線を経時的に順次取得し、取得した該AE検出曲線を経時的に順次比較し、該AE検出曲線のAEカウント数が経時的に増大する周波数帯を検出し、検出した周波数帯を特定周波数帯とし、該特定周波数帯での特定周波数帯AEカウント数を演算し、該特定周波数帯AEカウント数の増大傾向に基づき疲労亀裂の発生、亀裂進展状態を判断することを特徴とする疲労損傷評価装置。 An AE sensor attached to a site to be inspected, and a fatigue crack progress determining unit to which an AE signal is input from the AE sensor, and the fatigue crack progress determining unit determines an AE detection curve for the test site over time Sequentially acquiring, sequentially comparing the acquired AE detection curves over time, detecting a frequency band in which the AE count number of the AE detection curve increases with time, setting the detected frequency band as a specific frequency band, A fatigue damage evaluation apparatus characterized by calculating a specific frequency band AE count in a frequency band and determining the occurrence of fatigue cracks and crack progress based on an increasing tendency of the specific frequency band AE count. 前記疲労亀裂進展判断部は、AE信号から得られる総AEカウント数と前記特定周波数帯AEカウント数とを求めると共に(特定周波数帯AEカウント数/総AEカウント数)の比を求め、該比に基づき疲労亀裂の発生、亀裂進展状態を判断する請求項の疲労損傷評価装置。 The fatigue crack growth determination unit obtains a total AE count number obtained from an AE signal and the specific frequency band AE count number , obtains a ratio of (specific frequency band AE count number / total AE count number), and determines the ratio. The fatigue damage evaluation apparatus according to claim 6 , wherein the fatigue crack generation state and the crack propagation state are determined based on the fatigue crack generation state. 前記検査対象部位に取付けられた複数のAEセンサを具備し、前記疲労亀裂進展判断部は、複数のAEセンサからの信号の受信時間差に基づき発生した亀裂の位置を特定する請求項の疲労損傷評価装置。 The fatigue damage according to claim 7 , further comprising a plurality of AE sensors attached to the inspection target part, wherein the fatigue crack progress determining unit identifies a position of a crack generated based on a difference in reception time of signals from the plurality of AE sensors. Evaluation device.
JP2009256635A 2009-11-10 2009-11-10 Fatigue damage evaluation method and apparatus Active JP5482119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256635A JP5482119B2 (en) 2009-11-10 2009-11-10 Fatigue damage evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256635A JP5482119B2 (en) 2009-11-10 2009-11-10 Fatigue damage evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2011102700A JP2011102700A (en) 2011-05-26
JP5482119B2 true JP5482119B2 (en) 2014-04-23

Family

ID=44193091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256635A Active JP5482119B2 (en) 2009-11-10 2009-11-10 Fatigue damage evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP5482119B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321646B2 (en) * 2011-06-13 2013-10-23 パナソニック株式会社 Abnormality inspection method and abnormality inspection device
CN102262701B (en) * 2011-08-02 2013-03-13 北京航空航天大学 In-service 16 manganese steel load-bearing part fatigue-crack propagation stage evaluating system based on linear elastic fracture mechanics and acoustic emission parameters
FR3016042B1 (en) * 2013-12-30 2017-03-03 Flakt Solyvent-Ventec SYSTEM AND METHOD FOR ASSISTING THE DIAGNOSIS OF THE OPERATING STATE OF A ROTATING MACHINE
JP6567268B2 (en) 2014-11-18 2019-08-28 株式会社東芝 Signal processing device, server device, detection system, and signal processing method
JP6470583B2 (en) * 2015-02-17 2019-02-13 三菱日立パワーシステムズ株式会社 Deterioration monitoring method and deterioration monitoring apparatus using AE method
JP6385911B2 (en) 2015-11-12 2018-09-05 株式会社東芝 Detection system, information processing apparatus, and detection method
CN105787820B (en) * 2016-03-22 2019-03-29 深圳市洪涛装饰股份有限公司 Light steel keel partition structure with real time monitoring function
JP6368040B2 (en) * 2016-05-17 2018-08-01 株式会社東芝 Structure evaluation system, structure evaluation apparatus, and structure evaluation method
JP6798800B2 (en) * 2016-06-16 2020-12-09 千代田化工建設株式会社 Pressure tank inspection method, inspection system and inspection program
CN106813993B (en) * 2017-01-13 2019-12-24 长沙理工大学 Fatigue test component state monitoring method based on sound-ultrasound and sound emission technology
JP6905445B2 (en) * 2017-10-16 2021-07-21 日本化薬株式会社 Crash detectors, methods for detecting aircraft crashes, parachute or paraglider deployment devices, and airbag devices
CN109827855B (en) * 2018-08-30 2022-01-07 长沙理工大学 Method for predicting service life of reinforced concrete bridge under seasonal corrosion and fatigue coupling action
JP7381264B2 (en) * 2019-09-13 2023-11-15 グローバルポリアセタール株式会社 How to detect cracks
JP7238841B2 (en) 2020-03-31 2023-03-14 トヨタ自動車株式会社 PRESSURE INSPECTION METHOD AND PRESSURE INSPECTION DEVICE
JP7259796B2 (en) 2020-03-31 2023-04-18 トヨタ自動車株式会社 PRESSURE INSPECTION METHOD AND PRESSURE INSPECTION DEVICE
CN116953415B (en) * 2023-09-18 2023-12-22 深圳市森瑞普电子有限公司 Conductive slip ring fatigue life prediction method based on data driving

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150859A (en) * 1982-03-03 1983-09-07 Hitachi Ltd Method and apparatus for diagnosing crack of rotor
JPS6064250A (en) * 1983-09-20 1985-04-12 Niigata Eng Co Ltd Tool damage detecting apparatus
JPH065193B2 (en) * 1987-04-28 1994-01-19 光洋精工株式会社 Bearing remaining life prediction device
JP2918683B2 (en) * 1990-07-24 1999-07-12 光洋精工株式会社 Method for specifying AE signal due to bearing fatigue and method for predicting bearing destruction using this method
JP3005593B2 (en) * 1991-02-25 2000-01-31 株式会社日立エンジニアリングサービス Diagnostic algorithm construction method and device
JPH05312682A (en) * 1992-05-14 1993-11-22 Hitachi Ltd Method, apparatus and production line for diagnosing slide part of rotating body
JP2004061202A (en) * 2002-07-26 2004-02-26 Kyushu Electric Power Co Inc Prediction method of prodromal stage of destruction of rock or the like

Also Published As

Publication number Publication date
JP2011102700A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5482119B2 (en) Fatigue damage evaluation method and apparatus
CN110389170B (en) Train component crack damage detection method and system based on Lamb wave imaging
US9791416B2 (en) Furnace structural integrity monitoring systems and methods
JP5158723B2 (en) Damage detection method for high-pressure tank and apparatus therefor
US20070034009A1 (en) Method and system for monitoring structural damage
NO323931B1 (en) Painting of the state in stable structures by the pressure of a pulse-shaped electric current and analysis of the voltage drop
KR20100117524A (en) Structural integrity monitoring system
US20230096788A1 (en) Boom monitoring method and system, and engineering machinery, and machine-readable storage medium
EP2937689A1 (en) Adaptive baseline damage detection system and method
KR101724152B1 (en) Extraction method of dispersion curves for impact source localization estimating of loose parts
JP5710997B2 (en) Fatigue limit identification system and fatigue limit identification method
KR20160029252A (en) Method for localizing acoustic emission source in plate-like structures using pattern recognition
US20190378181A1 (en) Diagnosis cost output device, diagnosis cost output method, and computer-readable recording medium
Prateepasen et al. Implementation of acoustic emission source recognition for corrosion severity prediction
JP5865100B2 (en) Defect inspection apparatus and inspection method
US11624687B2 (en) Apparatus and method for detecting microcrack using orthogonality analysis of mode shape vector and principal plane in resonance point
KR100997810B1 (en) Structural damage detection using a vibratory power
JP5910124B2 (en) Bearing remaining life prediction method
JP4511487B2 (en) Inspection method of damage and corrosion thinning phenomenon caused by hydrogen
KR20200040553A (en) Defect diagnostics apparatus and method using acoustic emission sensor
JP2010038696A (en) Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument
JP7078060B2 (en) Analytical instrument and diagnostic system
EP3078967A1 (en) A system and a method for detecting damage
CN110274961A (en) The non-linear acoustic emission system recognition methods of pipeline microdefect is detected based on PEC
JP2020041814A (en) Detection system, detection method, and server device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5482119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250