JP5473344B2 - Lubricating oil composition for continuously variable transmission - Google Patents
Lubricating oil composition for continuously variable transmission Download PDFInfo
- Publication number
- JP5473344B2 JP5473344B2 JP2009022793A JP2009022793A JP5473344B2 JP 5473344 B2 JP5473344 B2 JP 5473344B2 JP 2009022793 A JP2009022793 A JP 2009022793A JP 2009022793 A JP2009022793 A JP 2009022793A JP 5473344 B2 JP5473344 B2 JP 5473344B2
- Authority
- JP
- Japan
- Prior art keywords
- viscosity
- lubricating oil
- mass
- viscosity index
- oil composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010687 lubricating oil Substances 0.000 title claims description 52
- 239000000203 mixture Substances 0.000 title claims description 48
- 230000005540 biological transmission Effects 0.000 title claims description 42
- 239000002199 base oil Substances 0.000 claims description 36
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 23
- 229910052791 calcium Inorganic materials 0.000 claims description 23
- 239000011575 calcium Substances 0.000 claims description 23
- 229920000193 polymethacrylate Polymers 0.000 claims description 20
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 18
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000011593 sulfur Substances 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 10
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 230000001050 lubricating effect Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000002783 friction material Substances 0.000 description 29
- 229910052751 metal Inorganic materials 0.000 description 27
- 239000002184 metal Substances 0.000 description 27
- 239000000446 fuel Substances 0.000 description 23
- 230000035939 shock Effects 0.000 description 16
- 239000003921 oil Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- -1 polyol ester Chemical class 0.000 description 10
- 230000003068 static effect Effects 0.000 description 10
- 239000003607 modifier Substances 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 239000002585 base Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 150000003014 phosphoric acid esters Chemical class 0.000 description 6
- 230000007774 longterm Effects 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 150000008301 phosphite esters Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000010718 automatic transmission oil Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 101100352578 Nicotiana plumbaginifolia PMA3 gene Proteins 0.000 description 1
- 101100352580 Nicotiana plumbaginifolia PMA4 gene Proteins 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 101150037674 PMA2 gene Proteins 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- ZHPNWZCWUUJAJC-UHFFFAOYSA-N fluorosilicon Chemical class [Si]F ZHPNWZCWUUJAJC-UHFFFAOYSA-N 0.000 description 1
- XPXMKIXDFWLRAA-UHFFFAOYSA-N hydrazinide Chemical compound [NH-]N XPXMKIXDFWLRAA-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WMYJOZQKDZZHAC-UHFFFAOYSA-H trizinc;dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S WMYJOZQKDZZHAC-UHFFFAOYSA-H 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Landscapes
- Lubricants (AREA)
Description
本発明は、無段変速機潤滑油組成物に関する。 The present invention relates to a continuously variable transmission lubricating oil composition.
自動車の燃費向上を目的として、有段の自動変速機に替わって無段変速機(以下、適宜「CVT」という。)が広く用いられてきており、特に、動力伝達に金属ベルトとプーリーを使用する金属ベルト式CVTが一般的となっている。金属ベルト式CVTは、金属製のベルトとプーリーの間の摩擦力を介して動力を伝達する金属ベルト−プーリー部分と、発進要素であるトルクコンバーターと、前進後進を切り替えるための前後進切り替え機構とを備えており、通常、無段変速機用潤滑油はこれらの各部で同一のものが用いられている。 For the purpose of improving the fuel efficiency of automobiles, continuously variable transmissions (hereinafter referred to as “CVT” where appropriate) have been widely used instead of stepped automatic transmissions, and in particular, metal belts and pulleys are used for power transmission. A metal belt type CVT is generally used. The metal belt type CVT includes a metal belt-pulley part that transmits power via a frictional force between a metal belt and a pulley, a torque converter that is a starting element, and a forward / reverse switching mechanism for switching forward / reverse. In general, the same lubricating oil is used for each of these continuously variable transmissions.
この無段変速機では、省燃費性の観点から油圧ポンプやベアリングにおける損失低減が必要とされており、そのため無段変速機に用いられる潤滑油には、粘性抵抗を抑制して損失低減に貢献するように、幅広い温度領域で従来よりも低粘度であることが求められてきている。しかし、潤滑油を低粘度化すると、少しの粘度低下で部品の摩耗や焼付きを防止するのに必要な許容粘度を下回りやすくなり、部品耐久性に影響しやすくなる傾向にある。そのため、低粘度化に当たっては、長期にわたり初期の粘度を維持できるよう留意する必要がある。 In this continuously variable transmission, loss reduction in hydraulic pumps and bearings is required from the viewpoint of fuel efficiency, so the lubricating oil used in continuously variable transmissions contributes to loss reduction by suppressing viscous resistance. Thus, it has been required to have a lower viscosity than in the past over a wide temperature range. However, when the viscosity of the lubricating oil is lowered, a slight decrease in the viscosity tends to be below the allowable viscosity necessary for preventing wear and seizure of the component, and the durability of the component tends to be affected. Therefore, when reducing the viscosity, it is necessary to pay attention so that the initial viscosity can be maintained over a long period of time.
このような低粘度化による省燃費化の検討は、すでに自動変速機用潤滑油においてもなされている。例えば、特許文献1では、重量平均分子量(Mw)が40,000以下の粘度指数向上剤等を用いることで、粘度特性を長期にわたって維持する潤滑油組成物が提案されている。また、低粘度化による検討ではないが、特許文献2では、特定の分子量範囲の粘度調整剤を選択することで、低温操作性に影響する低温粘度特性及び摩耗に影響する高温粘度を同時に改善する省燃費化の検討がなされている。 Consideration of fuel saving by such low viscosity has already been made for lubricating oil for automatic transmissions. For example, Patent Document 1 proposes a lubricating oil composition that maintains viscosity characteristics over a long period of time by using a viscosity index improver having a weight average molecular weight (Mw) of 40,000 or less. In addition, although it is not a study by lowering the viscosity, Patent Document 2 simultaneously improves the low-temperature viscosity characteristics that affect low-temperature operability and the high-temperature viscosity that affects wear by selecting a viscosity modifier in a specific molecular weight range. Consideration of fuel saving is being made.
また、無段変速機用潤滑油は、より一層の省燃費性向上の観点から、前述の低粘度化に加えて、高い金属間摩擦係数を有することがより好ましい。金属ベルト−プーリー部分での伝達トルク容量は、金属製のベルトとプーリーの間の押付圧と摩擦係数の積に比例するため、潤滑油の摩擦係数が高いほど金属ベルト−プーリー間の押付圧を低く抑えることができ、結果として金属ベルト式CVTの燃費を向上できるからである。
無段変速機用潤滑油の金属間摩擦係数を向上させる技術としては、スルホネートやフェネートといったアルカリ土類金属系清浄剤を潤滑油に配合する技術が知られている(例えば、特許文献3、4等)。
Further, the continuously variable transmission lubricating oil preferably has a high coefficient of friction between metals in addition to the above-described reduction in viscosity from the viewpoint of further improving fuel economy. The transmission torque capacity at the metal belt-pulley part is proportional to the product of the pressing pressure between the metal belt and pulley and the friction coefficient, so the higher the friction coefficient of the lubricating oil, the lower the pressing pressure between the metal belt and pulley. This is because the fuel consumption of the metal belt type CVT can be improved as a result.
As a technique for improving the coefficient of friction between metals of a continuously variable transmission lubricating oil, a technique in which an alkaline earth metal detergent such as sulfonate or phenate is blended with the lubricating oil is known (for example, Patent Documents 3 and 4). etc).
一方で、無段変速機のトルクコンバーターや前後進切り替え機構では、トルクコンバーターのロックアップクラッチや前後進切り替え機構作動時のクラッチにおける湿式摩擦材結合時にショックが生じる。そのため、無段変速機用潤滑油には、しばしばこのショック抑制効果を有する摩擦調整剤が配合される(例えば、特許文献5、6等)。 On the other hand, in the torque converter and the forward / reverse switching mechanism of the continuously variable transmission, a shock is generated when the wet friction material is coupled in the lock-up clutch of the torque converter and the clutch when the forward / reverse switching mechanism is operated. Therefore, a friction modifier having a shock suppressing effect is often blended with the continuously variable transmission lubricating oil (for example, Patent Documents 5 and 6).
無段変速機は金属製のベルトとプーリーという金属部品間の摩擦により動力を伝達していることから、金属部品が高圧条件で接触・摺動するため、無段変速機用潤滑油においては、自動変速機用潤滑油よりも高い耐摩耗・焼付き性やその結果得られる部品耐久性の向上が求められており、低粘度化による省燃費性とこれらの性能を併せもつ無段変速機用潤滑油が求められている。 Since the continuously variable transmission transmits power by friction between metal parts such as a metal belt and pulley, the metal parts contact and slide under high pressure conditions. There is a need for higher wear resistance and seizure resistance and improved component durability as a result than lubricants for automatic transmissions. For continuously variable transmissions, which combine fuel economy with low viscosity and these performances. Lubricating oil is needed.
また、摩擦調整剤の配合は、トルクコンバーターや前後進切り替え機構におけるショックの抑制には有効であるが、金属ベルト−プーリー間の金属間摩擦係数の低下を生じ、金属ベルト−プーリー部分での伝達トルク容量が低下しやすく、その結果、省燃費性の低下が懸念される。また、摩擦調整剤の配合は、トルクコンバーターや前後進切り替え機構でクラッチが結合する際の湿式摩擦材での動摩擦係数の低下や、クラッチが極低速で摺動する際の湿式摩擦材での静摩擦係数の低下も生じやすく、金属ベルトでの動力伝達不良、トルクコンバーターや前後進切り替え機構におけるクラッチ結合の遅延やクラッチの滑りも懸念される。逆に、金属間摩擦係数を向上させるべく摩擦調整剤を減量したり、アルカリ土類金属量を過剰に配合したりすると、クラッチ結合時のショックが増大することが懸念される。 In addition, the blending of friction modifiers is effective in suppressing shocks in torque converters and forward / reverse switching mechanisms, but it causes a reduction in the coefficient of friction between the metal belt and the pulley, and transmission at the metal belt and pulley. The torque capacity is likely to decrease, and as a result, there is a concern that fuel efficiency will be reduced. In addition, the friction modifier is blended with a lower coefficient of dynamic friction with the wet friction material when the clutch is engaged with a torque converter or a forward / reverse switching mechanism, and with static friction with the wet friction material when the clutch slides at an extremely low speed. The coefficient tends to decrease, and there is a concern about power transmission failure with a metal belt, clutch connection delay in a torque converter or a forward / reverse switching mechanism, and clutch slippage. Conversely, if the friction modifier is reduced in order to improve the intermetal friction coefficient, or if the amount of alkaline earth metal is excessively mixed, there is a concern that the shock during clutch engagement will increase.
このように、一般に、金属ベルト−プーリー間での金属間摩擦係数の向上やクラッチの湿式摩擦材での静摩擦係数・動摩擦係数の向上と、クラッチ結合時のショック抑制とは両立させづらいため、これらを共に向上することが求められている。さらに、これらの性能は、初期だけでなく長期にわたり維持されること(すなわち安定性は良好なこと)が求められている。 Thus, in general, it is difficult to achieve both improvement in the friction coefficient between metals between the metal belt and pulley, improvement in the static friction coefficient and dynamic friction coefficient in the wet friction material of the clutch, and suppression of shock during clutch engagement. It is required to improve both. Furthermore, these performances are required to be maintained not only in the initial stage but also for a long period of time (that is, the stability is good).
本発明は、常温域での低粘度化による省燃費性と部品耐久性を両立させ、好ましくはさらに湿式摩擦材の結合時ショックの抑制と、湿式摩擦材での高い静摩擦係数やベルト−プーリー間の高い金属間摩擦係数も両立させることで省燃費性を一層向上させた無段変速機潤滑油組成物を提供することを目的とする。 The present invention achieves both fuel economy and component durability by lowering the viscosity in the normal temperature range, and preferably further suppresses shock when the wet friction material is combined, and has a high static friction coefficient in the wet friction material and between the belt and the pulley. An object of the present invention is to provide a continuously variable transmission lubricating oil composition that further improves fuel economy by achieving a high intermetallic friction coefficient.
本発明者らは上記状況に鑑み、鋭意研究を進めた結果、特定の粘度指数向上剤を用いて組成物の粘度指数を通常の無段変速機用潤滑油よりも高くするとともに、塩基性カルシウムスルホネート及び塩基性カルシウムフェネートから選ばれる1種類以上を特定量配合することにより、常温域での低粘度化による省燃費性と、高温域粘度の確保による部品耐久性をも満足した無段変速機用潤滑油組成物を得ることができることを見出した。 As a result of diligent research in view of the above situation, the present inventors have made the viscosity index of the composition higher than that of a normal continuously variable transmission lubricating oil using a specific viscosity index improver, and basic calcium. By blending a specific amount of one or more selected from sulfonate and basic calcium phenate, continuously variable transmission satisfying both low fuel consumption due to low viscosity in normal temperature range and component durability due to securing high temperature range viscosity It has been found that a machine lubricating oil composition can be obtained.
また、さらに粘度指数向上剤として非分散型粘度指数向上剤を選択するとともに、特定のスルホラン誘導体を特定量配合することで、従来の無段変速機用潤滑油組成物では困難であった、ベルト−プーリー間での高い金属間摩擦係数やクラッチの湿式摩擦材における高い静摩擦係数と、クラッチ結合時のショックの抑制を両立することができ、クラッチの湿式摩擦材での動摩擦係数の安定性も良好な無段変速機用潤滑油組成物を得ることができることを見出した。 In addition, a belt that has been difficult with conventional lubricating oil compositions for continuously variable transmissions by selecting a non-dispersed viscosity index improver as a viscosity index improver and blending a specific amount of a specific sulfolane derivative. -High inter-metal friction coefficient between pulleys, high static friction coefficient of clutch wet friction material, and suppression of shock when clutch is engaged, and stability of dynamic friction coefficient of clutch wet friction material is also good It has been found that a lubricating oil composition for a continuously variable transmission can be obtained.
すなわち、本発明では、以下の無段変速機用潤滑油組成物が提供される。
<1> 潤滑油組成物であって、
潤滑油基油と、
(A−1)重量平均分子量(ポリスチレン換算)が20,000以上100,000以下で、重量平均分子量/数平均分子量が1.5以上2.2以下であるポリメタクリレート系粘度指数向上剤及び(A−2)重量平均分子量(ポリスチレン換算)が300,000以上900,000以下で、重量平均分子量/数平均分子量が1.0以上1.5以下であるポリメタクリレート系粘度指数向上剤から選ばれる1種以上を、該潤滑油組成物全量に対して5質量%以上20質量%以下と、
(B)塩基性カルシウムスルホネート及び塩基性カルシウムフェネートから選ばれる1種類以上を、該潤滑油組成物全量に対してカルシウム量換算で450質量ppm以上700質量ppm以下と、を含有し、
該潤滑油組成物の100℃における動粘度が6.5〜7.4mm2/sであり、かつ、粘度指数が205以上であることを特徴とする無段変速機用潤滑油組成物。
<2> 前記潤滑油基油が、
(X)100℃における動粘度が1.5〜3.5mm2/s、流動点が−30℃以下、粘度指数が100以上、及び硫黄分が0.01質量%以下の基油成分と、
(Y)100℃における動粘度が4.0〜8.0mm2/s、粘度指数が120以上、及び硫黄分が0.01質量%以下の基油成分と、
を混合した基油であって、該基油全量に対する前記(X)の含有比率が20〜80質量%であることを特徴とする<1>に記載の無段変速機用潤滑油組成物。
<3> 前記(A−1)又は(A−2)のポリメタクリレート系粘度指数向上剤が非分散型粘度指数向上剤であり、
(C)下記一般式(1)で表される化合物を、該潤滑油組成物全量に対して0.1質量%以上5.0質量%以下でさらに含有することを特徴とする<1>又は<2>に記載の無段変速機用潤滑油組成物。
(式(1)中、R1は炭素数1〜20のアルキル基を表す。)
That is, the present invention provides the following lubricating oil composition for continuously variable transmissions.
<1> A lubricating oil composition,
Lubricating base oil,
(A-1) A polymethacrylate viscosity index improver having a weight average molecular weight (in terms of polystyrene) of 20,000 to 100,000 and a weight average molecular weight / number average molecular weight of 1.5 to 2.2. A-2) It is selected from polymethacrylate viscosity index improvers having a weight average molecular weight (polystyrene conversion) of 300,000 to 900,000 and a weight average molecular weight / number average molecular weight of 1.0 to 1.5. 1 type or more and 5 mass% or more and 20 mass% or less with respect to this lubricating oil composition whole quantity,
(B) one or more selected from basic calcium sulfonate and basic calcium phenate, 450 mass ppm or more and 700 mass ppm or less in terms of calcium amount with respect to the total amount of the lubricating oil composition,
A lubricating oil composition for a continuously variable transmission, wherein the lubricating oil composition has a kinematic viscosity at 100 ° C of 6.5 to 7.4 mm 2 / s and a viscosity index of 205 or more.
<2> The lubricating base oil is
(X) a base oil component having a kinematic viscosity at 100 ° C. of 1.5 to 3.5 mm 2 / s, a pour point of −30 ° C. or less, a viscosity index of 100 or more, and a sulfur content of 0.01% by mass or less;
(Y) a base oil component having a kinematic viscosity at 100 ° C. of 4.0 to 8.0 mm 2 / s, a viscosity index of 120 or more, and a sulfur content of 0.01% by mass or less;
The lubricating oil composition for continuously variable transmission according to <1>, wherein the content ratio of (X) with respect to the total amount of the base oil is 20 to 80% by mass.
<3> The polymethacrylate viscosity index improver of (A-1) or (A-2) is a non-dispersed viscosity index improver,
(C) The compound represented by the following general formula (1) is further contained in an amount of 0.1% by mass or more and 5.0% by mass or less based on the total amount of the lubricating oil composition <1> or <2> The lubricating oil composition for continuously variable transmissions.
(In formula (1), R 1 represents an alkyl group having 1 to 20 carbon atoms.)
本発明によれば、常温域での低粘度化による省燃費性と部品耐久性を両立させ、好ましくはさらに湿式摩擦材の結合時ショックの抑制と、湿式摩擦材での高い静摩擦係数やベルト−プーリー間の高い金属間摩擦係数も両立させることで省燃費性を一層向上させた無段変速機潤滑油組成物が提供される。 According to the present invention, it is possible to achieve both fuel saving and component durability by lowering the viscosity in the normal temperature range, preferably further suppressing the shock when the wet friction material is combined, and the high static friction coefficient and belt in the wet friction material. There is provided a continuously variable transmission lubricating oil composition that further improves fuel economy by achieving a high coefficient of friction between metals between pulleys.
以下、本発明を詳細に説明する。
〔1]基油
本発明に用いる基油としては、鉱油系基油、合成系基油、及びこれらの混合基油など、無段変速機用潤滑油の基油として用いられるものであれば特に制限はないが、無段変速機用潤滑油として適切な潤滑特性を得やすいという観点からは100℃における動粘度が3.5mm2/sから5.0mm2/sであることが好ましい。また、粘度温度特性確保の観点から粘度指数は110以上、酸化安定性確保の観点からは硫黄分は0.01質量%以下であることが好ましい。
Hereinafter, the present invention will be described in detail.
[1] Base oil The base oil used in the present invention is not particularly limited as long as it is used as a base oil for continuously variable transmission lubricating oils such as mineral base oils, synthetic base oils, and mixed base oils thereof. it is no limitation, but is preferably a kinematic viscosity at 100 ° C. from the viewpoint of easily obtained appropriate lubricating properties as the continuously variable transmission lubricating oil is 5.0 mm 2 / s from 3.5 mm 2 / s. Moreover, it is preferable that a viscosity index is 110 or more from a viewpoint of ensuring viscosity temperature characteristics, and a sulfur content is 0.01 mass% or less from a viewpoint of ensuring oxidation stability.
また、無段変速機用潤滑油として適切な低温粘度と適切な潤滑特性を得やすいという観点からは、本発明では、(X)100℃における動粘度が1.5〜3.5mm2/s、流動点が−30℃以下、粘度指数が100以上、及び硫黄分が0.01質量%以下の基油成分と、(Y)100℃における動粘度が4.0〜8.0mm2/s、粘度指数が120以上、及び硫黄分が0.01質量%以下の基油成分とを混合した基油であって、基油全量に対する上記(X)の基油成分の含有比率が20質量%〜80質量%である基油を用いることが好ましい。 In addition, from the viewpoint of easily obtaining an appropriate low temperature viscosity and an appropriate lubricating property as a continuously variable transmission lubricating oil, in the present invention, (X) a kinematic viscosity at 100 ° C. is 1.5 to 3.5 mm 2 / s. A base oil component having a pour point of −30 ° C. or less, a viscosity index of 100 or more, and a sulfur content of 0.01% by mass or less, and (Y) a kinematic viscosity at 100 ° C. of 4.0 to 8.0 mm 2 / s. , A base oil mixed with a base oil component having a viscosity index of 120 or more and a sulfur content of 0.01% by mass or less, wherein the content ratio of the base oil component (X) with respect to the total amount of the base oil is 20% by mass It is preferable to use a base oil that is ˜80 mass%.
上記鉱油系基油としては、どのような製法のものでも用いることができるが、水素化精製油、触媒異性化油などに溶剤脱蝋または水素化脱蝋などの処理を施した高度に精製されたパラフィン系鉱油(高粘度指数鉱油系潤滑油基油)が好ましく使用される。また、上記以外の鉱油系基油としては、例えば、潤滑油原料をフェノール、フルフラールなどの芳香族抽出溶剤を用いた溶剤精製により得られるラフィネート、シリカ−アルミナを担体とするコバルト、モリブデンなどの水素化処理触媒を用いた水素化処理により得られる水素化処理油などが挙げられ、例えば、100ニュートラル油、150ニュートラル油、500ニュートラル油などを挙げることができる。 Any mineral base oil can be used as the mineral oil base oil, but it is highly refined by subjecting hydrorefined oil, catalyst isomerized oil, etc. to treatment such as solvent dewaxing or hydrodewaxing. Paraffinic mineral oil (high viscosity index mineral oil base oil) is preferably used. Examples of mineral base oils other than those described above include, for example, raffinates obtained by solvent refining using lube oil as an aromatic extraction solvent such as phenol and furfural, hydrogen such as cobalt and molybdenum using silica-alumina as a carrier. Examples thereof include hydrotreated oils obtained by hydrotreating using a hydrotreating catalyst, such as 100 neutral oil, 150 neutral oil, and 500 neutral oil.
上記合成系潤滑油基油としては、例えば、メタン等の天然ガスを原料として合成されるイソパラフィン、ポリ−α−オレフィンオリゴマー、ポリブテン、アルキルベンゼン、ポリオールエステル、ポリグリコールエステル、二塩基酸エステル、リン酸エステル、シリコン油などを挙げることができる。
これらの基油は、鉱油及び合成油から選ばれる1種単独で用いてもよいし、2種以上を任意の割合で組み合わせて混合して用いてもよい。
Examples of the synthetic lubricant base oil include isoparaffin, poly-α-olefin oligomer, polybutene, alkylbenzene, polyol ester, polyglycol ester, dibasic acid ester, phosphoric acid synthesized from natural gas such as methane. Examples include esters and silicone oils.
These base oils may be used individually by 1 type chosen from mineral oil and synthetic oil, and may mix and use 2 or more types in arbitrary ratios.
〔2]粘度指数向上剤((A−1)又は(A−2)成分)
本発明では、粘度指数向上剤として、(A−1)重量平均分子量(ポリスチレン換算)が20,000以上100,000以下で、重量平均分子量/数平均分子量が1.5以上2.2以下であるポリメタクリレート系粘度指数向上剤及び(A−2)重量平均分子量(ポリスチレン換算)が300,000以上900,000以下で、重量平均分子量/数平均分子量が1.0以上1.5以下であるポリメタクリレート系粘度指数向上剤から選ばれる1種以上を用いる。なお、本発明における重量平均分子量(Mw)及び数平均分子量(Mn)とはゲルパーミエーションクロマトグラフィー(GPC)で測定された分子量算定用標準ポリスチレン換算である。
[2] Viscosity index improver (component (A-1) or (A-2))
In the present invention, as the viscosity index improver, (A-1) the weight average molecular weight (polystyrene conversion) is 20,000 or more and 100,000 or less, and the weight average molecular weight / number average molecular weight is 1.5 or more and 2.2 or less. A certain polymethacrylate viscosity index improver and (A-2) weight average molecular weight (polystyrene conversion) are 300,000 or more and 900,000 or less, and a weight average molecular weight / number average molecular weight is 1.0 or more and 1.5 or less. One or more selected from polymethacrylate viscosity index improvers are used. In addition, the weight average molecular weight (Mw) and the number average molecular weight (Mn) in this invention are standard polystyrene conversion for molecular weight calculation measured by the gel permeation chromatography (GPC).
上記(A−1)の粘度指数向上剤は、Mwが20,000以上100,000以下、好ましくは25,000以上100,000以下、より好ましくは30,000以上100,000以下である。また、Mw/Mnは1.5以上2.2以下、好ましくは1.6以上2.2以下である。Mwが20,000より小さいと十分な粘度指数向上効果が得られず、100,000を超えると十分なせん断安定性が得られず長期使用でせん断を受けて低粘度化することで、耐摩耗・焼付き性が低下し、十分な部品耐久性が確保できない。また、上記のMwの範囲を満たしたとしても、Mw/Mnが上記範囲をはずれた場合は、本発明で規定する潤滑油組成物の粘度指数と動粘度としづらく、また、本発明で規定する組成物の粘度指数と動粘度に調整できたとしても、(A−1)の配合量が多くなりすぎてしまい、その結果長期使用でせん断を受けて低粘度化することで耐摩耗・焼付き性が低下し、十分な部品耐久性が確保しづらくなってしまう。 The viscosity index improver (A-1) has an Mw of 20,000 or more and 100,000 or less, preferably 25,000 or more and 100,000 or less, more preferably 30,000 or more and 100,000 or less. Mw / Mn is 1.5 or more and 2.2 or less, preferably 1.6 or more and 2.2 or less. If the Mw is less than 20,000, a sufficient viscosity index improvement effect cannot be obtained, and if it exceeds 100,000, sufficient shear stability cannot be obtained, and shear resistance is lowered by long-term use, resulting in wear resistance. -Seizure is reduced and sufficient component durability cannot be ensured. Even if the above Mw range is satisfied, if Mw / Mn is out of the above range, it is difficult to obtain the viscosity index and kinematic viscosity of the lubricating oil composition defined in the present invention. Even if it can be adjusted to the viscosity index and kinematic viscosity of the composition, the blending amount of (A-1) becomes too much, and as a result, it undergoes shearing in a long-term use and lowers its viscosity, thereby reducing wear and seizure. Performance will deteriorate, making it difficult to ensure sufficient component durability.
上記(A−2)の粘度指数向上剤は、Mwが300,000以上900,000以下、好ましくは350,000以上900,000以下、より好ましくは400,000以上500,000以下である。また、Mw/Mnが1.0以上1.5以下、好ましくは1.0以上1.4以下である。Mwが300,000より小さいと十分な粘度指数向上効果が得られず、900,000を超えると十分なせん断安定性が得られず長期使用でせん断を受けて低粘度化することで、耐摩耗・焼付き性が低下し、十分な部品耐久性が確保できない。また、上記のMwの範囲を満たしたとしても、Mw/Mnが上記範囲をはずれた場合に、本発明で規定する潤滑油組成物の粘度指数と動粘度としづらく、また本発明で規定する組成物の粘度指数と動粘度に調整できたとしても、(A−2)の配合量が多くなりすぎてしまい、その結果長期使用でせん断を受けて低粘度化することで耐摩耗・焼付き性が低下し、十分な部品耐久性が確保しづらくなってしまう。 The viscosity index improver (A-2) has an Mw of 300,000 or more and 900,000 or less, preferably 350,000 or more and 900,000 or less, more preferably 400,000 or more and 500,000 or less. Further, Mw / Mn is 1.0 or more and 1.5 or less, preferably 1.0 or more and 1.4 or less. If the Mw is less than 300,000, a sufficient viscosity index improvement effect cannot be obtained, and if it exceeds 900,000, sufficient shear stability cannot be obtained, and shear resistance is lowered by long-term use, resulting in wear resistance. -Seizure is reduced and sufficient component durability cannot be ensured. Further, even if the above Mw range is satisfied, when Mw / Mn deviates from the above range, it is difficult to obtain the viscosity index and kinematic viscosity of the lubricating oil composition defined in the present invention, and the composition defined in the present invention. Even if the viscosity index and kinematic viscosity of the product can be adjusted, the blending amount of (A-2) becomes too large. As a result, it becomes difficult to ensure sufficient component durability.
上記(A−1)又は(A−2)のポリメタクリレート系粘度指数向上剤の配合量は、潤滑油組成物全量に対して5質量%以上20質量以下、より好ましくは7質量%以上18質量%以下、さらに好ましくは6質量%以上17質量%以下である。上記配合量が5質量%未満では本発明で規定する組成物の粘度指数と動粘度が得づらく、20質量%を超えると機械から受けるせん断の影響が生じやすく、長期使用で低粘度化することで耐摩耗・焼付き性が低下し、十分な部品耐久性が確保できない。 The blending amount of the polymethacrylate viscosity index improver (A-1) or (A-2) is 5% by mass to 20% by mass, more preferably 7% by mass to 18% by mass with respect to the total amount of the lubricating oil composition. % Or less, more preferably 6 mass% or more and 17 mass% or less. If the blending amount is less than 5% by mass, it is difficult to obtain the viscosity index and kinematic viscosity of the composition defined in the present invention, and if it exceeds 20% by mass, the effect of shearing from the machine is likely to occur, and the viscosity should be lowered by long-term use. As a result, wear resistance and seizure resistance are reduced, and sufficient component durability cannot be ensured.
上記(A−1)又は(A−2)のポリメタクリレート系粘度指数向上剤は、下記一般式(5)に例として示されるメタクリル酸エステルの重合体を有する構造であり、モノマーがメタクリル酸エステルのみの重合体であっても、モノマーがメタクリル酸エステルとそれ以外のモノマーとの共重合体であっても、構造の一部にポリメタクリレート以外の高分子化合物を含有するものであってもよく、本発明の目的を達成する特定の性状を有するものであれば、その商品分類に制限されることなく使用することができる。 The polymethacrylate viscosity index improver of (A-1) or (A-2) has a structure having a polymer of methacrylic acid ester shown as an example in the following general formula (5), and the monomer is methacrylic acid ester. Even if the monomer is a polymer only, the monomer may be a copolymer of a methacrylic acid ester and another monomer, or may contain a polymer compound other than polymethacrylate in a part of the structure As long as it has a specific property that achieves the object of the present invention, it can be used without being limited to its product category.
式(5)中、R9は水素原子又は炭素数1〜20のアルキル基を表し、kは1以上の整数である。 In formula (5), R 9 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and k is an integer of 1 or more.
本発明で使用するポリメタクリレート系粘度指数向上剤は、湿式摩擦材における初期の高い摩擦係数を長期間維持することでさらに省燃費性を向上させるためには、分子中にアミノ基やスルホン酸基などの極性基を持たない「非分散型」を用いることが好ましい。 The polymethacrylate viscosity index improver used in the present invention is an amino group or a sulfonic acid group in the molecule in order to further improve fuel economy by maintaining the initial high friction coefficient in the wet friction material for a long period of time. It is preferable to use a “non-dispersed type” having no polar group such as
また、上記(A−2)は、核となるポリマーの中心部からアームポリマーが7本以上分岐した、いわゆる「星型重合体」であるものが好ましい。アームポリマーの数が7本以上のものを用いることで、高い粘度指数と永久せん断による粘度低下抑制を得やすい傾向にある。
また、(A−1)又は(A−2)の粘度指数向上剤は、1種を単独で使用しても、2種以上を併用してもよい。(A−1)及び(A−2)を併用してもよい。なお、2種以上を併用する場合には、その合計の配合量が前記範囲である必要がある。
In addition, the above (A-2) is preferably a so-called “star polymer” in which seven or more arm polymers are branched from the central portion of the polymer serving as a nucleus. By using a polymer having seven or more arm polymers, it tends to be easy to obtain a high viscosity index and a suppression of a decrease in viscosity due to permanent shear.
Moreover, the viscosity index improver of (A-1) or (A-2) may be used individually by 1 type, or may use 2 or more types together. (A-1) and (A-2) may be used in combination. In addition, when using 2 or more types together, the total compounding quantity needs to be the said range.
〔3]塩基性カルシウムスルホネート及び塩基性カルシウムフェネート((B)成分)
本発明では、塩基性カルシウムスルホネート及び塩基性カルシウムフェネートから選ばれる1種類以上を、潤滑油組成物全量に対してカルシウム量換算で450質量ppm以上700質量ppm以下を配合する。塩基性カルシウムスルホネートと塩基性カルシウムフェネートは、燃費改善のため組成物を低粘度化した場合に問題となりやすい、部品の摩耗を防止する効果を有する。また、これらはクラッチの湿式摩擦材での静摩擦係数やベルト−プーリー間での金属間摩擦を高め、その結果、クラッチの滑り防止性や省燃費性を向上させる効果を有する。ただし、(B)成分の配合量が多すぎると、クラッチ結合時のショックが生じやすくなるとともに、クラッチの湿式摩擦材での動摩擦係数を長期間維持しづらくなる。このような観点から、本発明では、塩基性カルシウムスルホネート及び塩基性カルシウムフェネートから選ばれる少なくとも1種類の配合量は、潤滑油組成物全量に対してカルシウム量換算で450質量ppm以上700質量ppm以下となる割合とする。この配合量は、好ましくは450質量ppm以上650質量ppm、より好ましくは480質量ppm以上600質量ppm以下である。
[3] Basic calcium sulfonate and basic calcium phenate (component (B))
In the present invention, one or more selected from basic calcium sulfonate and basic calcium phenate is blended in an amount of 450 mass ppm to 700 mass ppm in terms of calcium amount with respect to the total amount of the lubricating oil composition. Basic calcium sulfonate and basic calcium phenate have an effect of preventing wear of parts, which is likely to be a problem when the viscosity of the composition is lowered for improving fuel efficiency. Further, these increase the coefficient of static friction in the wet friction material of the clutch and the friction between metals between the belt and the pulley, and as a result, have the effect of improving the slip prevention property and fuel efficiency of the clutch. However, when the blending amount of the component (B) is too large, a shock at the time of clutch engagement is likely to occur, and the dynamic friction coefficient of the clutch wet friction material is difficult to maintain for a long period of time. From such a viewpoint, in the present invention, at least one compounding amount selected from basic calcium sulfonate and basic calcium phenate is 450 mass ppm or more and 700 mass ppm in terms of calcium amount with respect to the total amount of the lubricating oil composition. The ratio is as follows. This blending amount is preferably 450 mass ppm or more and 650 mass ppm, more preferably 480 mass ppm or more and 600 mass ppm or less.
塩基性カルシウムスルホネートの具体例としては、下記一般式(2)及び(3)のものが挙げられる。
上記式(2)及び(3)中、R4及びR5は、それぞれ水素原子又は炭素数1〜30のアルキル基を示し、好ましくは炭素数6〜18のアルキル基であり、それらが複数存在する場合は、それぞれ同一であっても、異なってもよい。nは、1〜4の整数である。 In the above formulas (2) and (3), R 4 and R 5 each represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 6 to 18 carbon atoms, and there are a plurality of them. When doing so, they may be the same or different. n is an integer of 1 to 4.
塩基性カルシウムフェネートの具体例としては、下記一般式(4)のものが挙げられる。
上記式(4)中、R7及びR8は、水素原子又は炭素数1〜30のアルキル基を示し、好ましくは炭素数6〜18のアルキル基であり、それらが複数存在する場合は、それぞれ同一であっても、異なってもよい。Sxのxは、1又は2であり、好ましくは1である。これらは、単独で用いてもよいし、必要に応じて2種以上を混合して用いてもよい。
また、カルシウムスルホネートとカルシウムフェネートを併用しても良い。
In the above formula (4), R 7 and R 8 represent a hydrogen atom or an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 6 to 18 carbon atoms. They may be the same or different. X of Sx is 1 or 2, and preferably 1. These may be used alone or as a mixture of two or more as necessary.
Further, calcium sulfonate and calcium phenate may be used in combination.
なお、本発明の性能を損ねない範囲の少量であれば、カルシウム以外のアルカリ金属やアルカリ土類金属、例えばマグネシウム、バリウム、ナトリウムなどのスルホネートやフェネート、アルカリ金属やアルカリ土類金属のサリシレートを含有していてもよい。 In addition, if it is a small amount within the range not impairing the performance of the present invention, it contains alkali metals and alkaline earth metals other than calcium, for example, sulfonates and phenates such as magnesium, barium and sodium, and salicylates of alkali metals and alkaline earth metals. You may do it.
塩基性カルシウムスルホネートと塩基性カルシウムフェネートは、JIS K2501の過塩素酸法によって測定される塩基価が150mgKOH/g以上であることが好ましい。塩基価を150mgKOH/g以上とすることで、クラッチの湿式摩擦材での高い摩擦係数や高い金属間摩擦係数を得やすい。塩基価は好ましくは200mgKOH/g以上、より好ましくは250mgKOH/g以上である。塩基価は高すぎても特に不都合はないが、通常入手しやすいものは500mgKOH/g程度までのものである。 The basic calcium sulfonate and the basic calcium phenate preferably have a base number of 150 mgKOH / g or more measured by the perchloric acid method of JIS K2501. By setting the base number to 150 mgKOH / g or more, it is easy to obtain a high friction coefficient and a high intermetal friction coefficient in the wet friction material of the clutch. The base number is preferably 200 mgKOH / g or more, more preferably 250 mgKOH / g or more. Even if the base number is too high, there is no particular inconvenience, but those which are usually readily available are those up to about 500 mgKOH / g.
〔4]一般式(1)で表される化合物((C)成分)
本発明の潤滑油組成物は、クラッチ結合時のショックを改善するために、下記一般式(1)で表される化合物をさらに含むことが好ましい。
[4] Compound represented by general formula (1) (component (C))
The lubricating oil composition of the present invention preferably further contains a compound represented by the following general formula (1) in order to improve shock during clutch engagement.
一般式(1)中、R1は炭素数1〜20のアルキル基であり、好ましく炭素数8〜16のアルキル基である。 In the general formula (1), R 1 is an alkyl group having 1 to 20 carbon atoms, and preferably an alkyl group having 8 to 16 carbon atoms.
一般式(1)で表される化合物はクラッチ結合時のショックを改善する効果があり、この配合により、従来から無段変速機用潤滑油のクラッチ結合時のショック改善を目的として配合されてきた、アミド系化合物やアミン系化合物やアルコール系化合物などの摩擦調整剤の配合を抑制することが可能となる。一般式(1)で表される化合物は、上記したような従来から配合されてきた摩擦調整剤のように、クラッチの湿式摩擦材での静摩擦係数やベルト−プーリーにおける金属間摩擦係数を低下させることがなく、クラッチの湿式摩擦材での動摩擦係数を長期間維持することもでき、省燃費性向上の効果を確保しつつもクラッチ結合時のショックを改善できる。 The compound represented by the general formula (1) has an effect of improving the shock at the time of clutch engagement, and has been conventionally formulated for the purpose of improving the shock at the time of clutch engagement of a continuously variable transmission lubricant. It becomes possible to suppress the blending of friction modifiers such as amide compounds, amine compounds and alcohol compounds. The compound represented by the general formula (1) reduces the static friction coefficient in the wet friction material of the clutch and the metal-to-metal friction coefficient in the belt-pulley, as in the conventional friction modifier as described above. In addition, the dynamic friction coefficient of the wet friction material of the clutch can be maintained for a long time, and the shock at the time of clutch engagement can be improved while ensuring the effect of improving the fuel efficiency.
一般式(1)で表される化合物の配合量は、潤滑油組成物全量に対し0.1質量%以上5.0質量%以下であり、好ましくは0.2質量%以上2.0質量%以下、さらに好ましくは0.5質量%以上2.0質量%以下である。良好なクラッチ結合時のショック改善効果を得るためには0.1質量%以上配合することが好ましく、有機材料への適合性の観点からは5.0質量%以下であることが好ましい。 The compounding quantity of the compound represented by General formula (1) is 0.1 mass% or more and 5.0 mass% or less with respect to lubricating oil composition whole quantity, Preferably it is 0.2 mass% or more and 2.0 mass%. Hereinafter, it is more preferably 0.5% by mass or more and 2.0% by mass or less. In order to obtain a good shock improvement effect at the time of clutch engagement, it is preferably blended in an amount of 0.1% by mass or more, and from the viewpoint of compatibility with organic materials, it is preferably 5.0% by mass or less.
〔5]組成物の性状
本発明の潤滑油組成物は、100℃における動粘度が6.5mm2/s以上7.4mm2/s以下であり、かつ、粘度指数が205以上であることが肝要である。
この動粘度の範囲は従来の動粘度に比べて大きく低粘度化したものではないが、同時に粘度指数を205以上とすることで、常温域(約20℃から80℃程度)や低温域(約0℃から−40℃程度)での粘度を従来の無段変速機用潤滑油よりも低く抑えることができ、結果として全温度域での省燃費性を向上させることができる。そして、従来の動粘度と比べて大きく低粘度化していないため、また、特定の粘度指数向上剤を使用しているため、せん断安定性が良好で粘度低下による耐摩耗・焼付き性も抑制でき、長期の部品耐久性を確保できる。なお、粘度指数は高い程望ましいが、粘度指数を高くするためには粘度指数向上剤の配合量が多量になるケースが多く、その結果としてせん断安定性が悪くなり、粘度の低下による耐摩耗・焼付き性の悪化が生じることがある。そのため、270以下程度が現実的な上限値である。
−40℃でのブルックフィールド粘度(BF粘度)は、省燃費性の観点から10,000mPa・s未満とすることが好ましい。
[5] The lubricating oil composition of the properties present invention compositions may kinematic viscosity at 100 ° C. is not more than 6.5 mm 2 / s or more 7.4 mm 2 / s, and is the viscosity index of 205 or more It is essential.
The range of this kinematic viscosity is not greatly reduced compared to the conventional kinematic viscosity, but at the same time by setting the viscosity index to 205 or more, the room temperature range (about 20 ° C. to about 80 ° C.) or the low temperature range (about The viscosity at 0 ° C. to about −40 ° C. can be kept lower than that of conventional lubricating oils for continuously variable transmissions, and as a result, fuel efficiency can be improved in all temperature ranges. And since it is not greatly reduced in viscosity compared to the conventional kinematic viscosity, and because it uses a specific viscosity index improver, it has good shear stability and can suppress wear resistance and seizure resistance due to viscosity reduction. Long-term component durability can be secured. A higher viscosity index is desirable, but in order to increase the viscosity index, there are many cases where the amount of the viscosity index improver is increased, resulting in poor shear stability and wear resistance due to a decrease in viscosity. The seizure may be deteriorated. Therefore, about 270 or less is a realistic upper limit value.
The Brookfield viscosity (BF viscosity) at −40 ° C. is preferably less than 10,000 mPa · s from the viewpoint of fuel economy.
〔6]その他の添加剤
本発明の無段変速機用潤滑油は、上記成分のほかに、必要に応じて、公知の添加剤、例えば、無灰型分散剤、油性剤、摩耗防止剤、極圧剤、さび止め剤、摩擦調整剤、酸化防止剤、腐食防止剤、金属不活性化剤、流動点降下剤、消泡剤、着色剤、自動変速機油用パッケージ添加剤、あるいはこれらのうち少なくとも1種を含有する各種潤滑油用パッケージ添加剤などを添加することができる。ただし、摩擦調整剤は、その種類によっては、摩擦係数を低下させ省燃費効果に影響する場合があるので、省燃費効果を妨げないものを選択するか、その配合量を極力抑えることが望ましい。
[6] Other additives In addition to the above-mentioned components, the lubricating oil for continuously variable transmission of the present invention may contain known additives such as an ashless dispersant, an oily agent, an antiwear agent, Extreme pressure agents, rust inhibitors, friction modifiers, antioxidants, corrosion inhibitors, metal deactivators, pour point depressants, antifoaming agents, colorants, package additives for automatic transmission oils, or any of these Various lubricating oil package additives containing at least one kind can be added. However, depending on the type of the friction modifier, there is a case where the friction coefficient is lowered to affect the fuel saving effect. Therefore, it is desirable to select one that does not interfere with the fuel saving effect or to suppress the blending amount as much as possible.
上記の無灰型分散剤としては、アルケニルコハク酸イミド、アルケニルコハク酸エステル、長鎖脂肪酸とポリアミンとのアミド(アミノアミド型)、あるいはこれらのホウ素化物誘導体などが挙げられる。油性剤としては、オレイン酸、ステアリン酸、高級アルコール、アミン、エステル、硫化油脂、酸性リン酸エステル、酸性亜リン酸エステルなどが挙げられる。摩耗防止剤としては、ジチオリン酸金属塩、チオリン酸金属塩、硫黄化合物、リン酸エステル、亜リン酸エステル、酸性リン酸エステルやそのアミン塩などが挙げられる。極圧剤としては、炭化水素硫化物、硫化油脂、ジチオリン酸亜鉛、リン酸エステル、亜リン酸エステル、塩素化パラフィン、塩素化ジフェニルなどが挙げられる。さび止め剤としては、カルボン酸やそのアミン塩、エステル、スルホン酸塩、ホウ素化合物などが挙げられる。摩擦調整剤としては、有機モリブテン化合物、多価アルコール部分エステル、アミン、アミド、硫化エステル、リン酸エステル、酸性リン酸エステルやそのアミン塩などが挙げられる。酸化防止剤としては、アミン系、フェノール系、硫黄系の酸化防止剤などが挙げられる。腐食防止剤としては、ベンゾトリアゾール、アルケニルコハク酸エステルなどが挙げられる。流動点降下剤としては、ポリメタクリレート、ポリブテンなどが挙げられる。消泡剤としては、シリコン化合物、フルオロシリコン化合物、エステル系などが挙げられる。 Examples of the ashless dispersant include alkenyl succinimides, alkenyl succinates, amides of long chain fatty acids and polyamines (aminoamide type), and boride derivatives thereof. Examples of oil agents include oleic acid, stearic acid, higher alcohols, amines, esters, sulfurized fats and oils, acidic phosphate esters, and acidic phosphite esters. Examples of the antiwear agent include dithiophosphate metal salts, thiophosphate metal salts, sulfur compounds, phosphate esters, phosphite esters, acidic phosphate esters and amine salts thereof. Examples of extreme pressure agents include hydrocarbon sulfides, sulfurized fats and oils, zinc dithiophosphate, phosphate esters, phosphite esters, chlorinated paraffins, and chlorinated diphenyls. Examples of the rust inhibitor include carboxylic acid and its amine salt, ester, sulfonate, boron compound and the like. Examples of the friction modifier include organic molybdenum compounds, polyhydric alcohol partial esters, amines, amides, sulfurized esters, phosphate esters, acidic phosphate esters and amine salts thereof. Examples of the antioxidant include amine-based, phenol-based, and sulfur-based antioxidants. Examples of the corrosion inhibitor include benzotriazole and alkenyl succinate. Examples of the pour point depressant include polymethacrylate and polybutene. Examples of the antifoaming agent include silicon compounds, fluorosilicon compounds, ester-based compounds, and the like.
次に実施例及び比較例によりさらに詳細に説明するが、本発明はこれらの実施例に特に限定されるものではない。 Next, although an Example and a comparative example demonstrate further in detail, this invention is not specifically limited to these Examples.
下記基油を表1及び表2の比率で混合した基油を用い、下記添加剤を表1及び表2の比率(組成物全量に対する配合割合)で配合して、無段変速機用潤滑油組成物を調製した。 Lubricating oil for continuously variable transmissions, using the following base oils mixed in the ratios shown in Tables 1 and 2 and the following additives in the ratios shown in Tables 1 and 2 (mixing ratios relative to the total amount of the composition). A composition was prepared.
<基油>
・基油A:水素化精製基油
(流動点:−50℃、粘度指数:105、硫黄分:0.0001質量%、100℃動粘度:3mm2/s)
・基油B:水素化精製基油
(流動点:−12℃、粘度指数:124、硫黄分:0.0006質量%、100℃動粘度:6mm2/s)
・基油C:水素化精製基油
(流動点:−12℃、粘度指数:124、硫黄分:0.0002質量%、100℃動粘度:4mm2/s)
<Base oil>
Base oil A: hydrorefined base oil (pour point: −50 ° C., viscosity index: 105, sulfur content: 0.0001 mass%, 100 ° C. kinematic viscosity: 3 mm 2 / s)
Base oil B: hydrorefined base oil (pour point: −12 ° C., viscosity index: 124, sulfur content: 0.0006 mass%, 100 ° C. kinematic viscosity: 6 mm 2 / s)
Base oil C: hydrorefined base oil (pour point: −12 ° C., viscosity index: 124, sulfur content: 0.0002 mass%, 100 ° C. kinematic viscosity: 4 mm 2 / s)
<添加剤>
・パッケージ添加剤1:無段変速機油用パッケージ添加剤(塩基価300の塩基性カルシウムスルホネートをカルシウム量で0.5質量%含有)
・パッケージ添加剤2:上記パッケージ添加剤1から塩基性カルシウムスルホネートを除外したもの
・スルホネート:塩基性カルシウムスルホネート(塩基価300、カルシウム含有量:11質量%)
・一般式(1)で表される化合物:一般式(1)で、R1が炭素数12のアルキル基のもの
・PMA1:重量平均分子量(Mw)が35,000でMw/Mnが1.8である非分散型ポリメタクリレート系粘度指数向上剤
・PMA2:重量平均分子量(Mw)が98,000でMw/Mnが2.1である非分散型ポリメタクリレート系粘度指数向上剤
・PMA3:重量平均分子量(Mw)が93,000でMw/Mnが2.5である非分散型ポリメタクリレート系粘度指数向上剤
・PMA4:重量平均分子量(Mw)が440,000でMw/Mnが1.2である非分散型ポリメタクリレート系粘度指数向上剤でアームを7本以上有する星型重合体
・PMA5:重量平均分子量(Mw)が300,000でMw/Mnが1.7である分散型ポリメタクリレート系粘度指数向上剤
・流動点降下剤
<Additives>
Package additive 1: Package additive for continuously variable transmission oil (contains 0.5% by mass of calcium content of basic calcium sulfonate having a base number of 300)
Package additive 2: Basic calcium sulfonate excluded from package additive 1Sulfonate: Basic calcium sulfonate (base number 300, calcium content: 11 mass%)
- Formula (1) compound represented by: the formula (1), those wherein R 1 an alkyl group of 12 carbon atoms, PMA1: weight average molecular weight (Mw) in the 35,000 Mw / Mn is 1. 8 non-dispersed polymethacrylate viscosity index improver PMA2: non-dispersed polymethacrylate viscosity index improver with a weight average molecular weight (Mw) of 98,000 and Mw / Mn of 2.1 PMA3: weight Non-dispersed polymethacrylate viscosity index improver with an average molecular weight (Mw) of 93,000 and Mw / Mn of 2.5. PMA4: Weight average molecular weight (Mw) of 440,000 and Mw / Mn of 1.2 A non-dispersible polymethacrylate viscosity index improver that is a star polymer having 7 or more arms. PMA5: A dispersed polymer having a weight average molecular weight (Mw) of 300,000 and Mw / Mn of 1.7. Remethacrylate viscosity index improver / pour point depressant
組成物の各性状の測定、耐摩耗性評価、せん断安定性評価、湿式摩擦材での摩擦特性評価、エレメント−プーリー間の摩擦係数評価は、以下の通り実施した。 Measurement of each property of the composition, evaluation of wear resistance, evaluation of shear stability, evaluation of friction characteristics with a wet friction material, and evaluation of the coefficient of friction between the element and the pulley were performed as follows.
(1)組成物の性状測定
100℃動粘度、0℃動粘度、及び粘度指数は、JIS K2283動粘度試験方法で測定した。なお、100℃から0℃の温度領域では、一般に温度と粘度がASTM線図上で直線性を有しており、100℃の粘度を約7mm2/sとした場合、0℃の粘度が低いほど常温域(約20℃から80℃程度)の粘度も低くなることから、0℃の粘度を常温域粘度の指標として用いた。この粘度が低いほど常温域粘度が低い。
また、高温高せん断粘度(HTHS粘度)はASTM D4683に準拠しTBS粘度計を用い、150℃、1×106s−1における粘度を測定した。なお、HTHS粘度は油膜保持性の指標であり、この値が大きいほど油膜保持性に優れる。
(1) Property measurement of composition 100 degreeC kinematic viscosity, 0 degreeC kinematic viscosity, and the viscosity index were measured by the JISK2283 kinematic viscosity test method. In the temperature range from 100 ° C. to 0 ° C., the temperature and the viscosity are generally linear on the ASTM diagram. When the viscosity at 100 ° C. is about 7 mm 2 / s, the viscosity at 0 ° C. is low. Since the viscosity in the normal temperature range (about 20 ° C. to about 80 ° C.) also decreases, the viscosity at 0 ° C. was used as an index of the normal temperature range viscosity. The lower the viscosity, the lower the room temperature viscosity.
Moreover, the high temperature high shear viscosity (HTHS viscosity) measured the viscosity in 150 degreeC and 1 * 10 < 6 > s < -1 > using the TBS viscometer based on ASTMD4683. The HTHS viscosity is an index of oil film retention. The larger this value, the better the oil film retention.
(2)ベルト−プーリー間の耐摩耗性評価
耐摩耗性評価として、JASO M358の高面圧法に準拠して荷重1112Nで30分間摺動させた後のブロックの摩耗幅を測定した。この値が小さいほど耐摩耗性が良好であり部品耐久性が良好である。これは、0.9mm以下を合格とした。
(2) Wear resistance evaluation between belt and pulley As wear resistance evaluation, the wear width of the block after sliding for 30 minutes with a load of 1112 N was measured according to the high surface pressure method of JASO M358. The smaller this value, the better the wear resistance and the better the component durability. This made 0.9 mm or less a pass.
(3)せん断安定性評価
JASO M347−05に準拠して実施した。100℃粘度低下率が10%以下を判断基準とした。粘度低下率が10%を超えると、異常摩耗や部品損傷が懸念される。
(3) Shear stability evaluation It carried out based on JASO M347-05. The criterion for determination was a rate of viscosity reduction at 100 ° C. of 10% or less. When the viscosity reduction rate exceeds 10%, there is a concern about abnormal wear or component damage.
(4)湿式摩擦材での摩擦特性評価
社団法人 自動車技術会の自動車規格JASO M348「自動変速機油摩擦特性試験方法」で定めたSAE No.2試験装置を用いて、湿式摩擦材の摩擦特性を調べた。すなわち、JASO法で5000サイクルの試験を行い、JASO M348で規定されたサイクルでの、下記に示す測定条件で測定された各摩擦係数μ0、μd、及びμtから、湿式摩擦材の摩擦特性を下記基準で評価した。
(4) Friction characteristic evaluation with wet friction material SAE No. defined in the automobile standard JASO M348 “Automatic transmission oil friction characteristic test method” of the Japan Society of Automotive Engineers. 2 The friction characteristics of the wet friction material were examined using a test apparatus. That is, 5000 cycles of the test were performed by the JASO method, and the friction characteristics of the wet friction material were determined from the friction coefficients μ0, μd, and μt measured under the following measurement conditions in the cycle specified by JASO M348. Evaluated by criteria.
<各摩擦係数の測定条件>
・μd:
フリクションディスクを3600rpmで一定回転させたのち、動摩擦試験用電動機の駆動電源を切り、同時に押し荷重を加えて、慣性円盤をフリクションディスクとスチールプレートで発生する摩擦トルクで制動させるとき、制動開始後、回転数が1800rpmに達したときの摩擦トルクTdを下記式(x)の摩擦トルクTとして式(x)で算出される動摩擦係数値である。
<Measurement conditions for each coefficient of friction>
・ Μd:
After the friction disk is rotated at a constant speed of 3600 rpm, the drive power of the motor for dynamic friction test is turned off, and at the same time a pressing load is applied to brake the inertia disk with the friction torque generated by the friction disk and the steel plate. This is a dynamic friction coefficient value calculated by the equation (x) with the friction torque Td when the rotation speed reaches 1800 rpm as the friction torque T of the following equation (x).
・μ0:
フリクションプレートが停止する直前の200rpm以下での最大トルクT0を下記式(x)の摩擦トルクTとして式(x)で算出される動摩擦係数値である。
・ Μ0:
This is a dynamic friction coefficient value calculated by the equation (x) with the maximum torque T0 at 200 rpm or less immediately before the friction plate stops as the friction torque T of the following equation (x).
・μt:
押し荷重を加えて、フリクションディスクとスチールプレートを挟んだ後、フリクションプレートを0.7rpmで一定回転させ、回転立ち上がりから2秒後の安定トルクTtを下記式(x)の摩擦トルクTとして式(x)で算出される静摩擦係数値である。
・ Μt:
After applying the pushing load and sandwiching the friction disk and steel plate, the friction plate is rotated at a constant speed of 0.7 rpm, and the stable torque Tt after 2 seconds from the start of rotation is expressed as the friction torque T of the following formula (x) ( It is a static friction coefficient value calculated in x).
μ :摩擦係数
T :摩擦トルク(Nm)
n :フリクションディスク枚数
re:平均摩擦有効半径
P :押し付け荷重
A :摩擦面積
μ: friction coefficient T: friction torque (Nm)
n: number of friction discs re: average friction effective radius P: pressing load A: friction area
<湿式摩擦材の摩擦特性の評価基準>
・μ0/μdの最大値:
湿式摩擦材の結合時ショックの指標。この値が低いほど結合時ショックが小さく良好であり、1.07以下を合格とした。
・μt(静摩擦係数)の最小値:
湿式摩擦材での動力伝達の指標。この値が高いほど湿式摩擦材での伝達トルク容量が良好であり、0.125以上を合格とした。
・μd変化率:
下記式(y)により求められる湿式摩擦材での摩擦特性安定性(動摩擦係数の安定性)の指標。この値が小さいほど湿式摩擦材での摩擦特性が安定して良好であるとし、7%以下を合格とした。
<Evaluation criteria for friction characteristics of wet friction materials>
・ Maximum value of μ0 / μd:
Index of shock when wet friction materials are combined. The lower this value, the smaller and better the shock at the time of binding, and 1.07 or less was accepted.
・ Minimum value of μt (Coefficient of static friction):
An indicator of power transmission in wet friction materials. The higher this value, the better the transfer torque capacity with the wet friction material, and 0.125 or more was considered acceptable.
・ Μd change rate:
Index of friction characteristic stability (dynamic friction coefficient stability) in a wet friction material obtained by the following formula (y). The smaller this value, the more stable and good the friction characteristics with the wet friction material were, and 7% or less was acceptable.
(5)ベルト−プーリー間の金属間摩擦係数評価
JASO M358に準拠して実施した。
評価は高面圧法で実施し、滑り速度0.25m/sでの摩擦係数μを測定した。この値が高いほどベルト−プーリー間の伝達トルク容量が良好であり、0.135以上を合格とした。
表1及び表2に、それぞれ実施例及び比較例の結果を示す。
(5) Evaluation of friction coefficient between belt and pulley between metals It was carried out according to JASO M358.
The evaluation was performed by the high surface pressure method, and the friction coefficient μ at a sliding speed of 0.25 m / s was measured. The higher this value, the better the transmission torque capacity between the belt and the pulley, and a value of 0.135 or higher was accepted.
Tables 1 and 2 show the results of Examples and Comparative Examples, respectively.
上記の実施例1〜4により、本発明において、特定の粘度指数向上剤および金属型清浄剤を配合し、かつ、組成物の性状を特定の性状とすることにより、低温域粘度と高温域粘度のバランスがとれ、良好な省燃費性と部品耐久性を確保できることがわかる。また、一般式(1)の化合物を含有する実施例1〜3は良好な省燃費性と部品耐久性を確保しつつ、さらに湿式摩擦材の摩擦特性も向上していることがわかる。 By said Examples 1-4, in this invention, a specific viscosity index improver and a metal type detergent are mix | blended, and the property of a composition is made into a specific property, A low temperature region viscosity and a high temperature region viscosity It can be seen that good fuel economy and durability of parts can be secured. Moreover, it turns out that Examples 1-3 containing the compound of General formula (1) have improved the friction characteristic of the wet friction material, ensuring favorable fuel-saving property and component durability.
これに対し、ポリメタクリレート系粘度指数向上剤の(A−1)成分のMw/Mnが本発明の範囲を外れる比較例1では、粘度指数が低く、低温域粘度が高くなってしまう。ポリメタクリレート系粘度指数向上剤の(A−2)成分のMw/Mnが本発明の範囲を外れる比較例2では、せん断安定性に劣る。さらに、比較例2では、ポリメタクリレート系粘度指数向上剤が分散型であるため、湿式摩擦材での摩擦特性が劣る。
また、組成物の100℃における動粘度が高い比較例3では、低温域での粘度が高く、省燃費性に劣る。一方、100℃における動粘度が低く、粘度指数も低い比較例4では、HTHS粘度が低く、高温域粘度が確保できず耐摩耗性に劣る。
また、塩基性カルシウムスルホネートを含有しない比較例5では耐摩耗性が劣る。また、塩基性カルシウムスルホネートを含有しない比較例5では上記の耐摩耗性の低下に加え、静摩擦係数と金属間摩擦係数も劣る。
一方、塩基性カルシウムスルホネートを過剰に含有する比較例6では、耐摩耗性は良好であるが、湿式摩擦材での摩擦特性が劣る。
On the other hand, in Comparative Example 1 in which the Mw / Mn of the (A-1) component of the polymethacrylate viscosity index improver is out of the range of the present invention, the viscosity index is low and the low temperature range viscosity is high. In Comparative Example 2 in which Mw / Mn of the component (A-2) of the polymethacrylate viscosity index improver is outside the scope of the present invention, the shear stability is poor. Further, in Comparative Example 2, since the polymethacrylate viscosity index improver is a dispersion type, the friction characteristics in the wet friction material are inferior.
Moreover, in Comparative Example 3 where the composition has a high kinematic viscosity at 100 ° C., the viscosity in the low temperature range is high and the fuel economy is poor. On the other hand, in Comparative Example 4 having a low kinematic viscosity at 100 ° C. and a low viscosity index, the HTHS viscosity is low, the high temperature region viscosity cannot be ensured, and the wear resistance is poor.
Moreover, in Comparative Example 5 containing no basic calcium sulfonate, the wear resistance is inferior. Further, in Comparative Example 5 containing no basic calcium sulfonate, in addition to the above-described reduction in wear resistance, the static friction coefficient and the intermetallic friction coefficient are also inferior.
On the other hand, in Comparative Example 6 containing an excessive amount of basic calcium sulfonate, the wear resistance is good, but the friction characteristics in the wet friction material are inferior.
Claims (3)
潤滑油基油と、
(A−1)重量平均分子量(ポリスチレン換算)が20,000以上100,000以下で、重量平均分子量/数平均分子量が1.5以上2.2以下であるポリメタクリレート系粘度指数向上剤及び(A−2)重量平均分子量(ポリスチレン換算)が300,000以上900,000以下で、重量平均分子量/数平均分子量が1.0以上1.5以下であるポリメタクリレート系粘度指数向上剤から選ばれる1種以上を、該潤滑油組成物全量に対して5質量%以上20質量%以下と、
(B)塩基性カルシウムスルホネート及び塩基性カルシウムフェネートから選ばれる1種類以上を、該潤滑油組成物全量に対してカルシウム量換算で450質量ppm以上700質量ppm以下と、を含有し、
該潤滑油組成物の100℃における動粘度が6.5〜7.4mm2/sであり、かつ、粘度指数が205以上であることを特徴とする無段変速機用潤滑油組成物。 A lubricating oil composition comprising:
Lubricating base oil,
(A-1) A polymethacrylate viscosity index improver having a weight average molecular weight (in terms of polystyrene) of 20,000 to 100,000 and a weight average molecular weight / number average molecular weight of 1.5 to 2.2. A-2) It is selected from polymethacrylate viscosity index improvers having a weight average molecular weight (polystyrene conversion) of 300,000 to 900,000 and a weight average molecular weight / number average molecular weight of 1.0 to 1.5. 1 type or more and 5 mass% or more and 20 mass% or less with respect to this lubricating oil composition whole quantity,
(B) one or more selected from basic calcium sulfonate and basic calcium phenate, 450 mass ppm or more and 700 mass ppm or less in terms of calcium amount with respect to the total amount of the lubricating oil composition,
A lubricating oil composition for a continuously variable transmission, wherein the lubricating oil composition has a kinematic viscosity at 100 ° C of 6.5 to 7.4 mm 2 / s and a viscosity index of 205 or more.
(X)100℃における動粘度が1.5〜3.5mm2/s、流動点が−30℃以下、粘度指数が100以上、及び硫黄分が0.01質量%以下の基油成分と、
(Y)100℃における動粘度が4.0〜8.0mm2/s、粘度指数が120以上、及び硫黄分が0.01質量%以下の基油成分と、
を混合した基油であって、該基油全量に対する前記(X)の含有比率が20〜80質量%であることを特徴とする請求項1に記載の無段変速機用潤滑油組成物。 The lubricating base oil is
(X) a base oil component having a kinematic viscosity at 100 ° C. of 1.5 to 3.5 mm 2 / s, a pour point of −30 ° C. or less, a viscosity index of 100 or more, and a sulfur content of 0.01% by mass or less;
(Y) a base oil component having a kinematic viscosity at 100 ° C. of 4.0 to 8.0 mm 2 / s, a viscosity index of 120 or more, and a sulfur content of 0.01% by mass or less;
2. The lubricating oil composition for continuously variable transmission according to claim 1, wherein the content ratio of the (X) with respect to the total amount of the base oil is 20 to 80% by mass.
(C)下記一般式(1)で表される化合物を、該潤滑油組成物全量に対して0.1質量%以上5.0質量%以下でさらに含有することを特徴とする請求項1又は請求項2に無段変速機用潤滑油組成物。
(式(1)中、R1は炭素数1〜20のアルキル基を表す。) The (A-1) or (A-2) polymethacrylate viscosity index improver is a non-dispersed viscosity index improver,
(C) The compound represented by the following general formula (1) is further contained in an amount of 0.1% by mass or more and 5.0% by mass or less based on the total amount of the lubricating oil composition. The lubricating oil composition for continuously variable transmission according to claim 2.
(In formula (1), R 1 represents an alkyl group having 1 to 20 carbon atoms.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009022793A JP5473344B2 (en) | 2009-02-03 | 2009-02-03 | Lubricating oil composition for continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009022793A JP5473344B2 (en) | 2009-02-03 | 2009-02-03 | Lubricating oil composition for continuously variable transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010180279A JP2010180279A (en) | 2010-08-19 |
JP5473344B2 true JP5473344B2 (en) | 2014-04-16 |
Family
ID=42762050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009022793A Active JP5473344B2 (en) | 2009-02-03 | 2009-02-03 | Lubricating oil composition for continuously variable transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5473344B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015034090A1 (en) * | 2013-09-09 | 2017-03-02 | 出光興産株式会社 | Transmission oil |
EP3034585A4 (en) * | 2013-09-09 | 2017-04-12 | Idemitsu Kosan Co., Ltd | Transmission fluid |
US20160201003A1 (en) * | 2013-09-09 | 2016-07-14 | Idemitsu Kosan Co., Ltd. | Transmission fluid |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1908816B1 (en) * | 2005-06-29 | 2015-04-29 | Nippon Oil Corporation | Base oil for hydraulic oil and hydraulic oil compositions |
JP5207599B2 (en) * | 2006-06-08 | 2013-06-12 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition |
-
2009
- 2009-02-03 JP JP2009022793A patent/JP5473344B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010180279A (en) | 2010-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101777892B1 (en) | Lubricant composition for continuously variable transmission | |
JP4038306B2 (en) | Lubricating oil composition for continuously variable transmission | |
JP5248022B2 (en) | Lubricating oil composition for automatic transmission | |
JP5301305B2 (en) | Lubricating oil composition for continuously variable transmission | |
JP6035175B2 (en) | Lubricating oil composition | |
JP4691233B2 (en) | Lubricating oil composition for continuously variable transmission | |
JP6088305B2 (en) | Antifoam composition, lubricating oil composition and method for producing the same | |
JP2003321695A (en) | Lubricant composition for automatic transmission | |
JP4800635B2 (en) | Lubricating oil composition for automatic transmission | |
JP5473344B2 (en) | Lubricating oil composition for continuously variable transmission | |
JP5542322B2 (en) | Lubricating oil composition for agricultural machinery | |
JP5094360B2 (en) | Lubricating oil composition for agricultural machinery | |
JP5301304B2 (en) | Lubricating oil composition for continuously variable transmission | |
JPH11323364A (en) | Lubricating oil composition | |
JP6850866B2 (en) | Drive system fluid containing API Group II base oil | |
JP6702611B2 (en) | Lubricating oil composition, lubricating method, and transmission | |
WO2014017555A1 (en) | Poly(meth)acrylate-based viscosity index improver, lubricant additive and lubricant composition containing viscosity index improver | |
JP5033610B2 (en) | Lubricating oil composition for agricultural machinery | |
JP6043245B2 (en) | Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver | |
JP6936041B2 (en) | Lubricating oil composition for internal combustion engine | |
JP4079509B2 (en) | Lubricating oil composition | |
JP6702612B2 (en) | Lubricating oil composition, lubricating method, and transmission | |
JP6077954B2 (en) | Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver | |
JP5875952B2 (en) | Lubricating oil composition for agricultural machinery | |
JP7460757B2 (en) | Lubricating oil composition for agricultural machinery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5473344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |