[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5479772B2 - Foam molded body and method for producing the same - Google Patents

Foam molded body and method for producing the same Download PDF

Info

Publication number
JP5479772B2
JP5479772B2 JP2009110000A JP2009110000A JP5479772B2 JP 5479772 B2 JP5479772 B2 JP 5479772B2 JP 2009110000 A JP2009110000 A JP 2009110000A JP 2009110000 A JP2009110000 A JP 2009110000A JP 5479772 B2 JP5479772 B2 JP 5479772B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
foamed molded
gas
melting temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009110000A
Other languages
Japanese (ja)
Other versions
JP2010254930A (en
Inventor
耕一 前野
孝弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009110000A priority Critical patent/JP5479772B2/en
Publication of JP2010254930A publication Critical patent/JP2010254930A/en
Application granted granted Critical
Publication of JP5479772B2 publication Critical patent/JP5479772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、成形性に優れ、且つ美観に優れ、さらに軽量化、剛性、制振性にも優れた発泡成形体およびその製造方法に関するものである。   The present invention relates to a foamed molded article excellent in moldability, aesthetics, light weight, rigidity, and vibration damping properties, and a method for producing the same.

近年、自動車の外装材料、内装材料においてプラスチック化の動きが活発化している。例えば、バックパネル、フェンダー、バンパー、ドアパネル、ピラー、サイドプロテクター、サイドモール、各種スポイラー、ボンネット、ルーフパネルなどが挙げられる。プラスチック化のメリットとしては、軽量化が可能な点、デザインの自由度が高められる点、モジュールアッセンブリー化によるコストダウンが可能になる点、および軽い衝撃においては全く変形・破損がなく、剛性が高い点などを挙げることができる。
そして、このような成形体として、ポリオレフィンを用いた樹脂組成物を発泡することにより発泡成形体を製造する方法が知られている。
In recent years, plastics have been increasingly used in automobile exterior materials and interior materials. Examples include back panels, fenders, bumpers, door panels, pillars, side protectors, side moldings, various spoilers, bonnets, roof panels, and the like. The advantages of using plastic include that it can be reduced in weight, can be designed more freely, can be reduced in cost due to module assembly, and has no rigidity or deformation in light impacts. Points can be mentioned.
And the method of manufacturing a foaming molding by foaming the resin composition using polyolefin as such a molding is known.

ところで、プラスチックの発泡方法としては、古くは化学発泡剤を樹脂に添加して樹脂を発泡させることが知られているが(例えば、特許文献1参照)、成形品表面に発泡による模様が生じ、一般の射出成形品に比べ外観があまり良くない。そこで、スキン層となる樹脂を射出し、直後にコア層となる発泡性樹脂を射出することにより外観の良好な発泡成形体を得る技術があり(例えば、特許文献2参照)、これらを起点として様々な方法が開発されてきた。
最近では発泡能力を向上させるために、超臨界状態の二酸化炭素や窒素を樹脂に含浸させて樹脂の発泡成形を行う超臨界発泡成形法が提案されている(例えば、特許文献3参照)。また別の方法として、熱膨張性マイクロカプセルを含有した樹脂組成物を用いて発泡体を製造する方法も提案されている(例えば、特許文献4参照)。
By the way, as a plastic foaming method, it is long known that a chemical foaming agent is added to a resin to cause the resin to foam (for example, refer to Patent Document 1). Appearance is not so good compared to general injection molded products. Therefore, there is a technique for obtaining a foamed molded article having a good appearance by injecting a resin to be a skin layer and immediately injecting a foamable resin to be a core layer (see, for example, Patent Document 2). Various methods have been developed.
Recently, in order to improve the foaming ability, a supercritical foam molding method in which a resin is impregnated with carbon dioxide or nitrogen in a supercritical state to perform foam molding of the resin has been proposed (for example, see Patent Document 3). As another method, a method of producing a foam using a resin composition containing thermally expandable microcapsules has been proposed (see, for example, Patent Document 4).

特公昭39−22213号公報Japanese Examined Patent Publication No. 39-22213 特公昭47−26108号公報Japanese Patent Publication No. 47-26108 米国特許第5,334,356号明細書US Pat. No. 5,334,356 特開2000−17103号公報JP 2000-17103 A

これらのように様々な素材や製造方法が提案されているが、得られる発泡成形体は、先に述べた軽量化、機械的強度などの点でまだ満足できるものではない。
したがって本発明は、発泡倍率が高く軽量でありながら高い強度を有する優れた発泡成形体とその製造方法を提供することを目的とする。
Various materials and production methods have been proposed as described above, but the foamed molded product obtained is not yet satisfactory in terms of weight reduction and mechanical strength as described above.
Accordingly, an object of the present invention is to provide an excellent foamed molded article having high strength while having a high foaming ratio and a light weight, and a method for producing the same.

本発明者らは上記課題に鑑み鋭意研究した結果、溶融温度の異なる熱可塑性樹脂を用い、気泡をもつ樹脂が島部になり、他の樹脂が海部を形成した海島構造をもつ発泡成形体が上記の軽量化、機械的強度などの要求を満足するとの知見を得、この知見に基づき本発明をなすに至った。
すなわち本発明は、
(1)溶融温度が異なる熱可塑性樹脂(a)および熱可塑性樹脂(b)を含む発泡成形体であって、該熱可塑性樹脂(a)が、ポリオレフィン樹脂で、該熱可塑性樹脂(b)がポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリスチレン樹脂またはABS樹脂であり、熱可塑性樹脂(a)とガスが含浸された熱可塑性樹脂(b)との混合物を熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下で発泡倍率が2倍以上に射出発泡成形した、熱可塑性樹脂(a)が海部、気泡を有する熱可塑性樹脂(b)が島部である海島構造をもつことを特徴とする発泡成形体、
(2)前記発泡倍率が、2.1倍以上である(1)記載の発泡成形体、
)前記熱可塑性樹脂(a)が、ポリプロピレン樹脂である(1)または記載の発泡成形体、
)前記熱可塑性樹脂(a)が、発泡成形体中、25〜80質量%である(1)〜()のいずれか1項記載の発泡成形体、
)前記熱可塑性樹脂(b)と前記熱可塑性樹脂(a)の溶融温度差が、20〜120℃である(1)〜()のいずれか1項記載の発泡成形
)JIS K7171 に準拠した曲げ強度が40MPa以上であることを特徴とする(1)〜()のいずれか1項記載の発泡成形体、
)前記熱可塑性樹脂(a)が、平均繊維長が1mm以上のガラス繊維を含むことを特徴とする(1)〜()のいずれか1項記載の発泡成形体、
)前記熱可塑性樹脂(a)が、5〜70質量%のガラス繊維を含有してなる熱可塑性樹脂であることを特徴とする(1)〜()のいずれか1項記載の発泡成形体、
)熱可塑性樹脂(a)および熱可塑性樹脂(a)と溶融温度の異なる熱可塑性樹脂(b)を混合して射出成形する発泡成形体の製造方法であって、圧力容器内でガスを充填、加圧して、ペレット状または粉末状の熱可塑性樹脂(b)にガスを含浸させた後に圧力を開放する工程の後、熱可塑性樹脂(a)と前記のガスを含浸させた熱可塑性樹脂(b)とを予め混合した状態で射出成形機に供給する工程、または射出成形機内で混合するように前記熱可塑性樹脂(a)および前記のガスを含浸させた該熱可塑性樹脂(b)をそれぞれ射出成形機に供給する工程のいずれかの工程を行い、次いで、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の成形条件で金型内に射出充填する、島部を発泡させた海島構造を有する発泡成形体の製造方法、
10)ガスを含浸させる前の前記熱可塑性樹脂(b)が、平均粒径2〜50μmの粉末状であることを特徴とする(記載の発泡成形体の製造方法、および
11)熱可塑性樹脂(b)へのガスの含浸は、前記ガスが超臨界状態で行うことを特徴とする()または(10記載の発泡成形体の製造方法、
を提供するものである。
As a result of intensive studies in view of the above problems, the present inventors have used a foamed molded article having a sea-island structure in which a thermoplastic resin having a different melting temperature is used, a resin having bubbles becomes an island portion, and another resin forms a sea portion. The knowledge that the above requirements such as weight reduction and mechanical strength are satisfied was obtained, and the present invention was made based on this knowledge.
That is, the present invention
(1) A foamed molded article comprising a thermoplastic resin (a) and a thermoplastic resin (b) having different melting temperatures, wherein the thermoplastic resin (a) is a polyolefin resin, and the thermoplastic resin (b) is Polycarbonate resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polystyrene resin or ABS resin, a mixture of thermoplastic resin (a) and thermoplastic resin (b) impregnated with gas is melted in thermoplastic resin (a) Thermoplastic resin (a) is sea part, and thermoplastic resin (b) having air bubbles is island part, which is injection foam molded at a foaming ratio of 2 times or more below the melting temperature of thermoplastic resin (b). Foam molded product characterized by having a sea-island structure,
(2) The foamed molded article according to (1) , wherein the expansion ratio is 2.1 times or more,
( 3 ) The foamed molded article according to (1) or ( 2 ) , wherein the thermoplastic resin (a) is a polypropylene resin,
(4) the thermoplastic resin (a) is, in foamed molded, foam molded body according to any one of 25 to 80 wt% (1) to (3),
(5) the melting temperature difference of the thermoplastic resin (b) and the thermoplastic resin (a) is a 20 to 120 ° C. (1) foamed molded article according to any one of - (4),
( 6 ) The foam molded article according to any one of (1) to ( 5 ), wherein the bending strength in accordance with JIS K7171 is 40 MPa or more,
( 7 ) The foamed molded article according to any one of (1) to ( 6 ), wherein the thermoplastic resin (a) includes glass fibers having an average fiber length of 1 mm or more,
(8) the thermoplastic resin (a) is, according to any one of characterized in that it is a thermoplastic resin which comprises 5 to 70 wt% of glass fiber (1) to (7) Foam molded body,
( 9 ) A method for producing a foamed molded article in which a thermoplastic resin (a) and a thermoplastic resin (a) and a thermoplastic resin (b) having different melting temperatures are mixed and injection-molded. After the step of filling and pressing to impregnate the pellet-shaped or powder-shaped thermoplastic resin (b) with the gas and then releasing the pressure, the thermoplastic resin impregnated with the thermoplastic resin (a) and the gas (B) is supplied to the injection molding machine in a premixed state, or the thermoplastic resin (a) and the thermoplastic resin (b) impregnated with the gas so as to be mixed in the injection molding machine. Each of the steps of supplying to the injection molding machine is performed, and then injection filling is performed in the mold under molding conditions not lower than the melting temperature of the thermoplastic resin (a) and not higher than the melting temperature of the thermoplastic resin (b). Sea island structure with foamed island Method for producing a foamed molded product having,
( 10 ) The method for producing a foamed molded product according to ( 9 ) , wherein the thermoplastic resin (b) before impregnating the gas is a powder having an average particle diameter of 2 to 50 μm, and ( 11) ) impregnation of the gas into the thermoplastic resin (b) a method for producing a foamed molded article according to the gas and performing a supercritical state (9) or (10),
Is to provide.

本発明の発泡成形体は、熱可塑性樹脂(a)を海部とし、内部に独立気泡を多数持つ熱可塑性樹脂(b)を島部とする海島構造であり、熱可塑性樹脂(b)の発泡倍率を通常よりも大きくすることができるので、成形体全体として発泡倍率を高くし、軽量化できる。そして、発泡倍率が高く軽量であるにもかかわらず、優れた強度、特に曲げ強度および曲げ弾性率を有する。
また、この発泡成形体は、内部の気泡構造および異なった2つの熱可塑性樹脂の粘弾性によって、振動エネルギーが熱エネルギーへ変換されて振動エネルギーを吸収し、制振性を向上させる作用がある。更に、この2つの熱可塑性樹脂はガラス転移点が異なることから、比較的広い使用温度領域で高い制振性が得られる。
さらに、熱可塑性樹脂(a)にガラス繊維などの補強剤を添加することで制振性と高剛性を兼ね備えた発泡成形体を得ることが出来るので、自動車の外装など高剛性が必要な分野に広く適用することが可能である。
The foamed molded article of the present invention has a sea-island structure in which the thermoplastic resin (a) is a sea part and the thermoplastic resin (b) having a large number of closed cells inside is an island part, and the expansion ratio of the thermoplastic resin (b) Can be made larger than usual, so that the foaming ratio of the entire molded body can be increased and the weight can be reduced. Despite its high foaming ratio and light weight, it has excellent strength, particularly bending strength and bending elastic modulus.
Moreover, this foaming molding has the effect | action which converts vibration energy into heat energy and absorbs vibration energy by the internal cell structure and the viscoelasticity of two different thermoplastic resins, and improves damping property. Furthermore, since these two thermoplastic resins have different glass transition points, high vibration damping properties can be obtained in a relatively wide operating temperature range.
Furthermore, by adding a reinforcing agent such as glass fiber to the thermoplastic resin (a), it is possible to obtain a foamed molded article having both vibration damping properties and high rigidity. It can be widely applied.

本発明の製造方法を示す概略工程図である。It is a schematic process drawing which shows the manufacturing method of this invention. 本発明の発泡成形体の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of the foaming molding of this invention.

本発明の発泡成形体の好ましい実施の態様について、詳細に説明する。
本発明の発泡成形体を構成する熱可塑性樹脂(a)および熱可塑性樹脂(b)は、熱可塑性樹脂(b)の溶融温度が、熱可塑性樹脂(a)の溶融温度よりも高ければ特に限定されるものではなく、それぞれが、例えば、ポリオレフィン樹脂(ポリエチレン樹脂、エチレン−酢酸ビニル共重合体、ポリプロピレン樹脂等)、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンサルファイト樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルサルフォン樹脂、ポリイミド樹脂、ポリ塩化ビニル系樹脂、ポリスチレン樹脂(ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、アクリロニトリル−スチレン共重合体、ABS樹脂等)、ポリアミド樹脂、ポリアセタール系樹脂、アクリル系樹脂、セルロース系樹脂(酢酸セルロース等)、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、1,2−ポリブタジエン系熱可塑性エラストマー、エチレン−酢酸ビニル共重合体系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、および塩素化ポリエチレン系熱可塑性エラストマーなどから適宜選択される熱可塑性樹脂を用いることができる。
A preferred embodiment of the foamed molded product of the present invention will be described in detail.
The thermoplastic resin (a) and the thermoplastic resin (b) constituting the foamed molded article of the present invention are particularly limited if the melting temperature of the thermoplastic resin (b) is higher than the melting temperature of the thermoplastic resin (a). For example, polyolefin resin (polyethylene resin, ethylene-vinyl acetate copolymer, polypropylene resin, etc.), polycarbonate resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfite resin, polyamideimide resin. , Polyether ether ketone resin, polyether sulfone resin, polyimide resin, polyvinyl chloride resin, polystyrene resin (polystyrene resin, syndiotactic polystyrene resin, acrylonitrile-styrene copolymer, ABS resin, etc.), polyamide resin, Riacetal resin, acrylic resin, cellulose resin (cellulose acetate, etc.), polystyrene thermoplastic elastomer, polyolefin thermoplastic elastomer, polyurethane thermoplastic elastomer, 1,2-polybutadiene thermoplastic elastomer, ethylene-vinyl acetate A thermoplastic resin appropriately selected from copolymer-based thermoplastic elastomers, fluororubber-based thermoplastic elastomers, chlorinated polyethylene-based thermoplastic elastomers, and the like can be used.

熱可塑性樹脂(b)の溶融温度は、熱可塑性樹脂(a)の溶融温度よりも高く、本発明の発泡成形体の成形時の射出温度と同じかそれ以上である。
尚、溶融温度とは、例えば板状の成形品を成形する際に通常成形できる下限温度を意味する。
熱可塑性樹脂(b)と熱可塑性樹脂(a)の溶融温度の差は特に限定するものではないが、好ましくは20〜120℃、さらに好ましくは40〜100℃の差とすることが射出成形を行うのに都合が良い。
The melting temperature of the thermoplastic resin (b) is higher than the melting temperature of the thermoplastic resin (a) and is equal to or higher than the injection temperature at the time of molding the foamed molded product of the present invention.
The melting temperature means a lower limit temperature that can be normally formed when, for example, a plate-shaped molded product is formed.
The difference in melting temperature between the thermoplastic resin (b) and the thermoplastic resin (a) is not particularly limited, but is preferably 20 to 120 ° C, more preferably 40 to 100 ° C. Convenient to do.

熱可塑性樹脂(a)としては、ポリオレフィン樹脂(ポリエチレン樹脂、エチレン−酢酸ビニル共重合体、ポリプロピレン樹脂等)、ポリスチレン樹脂(ポリスチレン樹脂、アクリロニトリル−スチレン共重合体、ABS樹脂等)、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、エチレン−酢酸ビニル共重合体系熱可塑性エラストマー、1,2−ポリブタジエン系熱可塑性エラストマー、エチレン−酢酸ビニル共重合体系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー、または塩素化ポリエチレン系熱可塑性エラストマーが好ましく、特にポリオレフィン樹脂(ポリエチレン樹脂、エチレン−酢酸ビニル共重合体、ポリプロピレン樹脂等)が好ましい。   Examples of the thermoplastic resin (a) include polyolefin resins (polyethylene resins, ethylene-vinyl acetate copolymers, polypropylene resins, etc.), polystyrene resins (polystyrene resins, acrylonitrile-styrene copolymers, ABS resins, etc.), and polystyrene-based thermoplastics. Elastomers, polyolefin-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, ethylene-vinyl acetate copolymer-based thermoplastic elastomers, 1,2-polybutadiene-based thermoplastic elastomers, ethylene-vinyl acetate copolymer-based thermoplastic elastomers, fluororubber-based heat A plastic elastomer or a chlorinated polyethylene thermoplastic elastomer is preferable, and a polyolefin resin (polyethylene resin, ethylene-vinyl acetate copolymer, polypropylene resin, etc.) is particularly preferable.

熱可塑性樹脂(b)としては、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンサルファイト樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルサルフォン樹脂、ポリイミド樹脂、ポリ塩化ビニル系樹脂、ポリスチレン樹脂(ポリスチレン、アクリロニトリル−スチレン共重合体、ABS樹脂等)、ポリアミド樹脂、ポリアセタール系樹脂、アクリル系樹脂、またはセルロース系樹脂(酢酸セルロース等)が好ましく、特にポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンサルファイト樹脂、またはポリスチレン樹脂(ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、アクリロニトリル−スチレン共重合体、ABS樹脂等)が好ましい。   The thermoplastic resin (b) includes polycarbonate resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfite resin, polyamide imide resin, polyether ether ketone resin, polyether sulfone resin, polyimide resin, polyvinyl chloride resin. , Polystyrene resins (polystyrene, acrylonitrile-styrene copolymers, ABS resins, etc.), polyamide resins, polyacetal resins, acrylic resins, or cellulose resins (cellulose acetate, etc.) are preferred, especially polycarbonate resins, polybutylene terephthalate resins, Polyethylene terephthalate resin, polyphenylene sulfite resin, or polystyrene resin (polystyrene resin, syndiotactic polystyrene resin, acrylo Tolyl - styrene copolymer, ABS resin, etc.) is preferred.

熱可塑性樹脂(a)と熱可塑性樹脂(b)との好ましい組み合わせは、(a)ポリプロピレン樹脂と(b)ポリカーボネート樹脂、(a)ポリプロピレン樹脂と(b)ポリブチレンテレフタレート樹脂、(a)ポリプロピレン樹脂と(b)シンジオタクチックポリスチレン樹脂等を挙げることができる。
熱可塑性樹脂(a)の配合割合は、発泡成形体中好ましくは25〜80質量%、さらに好ましくは30〜50質量%である。この割合が多すぎると成形体の海部が増えるため発泡倍率が低くなって軽量化という目的が達せられず、少ないと成形体の海部が少なくなり発泡部分が増えすぎて高強度という目的が達せられなくなるためである。
Preferred combinations of the thermoplastic resin (a) and the thermoplastic resin (b) are: (a) polypropylene resin and (b) polycarbonate resin, (a) polypropylene resin and (b) polybutylene terephthalate resin, (a) polypropylene resin And (b) syndiotactic polystyrene resin.
The blending ratio of the thermoplastic resin (a) is preferably 25 to 80% by mass and more preferably 30 to 50% by mass in the foamed molded product. If this ratio is too high, the sea part of the molded body will increase, so the foaming ratio will be low and the purpose of weight reduction will not be achieved, and if it is less, the sea part of the molded body will decrease and the foamed part will increase so that the purpose of high strength will be achieved. This is because it disappears.

これらの上記熱可塑性樹脂には、気泡核剤、結晶核剤、可塑剤、滑剤、着色剤、紫外線吸収剤、酸化防止剤、充填材、ガラス繊維などの補強剤、難燃剤、帯電防止剤などの添加剤を必要に応じて適量加えることができる。   These thermoplastic resins include cell nucleating agents, crystal nucleating agents, plasticizers, lubricants, colorants, ultraviolet absorbers, antioxidants, fillers, reinforcing agents such as glass fibers, flame retardants, antistatic agents, etc. An appropriate amount of the additive can be added as required.

熱可塑性樹脂(a)は、ガラス繊維を添加した繊維強化熱可塑性樹脂であることが、より優れた強度の発泡成形体を得るのに好ましい。ガラス繊維を添加する場合は、ガラス繊維の平均繊維長が1mm以上であることが好ましく、さらに好ましくは2〜10mm、より好ましくは3〜8mmである。ガラス繊維長が1mm未満であると、発泡成形体で高剛性が得られないことがあり、10mmを超えるものは射出成形機に供給しても可塑化が不充分になり成形が不安定になることがある。
また、ガラス繊維の含有量は、熱可塑性樹脂(a)中、好ましくは5〜70質量%、さらに好ましくは10〜40質量%である。ガラス繊維の配合量が少ないと発泡成形体にさらに所望の強度が得られないことがあり、70質量%を超えると射出成形が不安定になり且つ発泡成形体の軽量効果が低減することがある。
The thermoplastic resin (a) is preferably a fiber reinforced thermoplastic resin to which glass fibers are added in order to obtain a foamed molded article having superior strength. When adding glass fiber, it is preferable that the average fiber length of glass fiber is 1 mm or more, More preferably, it is 2-10 mm, More preferably, it is 3-8 mm. If the glass fiber length is less than 1 mm, high rigidity may not be obtained with a foamed molded product. If the glass fiber length exceeds 10 mm, plasticization becomes insufficient even when supplied to an injection molding machine and molding becomes unstable. Sometimes.
Moreover, content of glass fiber in a thermoplastic resin (a), Preferably it is 5-70 mass%, More preferably, it is 10-40 mass%. If the blended amount of glass fibers is small, the foam molded article may not have a desired strength. If it exceeds 70% by mass, the injection molding may become unstable and the light weight effect of the foam molded article may be reduced. .

原料とする熱可塑性樹脂(b)の形状は特に問わないが、好ましくは3mm以下のペレット、または粉末状(微粉末を含む)であり、さらに好ましくは平均粒径2〜50μm、より好ましくは平均粒径3〜50μmの微粉末である。なお、上記の微粉末の平均粒径は、マイクロトラックFRAレーザー式粒度分布計(日機装社製)で測定された値をいう。
熱可塑性樹脂(b)のペレットまたは粉末の発泡方法としては加圧された高圧ガスを用いて発泡させる方法(発泡手段として高圧ガスを含浸させた後、減圧する発泡方法)を本発明では用いる。発泡剤を用いる化学的発泡では、熱可塑性樹脂(a)および(b)共に発泡してしまい、また微細な気泡構造を形成することが難しく、特に300μm以下の微細気泡を形成することは極めて困難である。
高圧ガスは、熱可塑性樹脂(b)に対して不活性で且つ含浸可能なものであれば特に限定されず、例えば、空気、不活性ガス(二酸化炭素、窒素、ヘリウムなど)が挙げられる。これらのガスは混合して用いてもよい。これらのうち、含浸量が多く、含浸速度が速い点から、不活性ガスが好ましく、そのなかでも特に二酸化炭素が好適である。
The shape of the thermoplastic resin (b) as a raw material is not particularly limited, but is preferably a pellet of 3 mm or less or powder (including fine powder), more preferably an average particle size of 2 to 50 μm, more preferably an average It is a fine powder having a particle size of 3 to 50 μm. In addition, the average particle diameter of said fine powder means the value measured with the micro track FRA laser type particle size distribution analyzer (made by Nikkiso Co., Ltd.).
As a method for foaming the pellets or powder of the thermoplastic resin (b), a method of foaming using a pressurized high-pressure gas (a foaming method in which high-pressure gas is impregnated as a foaming means and then decompressed) is used in the present invention. In chemical foaming using a foaming agent, both the thermoplastic resins (a) and (b) are foamed, and it is difficult to form a fine cell structure, and in particular, it is extremely difficult to form fine cells of 300 μm or less. It is.
The high-pressure gas is not particularly limited as long as it is inert and can be impregnated with respect to the thermoplastic resin (b), and examples thereof include air and inert gases (carbon dioxide, nitrogen, helium, etc.). These gases may be mixed and used. Among these, an inert gas is preferable from the viewpoint of a large amount of impregnation and a high impregnation rate, and carbon dioxide is particularly preferable among them.

さらに、含浸速度を速めるという観点から、前記高圧ガス(特に二酸化炭素)は、超臨界状態の流体であることが好ましい。超臨界状態では、熱可塑性樹脂(b)へのガスの溶解度が増大し、高濃度の混入が可能である。また、含浸後の急激な圧力降下時には、前記のように高濃度で含浸することが可能であるため、気泡核の発生が多くなり、その気泡核が成長してできる気泡の密度が大きくなるため、微細な気泡を得ることができ、従来に比べ発泡倍率を上げることが可能である。
本発明において、発泡形成体の形状は特に制限はない。板状、円筒状、角状、球面状などでもよく、さらに各種の用途、使用場面に応じて適宜の形状にさらに成形加工することもできる。
Furthermore, from the viewpoint of increasing the impregnation speed, the high-pressure gas (particularly carbon dioxide) is preferably a fluid in a supercritical state. In the supercritical state, the solubility of the gas in the thermoplastic resin (b) increases and high concentration can be mixed. In addition, when the pressure drops suddenly after impregnation, since it is possible to impregnate at a high concentration as described above, the generation of bubble nuclei increases, and the density of bubbles formed by the growth of the bubble nuclei increases. Fine bubbles can be obtained, and the expansion ratio can be increased as compared with the conventional case.
In the present invention, the shape of the foam-formed body is not particularly limited. It may be a plate shape, a cylindrical shape, a square shape, a spherical shape, or the like, and can be further molded into an appropriate shape according to various uses and usage scenes.

次に、発泡成形体の製造方法の好ましい実施態様について、添付する図1を参照して説明する。
原料のペレットまたは粉末の熱可塑性樹脂(b)2は、室温(10〜25℃)にて圧力容器3内でガスを充填、加圧して、好ましくは超臨界状態のガスを含浸させた後に圧力を開放して、ガスが含浸された熱可塑性樹脂(b)とする。
原料の熱可塑性樹脂(a)1とガスが含浸された熱可塑性樹脂(b)を混合器4で撹拌混合(ドライブレンド)し、予め混合した状態で射出成形機5に供給する。あるいは、熱可塑性樹脂(a)とガスが含浸された熱可塑性樹脂(b)は射出成形機内で混合するように、それぞれホッパーまたはサイドフィーダーから射出成形機5に供給することもできる。
そして、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の成形条件で、熱可塑性樹脂(a)は溶融し、ガスが含浸された熱可塑性樹脂(b)は発泡する。これを金型内に射出充填することにより本発明の海島構造を有する発泡成形体6を得ることができる。なお、発泡成形体6において、熱可塑性樹脂(b)内で生起した一部の気泡が熱可塑性樹脂(a)内に存在していてもよい。成形温度は、使用する熱可塑性樹脂により決まるが、220〜290℃が好ましい。
Next, a preferred embodiment of a method for producing a foam molded article will be described with reference to FIG.
The raw material pellets or powdered thermoplastic resin (b) 2 is filled with gas in the pressure vessel 3 at room temperature (10 to 25 ° C.), pressurized, and preferably impregnated with supercritical gas. To be a thermoplastic resin (b) impregnated with gas.
The raw thermoplastic resin (a) 1 and the thermoplastic resin (b) impregnated with gas are stirred and mixed (dry blended) by the mixer 4 and supplied to the injection molding machine 5 in a premixed state. Alternatively, the thermoplastic resin (a) and the thermoplastic resin (b) impregnated with gas can be supplied to the injection molding machine 5 from a hopper or a side feeder, respectively, so as to be mixed in the injection molding machine.
The thermoplastic resin (a) melts and is impregnated with the thermoplastic resin (b) under molding conditions not lower than the melting temperature of the thermoplastic resin (a) and not higher than the melting temperature of the thermoplastic resin (b). Foams. The foamed molded product 6 having the sea-island structure of the present invention can be obtained by injection-filling this into a mold. In the foamed molded product 6, some bubbles generated in the thermoplastic resin (b) may be present in the thermoplastic resin (a). The molding temperature is determined by the thermoplastic resin used, but is preferably 220 to 290 ° C.

前記熱可塑性樹脂(a)として着色したものを使用し、発泡射出成形により得られた発泡成形体をスライスサーなどを用いて断面構造が破壊されないようにカットし、走査型電子顕微鏡にてその断面構造を観察した、本発明の発泡成形体の断面構造の一例を模式図で図2に示す。
発泡成形体6は、熱可塑性樹脂(a)が海部7を構成し、気泡9を有する熱可塑性樹脂(b)が島部8を構成する海島構造をもつ。島部8に相当する部分の粒径はほぼ0.05〜0.8mmであり、気泡の大きさ(最大径)はほぼ30〜200μmである。
熱可塑性樹脂(a)として、ガラス繊維を含有するものを原料とした場合においては、ガラス繊維はほぼそのまま海部7に残っている。
Using a colored one as the thermoplastic resin (a), the foam molded body obtained by foam injection molding is cut using a slicer or the like so that the cross-sectional structure is not destroyed, and the cross section is obtained with a scanning electron microscope. An example of the cross-sectional structure of the foamed molded product of the present invention, whose structure was observed, is shown in FIG. 2 as a schematic diagram.
The foamed molded body 6 has a sea-island structure in which the thermoplastic resin (a) constitutes the sea portion 7 and the thermoplastic resin (b) having the bubbles 9 constitutes the island portion 8. The particle size of the portion corresponding to the island portion 8 is approximately 0.05 to 0.8 mm, and the size (maximum diameter) of the bubbles is approximately 30 to 200 μm.
When the thermoplastic resin (a) is made of a material containing glass fiber, the glass fiber remains in the sea part 7 almost as it is.

射出成形時の発泡は、熱可塑性樹脂(b)の溶融温度よりも低く且つ熱可塑性樹脂(a)の溶融状態で生起するので、気泡9は独立気泡であり、熱可塑性樹脂(b)単独での発泡よりも発泡倍率を大きくすることができる。したがって、発泡成形体全体として発泡倍率を上げることができ、軽量化を行うことが可能である。また、多数の気泡は独立したものであるので、優れた機械的強度、好ましくは40MPa以上、さらに好ましくは45MPa以上の曲げ強度(JIS K7171 に準拠した値)をもつ。また、曲げ弾性率も優れたものである。
さらに、この発泡成形体が振動を受けたときに、内部の気泡構造および異なった2つの熱可塑性樹脂の粘弾性によって、振動エネルギーが熱エネルギーへ変換されて振動エネルギーを吸収し、制振性が向上する。更に、この2つの熱可塑性樹脂はガラス転移点が異なることから、広い使用温度領域で高い制振性を得ることが可能となる。
また、熱可塑性樹脂(a)にガラス繊維などの補強剤を添加することで制振性と高剛性を兼ね備えた発泡成形体を得ることが出来るので、自動車の外装など高剛性が必要な分野に広く適用することが可能である。
Foaming at the time of injection molding is lower than the melting temperature of the thermoplastic resin (b) and occurs in the molten state of the thermoplastic resin (a), so the bubbles 9 are closed cells, and the thermoplastic resin (b) alone The foaming ratio can be made larger than that of foaming. Therefore, it is possible to increase the foaming ratio of the entire foamed molded body and to reduce the weight. In addition, since a large number of bubbles are independent, they have excellent mechanical strength, preferably 40 MPa or more, and more preferably 45 MPa or more (value according to JIS K7171). Also, the flexural modulus is excellent.
Furthermore, when this foamed molded body is subjected to vibration, vibration energy is converted into heat energy by the internal cell structure and the viscoelasticity of two different thermoplastic resins, so that vibration energy is absorbed. improves. Furthermore, since these two thermoplastic resins have different glass transition points, it is possible to obtain high vibration damping properties in a wide operating temperature range.
In addition, by adding a reinforcing agent such as glass fiber to the thermoplastic resin (a), it is possible to obtain a foamed molded article having both vibration damping properties and high rigidity. It can be widely applied.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに制限されるものではない。
以下の各実施例および比較例に製造方法を記載し、その概要を表1〜3に示す。さらに、得られた発泡成形体は、成形性および外観を評価すると共に、機械的強度として曲げ強度、曲げ弾性率および発泡倍率を測定して、その結果も表1〜3に示した。
なお、各実施例および比較例で使用した熱可塑性樹脂について、表4に一覧表で示した。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
Production methods are described in the following examples and comparative examples, and the outline is shown in Tables 1 to 3. Further, the obtained foamed molded article was evaluated for moldability and appearance, and measured for bending strength, bending elastic modulus and expansion ratio as mechanical strength, and the results are also shown in Tables 1 to 3.
The thermoplastic resins used in each example and comparative example are listed in Table 4.

<実施例1>
熱可塑性樹脂(a)としてはペレット状のポリプロピレン(日本ポリプロ製「ノバテックBC03C」)を、熱可塑性樹脂(b)としてはポリカーボネート(三菱エンジニアリングプラスチック社製「ユーピロンS3000」)を使用した。熱可塑性樹脂(b)はペレット形状をしており、このペレットを圧力容器内に投入後炭酸ガスを超臨界状態となる8MPa、23℃で充填した。
次に、熱可塑性樹脂(a)と炭酸ガスが含浸された熱可塑性樹脂(b)を30:70の質量比で混合後射出成形機のポッパーに投入し、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の260℃の成形条件で金型内に射出充填し、板状の発泡成形体(長さ150mm、幅150mm、厚さ4mm)を得た。
<Example 1>
As the thermoplastic resin (a), pellet-shaped polypropylene (“Novatec BC03C” manufactured by Nippon Polypro) was used, and as the thermoplastic resin (b), polycarbonate (“Iupilon S3000” manufactured by Mitsubishi Engineering Plastics) was used. The thermoplastic resin (b) was in the form of pellets, and after charging the pellets into a pressure vessel, carbon dioxide was filled at 8 MPa and 23 ° C., which brought a supercritical state.
Next, the thermoplastic resin (a) and the thermoplastic resin (b) impregnated with carbon dioxide gas are mixed at a mass ratio of 30:70 and then charged into the popper of the injection molding machine, and the melting temperature of the thermoplastic resin (a) The mold was injection-filled into the mold under the molding conditions of 260 ° C. below the melting temperature of the thermoplastic resin (b) to obtain a plate-like foamed molded body (length 150 mm, width 150 mm, thickness 4 mm).

<実施例2〜4>
熱可塑性樹脂(a)として実施例1と同様ポリプロピレン(日本ポリプロ製「ノバテックBC03C」)を使用し、熱可塑性樹脂(b)として、表1に示すようにポリブチレンテレフタレート(ポリプラスチック社製「ジュラネックス2002」)、シンジオタクチックポリスチレン(出光興産製「ザレックS100」、またはポリエチレンテレフタレート(ユニチカ製「SA−1206」)をそれぞれ使用した。熱可塑性樹脂(b)はペレット形状をしており、このペレットを実施例1と同様圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。
次に、実施例1と同様熱可塑性樹脂(a)と熱可塑性樹脂(b)を30:70の質量比で混合後射出成形機のポッパーに投入し、表1に示すように、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下のそれぞれ220℃、270℃、240℃の成形条件で金型内に射出充填し、板状の発泡成形体(長さ150mm、幅150mm、厚さ4mm)を得た。
<Examples 2 to 4>
As the thermoplastic resin (a), polypropylene (“NOVATEC BC03C” manufactured by Nippon Polypro Co., Ltd.) was used as in Example 1. As the thermoplastic resin (b), polybutylene terephthalate (“DURA” manufactured by Polyplastics Co., Ltd.) was used. Nex 2002 "), syndiotactic polystyrene (" Zarek S100 "manufactured by Idemitsu Kosan Co., Ltd.) or polyethylene terephthalate (" SA-1206 "manufactured by Unitika). The thermoplastic resin (b) has a pellet shape. The pellets were put into a pressure vessel in the same manner as in Example 1 and then filled with carbon dioxide at 8 MPa at 23 ° C.
Next, as in Example 1, the thermoplastic resin (a) and the thermoplastic resin (b) were mixed at a mass ratio of 30:70 and then charged into the popper of the injection molding machine. As shown in Table 1, the thermoplastic resin It is injection-filled into a mold under molding conditions of 220 ° C., 270 ° C. and 240 ° C., which are not lower than the melting temperature of (a) and not higher than the melting temperature of the thermoplastic resin (b), respectively, 150 mm, width 150 mm, thickness 4 mm).

<実施例5、6>
熱可塑性樹脂(a)は、表1に示すようにペレット状の長繊維ガラス含有ポリプロピレン(日本ポリプロ社製「ファンクスターLR23C」、ガラス繊維長約4mm:30質量%含有)または長繊維ガラス含有ポリプロピレン(日本ポリプロ製「ファンクスターLR23C」、ガラス繊維長約8mm:30質量%含有)をそれぞれ使用し、熱可塑性樹脂(b)はポリカーボネート(三菱エンジニアリングプラスチック社製「ユーピロンS3000」)を使用した。熱可塑性樹脂(b)はペレット形状をしており、このペレットを実施例1と同様圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。
次に、熱可塑性樹脂(a)と熱可塑性樹脂(b)を30:70の質量比で混合後射出成形機のポッパーに投入し、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の260℃の成形条件で金型内に射出充填し、板状の発泡成形体(長さ150mm、幅150mm、厚さ4mm)を得た。
<Examples 5 and 6>
As shown in Table 1, the thermoplastic resin (a) is a pellet-like long fiber glass-containing polypropylene ("Funkster LR23C" manufactured by Nippon Polypro Co., Ltd., containing about 4 mm of glass fiber length: 30% by mass) or a long fiber glass-containing polypropylene. (Nippon Polypro "Funkster LR23C", glass fiber length of about 8 mm: 30% by mass) was used, and the thermoplastic resin (b) was polycarbonate ("Iupilon S3000" manufactured by Mitsubishi Engineering Plastics). The thermoplastic resin (b) was in the form of a pellet. The pellet was put into a pressure vessel in the same manner as in Example 1 and then filled with carbon dioxide at 8 MPa at 23 ° C.
Next, after mixing the thermoplastic resin (a) and the thermoplastic resin (b) at a mass ratio of 30:70, the mixture is put into the popper of the injection molding machine, and the thermoplastic resin is at or above the melting temperature of the thermoplastic resin (a). The mold was injection-filled into a mold under molding conditions of 260 ° C. below the melting temperature of (b) to obtain a plate-like foamed molded body (length 150 mm, width 150 mm, thickness 4 mm).

<実施例7、8>
熱可塑性樹脂(a)はペレット状の長繊維ガラス含有ポリプロピレン(日本ポリプロ製「ファンクスターLR23C」、ガラス繊維長約8mm:30質量%含有)、熱可塑性樹脂(b)はペレット状のポリカーボネート(三菱エンジニアリングプラスチック社製「ユーピロンS3000」)をそれぞれ使用した。このペレット状の熱可塑性樹脂(b)を実施例1と同様圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。次に、熱可塑性樹脂(a)と熱可塑性樹脂(b)を実施例8は50:50の質量比で、実施例9は70:30の質量比でそれぞれ混合後、射出成形機のポッパーに投入し、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の260℃の成形条件で金型内に射出充填し、板状の発泡成形体(長さ150mm、幅150mm、厚さ4mm)を得た。
<Examples 7 and 8>
The thermoplastic resin (a) is a pellet-like long fiber glass-containing polypropylene (“Funkster LR23C” manufactured by Nippon Polypro, glass fiber length of about 8 mm: 30% by mass), and the thermoplastic resin (b) is a pellet-like polycarbonate (Mitsubishi). “Iupilon S3000” manufactured by Engineering Plastics Co., Ltd. was used. This pellet-shaped thermoplastic resin (b) was charged into a pressure vessel in the same manner as in Example 1 and then filled with carbon dioxide at 8 MPa at 23 ° C. Next, after mixing the thermoplastic resin (a) and the thermoplastic resin (b) at a mass ratio of 50:50 in Example 8 and at a mass ratio of 70:30 in Example 9, respectively, the mixture was added to the popper of the injection molding machine. It is injected and filled into a mold under molding conditions of 260 ° C. which is not less than the melting temperature of the thermoplastic resin (a) and not more than the melting temperature of the thermoplastic resin (b), and is formed into a plate-like foam molded body (length 150 mm) , Width 150 mm, thickness 4 mm).

<実施例9〜11>
熱可塑性樹脂(a)は、表2に示すように、ペレット状の長繊維ガラス含有ポリプロピレン(日本ポリプロ社製「ファンクスターLR21V」、ガラス繊維長約8mm:10質量%含有)、長繊維ガラス含有ポリプロピレン(日本ポリプロ製「ファンクスターLR22W」、ガラス繊維長約8mm:20質量%含有)、または長繊維ガラス含有ポリプロピレン(日本ポリプロ製「ファンクスターLR24A」、ガラス繊維長約8mm:40質量%含有)をそれぞれ使用し、熱可塑性樹脂(b)はポリカーボネート(三菱エンジニアリングプラスチック社製「ユーピロンS3000」)を使用した。熱可塑性樹脂(b)はペレット形状をしており、このペレットを実施例1と同様圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。
次に、熱可塑性樹脂(a)と熱可塑性樹脂(b)を30:70の質量比で混合後射出成形機のポッパーに投入し、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の260℃の成形条件で金型内に射出充填し、板状の発泡成形体(長さ150mm、幅150mm、厚さ4mm)を得た。
<Examples 9 to 11>
As shown in Table 2, the thermoplastic resin (a) is a pellet-shaped long fiber glass-containing polypropylene ("Funkster LR21V" manufactured by Nippon Polypro Co., Ltd., glass fiber length of about 8 mm: containing 10% by mass), containing long fiber glass Polypropylene (Nippon Polypro "Funkster LR22W", glass fiber length of about 8mm: 20% by mass) or long fiber glass-containing polypropylene (Nippon Polypro "Funkster LR24A", glass fiber length of about 8mm: 40% by mass) The thermoplastic resin (b) was polycarbonate ("Iupilon S3000" manufactured by Mitsubishi Engineering Plastics). The thermoplastic resin (b) was in the form of a pellet. The pellet was put into a pressure vessel in the same manner as in Example 1 and then filled with carbon dioxide at 8 MPa at 23 ° C.
Next, after mixing the thermoplastic resin (a) and the thermoplastic resin (b) at a mass ratio of 30:70, the mixture is put into the popper of the injection molding machine, and the thermoplastic resin is at or above the melting temperature of the thermoplastic resin (a). The mold was injection-filled into a mold under molding conditions of 260 ° C. below the melting temperature of (b) to obtain a plate-like foamed molded body (length 150 mm, width 150 mm, thickness 4 mm).

<実施例12>
熱可塑性樹脂(a)はポリプロピレン(日本ポリプロ製「ノバテックBC03C」)を、熱可塑性樹脂(b)はアクリロニトリル共重合樹脂(日本合成ゴム社製「N230S」)を使用した。アクリロニトリル共重合樹脂は平均粒径を約30μmの粉末形状とし、この粉末を圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。次に、熱可塑性樹脂(a)と熱可塑性樹脂(b)を30:70の質量比で混合後射出成形機のポッパーに投入し、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の220℃の成形条件で金型内に射出充填し、板状の発泡成形体(長さ150mm、幅150mm、厚さ4mm)を得た。
<Example 12>
For the thermoplastic resin (a), polypropylene (“Novatec BC03C” manufactured by Nippon Polypro) was used, and for the thermoplastic resin (b), acrylonitrile copolymer resin (“N230S” manufactured by Nippon Synthetic Rubber Co., Ltd.) was used. The acrylonitrile copolymer resin was in the form of a powder having an average particle size of about 30 μm, and this powder was charged into a pressure vessel and then filled with carbon dioxide at 8 MPa at 23 ° C. Next, after mixing the thermoplastic resin (a) and the thermoplastic resin (b) at a mass ratio of 30:70, the mixture is put into the popper of the injection molding machine, and the thermoplastic resin is at or above the melting temperature of the thermoplastic resin (a). The mold was injected and filled under molding conditions of 220 ° C. below the melting temperature of (b) to obtain a plate-like foamed molded body (length 150 mm, width 150 mm, thickness 4 mm).

<比較例1>
熱可塑性樹脂(a)はポリプロピレン(日本ポリプロ製「ノバテックBC03C」)を使用し、熱可塑性樹脂(b)は配合せず、200℃で射出成形し、板状の成形体(長さ150mm、幅150mm、厚さ4mm)を得た。
<Comparative Example 1>
The thermoplastic resin (a) uses polypropylene (“Novatec BC03C” manufactured by Nippon Polypro), is not blended with the thermoplastic resin (b), is injection molded at 200 ° C., and is formed into a plate-like molded body (length 150 mm, width) 150 mm, thickness 4 mm).

<比較例2>
熱可塑性樹脂(a)は配合せず、熱可塑性樹脂(b)としてペレット形状のポリプロピレン(日本ポリプロ製「ノバテックBC03C」)を使用して、このペレットを圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。次に、この熱可塑性樹脂(b)を射出成形機のポッパーに投入し、熱可塑性樹脂(b)の溶融温度以下の180℃の成形条件で金型内に射出充填したが、成形できなかった。
<Comparative example 2>
The thermoplastic resin (a) is not blended, and the pellet-shaped polypropylene ("Novatec BC03C" manufactured by Nippon Polypro Co., Ltd.) is used as the thermoplastic resin (b). Filled at 23 ° C. Next, this thermoplastic resin (b) was put into a popper of an injection molding machine and injected and filled in a mold under molding conditions of 180 ° C. below the melting temperature of the thermoplastic resin (b), but could not be molded. .

<参考例1>
熱可塑性樹脂(a)は長繊維ガラス含有ポリプロピレン(日本ポリプロ製「ファンクスター」、ガラス繊維長約12mm:30%含有)を、熱可塑性樹脂(b)はポリカーボネート(三菱エンジニアリングプラスチック社製「ユーピロンS3000」)を使用した。熱可塑性樹脂(b)はペレット形状をしており、このペレットを圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。
次に、熱可塑性樹脂(a)と熱可塑性樹脂(b)を70:30の質量比で混合後、射出成形機のポッパーに投入し、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の260℃の成形条件で金型内に射出充填し、成形を行った。
<Reference Example 1>
The thermoplastic resin (a) is a long fiber glass-containing polypropylene (“Funkster” manufactured by Nippon Polypro, glass fiber length of about 12 mm: 30%), and the thermoplastic resin (b) is polycarbonate (“Iupilon S3000 manufactured by Mitsubishi Engineering Plastics). ")It was used. The thermoplastic resin (b) was in the form of pellets, and the pellets were charged into a pressure vessel and filled with carbon dioxide at 8 MPa and 23 ° C.
Next, after mixing the thermoplastic resin (a) and the thermoplastic resin (b) at a mass ratio of 70:30, the mixture is put into a popper of an injection molding machine, and the thermoplastic resin is at or above the melting temperature of the thermoplastic resin (a). Molding was carried out by injection filling into the mold under molding conditions of 260 ° C. below the melting temperature of the resin (b).

<参考例2>
熱可塑性樹脂(a)はポリプロピレン(日本ポリプロ製「ノバテックBC03C」)、熱可塑性樹脂(b)はアクリロニトリル共重合樹脂(日本合成ゴム社製「N230S」)を使用した。熱可塑性樹脂(b)は平均粒径を約30μmの粉末形状とし、この粉末を圧力容器内に投入後炭酸ガスを8MPa、23℃で充填した。
次に、熱可塑性樹脂(a)と熱可塑性樹脂(b)を20:80の質量比で混合後、射出成形機のポッパーに投入し、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の220℃の成形条件で金型内に射出充填し、板状の成形体を得た。
<Reference Example 2>
As the thermoplastic resin (a), polypropylene (“Novatec BC03C” manufactured by Nippon Polypro) was used, and as the thermoplastic resin (b), acrylonitrile copolymer resin (“N230S” manufactured by Nippon Synthetic Rubber Co., Ltd.) was used. The thermoplastic resin (b) was in the form of a powder having an average particle size of about 30 μm, and this powder was charged into a pressure vessel and filled with carbon dioxide at 8 MPa at 23 ° C.
Next, after mixing the thermoplastic resin (a) and the thermoplastic resin (b) at a mass ratio of 20:80, the mixture is put into a popper of an injection molding machine, and the thermoplastic resin is at or above the melting temperature of the thermoplastic resin (a). The mold was injection-filled under molding conditions of 220 ° C. below the melting temperature of the resin (b) to obtain a plate-like molded body.

試験例
各実施例の成形体について、走査型電子顕微鏡でその断面構造を調べた。いずれも熱可塑性樹脂(a)が海部を、熱可塑性樹脂(b)が島部を構成する海島構造をもつものであり、島部には多数の気泡が認められた。
Test Example The cross-sectional structure of the molded body of each example was examined with a scanning electron microscope. In either case, the thermoplastic resin (a) has a sea-island structure in which the sea part and the thermoplastic resin (b) constitutes an island part, and a large number of bubbles were observed in the island part.

各実施例、比較例および参考例で得られた充填材および成形体について、下記に示す仕様で評価した。その結果を表1〜3に示した。また表4には用いた樹脂を示した。
a.成形性
150×150×4mmの成形体を作製し、成形品が未充填にならない場合を「良好」とし、未充填もしくは成形できない状態や、成形状態が不安定である場合を「不良」とした。
b.外観
表面に性能上問題となり得るヒケやウエルドが無い場合を「良好」とし、表面に大きなヒケ、凹凸やウエルドがある場合は、不良と判定し、表にはその状態を記した。
c.曲げ強度、および、d.曲げ弾性率
曲げ強度および曲げ弾性率の評価は、各実施例で得られた板状の成形体から80mm×10mm×4mmの試料板を切り出して評価用サンプルとし、JIS K7171 に準拠して評価した。
e.発泡倍率
各材料の密度から発泡させない状態の成形品(150×150×4mm)「未発泡成形品」の質量を算出してこれを発泡倍率1とし、実施例、比較例のごとく射出発泡成形した成形体「発泡成形品」の質量を測定して、後述の計算式
(「未発泡成形品」の質量)/(「発泡成形品」の質量)=発泡倍率
と定義し、その発泡倍率を求めた。
The fillers and molded bodies obtained in each of the examples, comparative examples and reference examples were evaluated according to the specifications shown below. The results are shown in Tables 1-3. Table 4 shows the resins used.
a. Formability 150 × 150 × 4 mm molded body was produced, and the case where the molded product was not unfilled was defined as “good”, and the state where unmolded or unmolded or the molded state was unstable was defined as “bad”. .
b. Appearance The case where there was no sink or weld that could cause a problem in performance on the surface was judged as “good”, and when there was a large sink, unevenness or weld on the surface, it was judged as defective and the state was shown in the table.
c. Bending strength, and d. Bending elastic modulus Bending strength and bending elastic modulus were evaluated in accordance with JIS K7171 by cutting out an 80 mm × 10 mm × 4 mm sample plate from the plate-like molded body obtained in each example to obtain an evaluation sample. .
e. Foaming ratio The mass of a molded product (150 × 150 × 4 mm) “unfoamed molded product” in a state where foaming is not performed is calculated from the density of each material, and this is set to a foaming magnification of 1, and injection foam molding is performed as in Examples and Comparative Examples. Measure the mass of the molded product “foamed molded product” and define the formula below (mass of “non-foamed molded product”) / (mass of “foamed molded product”) = foaming ratio to obtain the foaming ratio. It was.

Figure 0005479772
Figure 0005479772

Figure 0005479772
Figure 0005479772

Figure 0005479772
Figure 0005479772

Figure 0005479772
Figure 0005479772

表1〜2に示されるように、実施例1〜12では、成形性、外観に優れ、曲げ強度、曲げ弾性率、発泡倍率も高く、軽量かつ高強度の材料であった。なかでも、熱可塑性樹脂(a)がガラス繊維を含む実施例5〜11では、樹脂(b)として同じPCを用いた実施例1と比べ、強度に非常に優れたものとなった。
これに対し、表3に示されるように、比較例1は、外観は良好であるが、発泡性ガスを入れていないので発泡体ではなく、軽量化されないものであった。また、比較例2では、成形できなかった。また、参考例1では、繊維長が長いガラス繊維が多く含まれているため、成形性が悪く、成形に適していなかった。参考例2では、成形性は良いが、バルーンが多く壊れて表面に凹凸ができ、外観が悪く、曲げ強度および曲げ弾性率も低いものであった。
As shown in Tables 1 and 2, in Examples 1 to 12, the material was excellent in moldability and appearance, had high bending strength, bending elastic modulus, and high foaming ratio, and was a light weight and high strength material. Especially, in Examples 5-11 in which the thermoplastic resin (a) includes glass fibers, the strength was very excellent compared to Example 1 using the same PC as the resin (b).
On the other hand, as shown in Table 3, the appearance of Comparative Example 1 was good, but since it did not contain foaming gas, it was not a foam and was not reduced in weight. In Comparative Example 2, molding could not be performed. Further, in Reference Example 1, since many glass fibers having a long fiber length were contained, the moldability was poor and it was not suitable for molding. In Reference Example 2, the moldability was good, but many balloons were broken and the surface was uneven, the appearance was poor, and the bending strength and bending elastic modulus were low.

1 熱可塑性樹脂(a)(原料)
2 熱可塑性樹脂(b)(原料)
3 圧力容器
4 混合器
5 射出成形機
6 発泡成形体
7 海部
8 島部
9 気泡
1 Thermoplastic resin (a) (raw material)
2 Thermoplastic resin (b) (raw material)
DESCRIPTION OF SYMBOLS 3 Pressure vessel 4 Mixer 5 Injection molding machine 6 Foam molding 7 Sea part 8 Island part 9 Bubble

Claims (11)

溶融温度が異なる熱可塑性樹脂(a)および熱可塑性樹脂(b)を含む発泡成形体であって、該熱可塑性樹脂(a)が、ポリオレフィン樹脂で、該熱可塑性樹脂(b)がポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリスチレン樹脂またはABS樹脂であり、熱可塑性樹脂(a)とガスが含浸された熱可塑性樹脂(b)との混合物を熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下で発泡倍率が2倍以上に射出発泡成形した、熱可塑性樹脂(a)が海部、気泡を有する熱可塑性樹脂(b)が島部である海島構造をもつことを特徴とする発泡成形体。 A foamed molded article comprising a thermoplastic resin (a) and a thermoplastic resin (b) having different melting temperatures, wherein the thermoplastic resin (a) is a polyolefin resin, and the thermoplastic resin (b) is a polycarbonate resin, A polybutylene terephthalate resin, a polyethylene terephthalate resin, a polystyrene resin or an ABS resin, and a mixture of the thermoplastic resin (a) and the thermoplastic resin (b) impregnated with gas at a temperature equal to or higher than the melting temperature of the thermoplastic resin (a). In addition, a sea-island structure in which the thermoplastic resin (a) is a sea part and the thermoplastic resin (b) having bubbles is an island part, which is injection-foamed and molded at a foaming ratio of 2 times or less at a melting temperature of the thermoplastic resin (b) or less. A foamed molded article characterized by having. 前記発泡倍率が、2.1倍以上である請求項1記載の発泡成形体。 The foamed molded product according to claim 1, wherein the expansion ratio is 2.1 times or more. 前記熱可塑性樹脂(a)が、ポリプロピレン樹脂である請求項1または2に記載の発泡成形体。 The foamed molded article according to claim 1 or 2, wherein the thermoplastic resin (a) is a polypropylene resin. 前記熱可塑性樹脂(a)が、発泡成形体中、25〜80質量%である請求項1〜のいずれか1項記載の発泡成形体。 The thermoplastic resin (a) is, in foamed molded, foam molded body according to any one of claims 1 to 3 which is 25 to 80 mass%. 前記熱可塑性樹脂(b)と前記熱可塑性樹脂(a)の溶融温度差が、20〜120℃である請求項1〜のいずれか1項記載の発泡成形体。 The foamed molded product according to any one of claims 1 to 4 , wherein a difference in melting temperature between the thermoplastic resin (b) and the thermoplastic resin (a) is 20 to 120 ° C. JIS K7171 に準拠した曲げ強度が40MPa以上であることを特徴とする請求項1〜のいずれか1項記載の発泡成形体。 The foaming molded article according to any one of claims 1 to 5 , wherein a bending strength in accordance with JIS K7171 is 40 MPa or more. 前記熱可塑性樹脂(a)が、平均繊維長が1mm以上のガラス繊維を含むことを特徴とする請求項1〜のいずれか1項記載の発泡成形体。 The foamed molded article according to any one of claims 1 to 6 , wherein the thermoplastic resin (a) includes glass fibers having an average fiber length of 1 mm or more. 前記熱可塑性樹脂(a)が、5〜70質量%のガラス繊維を含有してなる熱可塑性樹脂であることを特徴とする請求項1〜のいずれか1項記載の発泡成形体。 The foamed molded article according to any one of claims 1 to 7 , wherein the thermoplastic resin (a) is a thermoplastic resin containing 5 to 70 mass% of glass fibers. 熱可塑性樹脂(a)および熱可塑性樹脂(a)と溶融温度の異なる熱可塑性樹脂(b)を混合して射出成形する発泡成形体の製造方法であって、圧力容器内でガスを充填、加圧して、ペレット状または粉末状の熱可塑性樹脂(b)にガスを含浸させた後に圧力を開放する工程の後、熱可塑性樹脂(a)と前記のガスを含浸させた熱可塑性樹脂(b)とを予め混合した状態で射出成形機に供給する工程、または射出成形機内で混合するように前記熱可塑性樹脂(a)および前記のガスを含浸させた該熱可塑性樹脂(b)をそれぞれ射出成形機に供給する工程のいずれかの工程を行い、次いで、熱可塑性樹脂(a)の溶融温度以上でかつ熱可塑性樹脂(b)の溶融温度以下の成形条件で金型内に射出充填する、島部を発泡させた海島構造を有する発泡成形体の製造方法。   A method for producing a foamed molded article in which a thermoplastic resin (a) and a thermoplastic resin (a) and a thermoplastic resin (b) having different melting temperatures are mixed and injection-molded, and filled with gas in a pressure vessel After the step of pressing and impregnating the pellet-shaped or powdered thermoplastic resin (b) with the gas and then releasing the pressure, the thermoplastic resin (a) and the thermoplastic resin impregnated with the gas (b) And the step of supplying to the injection molding machine in a premixed state, or the injection molding of the thermoplastic resin (a) and the thermoplastic resin (b) impregnated with the gas so as to be mixed in the injection molding machine. Performing any one of the steps of supplying to the machine, and then injection-filling the mold under molding conditions not lower than the melting temperature of the thermoplastic resin (a) and not higher than the melting temperature of the thermoplastic resin (b). Has a sea-island structure with foamed parts Method of manufacturing a foam molded body. ガスを含浸させる前の前記熱可塑性樹脂(b)が、平均粒径2〜50μmの粉末状であることを特徴とする請求項9に記載の発泡成形体の製造方法。 The method for producing a foamed molded product according to claim 9, wherein the thermoplastic resin (b) before impregnating the gas is in the form of a powder having an average particle diameter of 2 to 50 µm. 熱可塑性樹脂(b)へのガスの含浸は、前記ガスが超臨界状態で行うことを特徴とする請求項または10に記載の発泡成形体の製造方法。
The method for producing a foamed molded product according to claim 9 or 10 , wherein the impregnation of the thermoplastic resin (b) with a gas is performed in a supercritical state.
JP2009110000A 2009-04-28 2009-04-28 Foam molded body and method for producing the same Expired - Fee Related JP5479772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110000A JP5479772B2 (en) 2009-04-28 2009-04-28 Foam molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110000A JP5479772B2 (en) 2009-04-28 2009-04-28 Foam molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010254930A JP2010254930A (en) 2010-11-11
JP5479772B2 true JP5479772B2 (en) 2014-04-23

Family

ID=43316210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110000A Expired - Fee Related JP5479772B2 (en) 2009-04-28 2009-04-28 Foam molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5479772B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155125A (en) * 2011-01-26 2012-08-16 Furukawa Electric Co Ltd:The Light reflection plate for liquid crystal backlight and method for manufacturing the same
US20130087361A1 (en) * 2011-10-11 2013-04-11 Hitachi Cable, Ltd. Foamed resin composition, wire and cable
JP6404197B2 (en) * 2015-09-24 2018-10-10 積水化成品工業株式会社 FIBER-REINFORCED FOAM, PROCESS FOR PRODUCING THE SAME, AND FIBER-REINFORCED COMPOSITE USING FIBER-REINFORCED FOAM
JP2017186399A (en) * 2016-04-01 2017-10-12 住友ベークライト株式会社 Foam and method for producing foam
JPWO2022149538A1 (en) * 2021-01-08 2022-07-14

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103556A (en) * 2001-09-27 2003-04-09 Polyplastics Co Foamed injection-molded object
JP2003335882A (en) * 2002-05-17 2003-11-28 Idemitsu Petrochem Co Ltd Solvent-resistant styrene resin composition and expansion molded product
JP2004352801A (en) * 2003-05-28 2004-12-16 Nissan Motor Co Ltd Panel-like molded form

Also Published As

Publication number Publication date
JP2010254930A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
Faruk et al. Microcellular foamed wood‐plastic composites by different processes: A review
JP6721518B2 (en) Foaming technology for materials filled with long glass fibers
JP5479772B2 (en) Foam molded body and method for producing the same
KR100482404B1 (en) Pre-expanded particles of crystalline aromatic polyester-based resin, and in-mold expanded product and expanded laminate using the same
JP3374356B2 (en) Method for producing foam molded article and foam molded article
WO2007084665A3 (en) Block copolymer foam additives
JP2011025450A (en) Method for producing foamed molded article and foamed molded article
JP2003170432A (en) Foam and manufacturing method therefor
KR100836496B1 (en) Biodegradable Rigid Foam
JP5280725B2 (en) Method for producing injection foam
CN117651635A (en) Method and article of manufacture by injection molding
JP2010158866A (en) Molded body and method of manufacturing molded body
US10597504B2 (en) Low temperature process for integrating a polymeric foam with a polymeric body
Kozlowski Lightweight plastic materials
KR101282820B1 (en) Lightweight wood-plastic composite and method for manufacturing the same
JP2008142997A (en) Method for producing injection-foamed molded body and molded body obtained by the method
WO2023042701A1 (en) Propylene-based resin composition and use thereof
TW202222937A (en) Foam molded article and method for producing same
JP2013082117A (en) Method for producing lightweight wood plastic foam molding
JP7059822B2 (en) Thermoplastic polyester elastomer foam molded article and its manufacturing method
JP5258028B2 (en) Injection molded resin molded products
Taskin Polymeric Foams: Materials, Technology, and Applications
Jung Development of innovative gas-assisted foam injection molding technology
JP5034710B2 (en) Thermoplastic resin composition foamed molded article and method for producing the same
JP7583580B2 (en) Laminate, manufacturing method thereof, and soundproofing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

LAPS Cancellation because of no payment of annual fees