[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5471591B2 - Conductive composition for electrode - Google Patents

Conductive composition for electrode Download PDF

Info

Publication number
JP5471591B2
JP5471591B2 JP2010042070A JP2010042070A JP5471591B2 JP 5471591 B2 JP5471591 B2 JP 5471591B2 JP 2010042070 A JP2010042070 A JP 2010042070A JP 2010042070 A JP2010042070 A JP 2010042070A JP 5471591 B2 JP5471591 B2 JP 5471591B2
Authority
JP
Japan
Prior art keywords
conductive
electrode
composition
carbon
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010042070A
Other languages
Japanese (ja)
Other versions
JP2011181229A (en
Inventor
浩一郎 宮嶋
大 稲垣
直人 岡
陽人 恩田
順幸 諸石
潤 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2010042070A priority Critical patent/JP5471591B2/en
Publication of JP2011181229A publication Critical patent/JP2011181229A/en
Application granted granted Critical
Publication of JP5471591B2 publication Critical patent/JP5471591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、二次電池およびキャパシタを構成する電極を作製するために使用する導電性組成物に関する。特に、本発明の電極用導電性組成物は、リチウム二次電池、ニッケル水素二次電池、燃料電池、キャパシタ等に用いることができるが、特にリチウムイオン二次電池、リチウムイオンキャパシタに用いると好適である。
又、本発明は、大電流での放電特性あるいは充電特性、サイクル特性、及び電極合材層の導電性に優れ、電極集電体と電極合材層との接触抵抗が小さい電極を具備するリチウム二次電池に関する。
The present invention relates to a conductive composition used for producing an electrode constituting a secondary battery and a capacitor. In particular, the conductive composition for an electrode of the present invention can be used for a lithium secondary battery, a nickel hydride secondary battery, a fuel cell, a capacitor and the like, but is particularly suitable for use in a lithium ion secondary battery and a lithium ion capacitor. It is.
Further, the present invention provides a lithium having an electrode having excellent discharge characteristics or charge characteristics at a large current, cycle characteristics, and conductivity of the electrode mixture layer, and having a small contact resistance between the electrode current collector and the electrode mixture layer. The present invention relates to a secondary battery.

近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用等の大型二次電池においても、従来の鉛蓄電池に代えて、大型の非水電解質二次電池の実現が望まれている。   In recent years, small portable electronic devices such as digital cameras and mobile phones have been widely used. These electronic devices have always been required to minimize the volume and reduce the weight, and the batteries to be mounted are also required to be small, light, and have a large capacity. Further, in large-sized secondary batteries for use in automobiles or the like, it is desired to realize a large non-aqueous electrolyte secondary battery instead of a conventional lead-acid battery.

そのような要求に応えるため、リチウム二次電池の開発が活発に行われている。リチウム二次電池の電極としては、リチウムイオンを含む正極活物質と導電助剤と有機バインダー等からなる電極合材を金属箔の集電体の表面に固着させた正極、及び、リチウムイオンの脱挿入可能な負極活物質と導電助剤と有機バインダー等からなる電極合材を金属箔の集電体の表面に固着させた負極が使用されている。   In order to meet such demands, lithium secondary batteries are being actively developed. As an electrode of a lithium secondary battery, a positive electrode in which an electrode mixture composed of a positive electrode active material containing lithium ions, a conductive additive, an organic binder, and the like is fixed to the surface of a current collector of a metal foil, and lithium ion removal A negative electrode is used in which an electrode mixture composed of an insertable negative electrode active material, a conductive additive, an organic binder, and the like is fixed to the surface of a metal foil current collector.

一般的に、正極活物質としては、コバルト酸リチウム、マンガン酸リチウム等のリチウム遷移金属複合酸化物が用いられているが、これらは電子伝導性が低く、単独での使用では十分な電池性能が得られない。そこで、カーボンブラック(例えば、アセチレンブラック)等の炭素材料を導電助剤として添加することで導電性を改善し、電極の内部抵抗を低減することが試みられている。とりわけ電極の内部抵抗を低減することは、大電流での放電を可能とすることや、充放電の効率を向上させる上で非常に重要となっている。   In general, lithium transition metal composite oxides such as lithium cobaltate and lithium manganate are used as the positive electrode active material, but these have low electronic conductivity and have sufficient battery performance when used alone. I can't get it. Therefore, attempts have been made to improve the conductivity by reducing the internal resistance of the electrode by adding a carbon material such as carbon black (for example, acetylene black) as a conductive additive. In particular, reducing the internal resistance of the electrode is very important in enabling discharge with a large current and improving charge and discharge efficiency.

一方、負極活物質としては、通常グラファイト(黒鉛)が用いられている。黒鉛はそれ自身が導電性を有しているものの、黒鉛とともに導電助剤としてアセチレンブラック等のカーボンブラックを添加すると充放電特性が改善されることが知られている。これは、一般に用いられる黒鉛粒子は大きいために、黒鉛単独で使用すると電極層に充填された時の隙間が多くなってしまうが、導電助剤としてカーボンブラックを併用した場合は、微細なカーボンブラック粒子が黒鉛粒子間の隙間を埋めることで接触面積が増え、抵抗が下がるためではないかと思われる。しかしながら、この場合も導電助剤の分散が不十分であると、導電効果が低減する。   On the other hand, graphite (graphite) is usually used as the negative electrode active material. Although graphite itself has conductivity, it is known that charge and discharge characteristics are improved by adding carbon black such as acetylene black as a conductive aid together with graphite. This is because the graphite particles generally used are large, so if graphite alone is used, the gap when filled in the electrode layer will increase. However, when carbon black is used as a conductive additive, fine carbon black is used. It seems that the contact area increases by filling the gaps between the graphite particles and the resistance decreases. However, in this case as well, the conductive effect is reduced if the dispersion of the conductive aid is insufficient.

この様に、とりわけ電極の内部抵抗を低減することは、大電流での放電を可能とすることや、充放電の効率を向上させる上で非常に重要な要素の一つとなっている。   In this way, reducing the internal resistance of the electrode is one of the very important factors in enabling discharge with a large current and improving the efficiency of charge and discharge.

しかしながら、導電性に優れた炭素材料(導電助剤)は、ストラクチャーや比表面積が大きいため凝集力が強く、リチウム二次電池の電極合材形成用スラリー中に均一混合・分散することが困難である。そして、導電助剤である炭素材料の分散性や粒度の制御が不十分な場合、均一な導電ネットワークが形成さないために電極の内部抵抗の低減が図れず、その結果、活物質であるリチウム遷移金属複合酸化物やグラファイト等の性能を十分に引き出せないという問題が生じている。また、電極合材中の導電助剤の分散が不十分であると、部分的凝集に起因して電極板上に抵抗分布が生じ、電池として使用した際に電流が集中し、部分的な発熱及び劣化が促進される等の不具合が生ずることがある。   However, carbon materials with excellent electrical conductivity (conducting aids) have a strong cohesive force due to their large structure and specific surface area, making it difficult to uniformly mix and disperse in the electrode mixture forming slurry of lithium secondary batteries. is there. And, when the dispersibility and particle size control of the carbon material that is the conductive auxiliary agent are insufficient, the internal resistance of the electrode cannot be reduced because the uniform conductive network is not formed, and as a result, the lithium that is the active material There has been a problem that the performance of transition metal composite oxides, graphite and the like cannot be sufficiently extracted. In addition, if the dispersion of the conductive additive in the electrode mixture is insufficient, resistance distribution occurs on the electrode plate due to partial aggregation, current concentrates when used as a battery, and partial heat generation occurs. In addition, problems such as accelerated deterioration may occur.

また、金属箔等の電極集電体上に電極合材層を形成する場合、多数回充放電を繰り返すと、集電体と電極合材層の界面や、電極合材層内部における活物質と導電助剤界面の密着性が悪化し、電池性能が低下する問題がある。これは、充放電におけるリチウムイオンのドープ、脱ドープにより活物質及び電極合材層が膨張、収縮を繰り返すために、電極合材層と集電体界面及び、活物質と導電助剤界面に局部的なせん断応力が発生し界面の密着性が悪化するためと考えられている。そしてこの場合も、導電助剤の分散が不十分であると、密着低下が著しくなる。これは、粗大な凝集粒子が存在すると、応力が緩和されにくくなるためであると思われる。   In addition, when forming an electrode mixture layer on an electrode current collector such as a metal foil, repeated charging and discharging a large number of times, the interface between the current collector and the electrode mixture layer, and the active material inside the electrode mixture layer There is a problem that the adhesion at the interface of the conductive auxiliary agent is deteriorated and the battery performance is lowered. This is because the active material and the electrode mixture layer repeatedly expand and contract due to the lithium ion doping and dedoping during charging and discharging, so that the electrode mixture layer and the current collector interface and the active material and conductive auxiliary agent interface are localized. This is thought to be due to the generation of shear stress and the deterioration of interfacial adhesion. In this case as well, if the dispersion of the conductive additive is insufficient, the adhesion reduction becomes significant. This is considered to be because when coarse agglomerated particles are present, the stress is hardly relaxed.

また、電極集電体と電極合材間の問題として、例えば正極の集電体としてアルミニウムを用いると、この表面に絶縁性の酸化皮膜が形成され、電極集電体と電極合材間の接触抵抗が上昇するといった問題もある。   In addition, as a problem between the electrode current collector and the electrode mixture, for example, when aluminum is used as the positive electrode current collector, an insulating oxide film is formed on this surface, and the contact between the electrode current collector and the electrode mixture There is also a problem that resistance increases.

前述の様な電極集電体と電極合材間の不具合に対して、いくつかの提案がなされている。例えば特許文献1及び特許文献2には、カーボンブラック等の導電剤を分散した塗膜を、電極下地層として集電極上に形成する方法が試みられているが、この場合も導電剤の分散が悪いと十分な効果が得られない。   Several proposals have been made for the problems between the electrode current collector and the electrode mixture as described above. For example, Patent Document 1 and Patent Document 2 attempt to form a coating film in which a conductive agent such as carbon black is dispersed on the collector electrode as an electrode underlayer. In this case, too, the conductive agent is dispersed. If it is bad, sufficient effect cannot be obtained.

リチウム二次電池においては導電助剤である炭素材料の分散が重要なポイントの一つである。特許文献3、特許文献4には、カーボンブラックを溶剤に分散する際に、分散剤として界面活性剤を用いる例が記載されている。しかしながら、界面活性剤は炭素材料表面への吸着力が弱いため、良好な分散安定性を得るには界面活性剤の添加量を多くしなければならず、この結果、含有可能な活物質の量が少なくなり、電池容量が低下してしまう。また、界面活性剤の炭素材料への吸着が不十分であると、炭素材料が凝集してしまう。また、一般的な界面活性剤では、水溶液中での分散と比較して、有機溶剤中での分散効果が著しく低い。   In lithium secondary batteries, dispersion of a carbon material that is a conductive additive is one of the important points. Patent Documents 3 and 4 describe examples in which a surfactant is used as a dispersant when carbon black is dispersed in a solvent. However, since the surfactant has a weak adsorption force on the surface of the carbon material, it is necessary to increase the amount of the surfactant added in order to obtain good dispersion stability. As a result, the amount of the active material that can be contained Decreases and the battery capacity decreases. Further, if the surfactant is not sufficiently adsorbed on the carbon material, the carbon material will aggregate. Further, a general surfactant has a remarkably low dispersion effect in an organic solvent as compared with dispersion in an aqueous solution.

また、特許文献5及び特許文献6には、カーボンブラックを溶剤又は水に分散する際に、分散樹脂を添加することでカーボンスラリーの分散状態を改善し、そのカーボンスラリーと、活物質とを混合して、電極用合材を作製する方法が開示されている。しかしながら、この方法では、カーボンブラックの分散性は向上するものの、比表面積の大きな微細なカーボンブラックの分散を行う場合には大量の分散樹脂が必要となること、及び分子量の大きな分散樹脂がカーボンブラック表面を被覆してしまうこと等から、導電ネットワークが阻害され電極の抵抗が増大し、結果的にカーボンブラックの分散向上による効果を相殺してしまう場合がある。   In Patent Document 5 and Patent Document 6, when carbon black is dispersed in a solvent or water, the dispersion state of the carbon slurry is improved by adding a dispersion resin, and the carbon slurry and the active material are mixed. And the method of producing the compound material for electrodes is disclosed. However, although this method improves the dispersibility of carbon black, a large amount of dispersed resin is required when dispersing fine carbon black having a large specific surface area, and a dispersed resin having a large molecular weight is carbon black. Since the surface is covered, the conductive network is hindered and the resistance of the electrode is increased, and as a result, the effect of improving the dispersion of carbon black may be offset.

更に、電極材料の分散性の向上と併せて、充放電の効率を向上させる上で重要な要素としては、電極の電解液に対する濡れ性の向上が挙げられる。電極反応は、電極材料表面と電解液との接触界面で起こるため、電解液が電極内部まで浸透し電極材料が良く濡れることが重要となる。電極反応を促進させる方法としては、微細な活物質や導電助剤を用いて電極の表面積を増大させる方法が検討されているが、特に炭素材料を用いる場合は、電解液に対する濡れが悪く、実際の接触面積が大きくならないため、電池性能の向上が難しいといった問題がある。   In addition to the improvement in the dispersibility of the electrode material, an important factor for improving the charge / discharge efficiency is an improvement in the wettability of the electrode with respect to the electrolytic solution. Since the electrode reaction occurs at the contact interface between the electrode material surface and the electrolytic solution, it is important that the electrolytic solution penetrates into the electrode and the electrode material is well wetted. As a method of promoting the electrode reaction, a method of increasing the surface area of the electrode by using a fine active material or a conductive auxiliary agent has been studied. There is a problem that it is difficult to improve battery performance because the contact area of the battery does not increase.

電極の濡れ性を改善する方法として、特許文献7には、電極中に繊維径1〜1000nmの炭素繊維を含有させることで、活物質粒子間に微細な空隙を持たせる方法が開示されている。しかしながら、通常、炭素繊維は複雑に絡み合っているため、均一な分散が難しく、炭素繊維を混ぜるだけでは、均一な電極を作製することができない。また、同文献では、分散制御のために炭素繊維の表面を酸化処理した炭素繊維を使用する方法も挙げられているが、炭素繊維を直接、酸化処理すると、炭素繊維の導電性や強度が低下してしまうという問題がある。また、特許文献8には、炭素粉末を主剤とする負極材料に高級脂肪酸アルカリ塩の様な界面活性剤を吸着させ、濡れ性を改善する方法が開示されているが、上述したように界面活性剤は特に非水系での分散性能が十分でないことが多く、均一な電極塗膜が得られない。これらの例では、いずれも電極材料の分散性を含めたトータルでの性能としては不十分であった。
特開2000−123823号公報 特開2002−298853号公報 特開昭63−236258号公報 特開平8−190912号公報 特開2003−157846号公報 特表2006−516795号公報 特開2005−063955号公報 特開平6−60877号公報 また、電気二重層キャパシタは、2つの分極性電極間にセパレータを配置し、電解液を含浸して構成される、対称電極キャパシタが一般的である。これらは、従来の2次電池と比較して急速な充放電が可能であり、出力密度が大きく、化学変化を伴わないため充放電の繰り返しによる劣化が少ないといった特徴がある。
As a method for improving the wettability of an electrode, Patent Document 7 discloses a method of providing fine voids between active material particles by including carbon fibers having a fiber diameter of 1 to 1000 nm in an electrode. . However, since carbon fibers are usually intertwined in a complicated manner, uniform dispersion is difficult, and a uniform electrode cannot be produced simply by mixing carbon fibers. In addition, in this document, there is a method of using carbon fiber whose surface is oxidized for dispersion control. However, when carbon fiber is directly oxidized, the conductivity and strength of carbon fiber are reduced. There is a problem of end up. Patent Document 8 discloses a method for improving the wettability by adsorbing a surfactant such as a higher fatty acid alkali salt to a negative electrode material mainly composed of carbon powder. In particular, the agent often does not have sufficient dispersion performance in a non-aqueous system, and a uniform electrode coating film cannot be obtained. In these examples, the total performance including the dispersibility of the electrode material was insufficient.
JP 2000-123823 A Japanese Patent Laid-Open No. 2002-298753 JP-A-63-236258 JP-A-8-190912 Japanese Patent Laid-Open No. 2003-157846 JP-T-2006-51679 Japanese Patent Laying-Open No. 2005-063955 JP, 6-60877, A Moreover, as for an electric double layer capacitor, a symmetrical electrode capacitor which arranges a separator between two polarizable electrodes, and is impregnated with electrolyte is common. These are characterized in that they can be charged / discharged more rapidly than conventional secondary batteries, have high output density, and are less susceptible to repeated charging / discharging due to no chemical change.

一般に電気二重層キャパシタ用電極は集電体に活性炭等の炭素質材料を含有する電極層を積層させた構造を有している。又、電極層は炭素質材料とバインダーからなり、電極材料の製造方法としては押し出し圧延方式やコーティング方式がある。
電気二重層キャパシタ用電極として、例えば文献1には、活性炭粉末とカルボキシメチルセルロース等のバインダー水溶液からなるスラリーを調製し、アルミニウム箔等の集電体に、ロールコーティング、及びドクターブレードコーティング等の手法で付着させて作製した電極が開示されている。
Generally, an electrode for an electric double layer capacitor has a structure in which an electrode layer containing a carbonaceous material such as activated carbon is laminated on a current collector. The electrode layer is made of a carbonaceous material and a binder, and there are an extrusion rolling method and a coating method as a method for producing the electrode material.
As an electrode for an electric double layer capacitor, for example, in Reference 1, a slurry made of an aqueous solution of a binder such as activated carbon powder and carboxymethylcellulose is prepared, and a current collector such as an aluminum foil is applied to a current collector by a method such as roll coating and doctor blade coating. An electrode made by deposition is disclosed.

文献10には、カルボキシメチルセルロース樹脂のアンモニウム塩、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルセルロース樹脂からなる群から選ばれる一種類以上セルロース系化合物と、四フッ化エチレン樹脂エマルション若しくはラテックスとを含む分散液の中に、活性炭及び導電性付与剤が分散された塗料を導電箔上に塗布したものが開示されている。   Document 10 includes a dispersion containing one or more cellulose compounds selected from the group consisting of ammonium salt of carboxymethyl cellulose resin, polyvinyl alcohol, methyl cellulose, and hydroxypropyl cellulose resin, and a tetrafluoroethylene resin emulsion or latex. Further, there is disclosed a method in which a coating material in which activated carbon and a conductivity imparting agent are dispersed is applied on a conductive foil.

又、従来のキャパシタ以外にハイブリッドキャパシタと呼ばれる蓄電装置が注目されている。ハイブリッドキャパシタでは通常、正極に分極性電極、負極に非分極性電極を使用する、いわゆる非対称電極キャパシタであり、さらに負極にリチウム金属と接触させ、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵、担持(ドーピング)させてエネルギー密度を大幅に大きくすることを意図した提案もなされている。(文献11〜12)
特開平3−280518号公報 国際公開WO1998/058397号 特開平8−107048号公報 特開平9−55342号公報 しかしながら、上記特許文献1〜12の開示された技術においては種々の問題点がある。すなわち、導電材料が分散不十分であるために直流抵抗やインピーダンスが十分低くならず、電極合材インキで塗工して電極層を形成した場合に、電極活物資と集電体を繋ぐ導電経路が好適に形成されないために充放電を繰り返すと電気容量が低下するなど二次電池およびキャパシタとして必ずしも満足いくものではなかった。
In addition to conventional capacitors, a power storage device called a hybrid capacitor has attracted attention. A hybrid capacitor is usually a so-called asymmetric electrode capacitor that uses a polarizable electrode for the positive electrode and a nonpolarizable electrode for the negative electrode. Further, the negative electrode is contacted with lithium metal, and lithium ions are preliminarily deposited by a chemical method or an electrochemical method. There have also been proposals intended to significantly increase the energy density by occlusion and support (doping). (References 11 to 12)
JP-A-3-280518 International Publication No. WO1998 / 058397 Japanese Patent Laid-Open No. 8-1007048 However, the techniques disclosed in Patent Documents 1 to 12 have various problems. That is, since the conductive material is not sufficiently dispersed, the direct current resistance and impedance are not sufficiently low, and when the electrode layer is formed by coating with electrode mixture ink, the conductive path that connects the electrode active material and the current collector However, it is not always satisfactory as a secondary battery and a capacitor, for example, the electric capacity decreases when charging / discharging is repeated.

又、高い導電性を有する導電材料は一般に強固な鎖状構造「ストラクチャー」を有しているがビーズミル等での分散工程において衝撃力が強すぎるために「ストラクチャー」が壊れ素材の導電性が大きく低下したり、かさ密度が低いと分散が不十分となり塗液としての固形分濃度が高くならず、乾燥時に溶媒を蒸発させるエネルギーが大きくなり生産効率等が悪化し、地球環境保護の観点からも好ましくない。   In addition, conductive materials having high conductivity generally have a strong chain structure “structure”, but the impact force is too strong in the dispersion process in a bead mill or the like, so the “structure” is broken and the conductivity of the material is large. If the density is lowered or the bulk density is low, the dispersion will be insufficient and the solid content concentration will not increase, the energy to evaporate the solvent during drying will increase, the production efficiency will deteriorate, etc. It is not preferable.

更に、電極活物質とバインダーと導電材料から成る電極合材インキにおいて、分散が不十分なために電極への塗工安定に欠き、好適な電極膜が形成されないため繰り返し充放電を行うと、電極塗膜が集電体と剥がれる等、製品不良が生じる等の問題があった。   Furthermore, in an electrode mixture ink composed of an electrode active material, a binder, and a conductive material, since the dispersion to the electrode is insufficient, the coating on the electrode is not stable, and a suitable electrode film is not formed. There were problems such as product defects, such as peeling of the coating film from the current collector.

本発明は、上記の従来の問題を解決するためになされたものであり、特定のかさ密度と体積抵抗率の導電材料を用いた顆粒状の電極用導電性組成物を使用することで、電極合材層中の導電経路を効率的に形成して電気抵抗の低い電極を作製すること、導電材料の導電性を阻害せずに電極合材インキの保存安定化を図り塗工性を向上させること、並びに、本発明の電極用導電性組成物を用いて作製される二次電池、キャパシタの性能を向上させることを目的とする。   The present invention has been made to solve the above-described conventional problems, and by using a granular conductive composition for an electrode using a conductive material having a specific bulk density and volume resistivity, Efficiently form conductive paths in the composite layer to produce electrodes with low electrical resistance, improve storage stability of the electrode mixture ink without impairing the conductivity of the conductive material, and improve coatability It aims at improving the performance of the secondary battery and capacitor which are produced using the conductive composition for electrodes of the present invention.

すなわち本発明は、
導電材料と、溶剤と、濡れ向上剤からなる導電性組成物であって、
前記導電材料は、かさ密度0.01〜0.20g/cm、体積抵抗率0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)であり、
前記導電性組成物が顆粒状であり、かつ、固形分が20〜60重量%であることを特徴とする電極用導電性組成物に関する。
That is, the present invention
A conductive composition comprising a conductive material, a solvent, and a wetting improver,
The conductive material has a bulk density of 0.01 to 0.20 g / cm 3 and a volume resistivity of 0.001 to 0.1 Ω · cm (when the compression density is 0.9 g / cm 3 ).
The conductive composition is granular and has a solid content of 20 to 60% by weight.

また本発明は濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、前記導電性組成物が顆粒状であり、かつ、固形分が25〜55重量%であることを特徴とする前記の電極用導電性組成物に関する。
また本発明は前記濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、かつ、濡れ向上剤が重量平均分子量1千以下の濡れ向上剤A及び又は重量平均分子量3千以上200万以下の濡れ向上剤Bからなることを特徴とする前記の電極用導電性組成物に関する。
In the present invention, the wetting improver is a compound having two or more polar functional groups per molecular unit, the conductive composition is granular, and the solid content is 25 to 55% by weight. It is related with the said electroconductive composition for electrodes characterized by these.
In the present invention, the wettability improver is a compound having two or more polar functional groups per molecular unit, and the wettability improver has a weight average molecular weight of 1,000 or less and / or a weight average molecular weight of 3 The electroconductive composition for electrodes is characterized by comprising a wetting improver B of 1,000 to 2,000,000.

また前記導電材料が、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト、黒鉛化カーボン、繊維状炭素材料よりなる群から選択される少なくとも1種からなる前記電極用導電性組成物に関する。
また前記顆粒状の導電性組成物が、かさ密度0.30〜0.80g/cmであることを特徴とする前記電極用導電性組成物に関する。
また前記導電性組成物が、メディアレス分散したことを特徴とする前記電極用導電性組成物に関する。
また前記導電性組成物が、攪拌翼及び又は攪拌羽根で高速せん断分散したことを特徴とする前記電極用導電性組成物に関する。
In addition, the present invention relates to the conductive composition for an electrode, wherein the conductive material is at least one selected from the group consisting of acetylene black, furnace black, ketjen black, graphite, graphitized carbon, and fibrous carbon material.
The granular conductive composition has a bulk density of 0.30 to 0.80 g / cm 3 , and relates to the conductive composition for electrodes.
Further, the present invention relates to the conductive composition for an electrode, wherein the conductive composition is medialessly dispersed.
In addition, the present invention relates to the conductive composition for electrodes, wherein the conductive composition is subjected to high-speed shear dispersion with a stirring blade and / or a stirring blade.

さらに導電材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電材料を造粒する第二の工程を用いて製造される、上記電極用導電性組成物の製造方法に関する。
さらに導電材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電材料を造粒する第二の工程よりなり、前記導電材料は、かさ密度0.01〜0.20g/cm、体積抵抗率0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)であり、顆粒状かつ固形分が20〜60重量%であることを特徴とする電極用導電性組成物の製造方法に関する。
Furthermore, it is related with the manufacturing method of the said electrically conductive composition for electrodes manufactured using the 1st process which wets a conductive material to a solvent with a wettability improvement agent, and the 2nd process of granulating the wetted conductive material.
The conductive material further comprises a first step of wetting the conductive material with a solvent with a wetting improver and a second step of granulating the wet conductive material, and the conductive material has a bulk density of 0.01 to 0.20 g / cm 3. Volume resistivity 0.001 to 0.1 Ω · cm (when the compression density is 0.9 g / cm 3 ), granular and solid content is 20 to 60% by weight. The present invention relates to a method for producing a composition.

さらに前記電極用導電性組成物を使用して形成されてなる正極または負極用電極に関する。
さらに前記の正極または負極用電極を使用して形成されてなる二次電池に関する。
さらに前記の正極または負極用電極を使用して形成されてなるキャパシタに関する。
Furthermore, it is related with the electrode for positive electrodes or negative electrodes formed using the said electroconductive composition for electrodes.
Furthermore, it is related with the secondary battery formed using the said electrode for positive electrodes or negative electrodes.
Furthermore, it is related with the capacitor formed using the said electrode for positive electrodes or negative electrodes.

本発明の好ましい実施態様によれば、電極層中の導電性炭素材料が偏りなく分配され、導電性炭素材料が分散安定性に優れるために、電極活物質と集電体を好適に導電経路を形成する電極用導電性組成物が得られる。更に、本発明の好ましい実施態様に係る電極用導電性組成物を、2次電池、キャパシタ、燃料電池の電極に使用することにより、集電体と電極組成物との密着性、電極活物質と導電性炭素材料との密着性、並びに電極組成物の電解液に対する濡れ性が、改善されて、電極の内部抵抗の低減を促すと共に、充放電の効率を向上することができ、電池およびキャパシタの性能を総合的に向上させることができる。   According to a preferred embodiment of the present invention, since the conductive carbon material in the electrode layer is distributed evenly and the conductive carbon material is excellent in dispersion stability, the electrode active material and the current collector are preferably provided with a conductive path. A conductive composition for electrodes to be formed is obtained. Furthermore, by using the conductive composition for an electrode according to a preferred embodiment of the present invention for an electrode of a secondary battery, a capacitor, or a fuel cell, the adhesion between the current collector and the electrode composition, the electrode active material, The adhesion to the conductive carbon material and the wettability of the electrode composition with respect to the electrolytic solution are improved, and the internal resistance of the electrode can be reduced and the charge / discharge efficiency can be improved. The performance can be improved comprehensively.

本発明の電極用導電性組成物は、顆粒状であることが好ましい。顆粒状とは導電性炭素材料が球状、楕円球状、団子状、ないしは不定形であっても丸まった状態になったものを示す。導電性炭素材料を顆粒状にすると合材インキ化の際に、組成物を添加した初期分散段階では合材インキ中に偏りなく導電成分が分配され、その後に分散が進む段階では顆粒状の組成物が解されて電極活物質の表面に吸着されたり、バインダ中に導電材料のストラクチャーを広げられるため、電極を作製した時に導電性材料が塗膜中で導電成分の分布に偏りのない導電性経路が形成される。その結果、電極の抵抗が低下することで充放電特性や負荷特性(レート特性)が格段に向上し、優れた電池が得られる。更に分散混練時間が大幅に短縮化でき、粉体状の導電性炭素材料と比べて飛散などがなくハンドリングなど格段に優れるため効率的な生産が可能となり、トータルでのコストダウンに極めて有効である。一方、ゲル状であると長期保存した時、ゲル化が進んでケーキ状になりハンドリング性に劣る。また、ペースト状では長期保存により炭素材料の沈降が生じるなど塗液の安定性に劣り、溶剤を多く含むため合材インキ化する際の粘度が低くなって設計の自由度が極めて低くなる。   The conductive composition for an electrode of the present invention is preferably granular. The granular form means that the conductive carbon material is round, oval, dumpling or indefinite, even when it is round. When the conductive carbon material is granulated, the conductive component is distributed evenly in the mixture ink at the initial dispersion stage when the composition is added, and the composition is granular at the stage where the dispersion proceeds thereafter. Since the material is dissolved and adsorbed on the surface of the electrode active material, or the structure of the conductive material can be expanded in the binder, the conductive material does not bias the distribution of conductive components in the coating film when the electrode is manufactured. A path is formed. As a result, the resistance of the electrode is lowered, and the charge / discharge characteristics and load characteristics (rate characteristics) are remarkably improved, and an excellent battery is obtained. In addition, the dispersion and kneading time can be greatly shortened, and there is no scattering and much better handling than powdered conductive carbon materials, enabling efficient production and extremely effective in reducing the total cost. . On the other hand, when it is gel-like, when it is stored for a long period of time, gelation proceeds to form a cake and is inferior in handling properties. In addition, in the pasty form, the stability of the coating liquid is inferior, such as precipitation of the carbon material due to long-term storage, and since it contains a large amount of solvent, the viscosity at the time of forming a mixture ink becomes low and the degree of freedom in design becomes extremely low.

本発明の電極用導電性組成物は固形分が20〜60重量%であることが好ましく、更に好ましくは25〜55重量%である。上記の範囲内にあれば合材ペースト化した際の粘度の安定性が高く、塗工安定性にすぐれた塗液が得られ、更に電極塗膜中の導電性成分の分配が好適となり偏りのない導電性経路が形成され、電池性能が向上する。また、固形分が20重量%以下であると形状が保てなくなりハンドリングが悪化し、60重量%より多いと合材ペースト化する際に解れ不良の原因となり問題となる。   The conductive composition for electrodes of the present invention preferably has a solid content of 20 to 60% by weight, more preferably 25 to 55% by weight. If it is within the above range, the viscosity of the mixture paste is high and the coating liquid is excellent in coating stability. Furthermore, the distribution of the conductive component in the electrode coating film is suitable, and the bias is reduced. No conductive path is formed, improving battery performance. On the other hand, when the solid content is 20% by weight or less, the shape cannot be maintained and handling is deteriorated. When the solid content is more than 60% by weight, it becomes a cause of unraveling failure when forming a composite paste, which causes a problem.

<導電助剤としての導電性炭素材料>
本発明に使用される導電性材料のかさ密度は、0.01〜0.20g/cmが好ましい。0.20g/cmより大きくなると電極塗膜中に好適な導電経路が形成しずらくなり、電極の抵抗が上がってしまうため充放電時の電気容量を低下させるなど問題がある。0.01g/cmより小さくなるとかさ高くなりすぎて電極密度が極端に低下するなど実用に適さなくなる。
本発明における導電材料としては、炭素材料が最も好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー、及びフラーレン等を単独で、若しくは2種類以上併せて使用することができる。
本発明に使用される導電性材料の体積抵抗率は0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)が好適である。この範囲にあれば本発明の効果である電極の抵抗率が低下するため、充放電による効率が良好となる。
<Conductive carbon material as conductive aid>
The bulk density of the conductive material used in the present invention is preferably 0.01 to 0.20 g / cm 3 . If it is greater than 0.20 g / cm 3 , it is difficult to form a suitable conductive path in the electrode coating film, and the resistance of the electrode increases. If it is less than 0.01 g / cm 3, it becomes too bulky and the electrode density is extremely lowered, making it unsuitable for practical use.
The conductive material in the present invention is most preferably a carbon material. The carbon material is not particularly limited as long as it is a conductive carbon material, but graphite, carbon black, carbon nanotube, carbon nanofiber, carbon fiber, fullerene, etc. alone or in combination of two or more. Can be used.
The volume resistivity of the conductive material used in the present invention is preferably 0.001 to 0.1 Ω · cm (when the compression density is 0.9 g / cm 3 ). If it exists in this range, since the resistivity of the electrode which is the effect of this invention will fall, the efficiency by charging / discharging becomes favorable.

カーボンブラックとしては、気体若しくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、及び、特にアセチレンガスを原料とするアセチレンブラック等の各種のものを単独で、若しくは2種類以上併せて使用することができる。又、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。   Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material. Channel black rapidly cooled and precipitated, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and various types such as acetylene black using acetylene gas as a raw material alone, Or two or more types can be used together. Ordinarily oxidized carbon black, hollow carbon and the like can also be used.

カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。   The oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group. This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon. However, since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.

用いるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m2/g以上、1500m2/g以下、好ましくは50m2/g以上、1500m2/g以下、更に好ましくは100m2/g以上、
1500m2/g以下のものを使用することが望ましい。比表面積が20m2/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m2/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。
As the specific surface area of the carbon black used increases, the number of contact points between the carbon black particles increases, which is advantageous in reducing the internal resistance of the electrode. Specifically, the specific surface area (BET) determined from the amount of nitrogen adsorbed is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more,
It is desirable to use a thing of 1500 m < 2 > / g or less. If carbon black having a specific surface area of less than 20 m 2 / g is used, it may be difficult to obtain sufficient conductivity, and carbon black of more than 1500 m 2 / g may be difficult to obtain from commercially available materials. is there.

又、用いるカーボンブラックの粒径は、一次粒子径で0.005〜1μmが好ましく、特に、0.01〜0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡等で測定された粒子径を平均したものである。   Moreover, the particle size of the carbon black to be used is preferably 0.005 to 1 μm, and particularly preferably 0.01 to 0.2 μm in terms of primary particle size. However, the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.

市販のカーボンブラックとしては、例えば、
トーカブラック#4300、#4400、#4500、及び#5500等の東海カーボン社製ファーネスブラック;
プリンテックスL等のデグサ社製ファーネスブラック;
Raven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、975 ULTRA、PUER BLACK100、115、及び205等のコロンビヤン社製ファーネスブラック;
#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、及び#5400B等の三菱化学社製ファーネスブラック;
MONARCH1400、1300、900、VulcanXC−72R、及びBlackPearls2000等のキャボット社製ファーネスブラック;
Ensaco250G、Ensaco260G、Ensaco350G、及びSuperP−Li等のTIMCAL社製ファーネスブラック;
ケッチェンブラックEC−300J、及びEC−600JD等のアクゾ社製ケッチェンブラック、並びに、
デンカブラック、デンカブラックHS−100、FX−35等の電気化学工業社製アセチレンブラック等が挙げられるが、これらに限定されるものではない。
Examples of commercially available carbon black include
Furnace blacks manufactured by Tokai Carbon, such as Toka Black # 4300, # 4400, # 4500, and # 5500;
Furnace Black made by Degussa such as Printex L;
Furnace black manufactured by Colombian, such as Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, Conductex SC ULTRA, 975 ULTRA, PUER BLACK100, 115, and 205;
# 2350, # 2400B, # 2600B, # 30050B, # 3030B, # 3230B, # 3350B, # 3400B, and # 5400B furnace black manufactured by Mitsubishi Chemical Corporation;
Furnace black from Cabot, such as MONARCH 1400, 1300, 900, Vulcan XC-72R, and Black Pearls 2000;
Furnace black manufactured by TIMCAL, such as Ensaco 250G, Ensaco 260G, Ensaco 350G, and SuperP-Li;
Ketjen Black EC-300J, EC-600JD and other Akzo Ketjen Black, and
Although acetylene black by Denki Kagaku Kogyo Co., Ltd., such as Denka Black, Denka Black HS-100, and FX-35, is mentioned, it is not limited to these.

グラファイトとしては例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、組み合わせて用いても良い。   Examples of the graphite include natural graphite such as artificial graphite, flake graphite, lump graphite, and earth graphite, but they may be used in combination.

導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。   As the conductive carbon fibers, those obtained by firing from petroleum-derived raw materials are preferable, but those obtained by firing from plant-derived raw materials can also be used. For example, VGCF manufactured by Showa Denko Co., Ltd. manufactured with petroleum-derived raw materials can be mentioned.

<濡れ向上剤>
濡れ向上剤は導電性炭素材料と溶剤との濡れ性を高め、顆粒状に形成すると同時に、合材ペースト化の際には導電性炭素材料の速やかに解し、最終的に導電性成分を分配し電極塗膜中に好適な導電性経路を形成する役割を果たす。
<Wetting improver>
The wetting improver enhances the wettability between the conductive carbon material and the solvent, and forms into a granule. At the same time, it dissolves the conductive carbon material quickly when forming a composite paste, and finally distributes the conductive component. It plays the role of forming a suitable conductive path in the electrode coating film.

濡れ向上剤としては1分子単位当り極性官能基を2個以上と親油性基を有する化合物であれば特に制限がない。親油性基は炭素材料表面との相互作用に効果があり、2個以上の極性官能基は電荷反発や溶剤の取り込みに効果を奏し、合材ペーストに用いた時に導電性組成物を好適に分配する役割を果たすと考えられる。この中で濡れ向上剤Aは分子量が50〜1000であるため比較的短時間で導電性炭素材料を馴染ませることができ、濡れ向上剤Bは重量平均分子量が3000〜200万であるため顆粒状となった導電性組成物の保存安定性、更に合材ペーストとしたときの保存安定性に寄与する。これら濡れ向上剤はA、Bそれぞれ単独で用いても良く、併用すると更に好ましい。   The wetting improver is not particularly limited as long as it is a compound having two or more polar functional groups per molecule unit and a lipophilic group. Lipophilic groups are effective in interaction with the carbon material surface, and two or more polar functional groups are effective in charge repulsion and solvent uptake, and the conductive composition is suitably distributed when used in composite pastes. It is thought to play a role. Among these, the wettability improver A has a molecular weight of 50 to 1000, so that the conductive carbon material can be adjusted in a relatively short time. The wettability improver B has a weight average molecular weight of 3000 to 2 million, so that it is granular. This contributes to the storage stability of the resulting conductive composition, and further to the storage stability of the composite paste. These wetting improvers may be used independently for A and B, respectively, and more preferably used together.

分子量が50〜1000以下の濡れ向上剤Aとしては例えば、塩基性官能基を有する脂肪族化合物、塩基性官能基を有する芳香族化合物、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、及び塩基性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上の誘導体、又は、酸性官能基を有する脂肪族化合物、酸性官能基を有する芳香族化合物、酸性官能基を有する有機色素誘導体、及び酸性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上の誘導体が挙げられる。
更に、重量平均分子量が3000〜200万の濡れ向上剤Bとしては例えば、塩基性官能基を有する樹脂、酸性官能基を有する樹脂及びビニルアミド系樹脂などが挙げられる。
Examples of the wetting improver A having a molecular weight of 50 to 1000 or less include aliphatic compounds having basic functional groups, aromatic compounds having basic functional groups, organic dye derivatives having basic functional groups, and basic functional groups. One or more derivatives selected from the group consisting of an anthraquinone derivative having, an acridone derivative having a basic functional group, and a triazine derivative having a basic functional group, or an aliphatic compound having an acidic functional group, having an acidic functional group Examples thereof include one or more derivatives selected from the group consisting of aromatic compounds, organic dye derivatives having an acidic functional group, and triazine derivatives having an acidic functional group.
Furthermore, examples of the wetting improver B having a weight average molecular weight of 3000 to 2 million include a resin having a basic functional group, a resin having an acidic functional group, and a vinylamide resin.

塩基性官能基を有する樹脂は、重合体(G1)を構成する片末端領域に2個のヒドロキシル基を有するビニル重合体(C1)が、分子内に2つのヒドロキシル基と1つのチオール基とを有する化合物(c11)の存在下に、エチレン性不飽和単量体(c2)をラジカル重合してなるアミン価が1〜100mgKOH/gである重合体、重合体(G2)を構成する片末端領域に1個又は2個の(メタ)アクリロイル基を有する重合体(C2)が、ビニル重合体、又はポリエステルを含むアミン価が1〜100mgKOH/gである重合体およびポリビニル系、ポリウレタン系、ポリエステル系、ポリエーテル系、ホルマリン縮合物、シリコーン系、及びこれらの複合系ポリマー等が挙げられる。更に、これらの塩基性官能基を有する樹脂は2種類以上を併用することもできる。   The resin having a basic functional group is composed of a vinyl polymer (C1) having two hydroxyl groups in one terminal region constituting the polymer (G1), and two hydroxyl groups and one thiol group in the molecule. A polymer having an amine value of 1 to 100 mgKOH / g obtained by radical polymerization of an ethylenically unsaturated monomer (c2) in the presence of the compound (c11), a single terminal region constituting the polymer (G2) The polymer (C2) having 1 or 2 (meth) acryloyl groups in the polymer is a vinyl polymer, or a polymer containing an amine value of 1 to 100 mg KOH / g, including polyester, polyvinyl, polyurethane, polyester , Polyethers, formalin condensates, silicones, and composite polymers thereof. Furthermore, two or more kinds of resins having these basic functional groups can be used in combination.

<その他の市販の塩基性官能基を有する樹脂>
市販の塩基性官能基を有する樹脂としては、特に限定されないが、例えば、以下のものが挙げられる。
<Other resins having basic functional groups>
Although it does not specifically limit as resin which has a commercially available basic functional group, For example, the following are mentioned.

ビックケミー社製の塩基性官能基を有する樹脂としては、Disperbyk−108、109、112、116、130、161、162、163、164、166、167、168、180、182、183、184、185、2000、2001、2050、2070、2150、又はBYK−9077が挙げられる。   As the resin having a basic functional group manufactured by Big Chemie, Disperbyk-108, 109, 112, 116, 130, 161, 162, 163, 164, 166, 167, 168, 180, 182, 183, 184, 185, 2000, 2001, 2050, 2070, 2150, or BYK-9077.

日本ルーブリゾール社製の塩基性官能基を有する樹脂としては、SOLSPERSE9000、13240、13650、13940、17000、18000、19000、20000、24000SC、24000GR、28000、31845、32000、32500、32600、33500、34750、35100、35200、37500、38500、又は39000が挙げられる。   As a resin having a basic functional group manufactured by Nippon Lubrizol, SOLPERSE 9000, 13240, 13650, 13940, 17000, 18000, 19000, 20000, 24000SC, 24000GR, 28000, 31845, 32000, 32500, 32600, 33500, 34750, 35100, 35200, 37500, 38500, or 39000.

エフカアディティブズ社製の塩基性官能基を有する樹脂としては、EFKA4008、4009、4010、4015、4020、4046、4047、4050、4055、4060、4080、4300、4330、4400、4401、4402、4403、4406、4500、4550、4560、4570、4580、又は4800が挙げられる。   As a resin having a basic functional group manufactured by Efka Additives, EFKA4008, 4009, 4010, 4015, 4020, 4046, 4047, 4050, 4055, 4060, 4080, 4300, 4330, 4400, 4401, 4402, 4403 4406, 4500, 4550, 4560, 4570, 4580, or 4800.

味の素ファインテクノ社製の塩基性官能基を有する樹脂としては、アジスパーPB711、アジスパーPB821、又はアジスパーPB822が挙げられる。
日本油脂社製の塩基性官能基を有する樹脂としては、HKM−150A、HFB−150Aが挙げられる。
楠本化成社製の塩基性官能基を有する樹脂としては、ディスパロン1850、1860、又はDA−1401が挙げられる。
Examples of the resin having a basic functional group manufactured by Ajinomoto Fine-Techno Co., Ltd. include Ajisper PB711, Azisper PB821, or Azisper PB822.
HKM-150A and HFB-150A are mentioned as resin which has a basic functional group made by Nippon Oil & Fats.
Examples of the resin having a basic functional group manufactured by Enomoto Kasei Co., Ltd. include Disparon 1850, 1860, or DA-1401.

共栄社化学製の塩基性官能基を有する樹脂としては、フローレンDOPA−15B、フローレンDOPA−17等が挙げられる。
酸性樹脂としては分子内に2つの水酸基と1つのチオール基とを有する化合物(s)の存在下、エチレン性不飽和単量体(m)をラジカル重合してなる、片末端に2つの水酸基を有するビニル重合体(c)中の水酸基と、テトラカルボン酸二無水物(d)中の酸無水物基とを反応させてなるポリビニル系樹脂(C2)、並びに、
下記一般式(1):
(HOOC−)m−R21−(−COO−[−R23−COO−]n−R22t (1)
〔一般式(1)中、R21は、4価のテトラカルボン酸化合物残基であり、R22は、モノアルコール残基であり、R23は、ラクトン残基であり、mは、2又は3であり、nは、1〜50の整数であり、tは、(4−m)である。〕
で表されるポリエステル系樹脂(C3)などがある。
Examples of the resin having a basic functional group manufactured by Kyoeisha Chemical include Floren DOPA-15B and Floren DOPA-17.
As an acidic resin, two hydroxyl groups at one end are formed by radical polymerization of an ethylenically unsaturated monomer (m) in the presence of a compound (s) having two hydroxyl groups and one thiol group in the molecule. A polyvinyl resin (C2) obtained by reacting a hydroxyl group in the vinyl polymer (c) with an acid anhydride group in the tetracarboxylic dianhydride (d), and
The following general formula (1):
(HOOC-) m -R 21 - ( - COO - [- R 23 -COO-] n -R 22) t (1)
[In General Formula (1), R 21 is a tetravalent tetracarboxylic acid compound residue, R 22 is a monoalcohol residue, R 23 is a lactone residue, and m is 2 or 3, n is an integer from 1 to 50, and t is (4-m). ]
There is a polyester resin (C3) represented by

酸性官能基を有する樹脂は、上記記載の三つのタイプのみに限定されるものでなく、三つのタイプ以外のポリビニル系、ポリウレタン系、ポリエステル系、ポリエーテル系、ホルマリン縮合物、シリコーン系、及びこれらの複合系ポリマー等が挙げられる。更に、これらの酸性官能基を有する樹脂は2種類以上を併用することもできる。   The resin having an acidic functional group is not limited to the above three types, but other than the three types, polyvinyl type, polyurethane type, polyester type, polyether type, formalin condensate, silicone type, and these And a composite polymer. Furthermore, two or more kinds of resins having these acidic functional groups can be used in combination.

<その他の市販の酸性官能基を有する樹脂>
市販の酸性官能基を有する樹脂としては、特に限定されないが、例えば、以下のものが挙げられる。
<Other resins having acidic functional groups>
Although it does not specifically limit as resin which has a commercially available acidic functional group, For example, the following are mentioned.

ビックケミー社製の酸性官能基を有する樹脂としては、 Anti−Terra−U、U100、203、204、205、Disperbyk−101、102、106、107、110、111、140、142、170、171、174、180、2001、BYK−P104、P104S、P105、9076、又は220Sが挙げられる。   As resin having an acidic functional group manufactured by Big Chemie, Anti-Terra-U, U100, 203, 204, 205, Disperbyk-101, 102, 106, 107, 110, 111, 140, 142, 170, 171, 174 , 180, 2001, BYK-P104, P104S, P105, 9076, or 220S.

日本ルーブリゾール社製の酸性官能基を有する樹脂としては、SOLSPERSE3000、21000、26000、36000、36600、41000、41090、43000、44000、又は53095が挙げられる。
エフカアディティブズ社製の酸性官能基を有する樹脂としては、EFKA4510、4530、5010、5044、5244、5054、5055、5063、5064、5065、5066、5070、又は5071が挙げられる。
Examples of the resin having an acidic functional group manufactured by Nippon Lubrizol include SOLPERSE 3000, 21000, 26000, 36000, 36600, 41000, 41090, 43000, 44000, or 53095.
Examples of the resin having an acidic functional group manufactured by Efka Additives include EFKA4510, 4530, 5010, 5044, 5244, 5054, 5055, 5063, 5064, 5065, 5066, 5070, and 5071.

味の素ファインテクノ社製の酸性官能基を有する樹脂としては、アジスパーPN411、又はアジスパーPA111が挙げられる。
ELEMENTIS社製の酸性官能基を有する樹脂としては、NuosperseFX−504、600、605、FA620、2008、FA−196、又はFA−601が挙げられる。
ライオン社製の酸性官能基を有する樹脂としては、ポリティA−550、又はポリティPS−1900が挙げられる。
Examples of the resin having an acidic functional group manufactured by Ajinomoto Fine Techno Co. include Ajisper PN411 or Azisper PA111.
Examples of the resin having an acidic functional group manufactured by ELEMENTIS include Nuosperse FX-504, 600, 605, FA620, 2008, FA-196, or FA-601.
Examples of the resin having an acidic functional group manufactured by Lion Corporation include Politi A-550 or Politi PS-1900.

楠本化成社製の酸性官能基を有する樹脂としては、ディスパロン2150、KS−860、KS−873SN、1831、1860、PW−36、DA−1200、DA−703−50、DA−7301、DA−325、DA−375、又はDA−234が挙げられる。
BASFジャパン製の酸性官能基を有する樹脂としては、JONCRYL67、678、586、611、680、682、683、690、52J、57J、60J、61J、62J、63J、70J、HPD−96J、501J、354J、6610、PDX−6102B、7100、390、711、511、7001、741、450、840、74J、HRC−1645J、734、852、7600、775、537J、1535、PDX−7630、352J、252D、538J7640、7641、631、790、780、又は7610等が挙げられる。
As resins having an acidic functional group manufactured by Enomoto Kasei Co., Ltd., Disparon 2150, KS-860, KS-873SN, 1831, 1860, PW-36, DA-1200, DA-703-50, DA-7301, DA-325 , DA-375, or DA-234.
Examples of resins having acidic functional groups manufactured by BASF Japan include JONCRYL 67, 678, 586, 611, 680, 682, 683, 690, 52J, 57J, 60J, 61J, 62J, 63J, 70J, HPD-96J, 501J, 354J. , 6610, PDX-6102B, 7100, 390, 711, 511, 7001, 741, 450, 840, 74J, HRC-1645J, 734, 852, 7600, 775, 537J, 1535, PDX-7630, 352J, 252D, 538J7640 7641, 631, 790, 780, or 7610.

三菱レイヨン製の酸性官能基を有する樹脂としては、ダイヤナールBR−60、64、73、77、79、83、87、88、90、93、102、106、113、又は116等が挙げられる。
日本油脂社製の酸性官能基を有する樹脂としては、AKM−0531、AFB−1521、AAB−0851、AWS−0851が挙げられる。
Examples of the resin having an acidic functional group manufactured by Mitsubishi Rayon include Dianal BR-60, 64, 73, 77, 79, 83, 87, 88, 90, 93, 102, 106, 113, or 116.
Examples of the resin having an acidic functional group manufactured by NOF Corporation include AKM-0531, AFB-1521, AAB-0851, and AWS-0851.

カルボキシメチルセルロースおよびそのナトリウム塩、アンモニウム塩や変性物などがあり、例えばダイセルファインケム製の樹脂としてはCMCダイセル1220、1230、1240、1250,1260、1330、1350、1360,1380,1390、2200、2260、2280、2450等が挙げられる。
ビニルアミド系樹脂としては特に限定はされないが、例えばポリビニルアセトアミド、ポリアクリルアミド、ポリビニルピロリドン、アルキル化ポリビニルピロリドン、ポリビニルピロリドンのグラフト共重合体、及びビニルピロリドンとコモノマーとの共重合体等が挙げられる。
There are carboxymethyl cellulose and its sodium salt, ammonium salt and modified products. For example, as resins made by Daicel Finechem, CMC Daicel 1220, 1230, 1240, 1250, 1260, 1330, 1350, 1360, 1380, 1390, 2200, 2260, 2280, 2450 and the like.
The vinylamide resin is not particularly limited, and examples thereof include polyvinylacetamide, polyacrylamide, polyvinylpyrrolidone, alkylated polyvinylpyrrolidone, a polyvinylpyrrolidone graft copolymer, and a copolymer of vinylpyrrolidone and a comonomer.

ビニルピロリドンと共重合できるコモノマーとしては、α−オレフィン、酢酸ビニル、アクリル酸エチル、アクリル酸メチル、メタクリル酸メチル、メタクリル酸ジメチルアミノエチル、アクリルアミド、メタクリルアミド、アクリロニトリル、エチレン、スチレン、無水マレイン酸、アクリル酸、硫酸ビニルナトリウム、塩化ビニル、ビニルピロリジン、トリメチルシロキシビニルシラン、プロピオン酸ビニル、ビニルカプロラクタム、メチルビニルケトン等が挙げられる。   Comonomers that can be copolymerized with vinylpyrrolidone include α-olefin, vinyl acetate, ethyl acrylate, methyl acrylate, methyl methacrylate, dimethylaminoethyl methacrylate, acrylamide, methacrylamide, acrylonitrile, ethylene, styrene, maleic anhydride, Examples include acrylic acid, sodium vinyl sulfate, vinyl chloride, vinyl pyrrolidine, trimethylsiloxy vinyl silane, vinyl propionate, vinyl caprolactam, and methyl vinyl ketone.

又、前記ビニルアミド系樹脂を有機酸又は無機酸処理による酸変性物等も用いられる。   In addition, an acid-modified product obtained by treating the vinylamide resin with an organic acid or an inorganic acid may be used.

前記ビニルアミド系樹脂の中でも、特に、ポリビニルピロリドン、ビニルピロリドン−1-ブテン共重合体、若しくはビニルピロリドン−スチレン共重合体等のほぼ中性のビニ
ルアミド系樹脂、又は、有機酸、若しくは無機酸で処理したポリビニルピロリドンの酸変性物が好適に用いられる。
Among the vinylamide resins, in particular, treatment with a substantially neutral vinylamide resin such as polyvinylpyrrolidone, vinylpyrrolidone-1-butene copolymer, or vinylpyrrolidone-styrene copolymer, or an organic acid or an inorganic acid. An acid-modified product of polyvinyl pyrrolidone is preferably used.

濡れ向上剤の添加量は、用いる導電助剤としての炭素材料の比表面積等により決定される。一般には、濡れ向上剤を、炭素材料100重量部に対して、0.5重量部以上、40重量部以下、好ましくは1重量部以上、35重量部以下、更に好ましくは、2重量部以上、30重量部以下で添加する。添加量が少ないと十分な濡れ向上効果が得られず、過剰に添加しても電池性能の低下を引き起こし好ましくない。   The addition amount of the wetting improver is determined by the specific surface area of the carbon material as the conductive aid used. Generally, the wetting improver is 0.5 parts by weight or more and 40 parts by weight or less, preferably 1 part by weight or more and 35 parts by weight or less, more preferably 2 parts by weight or more, with respect to 100 parts by weight of the carbon material. Add up to 30 parts by weight. If the addition amount is small, a sufficient wettability improving effect cannot be obtained, and adding too much is not preferable because it causes a decrease in battery performance.

<正極活物質>
本発明の導電性組成物を用いて合材ペーストを作製する正極活物質としては特に限定はされないが、リチウムイオンをドーピング又はインターカレーション可能な、金属酸化物、及び金属硫化物等の金属化合物を使用することができる。例えば、Ti、Fe、Co、Ni、及びMn等の遷移金属の酸化物、前記遷移金属とリチウムとの複合酸化物、並びに、前記遷移金属の硫化物等の無機化合物等が挙げられる。
具体的には、
MnO、V、V13、及びTiO等の遷移金属酸化物粉末;
層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、及びスピネル構造のマンガン酸リチウム等のリチウムと遷移金属との複合酸化物粉末;
オリビン構造のリン酸化合物であるリン酸鉄リチウム、リン酸マンガンリチウム、ナシコン構造を有するもの、ポリアニオン系材料;並びに、
TiS、及びFeS等の遷移金属硫化物粉末等;
が挙げられる。
又、上記の無機化合物は2種類以上混合して用いてもよい。
<Positive electrode active material>
The positive electrode active material for producing the composite paste using the conductive composition of the present invention is not particularly limited, but metal compounds such as metal oxides and metal sulfides that can be doped or intercalated with lithium ions Can be used. Examples thereof include transition metal oxides such as Ti, Fe, Co, Ni, and Mn, composite oxides of the transition metal and lithium, and inorganic compounds such as sulfides of the transition metal.
In particular,
Transition metal oxide powders such as MnO, V 2 O 5 , V 6 O 13 , and TiO 2 ;
A composite oxide powder of lithium and a transition metal, such as lithium nickelate, lithium cobaltate, lithium manganate having a layered structure, and lithium manganate having a spinel structure;
Lithium iron phosphate which is a phosphate compound having an olivine structure, lithium manganese phosphate, one having a nasicon structure, a polyanionic material; and
Transition metal sulfide powders such as TiS 2 and FeS;
Is mentioned.
In addition, two or more of the above inorganic compounds may be mixed and used.

用いる正極活物質の比表面積は、値が大きいほど、正極活物質粒子どうしの接触点が増えるため、正極電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、0.1m/g以上、150m/g以下、好ましくは1m/g以上、120m/g以下、更に好ましくは1.5m/g以上、100m/g以下のものを使用することが望ましい。比表面積が0.1m/gを下回る正極活物質を用いると、十分な導電性を得ることが難しくなる場合があり、150m/gを超える正極活物質は、製造が容易でない場合がある。 As the specific surface area of the positive electrode active material used increases, the number of contact points between the positive electrode active material particles increases, which is advantageous in reducing the internal resistance of the positive electrode. Specifically, the specific surface area (BET) determined from the amount of nitrogen adsorption is 0.1 m 2 / g or more and 150 m 2 / g or less, preferably 1 m 2 / g or more and 120 m 2 / g or less, more preferably 1.5 m 2 / g or more, it is desirable to use the following 100 m 2 / g. When a positive electrode active material having a specific surface area of less than 0.1 m 2 / g is used, it may be difficult to obtain sufficient conductivity, and a positive electrode active material having a specific surface area of more than 150 m 2 / g may not be easily manufactured. .

又、用いる正極活物質の粒径は、一次粒子径で0.01〜500μmが好ましく、特に、0.05〜100μmが好ましい。但し、ここでいう一次粒子径とは、電子顕微鏡等で測定された粒子径を平均したものである。   In addition, the particle size of the positive electrode active material to be used is preferably 0.01 to 500 μm, particularly preferably 0.05 to 100 μm in terms of primary particle size. However, the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.

正極活物質のなかでも、オリビン構造のリン酸鉄リチウムは、コスト面や安全面の観点で好ましい材料である。
単なるオリビン構造のリン酸鉄リチウムでは、コバルト酸リチウム等と比較して電子伝導性が非常に低いため優れた電池特性が得られにくい。そこで、電子伝導性を向上させるために、炭素材料などの導電性物質を粒子に担持させたり、一次粒子径を小さくする方法が取られている。
炭素材料担持リン酸鉄リチウムは、特に限定されるものではないが、特開2003−292308号公報、及び特開2003−292309号公報等を参考に製造することができる。
Among positive electrode active materials, lithium iron phosphate having an olivine structure is a preferable material from the viewpoints of cost and safety.
Since lithium iron phosphate having a simple olivine structure has very low electronic conductivity compared to lithium cobaltate or the like, it is difficult to obtain excellent battery characteristics. Therefore, in order to improve the electron conductivity, a method is adopted in which a conductive material such as a carbon material is supported on the particles or the primary particle diameter is reduced.
The carbon material-supported lithium iron phosphate is not particularly limited, but can be produced with reference to Japanese Patent Application Laid-Open Nos. 2003-292308 and 2003-292309.

例えば、リン酸第一鉄八水和物(Fe(PO・8HO)とリン酸リチウム(LiPO)とを、リチウムと鉄の元素比率が1:1となるように混合し、これに導電性物質である炭素材料(例えば、アセチレンブラック、ケッチェンブラック等)、又は焼成することで分解し炭素材料となる有機化合物を、最終品で炭素材料成分が、0.1〜50重量%となるように更に加え、乾式粉砕機等で粉砕混合処理を行ったあと不活性ガス雰囲気下、600℃で数時間焼成を行い、得られた焼成物を粉砕することにより得られる。 For example, ferrous phosphate octahydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) and lithium phosphate (Li 3 PO 4 ) are used so that the element ratio of lithium to iron is 1: 1. And a carbon material (for example, acetylene black, ketjen black, etc.) that is a conductive substance, or an organic compound that is decomposed by firing to become a carbon material, and the carbon material component in the final product is 0. It is obtained by further adding 1 to 50% by weight, pulverizing and mixing with a dry pulverizer, etc., then firing at 600 ° C. for several hours in an inert gas atmosphere, and pulverizing the resulting fired product. It is done.

<負極活物質>
本発明で使用する負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ−p−フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。
<Negative electrode active material>
The negative electrode active material used in the present invention is not particularly limited as long as it can be doped or intercalated with lithium ions. For example, metal Li, alloys thereof such as tin alloy, silicon alloy, lead alloy, Li X Fe 2 O 3 , Li X Fe 3 O 4 , Li X WO 2 , lithium titanate, lithium vanadate, silicon Metal oxides such as lithium oxide, conductive polymers such as polyacetylene and poly-p-phenylene, amorphous carbonaceous materials such as soft carbon and hard carbon, artificial graphite such as highly graphitized carbon materials, or natural Examples thereof include carbonaceous powders such as graphite, carbon black, mesophase carbon black, resin-fired carbon materials, air-growth carbon fibers, and carbon fibers.

これら負極活物質は、1種または複数を組み合わせて使用することも出来る。   These negative electrode active materials can be used alone or in combination.

本発明で使用する負極活物質としては、導電性物質で複合化されたものも好適に用いられる。導電性物質としては、炭素材料、導電性高分子材料、金属等が挙げられるが、本発明の分散剤との相互作用を考慮すると、炭素材料もしくは導電性高分子材料が好ましい。   As the negative electrode active material used in the present invention, a composite material made of a conductive material is also preferably used. Examples of the conductive substance include a carbon material, a conductive polymer material, a metal, and the like. In consideration of the interaction with the dispersant of the present invention, a carbon material or a conductive polymer material is preferable.

導電性高分子材料としては、例えばポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレン誘導体等が挙げられる。炭素質材料としては、黒鉛質炭素として天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、非晶質炭素としてアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、繊維状炭素材料としてカーボンナノチューブ、カーボンナノファイバー等が挙げられる。金属としては、Al,Ti,Fe,Ni,Cu,Zn,Ag,Sn等が挙げられる。   Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, and polyphenylene derivatives. Carbonaceous materials include graphite such as natural graphite (scale-like graphite), artificial graphite, expanded graphite, etc., acetylene black, ketjen black, channel black, furnace black, lamp black as amorphous carbon, Carbon blacks such as thermal black, and carbon nanotubes, carbon nanofibers and the like are mentioned as fibrous carbon materials. Examples of the metal include Al, Ti, Fe, Ni, Cu, Zn, Ag, and Sn.

これらの複合化処理は、必要に応じ複数を組み合わせて行っても良い。   These complexing processes may be performed in combination of a plurality as required.

負極活物質を導電性物質で複合化する方法としては、例えば炭素材料、金属を複合化する場合であれば、特開2003−308845号、特許第3985263号に記載のメカノフュージョン、ハイブリダイゼーション処理等の機械的処理、導電性高分子材料を複合化する場合であれば、特開2001−68096号に記載の、導電性高分子が溶解している有機溶剤溶液に浸漬させ、乾燥、熱処理する方法等が挙げられる。更には、CVD法による有機物の熱分解物被覆法やプラズマ法を用いた活物質表面への被覆層の形成法なども挙げられる。また、その他の活物質粒子表面に導電性材料を被覆する方法として、結着剤を用いる方法、気相中に分散された粉体が互いに接触するときに生じる摩擦帯電を利用して表面吸着を行う方法等を用いることも出来る。   As a method of compositing the negative electrode active material with a conductive material, for example, in the case of compositing a carbon material and a metal, mechanofusion, hybridization treatment and the like described in JP-A No. 2003-308845, Japanese Patent No. 3985263, etc. In the case of compounding a conductive polymer material and a conductive polymer material, a method of dipping in an organic solvent solution in which a conductive polymer is dissolved as described in JP-A-2001-68096, followed by drying and heat treatment Etc. Furthermore, a thermal decomposition product coating method of an organic substance by a CVD method, a formation method of a coating layer on an active material surface using a plasma method, and the like are also included. As other methods for coating the surface of the active material particles with a conductive material, a method using a binder and surface adsorption using frictional charging generated when powders dispersed in a gas phase come into contact with each other are used. The method of performing etc. can also be used.

また、金属系、金属酸化物系の負極活物質、もしくは金属で複合化した負極活物質については、本発明で使用する濡れ向上剤との相互作用を考慮し、シランカップリング剤等のカップリング剤で表面を処理することも可能である。   In addition, for metal-based, metal oxide-based negative electrode active materials, or metal-based negative electrode active materials, coupling with a silane coupling agent or the like in consideration of the interaction with the wetting improver used in the present invention. It is also possible to treat the surface with an agent.

<溶剤>
本発明に使用する溶剤としては、例えば、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類、及び水等が挙げられる。
バインダー樹脂成分の溶解性や、導電助剤である導電材料の分散安定性を得るためには、極性の高い溶剤を使用するのが好ましい。
例えば、水、アルコール、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、及びN,N−ジエチルアセトアミド等の様な窒素をジアルキル化したアミド系溶剤、N−メチルピロリドン、ヘキサメチル燐酸トリアミド、並びに、ジメチルスルホキシド等が挙げられるが、これらに限定されない。二種類以上を併用することもできる。
<Solvent>
Examples of the solvent used in the present invention include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid. Examples include esters, ethers, nitriles, and water.
In order to obtain the solubility of the binder resin component and the dispersion stability of the conductive material as the conductive auxiliary agent, it is preferable to use a highly polar solvent.
For example, amide solvents such as water, alcohol, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, etc., N-methyl Examples include, but are not limited to, pyrrolidone, hexamethylphosphoric triamide, and dimethyl sulfoxide. Two or more types can be used in combination.

<バインダー>
本発明の導電性組成物を用いて合材インキを作製するバインダーとしては、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシルメチルセルロース等のセルロース樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等が挙げられる。又、これらの樹脂の変性体、混合物、水性エマルジョン、又は共重合体でも良い。
具体的には、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、及びビニルピロリドン等を構成単位として含む共重合体が挙げられる。
また、耐性面から分子内にフッ素原子を有する高分子化合物、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、及びポリテトラフルオロエチレン等の使用が好ましい。
<Binder>
Examples of the binder for producing a composite ink using the conductive composition of the present invention include acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, acrylic resin. Examples thereof include resin, formaldehyde resin, silicon resin, fluororesin, cellulose resin such as carboxymethylcellulose, synthetic rubber such as styrene-butadiene rubber and fluororubber, and conductive resin such as polyaniline and polyacetylene. Moreover, the modified body, mixture, aqueous emulsion, or copolymer of these resin may be sufficient.
Specifically, ethylene, propylene, vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic ester, methacrylic acid, methacrylic ester, acrylonitrile, styrene, vinyl butyral, vinyl acetal, vinyl pyrrolidone, etc. Examples thereof include a copolymer contained as a structural unit.
From the viewpoint of resistance, it is preferable to use a polymer compound having a fluorine atom in the molecule, such as polyvinylidene fluoride, polyvinyl fluoride, and polytetrafluoroethylene.

また、バインダーとしてのこれらの樹脂類の重量平均分子量は、10,000〜1,000,000が好ましい。分子量が小さいとバインダーの耐性が低下することがある。分子量が大きくなるとバインダーの耐性は向上するものの、バインダー自体の粘度が高くなり作業性が低下するとともに、凝集剤として働き、合剤成分が著しく凝集してしまうことがある。   Moreover, as for the weight average molecular weight of these resin as a binder, 10,000-1,000,000 are preferable. When the molecular weight is small, the resistance of the binder may decrease. When the molecular weight is increased, the resistance of the binder is improved, but the viscosity of the binder itself is increased, the workability is lowered, and it acts as an aggregating agent.

<リチウム二次電池用正極合材インキ>
本発明の電極用導電性組成物は、リチウム二次電池用正極合材インキに添加して用いることができる。正極合材インキとして用いる場合は、上記の濡れ向上剤で処理された導電性組成物と、正極活物質と、溶剤とを含んでなるペースト、及びバインダー成分を含有させ正極合材インキとして使用することが好ましい。
正極合材インキ中の総固形分に占める正極活物質の割合は、80重量%以上、98.5重量%以下、好ましくは83重量%以上、95重量%以下で使用することが望ましい。正極活物質の割合が80重量%を下回ると、十分な導電性、放電容量を得ることが難しくなる場合があり、98.5重量%を超えると、バインダー成分の割合が低下するため、集電体への密着性が低下し、正極活物質が脱離しやすくなる場合がある。
又、正極合材インキ中の総固形分に占める、導電助剤としての炭素材料固形分の割合は、0.5重量%以上、19重量%以下、好ましくは1.0重量%以上、15重量%以下で使用することが望ましい。導電助剤としての炭素材料の割合が、0.5重量%を下回ると、十分な導電性を得ることが難しくなる場合があり、19重量%を超えると、電池性能に大きく関与する正極活物質の割合が低下するため、放電容量が低下するなどの問題が発生する場合がある。
<Positive electrode mixture ink for lithium secondary battery>
The conductive composition for an electrode of the present invention can be used by adding to a positive electrode mixture ink for a lithium secondary battery. When used as a positive electrode mixture ink, it contains a conductive composition treated with the above wetting improver, a positive electrode active material, a solvent, and a binder component, and is used as a positive electrode mixture ink. It is preferable.
The proportion of the positive electrode active material in the total solid content in the positive electrode mixture ink is desirably 80% by weight or more and 98.5% by weight or less, preferably 83% by weight or more and 95% by weight or less. If the proportion of the positive electrode active material is less than 80% by weight, it may be difficult to obtain sufficient electrical conductivity and discharge capacity. If the proportion exceeds 98.5% by weight, the proportion of the binder component decreases, and thus current collection. Adhesion to the body may be reduced, and the positive electrode active material may be easily detached.
Further, the ratio of the solid content of the carbon material as the conductive auxiliary agent in the total solid content in the positive electrode mixture ink is 0.5% by weight or more and 19% by weight or less, preferably 1.0% by weight or more and 15% by weight. It is desirable to use at less than%. When the ratio of the carbon material as the conductive auxiliary agent is less than 0.5% by weight, it may be difficult to obtain sufficient conductivity. When the proportion exceeds 19% by weight, the positive electrode active material that greatly contributes to battery performance. As a result, a problem such as a decrease in discharge capacity may occur.

又、正極合材インキ中の総固形分に占める、バインダー成分の割合は、1重量%以上、10重量%以下が好ましい、好ましくは2重量%以上、8重量%以下で使用することが望ましい。バインダー成分の割合が1重量%を下回ると、結着性が低下するため、集電体から正極活物質や導電助剤としての炭素材料などが脱離しやすくなる場合があり、10重量%を超えると、正極活物質及び導電助剤としての炭素材料の割合が低下するため、電池性能の低下に繋がる場合がある。
又、正極合材インキの適正粘度は、正極合材インキの塗工方法によるが、一般には、100mPa・s以上、30,000mPa・s以下とするのが好ましい。
Further, the ratio of the binder component in the total solid content in the positive electrode mixture ink is preferably 1% by weight or more and 10% by weight or less, and preferably 2% by weight or more and 8% by weight or less. When the ratio of the binder component is less than 1% by weight, the binding property is lowered, and thus the positive electrode active material and the carbon material as the conductive auxiliary agent may be easily detached from the current collector, which exceeds 10% by weight. And, since the ratio of the positive electrode active material and the carbon material as the conductive auxiliary agent is decreased, the battery performance may be decreased.
The proper viscosity of the positive electrode mixture ink depends on the method of applying the positive electrode mixture ink, but generally it is preferably 100 mPa · s or more and 30,000 mPa · s or less.

本発明の導電性組成物はかさ密度0.30〜0.80g/cmであることが好ましい。その理由は、本発明の組成物は顆粒状かつ固形分濃度20〜60%であるため、上記のかさ密度の範囲にあれば、合材インキ化の際に、組成物を添加した初期分散段階では合材インキ中に偏りなく導電成分が分配され、その後に分散が進む段階では顆粒状の組成物が解されて電極活物質の表面に吸着されたり、バインダ中に導電材料のストラクチャーを広げられる好適な状態であることが確認できる。電極を作製した時に導電性材料が塗膜中で導電成分の分布に偏りのない導電性経路が形成される。その結果、電極の抵抗が低下することで充放電特性や負荷特性(レート特性)が格段に向上し、優れた電極としてリチウムイオン電池だけでなく、リチウムイオンキャパシタ、電気二重層キャパシタ、燃料電池などに使用できる。更に分散混練時間が大幅に短縮化でき、粉体状の導電性炭素材料と比べて飛散などがなくハンドリングなど格段に優れるため効率的な生産が可能となり、トータルでのコストダウンに極めて有効である。 The conductive composition of the present invention preferably has a bulk density of 0.30 to 0.80 g / cm 3 . The reason is that the composition of the present invention is granular and has a solid content concentration of 20 to 60%. Therefore, if it is in the above bulk density range, the initial dispersion stage in which the composition is added at the time of forming the composite ink. In the mixed ink, the conductive component is distributed evenly, and at the stage of subsequent dispersion, the granular composition is dissolved and adsorbed on the surface of the electrode active material, or the structure of the conductive material can be expanded in the binder. It can be confirmed that this is a suitable state. When the electrode is produced, a conductive path is formed in which the conductive material is not biased in the distribution of the conductive component in the coating film. As a result, the charge / discharge characteristics and load characteristics (rate characteristics) are remarkably improved by reducing the resistance of the electrodes, and not only lithium ion batteries but also lithium ion capacitors, electric double layer capacitors, fuel cells, etc. as excellent electrodes Can be used for In addition, the dispersion and kneading time can be greatly shortened, and there is no scattering and much better handling than powdered conductive carbon materials, enabling efficient production and extremely effective in reducing the total cost. .

本発明の導電性組成物を得るにはメディアレス分散が好適である。通常、スラリーの調製工程では、ビーズミル等が用いられるが、ビーズやボールのようなメディアを用いた分散方法では、固形分濃度が20%以上にするのが難しく、更にスラリー中の導電材料の構造が破壊されやすい。導電材料のストラクチャーが破壊および切断されると、導電性が大幅に低下するばかりでなく導電材料のかさ密度が上昇し、電極層の導電経路が切断または経路が細ることにより電極の抵抗が上昇し、電池としての機能が低下する。   Medialess dispersion is suitable for obtaining the conductive composition of the present invention. Normally, a bead mill or the like is used in the slurry preparation process. However, in a dispersion method using a medium such as beads or balls, it is difficult to achieve a solid content concentration of 20% or more, and the structure of the conductive material in the slurry. Is easily destroyed. When the structure of the conductive material is broken and cut, not only is the conductivity significantly reduced, but the bulk density of the conductive material is increased, and the resistance of the electrode is increased by cutting or narrowing the conductive path of the electrode layer. The function as a battery is reduced.

高い電池性能を得るためには、上述のような導電材料のストラクチャーを保持したままで、導電材料の分配し、好適な導電経路を形成することが求められる。その際、電極活物質と集電体を繋げる導電経路を好適に形成するためには導電材料の凝集を解し、活物質表面に吸着させ、更に活物質の間にあるバインダを通り抜けて導電材料のストラクチャーを広げてネットワーク創る必要がある。そのため、導電材料と濡れ向上剤とを液状成分に分散させて顆粒を得る工程では、メディアレス分散を行うことが重要である。メディアレス分散では、導電材料とメディアとの衝突が生じないため、導電材料のストラクチャーを保持し導電性を発現することが可能となる。但し、エクストルーダーなど2軸押出機やKCKなど導電性炭素材料のストラクチャーを破壊する装置は本発明のメディアレス分散機からは除外される。メディアレス分散の中でもジェット流または攪拌翼と攪拌羽根による高速せん断などによる分散が特に好ましい。この高速せん断分散により、導電材料のストラクチャーはほとんど破壊されず、導電性の高い電極を得やすくなる。   In order to obtain high battery performance, it is required to distribute the conductive material and form a suitable conductive path while maintaining the structure of the conductive material as described above. At that time, in order to suitably form a conductive path connecting the electrode active material and the current collector, the conductive material is deaggregated, adsorbed on the surface of the active material, and further passed through the binder between the active materials, and then the conductive material. It is necessary to create a network with an expanded structure. For this reason, it is important to perform medialess dispersion in the step of obtaining granules by dispersing a conductive material and a wetting improver in a liquid component. In the medialess dispersion, the collision between the conductive material and the medium does not occur, so that the structure of the conductive material can be maintained and the conductivity can be expressed. However, a twin-screw extruder such as an extruder or an apparatus that destroys the structure of a conductive carbon material such as KCK is excluded from the medialess disperser of the present invention. Among the medialess dispersions, dispersion by jet flow or high-speed shearing with stirring blades and stirring blades is particularly preferable. By this high-speed shearing dispersion, the structure of the conductive material is hardly destroyed, and it becomes easy to obtain a highly conductive electrode.

メディアレス分散を行う分散装置としては、例えば高速回転剪断型装置、遠心場利用高速回転型装置等が知られている。例えば、
ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;
三井鉱山社製「ヘンシェルミキサー」、カワタ社製「スーパーミキサー」、井上製作所製「トリミックス」、「ディゾルバー」、「BDM2軸ミキサー」、「PDミキサー」、「CDM同芯ミキサー」、エム・テクニック社製「クレアミックス」、アイリッヒ社製「インテシブミキサー」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;
湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;又は、
その他ニーダー、2本ロール、3本ロールなどのロールミル等が挙げられるが、これらに限定されるものではない。又、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
As a dispersion apparatus that performs medialess dispersion, for example, a high-speed rotary shearing type apparatus, a high-speed rotation type apparatus using a centrifugal field, and the like are known. For example,
Mixers such as dispersers, homomixers, or planetary mixers;
"Henschel mixer" manufactured by Mitsui Mining Co., Ltd. "Super mixer" manufactured by Kawata Co., Ltd. "Trimix" manufactured by Inoue Seisakusho, "Dissolver", "BDM 2-axis mixer", "PD mixer", "CDM concentric mixer", M Technique Homogenizers such as “Clairemix” manufactured by Co., Ltd., “Intelligent Mixer” manufactured by Eirich, or “Fillmix” manufactured by PRIMIX
Wet jet mill (genus “Genus PY”, Sugino Machine “Starburst”, Nanomizer “Nanomizer”, etc.) M Technic “Claire SS-5”, or Nara Machinery “MICROS” Medialess dispersers such as; or
Other examples include, but are not limited to, kneaders, roll mills such as two rolls and three rolls. Further, as the disperser, it is preferable to use a disperser that has been subjected to a metal mixing prevention treatment from the disperser.

本発明では高速回転剪断による分散が顆粒状かつ固形分濃度を大幅に向上させるのに好適である。用いられる高速回転剪断型分散機としては、攪拌翼及び又は攪拌羽根を具備するものが好ましい。攪拌翼及び又は攪拌羽根を具備する高速せん断分散機は、高速回転する攪拌翼及び又は攪拌羽根が連続して機械的剪断力を加え、凝集した導電材料を好適に解し、最後に強力な攪拌作用によって組成物を顆粒状に形成することができる。係る高速せん断分散機を用いると電池性能に優れた電池およびキャパシタを好適に得ることができる。   In the present invention, dispersion by high-speed rotational shearing is suitable for improving the granular content and solid content concentration. As the high-speed rotary shearing type disperser used, those equipped with a stirring blade and / or a stirring blade are preferable. A high-speed shearing disperser equipped with stirring blades and / or stirring blades applies mechanical shearing force continuously to the stirring blades and / or stirring blades that rotate at high speed to suitably solve the agglomerated conductive material, and finally to strong stirring. The composition can be formed into granules by the action. When such a high-speed shear disperser is used, a battery and a capacitor excellent in battery performance can be suitably obtained.

本発明に用いられる攪拌翼及び又は攪拌羽根を具備する高速分散機は、好ましくは多段攪拌翼及び又は多段攪拌羽根であると好適である。さらに攪拌翼及び又は攪拌羽根は、活物質、導電材料、バインダなどの種類によって様々な形状を取ることができ、攪拌効率を上げるためにブレードまたは羽根を折り曲げたり、楕円状、円盤状、円柱状にしたりすることができ特に形状に制限はない。また高速分散機には横軸型と縦軸型のものがあり、例えば横軸型のものとしては、タービュライザ、サンドターボ、パドルスミキサ、コンプレックス、ペーストミキサなどが挙げられ、縦軸型のものとしては、スピードミキサ、パワーニーダ、堅型ミキサ、ハイブリッドミキサ、ジスパーシブアジテータ、ツインシャフトミキサ、コンビミックス、フロージェットミキサなどが挙げられるが、縦軸型の好ましくはスーパーミキサー(カワタ)、ヘンシェルミキサー(三井鉱山/ドイツヘンシェル社)、アイリッヒ社製「インテシブミキサー」などが代表的な例として挙げられる。   The high-speed disperser including the stirring blade and / or stirring blade used in the present invention is preferably a multistage stirring blade and / or a multistage stirring blade. Furthermore, the stirring blade and / or the stirring blade can take various shapes depending on the type of active material, conductive material, binder, etc., and the blade or blade may be bent, elliptical, disc-shaped, or cylindrical, in order to increase the stirring efficiency. The shape is not particularly limited. High-speed dispersers include a horizontal axis type and a vertical axis type. Examples of the horizontal axis type include a turbulizer, a sand turbo, a paddle mixer, a complex, and a paste mixer. , Speed mixers, power kneaders, rigid mixers, hybrid mixers, dispersive agitators, twin shaft mixers, combimixes, flow jet mixers, etc., but the vertical type is preferably super mixer (Kawata), Henschel mixer Representative examples include Mitsui Mine / Henschel Germany) and “Intelligent Mixer” manufactured by Eirich.

本発明の高速分散機は、攪拌翼及び又は攪拌羽根の回転数は500〜6000rpmが好ましく、特に好ましくは1000〜5000rpmである。500rpm未満であると濡れ向上剤や溶剤が導電材料に偏りなく表面を濡らすことが困難になり、6000rpmを越えると発熱などを引き起こして濡れ向上剤の分解や導電材料の凝集を引き起こす虞れがあり好ましくない。   In the high-speed disperser of the present invention, the rotation speed of the stirring blade and / or the stirring blade is preferably 500 to 6000 rpm, particularly preferably 1000 to 5000 rpm. If it is less than 500 rpm, it becomes difficult for the wetting improver or solvent to wet the surface without being biased to the conductive material, and if it exceeds 6000 rpm, it may cause heat generation to cause decomposition of the wetting improver or aggregation of the conductive material. It is not preferable.

また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。   Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.

更に、上記の分散混練機に加えて必要があれば造粒装置により本発明の導電性組成物を顆粒にすることができる。例えば転動流動コーティング装置(マルチプレックス)、流動層造粒乾燥機、撹拌造粒機(バーチカル・グラニュレータ)、破砕造粒機などが挙げられる。   Furthermore, if necessary, the conductive composition of the present invention can be granulated by a granulator if necessary in addition to the above dispersion kneader. Examples thereof include a rolling fluidized coating apparatus (multiplex), a fluidized bed granulator / dryer, a stirring granulator (vertical granulator), and a crushing granulator.

本発明の導電性組成物の製造方法は、前記導電性炭素材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電性炭素材料を造粒する第二の工程よりなり、顆粒状かつ、固形分が25〜60重量%の好適な導電性組成物が得られる。第一の工程を経ることで導電性炭素材料を溶剤との濡れ性を高めながら凝集した炭素材料を解すことが可能となる。更に第二の工程で解された炭素材料を濡れ向上剤を介して溶剤を取り込み、ハンドリングが良好で電極塗膜中の導電性経路を形成しやすい顆粒状の組成物が得られる。   The method for producing a conductive composition of the present invention comprises a first step of wetting the conductive carbon material with a solvent with a wetting improver, and a second step of granulating the wet conductive carbon material. And a suitable conductive composition having a solid content of 25 to 60% by weight is obtained. By passing through the first step, it becomes possible to unravel the aggregated carbon material while improving the wettability of the conductive carbon material with the solvent. Furthermore, the carbon material clarified in the second step incorporates a solvent through a wetting improver, and a granular composition is obtained that is easy to handle and easily forms a conductive path in the electrode coating.

以下、実施例に基づき本発明を更に詳しく説明するが、本発明は、実施例に限定されるものではない。実施例中、部は重量部を、%は重量%をそれぞれ表す。電極活物質分散体、及び電極合剤ペーストの分散粒度については、マイクロトラックUPA−EX150(日機装製)又はグラインドゲージによる判定(JIS K5600−2−5に準ず)より求めた。又、電極活物質分散体及び導電助剤分散体の粘度は、E型粘度計(東機産業社製「RE80型粘度計」)で、50rpmの回転速度における25℃の粘度を測定した。
また、顆粒状の導電組成物のかさ密度はJIS−R1628に記載の方法に準拠して測定できる。100cmの容器に入れたときの重量から求めることができる。
EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to an Example. In the examples, “parts” represents “parts by weight” and “%” represents “% by weight”. The dispersed particle size of the electrode active material dispersion and the electrode mixture paste was determined by determination using Microtrac UPA-EX150 (manufactured by Nikkiso) or a grind gauge (according to JIS K5600-2-5). Further, the viscosity of the electrode active material dispersion and the conductive auxiliary agent dispersion was measured with an E type viscometer (“RE80 type viscometer” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. at a rotation speed of 50 rpm.
Further, the bulk density of the granular conductive composition can be measured in accordance with the method described in JIS-R1628. It can be determined from the weight when placed in a 100 cm 3 container.

<電極用導電性組成物の調製>
[電極用導電性組成物(1)〜(21)]
導電助剤となるアセチレンブラック(デンカブラック粉状品、かさ密度0.04g/cm、体積抵抗率0.05Ω・cm;圧縮密度0.9g/cm、電気化学工業社製)35部、塩基性官能基を有する誘導体(A)0.7部、及びN−メチル−2−ピロリドン(NMP)を64.7部仕込み、スーパーミキサーにて2000rpm高速せん断処理することで顆粒状かつ固形分35.7%(内カーボン35%重量)の電極用導電性組成物(1)を得た。
<Preparation of conductive composition for electrode>
[Electroconductive compositions for electrodes (1) to (21)]
35 parts of acetylene black (Denka black powder, bulk density 0.04 g / cm 3 , volume resistivity 0.05 Ω · cm; compression density 0.9 g / cm 3 , manufactured by Denki Kagaku Kogyo Co., Ltd.) serving as a conductive aid Preparation of 0.7 part of the derivative (A) having a basic functional group and 64.7 parts of N-methyl-2-pyrrolidone (NMP), and a high-speed shearing treatment at 2000 rpm with a supermixer give a granular and solid content of 35 0.7% (35% by weight of carbon) of the electrode conductive composition (1) was obtained.

以下同様にして表1〜表4に示す濡れ向上剤と導電材料を加え、メディアレス分散機で分散し、顆粒状の導電性組成物(固形分20〜60%)を得た。表5にその組成表を示す。尚、電極用導電性組成物(14)はディスパー分散後に撹拌造粒機(バーチカル・グラニュレータ)を用いて顆粒状(丸薬形状)にしている。得られた導電性組成物の保存安定性、ハンドリング性、合材インキ加工性、電極抵抗評価結果を、表6に示した。   In the same manner, wetting improvers and conductive materials shown in Tables 1 to 4 were added and dispersed with a medialess disperser to obtain a granular conductive composition (solid content 20 to 60%). Table 5 shows the composition table. In addition, the electroconductive composition (14) for electrodes is granulated (pill shape) using a stirring granulator (vertical granulator) after dispersing the dispersion. Table 6 shows the storage stability, handling properties, composite ink processability, and electrode resistance evaluation results of the obtained conductive composition.

[比較(1)〜(5)]
比較1〜5では本発明に必要とされる特定のかさ密度、体積抵抗率を有する導電材料、および濡れ向上剤など使用しないために、得られる導電性組成物が顆粒状かつ高濃度の固形分のものが得られないことがわかる。表5にその組成表を示す。得られた導電性組成物の保存安定性、ハンドリング性、合材インキ加工性、電極特性評価結果を表6に示した。
[Comparison (1) to (5)]
In comparisons 1 to 5, since the conductive material having a specific bulk density and volume resistivity required for the present invention, and a wetting improver are not used, the obtained conductive composition has a granular and high concentration solid content. It turns out that the thing of cannot be obtained. Table 5 shows the composition table. Table 6 shows the storage stability, handling properties, composite ink processability, and electrode property evaluation results of the obtained conductive composition.

比較2ではエクストルーダー(2軸押出機PCM30;池貝鉄工社製)で組成物を作製しているが、導電材料を充分に分散するにはバインダ成分を多くする必要があり、電極伝導度を低下させる原因となる。一方、バインダ成分を減量して分散するとスクリューの圧縮せん断により導電材料のストラクチャーを破壊し、やはり電極伝導度を低下させる。
比較3ではビーズミルによるメディア分散を10時間実施しているが、分散時間を増加させても固形分濃度は20%が限界であり、組成物の形状もペーストとゲル状の境目となり、導電性組成物の加工性、ハンドリング性が著しく低下する。更にビーズ分散時間が増加するに伴い、導電材料のストラクチャーが促進され電極伝導度の低下を引き起こす。
比較4は濡れ向上剤のかわりに界面活性剤(シントレッキスEH−R;2−エチルヘキシル−硫酸エステルナトリウム塩、日油社製)を用いてビーズミル分散を実施しているが、本発明の濡れ向上剤を用いるのに比べて塗液の保存安定性などに劣っていることがわかる。
比較5はビーズミルによるメディア分散を5時間実施し固形分濃度15%の組成物が得られた。ペースト液状のためハンドリング性が良好であるが、6ケ月という長期保存は導電材料の沈降を引き起こし、攪拌を適宜行わなければいけないという問題がある。また、ビーズ分散時間が増加するに伴い、導電材料のストラクチャーが促進され電極伝導度の低下を引き起こし問題となる。
In comparison 2, the composition is prepared with an extruder (double-screw extruder PCM30; manufactured by Ikekai Tekko Co., Ltd.), but it is necessary to increase the binder component in order to sufficiently disperse the conductive material, which lowers the electrode conductivity. Cause it. On the other hand, when the binder component is reduced and dispersed, the structure of the conductive material is destroyed by the compression shear of the screw, and the electrode conductivity is also lowered.
In Comparative 3, media dispersion using a bead mill is carried out for 10 hours. However, even if the dispersion time is increased, the solid content concentration is limited to 20%, and the shape of the composition becomes the boundary between the paste and the gel, and the conductive composition The processability and handling of the product are significantly reduced. Furthermore, as the bead dispersion time increases, the structure of the conductive material is promoted, causing a decrease in electrode conductivity.
In Comparative 4, bead mill dispersion was performed using a surfactant (Syntrex EH-R; 2-ethylhexyl-sulfuric acid ester sodium salt, manufactured by NOF Corporation) instead of the wetting improver. It can be seen that the storage stability of the coating liquid is inferior to the use of the agent.
In Comparative 5, media dispersion by a bead mill was performed for 5 hours, and a composition having a solid content concentration of 15% was obtained. Since the paste is in a liquid form, handling properties are good, but long-term storage of 6 months has a problem that the conductive material is settled and stirring must be performed as appropriate. Further, as the bead dispersion time increases, the structure of the conductive material is promoted, causing a problem in that the electrode conductivity is lowered.

<導電材料>
<カーボンブラック>
・デンカブラックHS−100(電気化学工業社製):
アセチレンブラック、かさ密度0.15g/ml、体積抵抗率0.05Ωcm。
・デンカブラック粉状品(電気化学工業社製):
アセチレンブラック、かさ密度0.04g/ml、体積抵抗率0.05Ωcm。
・デンカブラックFX−35(電気化学工業社製):
アセチレンブラック、かさ密度0.05g/ml、体積抵抗率0.03Ωcm。
<Conductive material>
<Carbon black>
-Denka Black HS-100 (manufactured by Denki Kagaku Kogyo Co., Ltd.):
Acetylene black, bulk density 0.15 g / ml, volume resistivity 0.05 Ωcm.
・ Denka black powder product (manufactured by Denki Kagaku Kogyo):
Acetylene black, bulk density 0.04 g / ml, volume resistivity 0.05 Ωcm.
・ Denka Black FX-35 (manufactured by Denki Kagaku Kogyo Co., Ltd.):
Acetylene black, bulk density 0.05 g / ml, volume resistivity 0.03 Ωcm.

・トーカブラック#5500(東海カーボン社製):
ファーネスブラック、かさ密度0.05g/ml、体積抵抗率0.05Ωcm。
・Super−P Li(TIMCAL社製):
導電性カーボン、かさ密度0.16g/ml、体積抵抗率0.03Ωcm。
・KS−6(TIMCAL社製):
グラファイト、かさ密度0.07g/ml、体積抵抗率0.02Ωcm。
-Talker Black # 5500 (manufactured by Tokai Carbon Co., Ltd.):
Furnace black, bulk density 0.05 g / ml, volume resistivity 0.05 Ωcm.
Super-P Li (manufactured by TIMCAL):
Conductive carbon, bulk density 0.16 g / ml, volume resistivity 0.03 Ωcm.
-KS-6 (manufactured by TIMCAL):
Graphite, bulk density 0.07 g / ml, volume resistivity 0.02 Ωcm.

・PURE BLACK 205(コロンビア社製):
黒鉛化カーボン、かさ密度0.30g/ml、体積抵抗率0.07Ωcm。
・EC−300J(アクゾ社製):
ケッチェンブラック、かさ密度0.10g/ml、体積抵抗率0.01Ωcm。
-PURE BLACK 205 (Colombia):
Graphitized carbon, bulk density 0.30 g / ml, volume resistivity 0.07 Ωcm.
-EC-300J (manufactured by Akzo):
Ketjen black, bulk density 0.10 g / ml, volume resistivity 0.01 Ωcm.

・VGCF(昭和電工社製):
カーボンナノファイバー(CNF)、かさ密度0.15g/ml、体積抵抗率0.004Ωcm、繊維長10〜20μm、繊維径150nm、比表面積13m/g。
・ VGCF (manufactured by Showa Denko):
Carbon nanofiber (CNF), bulk density 0.15 g / ml, volume resistivity 0.004 Ωcm, fiber length 10-20 μm, fiber diameter 150 nm, specific surface area 13 m 2 / g.

・ CNT:
カーボンナノチューブ、かさ密度0.01g/ml、体積抵抗率0.004Ωcm、繊維長5〜40μm、繊維径40〜80nm、比表面積25m/g
・ CNT:
Carbon nanotube, bulk density 0.01 g / ml, volume resistivity 0.004 Ωcm, fiber length 5-40 μm, fiber diameter 40-80 nm, specific surface area 25 m 2 / g

<濡れ向上剤>
下記に濡れ向上剤Aを示す。分子量は50〜1000であることが好ましい。
<Wetting improver>
The wetting improver A is shown below. The molecular weight is preferably 50 to 1000.

<塩基性官能基を有する誘導体(A)〜(H)>
・塩基性官能基を有する色素誘導体:(A)、(B)、(C)、(H)
・塩基性官能基を有するアントラキノン誘導体:(F)
・塩基性官能基を有するアクリドン誘導体:(G)
・塩基性官能基を有するトリアジン誘導体:(D)、(E)
<酸性官能基を有する誘導体(I)〜(P)>
・酸性官能基を有する色素誘導体:(J)、(M)、(N)、(O)
・酸性官能基を有するトリアジン誘導体:(I)、(J)(K)、(L)、(P)
<Derivatives (A) to (H) having basic functional groups>
-Dye derivatives having basic functional groups: (A), (B), (C), (H)
Anthraquinone derivatives having basic functional groups: (F)
Acridone derivatives having basic functional groups: (G)
Triazine derivatives having basic functional groups: (D), (E)
<Derivatives (I) to (P) having acidic functional groups>
-Pigment derivatives having acidic functional groups: (J), (M), (N), (O)
Triazine derivatives having acidic functional groups: (I), (J) (K), (L), (P)

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

次に濡れ向上剤Bを下記に示す。重量平均分子量が3000以上で200万以下のものが好ましい。   Next, wetting improver B is shown below. A weight average molecular weight of 3000 or more and 2 million or less is preferable.

<酸性官能基を有する樹脂>
・ AKM−0531(日本油脂社製):重量平均分子量約3千〜10万
<塩基性官能基を有する樹脂>
・アジスパーPB821(味の素ファインテクノ社製):重量平均分子量約3千〜10万
<その他の極性官能基を2個以上有する樹脂>
・ CMC2200(ダイセル化学社製):重量平均分子量約100〜200万
<Resin having an acidic functional group>
AKM-053 (manufactured by NOF Corporation): weight average molecular weight of about 3,000 to 100,000 <resin having basic functional group>
Azisper PB821 (manufactured by Ajinomoto Fine Techno): weight average molecular weight of about 3,000 to 100,000 <resin having two or more other polar functional groups>
CMC2200 (manufactured by Daicel Chemical Industries): weight average molecular weight of about 1 to 2 million

<ビニルアミド系樹脂>
・ポリビニルピロリドン(A1−1)
ISPジャパン社製 PVP K−30;重量平均分子量約30万
・アルキル化ポリビニルピロリドン(A1−2)
ISPジャパン社製 アグリマー AL−10LC
・N−ビニル−2−ピロリドンとメタクリル酸メチルとのコポリマー(A1−3)
・N−ビニル−2−ピロリドンとN−ビニルアセトアミドとのコポリマー(A1−5)
・ポリN−ビニルアセトアミド(A2−1)
昭和電工製 PNVA GE191
・N−ビニルアセトアミドとアクリロニトリルとのコポリマー(A2−2)
・N−ビニルアセトアミドとアクリルアミドとのコポリマー(A2−3)
<Vinylamide resin>
・ Polyvinylpyrrolidone (A1-1)
ISP Japan PVP K-30; weight average molecular weight of about 300,000 alkylated polyvinylpyrrolidone (A1-2)
Agrimar AL-10LC made by ISP Japan
-Copolymer of N-vinyl-2-pyrrolidone and methyl methacrylate (A1-3)
-Copolymer of N-vinyl-2-pyrrolidone and N-vinylacetamide (A1-5)
・ Poly N-vinylacetamide (A2-1)
PNVA GE191 made by Showa Denko
-Copolymer of N-vinylacetamide and acrylonitrile (A2-2)
-Copolymer of N-vinylacetamide and acrylamide (A2-3)

[N−ビニル−2−ピロリドンとメタクリル酸メチルとのコポリマー(A1−3)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とメタクリル酸メチル20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニル−2−ピロリドンとメタクリル酸メチルとのコポリマー(A1−3)溶液を得た。得られたビニルアミド系樹脂(A1−3)の重量平均分子量(Mw)は30000であった。
[Preparation of copolymer of N-vinyl-2-pyrrolidone and methyl methacrylate (A1-3)]
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 80 parts of N-vinyl-2-pyrrolidone and 20 parts of methyl methacrylate and replaced with nitrogen gas. The inside of the reaction vessel was heated to 80 ° C., and a solution prepared by dissolving 0.1 part of 2,2′-azobisisobutyronitrile in 100 parts of N-methylpyrrolidone was dropped from the dropping tank over 2 hours, Thereafter, stirring was continued at the same temperature for 3 hours. It was confirmed that 95% or more had reacted by solid content measurement, and the reaction was terminated. Thus, a copolymer (A1-3) solution of N-vinyl-2-pyrrolidone and methyl methacrylate having a solid content of 50% was obtained. The weight average molecular weight (Mw) of the obtained vinylamide resin (A1-3) was 30000.

[N−ビニル−2−ピロリドンとマレイン酸とのコポリマー(A1−4)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とマレイン酸20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニル−2−ピロリドンとマレイン酸とのコポリマー(A1−4)溶液を得た。得られたビニルアミド系樹脂(A1−4)の重量平均分子量(Mw)は30000であった。
[Preparation of copolymer of N-vinyl-2-pyrrolidone and maleic acid (A1-4)]
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 80 parts of N-vinyl-2-pyrrolidone and 20 parts of maleic acid and replaced with nitrogen gas. The inside of the reaction vessel was heated to 80 ° C., and a solution prepared by dissolving 0.1 part of 2,2′-azobisisobutyronitrile in 100 parts of N-methylpyrrolidone was dropped from the dropping tank over 2 hours, Thereafter, stirring was continued at the same temperature for 3 hours. The solid content measurement confirmed that 95% or more had reacted, and the reaction was terminated. Thus, a copolymer (A1-4) solution of N-vinyl-2-pyrrolidone and maleic acid having a solid content of 50% was obtained. The weight average molecular weight (Mw) of the obtained vinylamide resin (A1-4) was 30000.

[N−ビニル−2−ピロリドンとN−ビニルアセトアミドとのコポリマー(A1−5)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン50部とN−ビニルアセトアミド50部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニル−2−ピロリドンとN−ビニルアセトアミドとのコポリマー(A1−5)溶液を得た。得られたビニルアミド系樹脂(A1−5)の重量平均分子量(Mw)は30000であった。
[Preparation of copolymer of N-vinyl-2-pyrrolidone and N-vinylacetamide (A1-5)]
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 50 parts of N-vinyl-2-pyrrolidone and 50 parts of N-vinylacetamide and replaced with nitrogen gas. The inside of the reaction vessel was heated to 80 ° C., and a solution prepared by dissolving 0.1 part of 2,2′-azobisisobutyronitrile in 100 parts of N-methylpyrrolidone was dropped from the dropping tank over 2 hours, Thereafter, stirring was continued at the same temperature for 3 hours. The solid content measurement confirmed that 95% or more had reacted, and the reaction was terminated. Thus, a copolymer (A1-5) solution of N-vinyl-2-pyrrolidone and N-vinylacetamide having a solid content of 50% was obtained. The weight average molecular weight (Mw) of the obtained vinylamide resin (A1-5) was 30000.

[N−ビニルアセトアミドとアクリロニトリルとのコポリマー(A2−2)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とアクリロニトリル20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニルアセトアミドとアクリロニトリルとのコポリマー(A2−2)溶液を得た。得られたビニルアミド系樹脂(A2−2)の重量平均分子量(Mw)は30000であった。
[Preparation of copolymer of N-vinylacetamide and acrylonitrile (A2-2)]
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 80 parts of N-vinyl-2-pyrrolidone and 20 parts of acrylonitrile and replaced with nitrogen gas. The inside of the reaction vessel was heated to 80 ° C., and a solution prepared by dissolving 0.1 part of 2,2′-azobisisobutyronitrile in 100 parts of N-methylpyrrolidone was dropped from the dropping tank over 2 hours, Thereafter, stirring was continued at the same temperature for 3 hours. The solid content measurement confirmed that 95% or more had reacted, and the reaction was terminated. Thus, a copolymer (A2-2) solution of N-vinylacetamide and acrylonitrile having a solid content of 50% was obtained. The weight average molecular weight (Mw) of the obtained vinylamide resin (A2-2) was 30000.

[N−ビニルアセトアミドとアクリルアミドとのコポリマー(A2−3)の調整]
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、N−ビニル−2−ピロリドン80部とアクリルアミド20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、2,2’−アゾビスイソブチロニトリル0.1部をN−メチルピロリドン100部に溶解した溶液を、滴下槽から2時間かけて滴下して、その後3時間、同じ温度で攪拌を続けた。固形分測定により95%以上が反応したことを確認し反応を終了し、固形分50%のN−ビニルアセトアミドとアクリルアミドとのコポリマー(A2−3)溶液を得た。得られたビニルアミド系樹脂(A2−3)の重量平均分子量(Mw)は30000であった。
[Preparation of copolymer of N-vinylacetamide and acrylamide (A2-3)]
In a reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer, 80 parts of N-vinyl-2-pyrrolidone and 20 parts of acrylamide were charged and replaced with nitrogen gas. The inside of the reaction vessel was heated to 80 ° C., and a solution prepared by dissolving 0.1 part of 2,2′-azobisisobutyronitrile in 100 parts of N-methylpyrrolidone was dropped from the dropping tank over 2 hours, Thereafter, stirring was continued at the same temperature for 3 hours. The solid content measurement confirmed that 95% or more had reacted, and the reaction was terminated. Thus, a copolymer (A2-3) solution of N-vinylacetamide and acrylamide having a solid content of 50% was obtained. The weight average molecular weight (Mw) of the obtained vinylamide resin (A2-3) was 30000.

<電極活物質>
・活性炭粉末(「ファイン活性炭RP20」クラレケミカル製):平均粒径5.0μm、比表面積2000m2/g。
・メソフェーズカーボン(MCMB 6−28、大阪ガスケミカル社製):平均粒径5〜
7μm、比表面積4m2/g
<バインダー>
・ KFポリマーW#1100(クレハ社製):
ポリフッ化ビニリデン(PVDF)、重量平均分子量約28万。
・ PTFE 30−J(三井・デュポンフロロケミカル社製):
60%ポリテトラフルオロエチレン(PTFE)水系分散体
・ BM−400B(日本ゼオン社製):
40%スチレンブタジエンゴム(SBR)水系分散体
<Electrode active material>
Activated carbon powder (“Fine activated carbon RP20” manufactured by Kuraray Chemical): average particle size 5.0 μm, specific surface area 2000 m 2 / g.
Mesophase carbon (MCMB 6-28, manufactured by Osaka Gas Chemical Co.): average particle size 5
7 μm, specific surface area 4 m 2 / g
<Binder>
KF polymer W # 1100 (manufactured by Kureha):
Polyvinylidene fluoride (PVDF), weight average molecular weight of about 280,000.
PTFE 30-J (Mitsui / DuPont Fluorochemicals):
60% polytetrafluoroethylene (PTFE) aqueous dispersion BM-400B (manufactured by Nippon Zeon):
40% styrene butadiene rubber (SBR) aqueous dispersion

<電極用導電性組成物の分散評価>
各電極用導電性組成物は溶媒により固形分濃度が10%となるように希釈し、分散粒径をマイクロトラックUPA−EX150(日機装製)で測定し、分散粒径が1μm以下のものを「○」、1μm以上、5μm未満であったものを「△」、5μm以上であったものを「×」とした。更に必要に応じてグラインドゲージにより粗い凝集粒子を測定した。
粘度は電極用合材インキ及び導電性組成物の粘度は、E型粘度計(東機産業社製「RE80型粘度計」)で、50rpmの回転速度における25℃での粘度を測定した。
電極導電性組成物の分散評価の結果を表7に示した。
<Dispersion evaluation of conductive composition for electrode>
Each conductive composition for electrodes is diluted with a solvent so that the solid content concentration becomes 10%, and the dispersed particle size is measured with Microtrac UPA-EX150 (manufactured by Nikkiso). “◯” was 1 μm or more and less than 5 μm, and “Δ” was 5 μm or more. Further, coarse agglomerated particles were measured with a grind gauge as required.
As for the viscosity, the viscosity of the electrode mixture ink and the conductive composition was measured with an E type viscometer (“RE80 type viscometer” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. at a rotation speed of 50 rpm.
Table 7 shows the results of evaluation of dispersion of the electrode conductive composition.

<電極用導電性組成物の保存安定性評価>
各電極用導電性組成物を常温6ヶ月で保存し、保存前の形状を保持してケーキ状になって固化していないか、固形分の変化が5%以内に収まっているかを確認した。溶媒により固形分濃度が10%となるように希釈して、E型粘度計(東機産業社製「RE80型粘度計」)で、50rpmの回転速度における25℃での粘度を測定し、作製初期と比較して粘度増加が10%以内であるかを確認した。上記の形状保持、固形分濃度変化、粘度増加がない場合を「○」、3項目すべて満たさない場合は「×」として評価した。表6に結果を示す。
<Evaluation of storage stability of conductive composition for electrode>
Each electroconductive composition for electrodes was stored at room temperature for 6 months, and it was confirmed whether the shape before storage was retained and the cake was not solidified or whether the change in solid content was within 5%. Dilute to a solid content concentration of 10% with a solvent, and measure the viscosity at 25 ° C. at a rotational speed of 50 rpm with an E-type viscometer (“RE80 type viscometer” manufactured by Toki Sangyo Co., Ltd.). It was confirmed whether the viscosity increase was within 10% compared to the initial value. The case where there was no shape retention, solid content concentration change, and viscosity increase was evaluated as “◯”, and when all three items were not satisfied, it was evaluated as “X”. Table 6 shows the results.

<電極用導電性組成物のハンドリング性および合材インキ加工性評価>
各電極用導電性組成物を合材インキ化する工程において、仕込み時に周囲を粉体が飛散するか、仕込み作業性が容易かなど2項目全てを満たす場合「○」、満たさない場合は「×」としてハンドリング性を評価した。更に各電極用導電性組成物を活物質、バインダ及び溶剤を用いて合材インキとする際に混練および溶剤希釈の時間が1時間未満の場合を「○」、1時間以上「×」として合材インキ加工性評価した。夫々表6に結果を示す。
<Evaluation of handling property of conductive composition for electrode and processability of composite ink>
In the process of converting the conductive composition for each electrode into a composite ink, “○” is satisfied when all two items are satisfied, such as whether the powder is scattered around at the time of preparation, or whether the preparation workability is easy, and “×” otherwise. The handling property was evaluated. Furthermore, when the conductive composition for each electrode is made into a composite ink using an active material, a binder and a solvent, the case where the kneading and solvent dilution time is less than 1 hour is indicated as “◯”, and “x” for 1 hour or more. Material ink processability was evaluated. Table 6 shows the results.

<電極用導電性組成物の電極特性評価>
表5に示す導電性組成物(導電材料量として6部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてコバルト酸リチウムLiCoO2(HLC−17、平均粒径9.28μm、比表面積0.54m2/g、本荘ケミカル社製)89部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=89/6/5)とした。更に集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ80μmの正極を作製した。作製した正極を電気抵抗測定器A(井元製作所製製)にて2kgf/cm2で荷重をかけ、電極の厚さ方向の電気伝導度を測定した。この測定を各サンプルとも5回行い、それらの平均電気伝導度(10−3S/cm)が100以上であったものを「◎」、10(10−3S/cm)以上、100(10−3S/cm)未満であったものを「○」、1(10−3S/cm)以上、10(10−3S/cm)未満であったものを「△」、1(10−3S/cm)未満であったものを「×」とした。通常、リチウムイオン電池及びキャパシタの電気伝導度は10−3S/cm以上であることが必要であり、この数値より低くなると、容量、出力特性に大きな影響を及ぼし電極として欠陥があると推察される。
<Electrode characteristic evaluation of conductive composition for electrode>
Polyvinylidene fluoride PVDF (KF polymer W # 1100, manufactured by Kureha Co., Ltd.) and N-methyl-2-pyrrolidone as a binder are mixed with the conductive composition shown in Table 5 (6 parts as the amount of conductive material) with a high-speed disper. Then, 89 parts of lithium cobaltate LiCoO 2 (HLC-17, average particle size 9.28 μm, specific surface area 0.54 m 2 / g, manufactured by Honjo Chemical Co., Ltd.) as a positive electrode active material was added and kneaded by a planetary mixer. The mixture ink (solid content ratio: 60%, solid content composition ratio; active material / carbon black / binder and dispersant = 89/6/5) was used. Furthermore, after apply | coating using a doctor blade on the 20-micrometer-thick aluminum foil used as a collector, it heat-dried under reduced pressure, the rolling process by roll press etc. was performed, and the positive electrode of thickness 80 micrometers was produced. A load was applied to the produced positive electrode at 2 kgf / cm 2 with an electric resistance measuring device A (manufactured by Imoto Seisakusho), and the electric conductivity in the thickness direction of the electrode was measured. This measurement was performed 5 times for each sample, and those whose average electric conductivity (10 −3 S / cm) was 100 or more were evaluated as “「 ”, 10 (10 −3 S / cm) or more, 100 (10 -3 what was S / cm) less "○", 1 (10 -3 S / cm) or more, 10 (10-3 what was S / cm) less than "△", 1 (10 - What was less than 3 S / cm) was defined as “x”. Usually, the electrical conductivity of lithium ion batteries and capacitors needs to be 10 −3 S / cm or more. If the electric conductivity is lower than this value, it is presumed that the capacity and output characteristics are greatly affected and there is a defect as an electrode. The

電極用導電性組成物の電極特性評価の結果を表6に示した。
<リチウム二次電池用正極合材インキの調製>
[実施例1〜21、比較例1〜4]
本発明の導電性組成物(1)〜(21)及び比較(1)〜(5)(導電材料量として5部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてコバルト酸リチウムLiCoO2(HLC−17、平均粒径9.28μm、比表面積0.54m2/g、本荘ケミカル社製)90部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=90/5/5)とした。(表8を参照)
The result of the electrode characteristic evaluation of the electroconductive composition for electrodes is shown in Table 6.
<Preparation of positive electrode mixture ink for lithium secondary battery>
[Examples 1-21, Comparative Examples 1-4]
Polyvinylidene fluoride PVDF (KF polymer W # 1100, Kureha Co., Ltd.) as a binder for the conductive compositions (1) to (21) and comparisons (1) to (5) of the present invention (5 parts as the amount of conductive material) And N-methyl-2-pyrrolidone mixed with a high-speed disper, and then used as a positive electrode active material lithium cobaltate LiCoO 2 (HLC-17, average particle size 9.28 μm, specific surface area 0.54 m 2 / g, Honjo Chemical 90 parts) was added and kneaded by a planetary mixer to obtain a positive electrode mixture ink (solid content ratio: 60%, solid content composition ratio; active material / carbon black / binder and dispersant = 90/5/5). . (See Table 8)

[実施例15、比較例6]
本発明の導電性組成物(カーボンブラック量として9部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてマンガン酸リチウムLiMn24(CELLSEED S−LM、平均粒径12μm、比表面積0.48m2/g、日本化学工業社製)85部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=85/9/6)とした。(表9を参照)
[Example 15, Comparative Example 6]
Polyvinylidene fluoride PVDF (KF polymer W # 1100, manufactured by Kureha Co.) and N-methyl-2-pyrrolidone as a binder were mixed with the conductive composition of the present invention (9 parts as the amount of carbon black) with a high-speed disper. Later, 85 parts of lithium manganate LiMn 2 O 4 (CELLSEED S-LM, average particle size 12 μm, specific surface area 0.48 m 2 / g, manufactured by Nippon Chemical Industry Co., Ltd.) as a positive electrode active material was added and kneaded by a planetary mixer. Positive electrode mixture ink (solid content ratio: 60%, solid content composition ratio; active material / carbon black / binder and dispersant = 85/9/6) was used. (See Table 9)

[実施例18、比較例8、9]
リン酸鉄リチウムLiFePO(平均粒径3.6μm、比表面積15m2/g、 TIAN JIN STL ENERGY TECHNOLOGY社製)91部に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンをプラネタリーミキサーで混合した後に、導電助剤として本発明の導電性組成物(カーボンブラック量として4部)を加え、更にプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;50%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=91/4/5)とした。(表9を参照)
[Example 18, Comparative Examples 8 and 9]
Lithium iron phosphate LiFePO 4 (average particle size 3.6 μm, specific surface area 15 m 2 / g, manufactured by TIAN JIN STL ENERGY TECHNOLOGY) 91 parts polyvinylidene fluoride PVDF (KF polymer W # 1100, Kureha) as binder Manufactured) and N-methyl-2-pyrrolidone after mixing with a planetary mixer, the conductive composition of the present invention (4 parts as carbon black) is added as a conductive aid, and further kneaded with a planetary mixer. A composite ink (solid content ratio: 50%, solid content composition ratio; active material / carbon black / binder and dispersant = 91/4/5) was used. (See Table 9)

[実施例6,7、比較例4]
本発明の導電性組成物(カーボンブラック量として5部)に対して、バインダーとしてポリテトラフルオロエタンPTFE(PTFE 30−J、三井・デュポンフロロケミカル社製)、水を高速ディスパーで混合した後に、正極活物質としてコバルト酸リチウムLiCoO2(HLC−17、平均粒径9.28μm、比表面積0.54m2/g、本荘ケミカル社製)90部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=90/5/5)とした。(表8を参照)
[Examples 6 and 7, Comparative Example 4]
After mixing polytetrafluoroethane PTFE (PTFE 30-J, Mitsui / DuPont Fluoro Chemical Co., Ltd.) and water as a binder with a high-speed disper, the conductive composition of the present invention (carbon black amount 5 parts) As a positive electrode active material, 90 parts of lithium cobalt oxide LiCoO 2 (HLC-17, average particle size 9.28 μm, specific surface area 0.54 m 2 / g, manufactured by Honjo Chemical Co., Ltd.) was added and kneaded by a planetary mixer. (Solid content ratio: 60%, solid content composition ratio: active material / carbon black / binder and dispersant = 90/5/5). (See Table 8)

[実施例16,17、比較例7]
先に調製した本発明の導電性組成物(カーボンブラック量として9部)に対して、バインダーとしてポリテトラフルオロエタンPTFE(PTFE 30−J、三井・デュポンフロロケミカル社製)、水を高速ディスパーで混合した後に、正極活物質としてマンガン酸リチウムLiMn24(CELLSEED S−LM、平均粒径12μm、比表面積0.48m2/g、日本化学工業社製)85部を加えプラネタリーミキサーにより混練し、正極材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=85/9/6)とした。(表9を参照)
[Examples 16 and 17, Comparative Example 7]
Polytetrafluoroethane PTFE (PTFE 30-J, manufactured by Mitsui / Du Pont Fluoro Chemical Co.) as a binder and water with a high-speed disperser for the conductive composition of the present invention (9 parts as carbon black) prepared earlier. After mixing, 85 parts of lithium manganate LiMn 2 O 4 (CELLSEED S-LM, average particle size 12 μm, specific surface area 0.48 m 2 / g, manufactured by Nippon Chemical Industry Co., Ltd.) was added as a positive electrode active material and kneaded by a planetary mixer. And positive electrode material ink (solid content ratio: 60%, solid content composition ratio; active material / carbon black / binder and dispersant = 85/9/6). (See Table 9)

[実施例19,20、比較例9]
先に調製した本発明の導電性組成物(カーボンブラック量として4部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)5部、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質としてリン酸鉄リチウムLiFePO4(平均粒径3.6μm、比表面積15m2/g、 TIAN JIN STL ENERGY TECHNOLOGY社製)91部を加えプラネタリーミキサーにより混練し、正極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=91/4/5)とした。(表9を参照)
[Examples 19 and 20, Comparative Example 9]
5 parts of polyvinylidene fluoride PVDF (KF polymer W # 1100, manufactured by Kureha) as a binder, N-methyl-2-pyrrolidone as a binder with respect to the conductive composition of the present invention (carbon black amount of 4 parts) prepared earlier. After mixing with a high speed disper, 91 parts of lithium iron phosphate LiFePO 4 (average particle size 3.6 μm, specific surface area 15 m 2 / g, manufactured by TIAN JIN STL ENERGY TECHNOLOGY) was added as a positive electrode active material and kneaded by a planetary mixer. And positive electrode mixture ink (solid content ratio: 60%, solid content composition ratio; active material / carbon black / binder and dispersant = 91/4/5). (See Table 9)

<リチウム二次電池用負極材インキの調製>
[実施例21、30、比較例10、13]
本発明の導電性組成物(カーボンブラック量として2部)に対して、バインダーとしてスチレンブタジエンゴムSBR(BM−400B、日本ゼオン社製)、水を高速ディスパーで混合した後に、負極活物質としてメソフェーズカーボン(MCMB 6−28、平均粒径5〜7μm、比表面積4m2/g大阪ガスケミカル社製)93部を加えプラネタリーミキサーにより混練し、負極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=93/2/5)とした。(表10を参照)
<Preparation of negative electrode ink for lithium secondary battery>
[Examples 21 and 30, Comparative Examples 10 and 13]
After mixing styrene butadiene rubber SBR (BM-400B, manufactured by Nippon Zeon Co., Ltd.) as a binder and water with a high-speed disper to the conductive composition of the present invention (2 parts as carbon black amount), mesophase as a negative electrode active material 93 parts of carbon (MCMB 6-28, average particle size 5 to 7 μm, specific surface area 4 m 2 / g made by Osaka Gas Chemical Co., Ltd.) was added and kneaded with a planetary mixer, and negative electrode mixture ink (solid content ratio: 60%, solid Fractional composition ratio: active material / carbon black / binder and dispersant = 93/2/5). (See Table 10)

[実施例21〜29、31、比較例11、12、14]
本発明の導電性組成物(カーボンブラック量として2部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、負極活物質としてメソフェーズカーボン(MCMB 6−28、平均粒径5〜7μm、比表面積4m2/g大阪ガスケミカル社製)93部を加えプラネタリーミキサーにより混練し、負極合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=3/2/5)とした。(表10を参照)
[Examples 21 to 29, 31, Comparative Examples 11, 12, and 14]
Polyvinylidene fluoride PVDF (KF polymer W # 1100, manufactured by Kureha) and N-methyl-2-pyrrolidone as a binder were mixed with the conductive composition of the present invention (2 parts as the amount of carbon black) with a high-speed disper. Later, 93 parts of mesophase carbon (MCMB 6-28, average particle size of 5 to 7 μm, specific surface area of 4 m 2 / g manufactured by Osaka Gas Chemical Co., Ltd.) was added as a negative electrode active material and kneaded by a planetary mixer. 60%, solid composition ratio; active material / carbon black / binder and dispersant = 3/2/5). (See Table 10)

<リチウム二次電池用正極の作製>
[実施例1〜20、比較例1〜9]
先に調製した各種正極合材インキを、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ60μmの正極合剤層を作製した。(表8、9を参照)
<Preparation of positive electrode for lithium secondary battery>
[Examples 1-20, Comparative Examples 1-9]
The various positive electrode mixture inks prepared above were applied onto a 20 μm thick aluminum foil serving as a current collector using a doctor blade, dried by heating under reduced pressure, and subjected to a rolling process using a roll press or the like to obtain a thickness of 60 μm. A positive electrode mixture layer was prepared. (See Tables 8 and 9)

<リチウム二次電池正極評価用セルの組み立て>
先に作製した正極を、直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極及び対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製 #2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝泉社製 HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグロ−ボックス内で行い、セル組み立て後、所定の電池特性評価を行った。
<Assembly of lithium secondary battery positive electrode evaluation cell>
A separator made of a porous polypropylene film between the working electrode and the counter electrode (# 2400, manufactured by Celgard Co., Ltd.) with the positive electrode fabricated previously punched out to a diameter of 9 mm and used as a working electrode and a metal lithium foil (thickness 0.15 mm) as a counter electrode Are inserted and laminated, filled with an electrolyte (non-aqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate in a ratio of 1: 1), and a bipolar metal cell (Hosen) (HS flat cell). The cell was assembled in a glow box substituted with argon gas, and after the cell was assembled, predetermined battery characteristics were evaluated.

<リチウム二次電池正極特性評価>
[充放電サイクル特性 実施例18〜20、比較例8、9]
作製した電池評価用セルを室温(25℃)で、充電レート0.2C、1.0Cの定電流定電圧充電(上限電圧4.2V)で満充電とし、充電時と同じレートの定電流で放電下限電圧3.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM−8)を行った。又、評価後のセルを分解し、電極塗膜の外観を目視にて確認した。評価結果を表11、12に示した。
<Characteristic evaluation of lithium secondary battery positive electrode>
[Charge / Discharge Cycle Characteristics Examples 18 to 20, Comparative Examples 8 and 9]
The produced battery evaluation cell was fully charged at a constant current and constant voltage charge (upper limit voltage 4.2 V) at a room temperature (25 ° C.) with a charge rate of 0.2 C and 1.0 C, and at a constant current at the same rate as during charging. Charge / discharge for discharging to a discharge lower limit voltage of 3.0V is defined as one cycle (charge / discharge interval rest time 30 minutes), and this cycle is performed for a total of 20 cycles to evaluate charge / discharge cycle characteristics (Evaluation apparatus: SM-8 manufactured by Hokuto Denko Co., Ltd.) ) Moreover, the cell after evaluation was decomposed | disassembled and the external appearance of the electrode coating film was confirmed visually. The evaluation results are shown in Tables 11 and 12.

[充放電サイクル特性 実施例1〜17、比較例1〜7]
作製した電池評価用セルを室温(25℃)で、充電レート0.2C、1.0Cの定電流定電圧充電(上限電圧4.5V)で満充電とし、充電時と同じレートの定電流で放電下限電圧2.0Vまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とし、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工社製SM−8)を行った。又、評価後のセルを分解し、電極塗膜の外観を目視にて確認した。評価結果を表11、12に示した。
[Charge / Discharge Cycle Characteristics Examples 1-17, Comparative Examples 1-7]
The produced battery evaluation cell is fully charged at a constant current and constant voltage charge (upper limit voltage 4.5 V) at room temperature (25 ° C.) and at a charge rate of 0.2 C and 1.0 C, and at a constant current at the same rate as during charging. Charging / discharging for discharging to a lower discharge limit voltage of 2.0V is defined as one cycle (charging / discharging interval rest time 30 minutes), and this cycle is performed for a total of 20 cycles, and charging / discharging cycle characteristics evaluation (evaluation apparatus: SM-8 manufactured by Hokuto Denko Co., Ltd.) ) Moreover, the cell after evaluation was decomposed | disassembled and the external appearance of the electrode coating film was confirmed visually. The evaluation results are shown in Tables 11 and 12.

[直流内部抵抗測定 実施例1〜26、比較例1〜5]
作製した電池評価用セルを室温(25℃)、充電レート0.2Cの定電流定電圧充電(上限電圧4.2V)で満充電とし、0.2C、1.0Cのレートの定電流で5秒放電後、電池電圧を測定した。電流値に対し電圧値をプロットし、得られた直線関係の傾きを内部抵抗とした。評価結果を表11,12に示す。正極活物質としてコバルト酸リチウムを用いた場合については、実施例5の内部抵抗測定値を100としたときの相対値として示した。正極活物質としてマンガン酸リチウム、リン酸鉄リチウムを夫々用いた場合については、実施例15,19の内部抵抗測定値を100としたときの相対値として示した。
[DC Internal Resistance Measurement Examples 1 to 26, Comparative Examples 1 to 5]
The battery evaluation cell thus prepared was fully charged at a constant current and constant voltage charge (upper limit voltage 4.2 V) at room temperature (25 ° C.) and a charge rate of 0.2 C, and 5 at a constant current of 0.2 C and 1.0 C rates. The battery voltage was measured after the second discharge. The voltage value was plotted against the current value, and the slope of the obtained linear relationship was defined as the internal resistance. The evaluation results are shown in Tables 11 and 12. About the case where lithium cobaltate was used as a positive electrode active material, it showed as a relative value when the internal resistance measured value of Example 5 is set to 100. The cases where lithium manganate and lithium iron phosphate were used as the positive electrode active materials were shown as relative values when the measured values of internal resistance in Examples 15 and 19 were taken as 100.

<リチウム二次電池用負極の作製>
[実施例21〜31、比較例10〜14]
先に調製した各種負極合材インキを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ60μmの負極合剤層を作製した。
<Preparation of negative electrode for lithium secondary battery>
[Examples 21 to 31, Comparative Examples 10 to 14]
The various negative electrode mixture inks prepared above were applied onto a copper foil having a thickness of 20 μm as a current collector using a doctor blade, then dried under reduced pressure, and subjected to a rolling process using a roll press or the like to obtain a thickness of 60 μm. A negative electrode mixture layer was prepared.

<リチウム二次電池負極評価用セルの組み立て>
先に作製した負極を、直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極および対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製 #2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝仙社製 HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグローブボックス内で行い、セル組み立て後、以下に示す電池特性評価を行った。
<Assembly of lithium secondary battery negative electrode evaluation cell>
A separator made of a porous polypropylene film between the working electrode and the counter electrode (# 2400, manufactured by Celgard Co., Ltd.) with the negative electrode prepared previously punched to a diameter of 9 mm and used as a working electrode, and a metallic lithium foil (thickness 0.15 mm) as a counter electrode Is inserted and laminated, filled with an electrolyte (nonaqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1M in a mixed solvent of ethylene carbonate and diethyl carbonate in a ratio of 1: 1), and a bipolar metal cell (Hosen) (HS flat cell). The cell was assembled in a glove box substituted with argon gas, and after the cell was assembled, the following battery characteristics were evaluated.

<リチウム二次電池負極特性評価>
[充放電サイクル特性 実施例21−31、比較例10−14]
作製した電池評価用セルを室温(25℃)、充電レート0.2C、1.0Cの定電流定電圧充電にて、0.05Vで満充電とし、充電時と同じレートの定電流で電圧が1.5Vになるまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とした。
まず5回この充放電操作を行い、6回目の放電容量を初期値とした。その後、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工製SM−8)を行った。また、評価後のセルを分解し、電極塗膜不良の有無を目視にて確認し、問題の無いものは「○」とした。評価結果を表10および表13に示す。
<Characteristic evaluation of lithium secondary battery negative electrode>
[Charge / Discharge Cycle Characteristics Example 21-31, Comparative Example 10-14]
The battery evaluation cell thus prepared was fully charged at 0.05 V by constant current and constant voltage charging at room temperature (25 ° C.), charging rate of 0.2 C and 1.0 C, and the voltage was constant at the same rate as charging. Charging / discharging for discharging until 1.5V was taken as one cycle (charging / discharging interval rest time 30 minutes).
First, this charge / discharge operation was performed five times, and the discharge capacity at the sixth time was set as an initial value. Then, this cycle was performed 20 times in total, and charge / discharge cycle characteristic evaluation (evaluation apparatus: SM-8 manufactured by Hokuto Denko) was performed. Moreover, the cell after evaluation was decomposed | disassembled, the presence or absence of the electrode coating film defect was confirmed visually, and the thing without a problem was set as "(circle)". The evaluation results are shown in Table 10 and Table 13.

<電極用導電性組成物のキャパシタ電極特性評価>
表5に示す導電性組成物(導電材料量として5部)に対して、バインダーとしてポリフッ化ビニリデンPVDF(KFポリマーW#1100、クレハ社製)、N−メチル−2−ピロリドンを高速ディスパーで混合した後に、正極活物質として活性炭粉末(「ファイン活性炭RP20」クラレケミカル製):平均粒径5.0μm、比表面積2000m2/g)79部を加えプラネタリーミキサーにより混練し、キャパシタ用合材インキ(固形分比率;60%、固形分組成比率;活物質/カーボンブラック/バインダーと分散剤=79/5/16)とした。更に集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレス等による圧延処理を行い、厚さ90μmのキャパシタ電極を作製した。作製した電極を電気抵抗測定器A(井元製作所製製)にて2kgf/cm2で荷重をかけ、電極の厚さ方向の電気伝導度を測定した。この測定を各サンプルとも5回行い、それらの平均電気伝導度(10−3S/cm)が100以上であったものを「◎」、10(10−3S/cm)以上、100(10−3S/cm)未満であったものを「○」、1(10−3S/cm)以上、10(10−3S/cm)未満であったものを「△」、1(10−3S/cm)未満であったものを「×」とした。通常、リチウムイオン電池及びキャパシタの電気伝導度は10−3S/cm以上であることが必要であり、この数値より低くなると、容量、出力特性に大きな影響を及ぼし電極として欠陥があると推察される。
<Capacitor electrode characteristic evaluation of conductive composition for electrode>
Polyvinylidene fluoride PVDF (KF polymer W # 1100, manufactured by Kureha Co., Ltd.) and N-methyl-2-pyrrolidone as a binder are mixed with the conductive composition shown in Table 5 (5 parts of conductive material) as a binder. Thereafter, 79 parts of activated carbon powder (“Fine activated carbon RP20” manufactured by Kuraray Chemical Co., Ltd.) as a positive electrode active material: average particle size 5.0 μm, specific surface area 2000 m 2 / g) was added and kneaded with a planetary mixer, and a composite ink for capacitors (Solid content ratio: 60%, solid content composition ratio: active material / carbon black / binder and dispersant = 79/5/16). Furthermore, after apply | coating using a doctor blade on the 20-micrometer-thick aluminum foil used as a collector, it heat-dried under reduced pressure, the rolling process by roll press etc. was performed, and the 90-micrometer-thick capacitor electrode was produced. A load was applied to the prepared electrode at 2 kgf / cm 2 with an electric resistance measuring device A (manufactured by Imoto Seisakusho), and the electric conductivity in the thickness direction of the electrode was measured. This measurement was performed 5 times for each sample, and those whose average electric conductivity (10 −3 S / cm) was 100 or more were evaluated as “「 ”, 10 (10 −3 S / cm) or more, 100 (10 -3 what was S / cm) less "○", 1 (10 -3 S / cm) or more, 10 (10-3 what was S / cm) less than "△", 1 (10 - What was less than 3 S / cm) was defined as “x”. Usually, the electrical conductivity of lithium ion batteries and capacitors needs to be 10 −3 S / cm or more. If the electric conductivity is lower than this value, it is presumed that the capacity and output characteristics are greatly affected and there is a defect as an electrode. The

上記の結果、電極用導電性組成物(1)〜(21)はいずれもキャパシタ電極の電気伝導度は10−1S/cm以上で評価は「◎」であった。また、ハンドリング性、合材インキ加工性についても評価は「○」であった。一方、比較組成物(1)〜(5)は電気伝導度は評価「△」であったが、ハンドリング性、合材インキ加工性についても評価は「×」であった。従って、本発明の電極用導電性組成物はキャパシタにも好適に用いることができる。 As a result of the above, all of the electrode conductive compositions (1) to (21) had an electric conductivity of 10 −1 S / cm or more and an evaluation of “◎”. Moreover, evaluation was also "(circle)" also about handling property and compound-material ink processability. On the other hand, the comparative compositions (1) to (5) had an electrical conductivity of “Δ”, but the handling properties and composite ink processability were also “x”. Therefore, the conductive composition for electrodes of the present invention can also be suitably used for capacitors.

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Figure 0005471591
Figure 0005471591

Claims (12)

導電材料と、溶剤と、濡れ向上剤からなる導電性組成物であって、
前記導電材料は、かさ密度0.01〜0.20g/cm、体積抵抗率0.001〜0.1Ω・cm(圧縮密度0.9g/cmの時)であり、
前記導電性組成物が、顆粒状かつ、固形分が20〜60重量%であることを特徴とする電極用導電性組成物。
A conductive composition comprising a conductive material, a solvent, and a wetting improver,
The conductive material has a bulk density of 0.01 to 0.20 g / cm 3 and a volume resistivity of 0.001 to 0.1 Ω · cm (when the compression density is 0.9 g / cm 3 ).
The conductive composition for electrodes, wherein the conductive composition is granular and has a solid content of 20 to 60% by weight.
前記濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、前記導電性組成物が、顆粒状かつ、固形分が25〜55重量%であることを特徴とする請求項1記載の電極用導電性組成物。 The wettability improver is a compound having two or more polar functional groups per molecular unit, and the conductive composition is granular and has a solid content of 25 to 55% by weight. Item 2. The conductive composition for an electrode according to Item 1. 前記濡れ向上剤が、1分子単位当りの極性官能基を2個以上有する化合物であり、かつ、濡れ向上剤が分子量50〜1000以下の濡れ向上剤A及び又は重量平均分子量3000〜200万以下の濡れ向上剤Bからなることを特徴とする請求項1または2記載の電極用導電性組成物。 The wettability improver is a compound having two or more polar functional groups per molecular unit, and the wettability improver has a molecular weight of 50 to 1000 or less and a weight average molecular weight of 3000 to 2 million or less. 3. The conductive composition for an electrode according to claim 1 or 2, comprising a wetting improver B. 前記導電材料が、アセチレンブラック、ファーネスブラック、ケッチェンブラック、グラファイト、黒鉛化カーボン、繊維状炭素材料よりなる群から選択される少なくとも1種からなる請求項1〜3いずれか記載の電極用導電性組成物。 The electrode conductive material according to any one of claims 1 to 3, wherein the conductive material is at least one selected from the group consisting of acetylene black, furnace black, ketjen black, graphite, graphitized carbon, and fibrous carbon material. Composition. 前記顆粒状の導電性組成物が、かさ密度0.30〜0.80g/cmであることを特徴とする請求項1〜4いずれか記載の電極用導電性組成物。 The conductive composition for electrodes according to any one of claims 1 to 4, wherein the granular conductive composition has a bulk density of 0.30 to 0.80 g / cm 3 . 前記導電性組成物が、メディアレス分散したことを特徴とする請求項1〜5いずれか記載の電極用導電性組成物。 The conductive composition for an electrode according to any one of claims 1 to 5, wherein the conductive composition is medialessly dispersed. 前記導電性組成物が、攪拌翼及び又は攪拌羽根で高速せん断分散したことを特徴とする請求項1〜6いずれか記載の電極用導電性組成物。 The conductive composition for electrodes according to any one of claims 1 to 6, wherein the conductive composition is subjected to high-speed shear dispersion with a stirring blade and / or a stirring blade. 導電材料を濡れ向上剤により溶剤に濡らす第一の工程と、濡らされた導電材料を造粒する第二の工程とを経ることを特徴とする、請求項1〜7いずれか記載の電極用導電性組成物の製造方法。 The conductive material for an electrode according to any one of claims 1 to 7, wherein the conductive material is subjected to a first step of wetting the conductive material with a solvent with a wetting improver and a second step of granulating the wetted conductive material. Method for producing a composition. 請求項8記載の製造方法を用いてなる電極用導電性組成物。   The electroconductive composition for electrodes formed using the manufacturing method of Claim 8. 請求項1〜7、9いずれか記載の電極用導電性組成物を使用して形成されてなる正極または負極用電極。   The electrode for positive electrodes or negative electrodes formed using the electroconductive composition for electrodes in any one of Claims 1-7, 9. 請求項10記載の正極または負極用電極を使用して形成されてなる二次電池。   The secondary battery formed using the electrode for positive electrodes or negative electrodes of Claim 10. 請求項10記載の正極または負極用電極を使用して形成されてなるキャパシタ。
The capacitor formed using the electrode for positive electrodes or negative electrodes of Claim 10.
JP2010042070A 2010-02-26 2010-02-26 Conductive composition for electrode Active JP5471591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010042070A JP5471591B2 (en) 2010-02-26 2010-02-26 Conductive composition for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010042070A JP5471591B2 (en) 2010-02-26 2010-02-26 Conductive composition for electrode

Publications (2)

Publication Number Publication Date
JP2011181229A JP2011181229A (en) 2011-09-15
JP5471591B2 true JP5471591B2 (en) 2014-04-16

Family

ID=44692558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010042070A Active JP5471591B2 (en) 2010-02-26 2010-02-26 Conductive composition for electrode

Country Status (1)

Country Link
JP (1) JP5471591B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543885B2 (en) * 2013-02-20 2019-07-17 日本ケミコン株式会社 ELECTRODE, ELECTRIC DOUBLE LAYER CAPACITOR USING THE ELECTRODE, AND METHOD FOR MANUFACTURING ELECTRODE
WO2014136180A1 (en) * 2013-03-04 2014-09-12 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery
WO2014136177A1 (en) * 2013-03-04 2014-09-12 株式会社日立製作所 Negative electrode active material for lithium ion secondary battery
WO2014157061A1 (en) * 2013-03-26 2014-10-02 日本ゼオン株式会社 Positive electrode for lithium ion secondary cell, and lithium ion secondary cell
US20160141609A1 (en) 2013-06-12 2016-05-19 Hitachi Chemical Company, Ltd. Aluminum silicate composite, electroconductive material, electroconductive material for lithium ion secondary battery, composition for forming negative electrode for lithium ion secondary battery, composition for forming positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery, composition for forming positive
JP6645040B2 (en) * 2014-06-19 2020-02-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical element, slurry for positive electrode of electrochemical element, positive electrode for electrochemical element, and electrochemical element
KR20160020237A (en) * 2014-08-13 2016-02-23 삼성에스디아이 주식회사 Cathode material, cathode including the same, and lithium battery including the cathode
EP3198672A4 (en) 2014-09-26 2018-05-23 Applied Materials, Inc. High solids content paste formulations for secondary battery electrode
JP6746929B2 (en) * 2015-03-26 2020-08-26 東洋インキScホールディングス株式会社 Coating composition, current collector with coat layer and fuel cell
JP6443421B2 (en) 2016-10-12 2018-12-26 トヨタ自動車株式会社 Electrode manufacturing method
JP7024640B2 (en) * 2018-07-17 2022-02-24 トヨタ自動車株式会社 Manufacturing method of particle aggregate, manufacturing method of electrode plate and particle aggregate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2515633C3 (en) * 1975-04-10 1980-06-19 Hoechst Ag, 6000 Frankfurt Process for the production of a conductive carbon black for depolarizer masses of dry batteries
JP3409956B2 (en) * 1995-12-21 2003-05-26 日本電池株式会社 Method for producing electrode for lithium ion battery and lithium ion battery using the electrode
JP3897387B2 (en) * 1995-12-29 2007-03-22 株式会社ジーエス・ユアサコーポレーション Method for producing positive electrode active material for lithium secondary battery
JP3567618B2 (en) * 1996-05-28 2004-09-22 Jsr株式会社 Conductive binder composition for secondary battery electrode and method for producing the same
JP3856074B2 (en) * 1999-03-31 2006-12-13 ライオン株式会社 Conductive paste, method for producing the same, and conductive additive for secondary battery
JP2003020527A (en) * 2001-07-04 2003-01-24 Showa Denko Kk Carbon fiber, method for producing the same and use thereof
JP4362276B2 (en) * 2001-11-07 2009-11-11 昭和電工株式会社 Fine carbon fiber, its production method and its use
JP4594614B2 (en) * 2003-12-02 2010-12-08 株式会社東芝 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP2058882A4 (en) * 2006-08-29 2013-03-06 Unitika Ltd Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
JP2009283232A (en) * 2008-05-21 2009-12-03 Toyo Ink Mfg Co Ltd Method for manufacturing composition for battery

Also Published As

Publication number Publication date
JP2011181229A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5471591B2 (en) Conductive composition for electrode
JP7023198B2 (en) Ultrafine fibrous carbon, ultrafine fibrous carbon aggregate, carbon-based conductive aid, electrode material for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and ultrafine fiber Method of manufacturing state carbon
WO2020017656A1 (en) Compound, dispersant, dispersion composition for battery, electrode, and battery
US20160111718A1 (en) Electrode composition, electrochemical cell and method of making electrochemical cells
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2016021393A (en) Negative electrode active material for secondary batteries, and method for manufacturing the same
JP2012501515A (en) Composite electrode material, battery electrode including the material, and lithium battery having the electrode
JP2010218848A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, manufacturing method of anode for lithium-ion secondary battery, and slurry used for manufacturing
JP2014194927A (en) Mixture slurry and production method thereof, and electrode and battery using the mixture slurry
EP2068385A1 (en) Composition for battery
JP2014130844A (en) Method for manufacturing electrode of lithium ion secondary battery and lithium ion secondary battery
JP2011192620A (en) Method of manufacturing carbon black dispersion for lithium ion secondary battery electrode
JP2012252824A (en) Method for manufacturing electrode for power storage device, and power storage device
JP5861896B2 (en) A composition comprising a first positive electrode active material, a second positive electrode active material, a dispersant and a solvent
JP2016103479A (en) Manufacturing method of lithium electrode, and lithium secondary battery including lithium electrode
JP2016192398A (en) Conductive composition, collector with underlying for power storage device, electrode for power storage device, and power storage device
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
CN107925090B (en) Electrode active material slurry and lithium secondary battery comprising the same
JP2012094331A (en) Manufacturing method of electrode for electricity-storage devices, electrode for electricity-storage device, and electricity-storage device
JP2014135198A (en) Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
JP2011181387A (en) Manufacturing method of electrode mixture for electrochemical element
JP6874283B2 (en) Conductive compositions, grounded current collectors for power storage devices, electrodes for power storage devices, and power storage devices
JP6740564B2 (en) Electric storage device electrode forming composition, electric storage device electrode, and electric storage device
WO2024190056A1 (en) Carbon nanotube dispersion composition and use thereof
WO2021177291A1 (en) Secondary battery electrode additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250