[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5471159B2 - 工作機械の制御装置 - Google Patents

工作機械の制御装置 Download PDF

Info

Publication number
JP5471159B2
JP5471159B2 JP2009193143A JP2009193143A JP5471159B2 JP 5471159 B2 JP5471159 B2 JP 5471159B2 JP 2009193143 A JP2009193143 A JP 2009193143A JP 2009193143 A JP2009193143 A JP 2009193143A JP 5471159 B2 JP5471159 B2 JP 5471159B2
Authority
JP
Japan
Prior art keywords
machining
axis
speed
allowable
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009193143A
Other languages
English (en)
Other versions
JP2011044081A (ja
Inventor
良彦 山田
敦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009193143A priority Critical patent/JP5471159B2/ja
Priority to US12/853,614 priority patent/US8818549B2/en
Priority to EP20100173677 priority patent/EP2293163B1/en
Publication of JP2011044081A publication Critical patent/JP2011044081A/ja
Application granted granted Critical
Publication of JP5471159B2 publication Critical patent/JP5471159B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43021At several positions detect acceleration error, compensate for it
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30084Milling with regulation of operation by templet, card, or other replaceable information supply
    • Y10T409/300896Milling with regulation of operation by templet, card, or other replaceable information supply with sensing of numerical information and regulation without mechanical connection between sensing means and regulated means [i.e., numerical control]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/307672Angularly adjustable cutter head
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30784Milling including means to adustably position cutter
    • Y10T409/307952Linear adjustment
    • Y10T409/308008Linear adjustment with control for adjustment means responsive to activator stimulated by condition sensor
    • Y10T409/30812Linear adjustment with control for adjustment means responsive to activator stimulated by condition sensor and means to clamp cutter support in adjusted position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/309576Machine frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

本発明は、例えば5軸マシニングセンタなどの直進軸および回転軸を含む駆動軸を制御して加工を行う工作機械の制御装置に関するものである。
工作機械は、制御装置により各駆動軸を位置制御することで工作物の加工を行っている。この工作機械による加工において、駆動軸の軸反転により工作物に象限突起が発生し加工面精度の低下を招くおそれがあった。そこで、特許文献1には、加工条件に応じたバックラッシ加速量を決定することで、象限突起の発生を低減する方法が開示されている。
ところで、近年、同時5軸加工を行う工作機械の高性能化が進んでいる(例えば、特許文献2参照)。ここで、同時5軸加工とは、直進軸と回転軸とを同時に位置制御をしながら行う加工である。
特開平9−81216号公報 特開2008−090734号公報
このような工作機械による同時5軸加工において、加工軌跡が直線であっても駆動軸の軸反転を伴うことがあるため、加工面精度の低下を招くおそれがある。さらに、工具を支持する支持体を旋回させる回転軸を有する工作機械による加工において、支持体を旋回させながら加工を行うと、加工位置と回転軸の中心までの離間距離に応じて象限突起による加工誤差が大きくなることがある。
本発明は上記課題を鑑みてなされたものであり、直進軸および回転軸を含む駆動軸を制御して加工を行う際に加工面精度に向上させることができる工作機械の制御装置を提供することを目的とする。
上記の課題を解決するため、請求項1に係る発明の特徴は、
機械座標系の制御データに基づいて直進軸および回転軸を含む駆動軸を動作させることにより工作物に対する工具の加工位置および加工姿勢を制御する工作機械の制御装置であって、
前記制御データに基づいた前記工作機械による加工において前記回転軸が軸反転する前記加工位置を検出する検出手段と、
指令加工位置と実加工位置との許容位置誤差を設定する許容位置誤差設定手段と、
検出された軸反転する前記加工位置から前記回転軸の中心までの離間距離と前記許容位置誤差とに基づいて、前記回転軸の指令角度と前記回転軸の実角度との差である許容角度誤差を算出する許容角度誤差算出手段と、
前記離間距離と設定された前記許容位置誤差とにより算出された前記許容角度誤差に基づいて、前記回転軸の許容加速度を決定する許容加速度決定手段と、
前記許容加速度に基づいて前記駆動軸の速度制御を行う制御手段と、
を備えることである。
請求項2に係る発明の特徴は、請求項1において、
前記検出手段は、前記制御データに基づいた前記工作機械による加工において前記直進軸が軸反転する前記加工位置を検出し、
前記許容加速度決定手段は、前記許容位置誤差に基づいて前記直進軸の前記許容加速度を決定することである。
請求項3に係る発明の特徴は、請求項1または2において、
前記制御装置は、前記工作機械の構成に応じて前記駆動軸の前記許容加速度が異なる特性であり、前記工作機械の実動作において測定される前記指令加工位置と前記実加工位置との実位置誤差に基づいて予め設定される前記工作機械の機械特性を記憶する機械特性記憶手段をさらに備え、
前記許容加速度決定手段は、前記機械特性と前記許容位置誤差に基づいて前記駆動軸の前記許容加速度を決定することである。
請求項4に係る発明の特徴は、請求項1〜3の何れか一項において、
前記許容加速度決定手段は、検出された軸反転する前記加工位置における加工形状と前記許容位置誤差とに基づいて前記駆動軸の前記許容加速度を決定することである。
請求項5に係る発明の特徴は、請求項1〜4の何れか一項において、
前記制御手段は、検出された軸反転する前記加工位置において前記制御データに含まれる速度指令値から算出される前記駆動軸の指令速度と、前記許容加速度から算出される前記駆動軸の移動速度と、に基づいて前記速度指令値を補正することにより前記駆動軸の速度制御を行うことである。
請求項6に係る発明の特徴は、請求項5において、
前記制御手段は、前記指令速度と前記移動速度の比から減速率を算出し、前記工作機械が当該指令速度を指令する前記速度指令値に基づいて加工する際に、前記減速率に応じたオーバーライドを切り換えることにより前記速度指令値を補正することである。
請求項7に係る発明の特徴は、請求項5または6において、
前記制御手段は、前記指令速度と前記移動速度の比から減速率を算出し、前記工作機械が前記制御データに基づいて加工する前に、当該指令速度を指令する前記速度指令値を前記減速率に応じた補正値に予め更新することにより前記速度指令値を補正することである。
請求項1に係る発明によると、回転軸が軸反転する加工位置を検出し、当該加工位置に対して回転軸を含む駆動軸の速度制御を行う構成となっている。ここで、工作機械の制御装置は、機械座標系の制御データに基づいて駆動軸を動作させることにより工作物に対する工具の加工位置および加工姿勢を制御する。工具の加工位置は、制御データに含まれる複数の位置指令値に基づいて工作物に対して相対移動する工具の加工軌跡上の位置である。工具の加工姿勢は、加工位置における工具のベクトルであり、回転軸の動作により制御される。つまり、「軸反転する加工位置」とは、上記加工軌跡において軸反転する駆動軸が速度ゼロとなる軸反転位置であり、機械座標系またはワーク座標系の直進軸(X,Y,Z軸)の座標値により表されるものである。
また、駆動軸の速度制御における許容加速度は、減速を含む駆動軸の加速度の大きさが許容される値である。この許容加速度は、検出された軸反転する加工位置から回転軸の中心までの離間距離と、設定された許容位置誤差と、に基づいて決定されている。この「許容位置誤差」は、要求される加工面精度を満足するのに許容される指令加工位置と実加工位置の誤差をいう。ここで、軸反転による加工誤差は、軸反転が伴う駆動軸の加速度に依存することが知られている。つまり、その駆動軸が軸反転する加工位置における速度ゼロの状態に至るまでの減速度の大きさに依存する。さらに、駆動軸を制御して加工を行う際に、軸反転する加工位置と回転軸の中心までの離間距離が大きくなるほど、軸反転による加工誤差が大きくなる傾向にある。
そこで、この離間距離と許容位置誤差とに基づいて許容加速度を決定することで、回転軸の速度をより適正に制御できる。よって、回転軸の軸反転による加工誤差の発生を抑制し、加工面精度を向上することができる。そこで、回転軸が軸反転する加工位置を指令する位置指令値は、制御装置により制御データまたはNCプログラムから検出される。そして、制御手段は、例えば、制御データに含まれる複数の位置指令値のうち、回転軸が軸反転する加工位置を指令する一以上の位置指令値による加工に対して速度制御を行っている。これにより、他の位置指令値に対して不要な減速を加えるような速度制御を防止できる。よって、軸反転による加工誤差を低減するために制御データ全体に対して加工の速度指令値を低減させる場合と比較して、加工時間を短縮することができる。
また、制御装置は、上述したように、回転軸が軸反転する加工位置を指令する位置指令値を制御データから検出するものとした。その他に、軸反転する駆動軸が回転軸であって、且つ、ワーク座標系のNCプログラムに含まれる各駆動軸の位置指令値と工作機械の駆動軸の構成が一致することがある。この場合に、制御装置は、回転軸が軸反転する加工位置を指令する位置指令値をNCプログラムから簡易に検出することが可能である。つまり、検出手段により回転軸が軸反転する加工位置を検出し、当該加工位置を指令する位置指令値を制御データまたはNCプログラムから検出する。そして、制御装置は、検出された位置指令値による加工に対して制御手段が速度制御を行う構成としても同様の効果を得られる。
また、請求項1に係る発明によると、許容位置誤差に基づいて許容角度誤差を算出する構成となっている。そして、この許容角度誤差に基づいて回転軸の許容加速度を決定している。ここで、回転軸の許容加速度は、回転軸の角加速度に相当し、回転軸の許容角度誤差との関係は容易に設定できる。つまり、許容位置誤差に基づいて回転軸の許容角度誤差を算出することで、より正確な回転軸の許容加速度を決定することができる。
請求項2に係る発明によると、直進軸が軸反転する加工位置を検出し、直進軸を含む駆動軸の速度制御を行う構成となっている。これにより、直進軸および回転軸を含む駆動軸を制御して行う加工において、直進軸の軸反転による象限突起の発生を抑制し、加工面精度を向上することができる。また、直進軸および回転軸が軸反転する加工位置を検出しようとすると、ある位置指令値において複数の駆動軸が軸反転する加工位置が検出されることがある。このような場合に、それぞれ求められた許容加速度に基づいて速度制御することで、より確実に軸反転による加工誤差を抑制することができる。
請求項3係る発明によると、駆動軸の許容加速度は、機械特性と許容位置誤差に基づいて決定される構成となっている。ここで、「機械特性」とは、工作機械の構成に応じて駆動軸の許容加速度が異なる特性をいう。例えば、回転軸として、工具のチルト軸を有する工作機械と、工作物を載置するテーブルのチルト軸を有する工作機械とでは、それぞれの構成上の相違から機械特性は異なるものとなる。さらに、機械特性は工作機械固有のものであり、構成が同一の工作機械においても異なるものとなる。そこで、工作機械の軸動作において、指令加工位置と実加工位置との実位置誤差を測定し、この実位置誤差に基づいてその工作機械固有の機械特性を設定している。これにより、工作機械の機械特性を反映したより適正な許容加速度を決定することができる。従って、より確実に軸反転による加工誤差を抑制した駆動軸の速度制御を行うことができる。
請求項4に係る発明によると、駆動軸の許容加速度は、軸反転する加工位置における加工形状と許容位置誤差に基づいて決定される構成となっている。よって、回転軸の許容加速度は、同様に、軸反転する加工位置における加工形状と許容位置誤差に基づいて算出された許容角度誤差に基づいて決定される構成としてもよい。制御データに基づいた工作機械による加工において、工作物に対して相対移動する工具の加工軌跡は、例えば、直線部やコーナー部、円弧部などの加工形状を含んでいる。そして、駆動軸の軸反転による加工誤差の大きさや加工面精度への影響は、それぞれの加工形状によって異なることがある。
そこで、検出された軸反転する加工位置における加工形状を判定することで、その加工形状と許容位置誤差とに基づいて、より適正な許容加速度を決定することができる。例えば、同じ駆動軸の軸反転であっても軸反転による加工誤差が比較的小さいコーナー部において、減速の程度を少なくすることで、一様に減速するように速度制御する場合と比較して、加工時間を短縮することができる。また、機械特性と許容位置誤差に基づいて許容加速度を決定する構成の場合に、機械特性記憶手段は、多様な加工位置における加工形状に応じた機械特性をそれぞれ記憶するものとしてもよい。
また、軸反転する加工位置における加工形状の判定については、例えば、当該加工位置を指令する位置指令値を制御データまたはNCプログラムから検出する。ここで、位置指令値を機械座標系の制御データから検出した場合には、各駆動軸の位置指令値に基づく工具の加工軌跡から加工形状を判定することが可能である。また、位置指令値をワーク座標系のNCプログラムから検出した場合には、直進軸の位置指令値に基づく工具の加工軌跡から加工形状を判定することが可能である。
請求項5に係る発明によると、制御データに含まれる速度指令値から算出される指令速度と、許容加速度から算出される移動速度と、に基づいて速度指令値を補正することにより駆動軸の速度制御を行う構成となっている。例えば、まず制御データに含まれる工作物に対する工具の送り速度(速度指令値)から、軸反転する駆動軸の指令速度を算出する。次に、速度制御の対象の加工の開始位置から軸反転する加工位置までの速度制御において、その加速度が許容加速度に収まるように、当該開始位置における駆動軸の移動速度を算出する。そして、軸反転する駆動軸の指令速度および移動速度に基づいて、当該速度指令値を補正する。
ここで、速度指令値は、工作物に対して工具が相対移動する速度を制御する指令値であり、全ての駆動軸を対象としている。つまり、制御手段は、軸反転する駆動軸について、その指令速度および移動速度に基づいて、全ての駆動軸を対象とする速度指令値の補正量などを決定している。これにより、速度制御の対象の加工の開始点において、駆動軸は十分に減速されることになり、軸反転する加工位置までの速度制御における加速度が許容加速度に収まることになる。よって、許容加速度を確実に反映することができる。
請求項6に係る発明によると、駆動軸の指令速度と移動速度の比から減速率を算出し、速度制御の対象の加工する際に、この減速率に応じたオーバーライドを切り換えることにより速度指令値を補正する構成となっている。そして、制御手段は、速度指令値を補正することにより駆動軸の速度制御を行っている。これにより、速度制御の対象の加工の開始位置において、駆動軸は十分に減速させることができる。よって、許容加速度を確実に、且つ簡易に反映することができる。
請求項7に係る発明によると、駆動軸の指令速度と移動速度の比から減速率を算出し、工作機械が制御データに基づいて加工する前に、速度指令値をこの減速率に応じた補正値に予め更新することにより速度指令値を補正する構成となっている。即ち、制御手段は、工作機械による加工前に、記憶された制御データに含まれる速度指令値を更新することにより速度指令値を補正し、駆動軸の速度制御を行っている。これにより、補正された制御データに基づいて工作機械が加工する際に、速度制御の対象の加工の開始位置において、軸反転する駆動軸は十分に減速されることになり、軸反転する加工位置までの速度制御における加速度が許容加速度に収まることになる。よって、許容加速度を反映してより適正に速度制御を行うことができる。従って、より確実に軸反転による加工誤差を抑制した駆動軸の速度制御を行うことができる。

工作機械1の全体図である。 工作機械1の構成を示す概略図である。 工作機械1の制御装置100を示すブロック図である。 許容位置誤差ΔおよびA軸に関する許容角度誤差θ1の説明図である。 許容位置誤差ΔおよびB軸に関する許容角度誤差θ2の説明図である。 制御データに基づいた工作機械1による加工の加工軌跡を示す図である。 加工形状毎の機械特性を示す図である。(a)は直線部、(b)はコーナー部、(c)は円弧部の場合の機械特性である。
以下、本発明の工作機械の制御装置を具体化した実施形態について図面を参照しつつ説明する。工作機械として、5軸マシニングセンタを例に挙げて説明する。つまり、当該工作機械は駆動軸として、相互に直交する3つの直進軸(X,Y,Z軸)と、2つの回転軸(A,B軸)を有する工作機械である。
<工作機械1の構成>
本実施形態の工作機械1の制御装置の対象である5軸マシニングセンタについて、図1,図2を参照して説明する。工作機械1は、ベッド2と、X軸移動体10と、Y軸移動体20と、Z軸移動体30と、主軸基体40と、回転テーブル50と、工具60とを備える。また、この工作機械1は、主軸基体40を支持するY軸移動体20により工具60がA軸回りに旋回し、工作物Wを載置する回転テーブル50により工作物WがB軸回りに回転する構成となっている。ベッド2は、上面にX軸方向とZ軸方向のレールが形成され、床面に設置されている。工作物Wは、工作機械1によって加工される被加工部材である。
X軸移動体10は、ベッド2のX軸方向のレール上に設けられ、ベッド2に対してX軸方向に移動可能なコラムである。また、X軸移動体10は、側面にY軸方向(床面に垂直な方向)のレールが形成されている。Y軸移動体20は、X軸移動体10のレール上に設けられ、X軸移動体10に対してY軸方向に移動可能な送り台である。このY軸移動体20は、X軸移動体10に固定されたY軸モータ(図示せず)の回転駆動によりY軸方向へ移動する。Z軸移動体30は、ベッド2のZ軸方向のレール上に設けられ、ベッド2に対してZ軸方向に移動可能な送り台である。
主軸基体40は、Y軸移動体20に対してA軸(X軸回り)に旋回可能に支持されている。この主軸基体40は、Y軸移動体20に固定されているA軸モータ21の回転駆動によりA軸旋回する。主軸基体40は、Y軸移動体20に支持されている筒状のハウジングと、ハウジングの内部に収容されハウジングに対して主軸基体40の軸回りに回転可能な回転主軸とを備えている。回転テーブル50は、Z軸移動体30に対してB軸(Y軸回り)に回転可能に支持されている。この回転テーブル50は、Z軸移動体30に固定されているB軸モータ31の回転駆動によりB軸回転する。
工具60は、主軸基体40の回転主軸の先端に固定されている。つまり、工具60は、回転主軸の回転に伴って回転する。なお、工具60は、例えば、ボールエンドミル、エンドミル、ドリル、タップなどである。つまり、この5軸マシニングセンタである工作機械1は、工具60をベッド2に対してX軸方向およびY軸方向に移動可能とし、且つ、工具60をA軸旋回可能としている。そして、工作機械1は、工作物WをZ軸方向に移動可能とし、且つ、工作物WをB軸回転可能としている。
<制御装置100の構成>
次に、当該5軸マシニングセンタの制御装置のうち、本発明の特徴的な部分の構成について、図3を参照して説明する。制御装置100は、図3に示すように、制御データ算出部101と、検出部102と、許容位置誤差設定部103と、許容角度誤差算出部104と、形状判定部105と、機械特性記憶部106と、許容加速度決定部107と、制御部108とを備える。
制御データ算出部101は、工作機械1による加工において、工作機械1の直進軸(X,Y,Z軸)および回転軸(A,B軸)の駆動軸を動作させることにより工作物に対する工具の加工位置および加工姿勢を制御装置100が制御するための制御データを算出する。ここで、制御データとは、工作機械の各駆動軸を制御する機械座標系の位置指令値、工作物に対する工具の送り速度である速度指令値などにより構成される加工データである。また、この位置指令値は、実際に工作機械1の各駆動軸の位置に相当するものである。
位置指令値は、例えば、図3に示すように、ワーク座標系のNCプログラムと、工作機械1における駆動軸の構成、テーブルに載置された工作物の位置情報、および、加工に使用される工具の長さなどの機械情報と、に基づいて算出される機械座標系の指令加工位置を示すものである。また、この位置指令値は、それぞれの座標系に相互に変換可能である。これにより、本実施形態において、制御データは、機械座標系の位置指令値により構成されているが、ワーク座標系にさらに変換した位置指令値により構成されるものとしてもよい。
検出部102は、制御データに基づいた工作機械1による加工において、直進軸および回転軸の駆動軸の何れかが軸反転する加工位置を検出する検出手段である。また、検出部102が検出する「軸反転する加工位置」は、軸反転する駆動軸が速度ゼロとなる位置として考えられるものである。以下、軸反転する加工位置を「軸反転位置」とも称する。
このような制御データに基づいた工作機械1による加工において、位置指令値が何れかの駆動軸の軸反転を伴う指令をすることがある。例えば、現在位置からある位置指令値による指令加工位置まで移動する場合に、主軸基体40を旋回させるA軸モータ21の回転方向が反転することがある。または、位置指令値による指令加工位置においてA軸モータ21の回転方向が反転することがある。検出部102は、このA軸モータ21の回転方向が反転する際の加工位置を軸反転位置として検出する。この時、軸反転位置を指令した位置指令値についても制御データから検出されることになる。また、複数の駆動軸が同じ位置指令値において軸反転する場合においても同様に検出部102は、この位置指令値よる複数の軸反転位置を検出する。
許容位置誤差設定部103は、指令加工位置P1と実加工位置P2との許容位置誤差Δを設定する許容位置誤差設定手段である。ここで、指令加工位置P1に実加工位置P2が一致していることが理想的な状態である。しかし、実際の加工においては、指令加工位置P1と実加工位置P2に差異が生じることがある。指令加工位置P1と実加工位置P2のずれは、加工面精度に影響を及ぼすおそれがある。
そして、指令加工位置P1と実加工位置P2に差異が生じる要因の一つとして、A軸やB軸の回転軸の回転に伴うものがある。具体的には、A軸やB軸の回転指令が出力された場合に、その指令に基づいて主軸基体40や回転テーブル50が回転動作を開始する。この時、実加工位置P2は、指令加工位置P1に対して僅かに遅れが生じる。特に、A軸やB軸の回転軸から実加工位置P2までの離間距離L1,L2が長いほど、その遅れ量は大きくなる。そこで、指令加工位置P1と実加工位置P2との差の許容値として、許容位置誤差Δを設定することとした。つまり、指令加工位置P1と実加工位置P2の実際の差が許容位置誤差Δの範囲内であれば、十分な加工面精度を得ることができるように、許容位置誤差Δを設定する。
ここで、指令加工位置P1、実加工位置P2および許容位置誤差Δについて図4,5を参照して補足的に説明する。図4,5の実線にて示すように、指令加工位置P1は、制御データに基づいて制御装置から出力される加工位置、すなわち工具60の先端位置の位置指令値である。また、図4の破線にて示すように、実加工位置P2は、実際の工具60の先端位置である。同様に、図5の破線にて示すように、実加工位置P2は、実際の工具60の先端位置と工作物Wとの接触位置である。そして、指令加工位置P1と実加工位置P2には差異が生じることがある。そして、図4,5に示すように、指令加工位置P1と実加工位置P2との差異の許容値を許容位置誤差Δとして予め設定している。
許容角度誤差算出部104は、回転軸(A,B軸)の指令角度と実角度との差である許容角度誤差(θ1,θ2)を算出する許容角度誤差算出手段である。ここで、図4に示すように、指令加工位置P1とA軸の中心との離間距離をL1と定義する。同様に、図5に示すように、指令加工位置P1とB軸の中心との離間距離をL2と定義する。例えば、検出部102によりA軸の軸反転を伴う軸反転位置が検出されたとする。この場合に、許容角度誤差算出部104は、A軸に係る離間距離L1と許容位置誤差Δとに基づいて、A軸の指令角度と実角度との差である許容角度誤差θ1(図4に示す)を算出する。同様に、例えば、検出部102によりB軸の軸反転を伴う軸反転位置が検出されたとする。この場合に、許容角度誤差算出部104は、B軸に係る離間距離L2と許容位置誤差Δとに基づいて、B軸の指令角度と実角度との差である許容角度誤差θ2(図5に示す)を算出する。ここで、許容角度誤差θ1,θ2は、式(1)(2)に従って算出することができる。
[数1]
θ1 = sin−1(Δ/L1) ・・・ (1)
θ2 = sin−1(Δ/L2) ・・・ (2)
ここで、指令加工位置P1から回転軸であるA軸までの離間距離L1は、工具60の長さによって異なるものである。つまり、工具60が変更された場合には、変更された工具60に応じて許容角度誤差θ1が算出されることになる。また、指令加工位置P1から回転軸であるB軸までの離間距離L2は、位置指令値による指令加工位置によって異なるものである。つまり、検出部102により検出された軸反転位置それぞれに応じて許容角度誤差θ2が算出されることになる。
形状判定部105は、工具60の加工軌跡において、検出部102により検出された軸反転位置の加工形状を判定している。ここで、工具60の加工軌跡とは、制御データに基づいた工作機械1による加工において、工作物Wに対する工具60の相対移動の軌跡をいう。そして、制御データおよびNCプログラムは、複数の位置指令値により構成される加工データである。つまり、工具60の加工軌跡は、隣り合う位置指令値を線分または曲線で適宜連結することにより示される。
ここで、制御データから加工軌跡を示す場合には、各駆動軸(X,Y,Z,A,B軸)の位置指令値に基づいて加工軌跡を算出する必要がある。一方で、NCプログラムから加工軌跡を示す場合には、回転軸(A,B軸)が工具60の加工姿勢を指令するものであるため、各直進軸(X,Y,Z軸)の位置指令値に基づいて加工軌跡を比較的容易に算出できる。
次に、工具60の加工軌跡について図6を参照して説明する。この加工軌跡は、図6に示すように、例えば、直線部やコーナー部、円弧部などの加工形状を含んでいる。工作機械1による加工においては、このような加工軌跡を微小間隔で並列させて加工することにより、工作物の目標形状として平面や曲面などが形成される。
ここで、駆動軸の軸反転による加工誤差は、それぞれの加工形状によって異なることがある。これは、駆動軸の軸反転が伴った加工であっても、加工形状によって加工誤差が加工面精度に及ぼす影響度が異なるためである。例えば、直線部を加工している場合には、軸反転による加工誤差が小さくても加工面精度に大きく影響する。一方、コーナー部を加工している場合には、加工面精度に及ぼす影響は比較的小さい。よって、軸反転位置における加工形状によって許容加速度を決定することが好適である。
そこで、形状判定部105では、まず検出された軸反転位置を指令する位置指令値(軸反転位置を通過するように指令する位置指令値、または、軸反転位置に該当する位置指令値)と、当該位置指令値の前後の位置指令値との3点の位置指令値をNCプログラムから取得する。この3点の位置指令値は、NCプログラムに含まれる直進軸の位置指令値である。次に、取得した3つの位置指令値に基づいて、工具60の加工軌跡がなす角の角度を算出する。そして、この角度と予め設定された所定角度値とを比較することにより、軸反転位置における加工形状を判定している。
本実施形態では、上述したように加工形状を判定したが、上記3点または3点以上の点群から求められる曲率半径や、前後数点の位置指令値、並列された加工軌跡との関係、加工軌跡に相当する目標形状などから軸反転位置における加工形状を判定するものとしてもよい。その他に、それぞれの位置指令値をNCプログラムから取得するものとしたが、制御データから各駆動軸の位置指令値を取得し、その位置指令値に基づいて工具60の加工軌跡がなす角の角度を算出することも可能である。
機械特性記憶部106は、加工形状に応じた工作機械1の機械特性をそれぞれ記憶する機械特性記憶手段である。ここで、機械特性について、図7を参照して説明する。機械特性とは、工作機械1の構成に応じて駆動軸の許容加速度が異なる特性をいう。機械特性は、種々の工作機械における構成上の相違により異なるものであり、またその工作機械固有の特性を示すものである。この機械特性は、例えば、工作機械1に駆動軸の軸反転が伴う動作をさせ、指令加工位置とフィードバック信号による実際の駆動軸の位置(実加工位置)との実位置誤差とを測定し、この実位置誤差を解析することにより予め設定されるものである。
さらに、機械特性は、軸反転位置における加工形状によっても駆動軸の許容加速度が異なる。そこで、機械特性記憶部106は、図7(a)〜(c)に示すように、形状判定部105により判定された軸反転位置における加工形状に対応した機械特性をそれぞれ記憶している。つまり、直線部を加工している場合には、上述したように軸反転による加工誤差が小さくても加工面精度に大きく影響するため、軸反転位置までに小さい加速度で減速する必要がある。
そのため、図7(a)に示すように、A軸およびB軸の許容加速度は、図7(b)、図7(c)に示されるコーナー部および円弧部の許容加速度よりも小さいものとなっている。一方、コーナー部を加工している場合には、加工面精度に及ぼす影響は比較的小さいため、軸反転位置までに比較的大きな加速度で減速しても許容される。よって、図7(b)に示すように、A軸およびB軸の許容加速度は、図7(c)に示される円弧部の許容加速度よりも大きなものとなっている。
許容加速度決定部107は、駆動軸の許容加速度を機械特性に基づいて決定する許容加速度決定手段である。ここで、許容加速度決定部107により、「回転軸」であるA軸(B軸)の許容加速度が決定される場合について説明する。まず、許容角度誤差算出部104は、検出された軸反転位置を指令する位置指令値(軸反転位置を通過するように指令する位置指令値、または、軸反転位置に該当する位置指令値)による指令加工位置P1からA軸(B軸)の中心まで離間距離L1(L2)と許容位置誤差Δとに基づいて許容角度誤差θ1(θ2)を算出する。次に、許容加速度決定部107は、形状判定部105により判定された軸反転位置における加工形状に応じた機械特性を機械特性記憶部106から取得する。そして、許容加速度決定部107は、取得した機械特性と許容角度誤差θ1(θ2)とに基づいてA軸(B軸)の許容加速度を決定する。
上述したように、離間距離L1(L2)は、軸反転位置を指令する位置指令値による指令加工位置P1と、軸反転する回転軸の中心との距離とした。これに対して、軸反転位置と、軸反転する回転軸の中心との距離を離間距離L1(L2)としてもよい。
また、許容加速度決定部107により、「直進軸」であるX軸(Y軸、Z軸)の許容加速度が決定される場合について説明する。まず、許容加速決定部107は、形状判定部105により判定された軸反転位置における加工形状に応じた機械特性を機械特性記憶部106から取得する。次に、許容加速決定部107は取得した機械特性と許容位置誤差Δとに基づいてX軸(Y軸、Z軸)の許容加速度を決定する。このように、直進軸であるX軸(Y軸、Z軸)の許容加速度は、設定された許容位置誤差Δを使用することにより、図7の機械特性に示されるように固定的に決定される。一方、回転軸であるA軸(B軸)の許容加速度は、許容角度誤差θ1(θ2)を算出することにより、図7の機械特性に示されるように可変的に決定される。
制御部108は、許容加速度決定部107により決定された許容加速度に基づいて駆動軸の速度制御を行う制御手段である。許容加速度決定部107は、まず制御データに基づいた工作機械1による加工時において、制御データに含まれる速度指令値から算出される指令速度と、許容加速度から算出される移動速度と、を算出する。次に、駆動軸の指令速度と移動速度の比から減速率を算出する。そして、この減速率に基づいて速度指令値を補正することにより駆動軸の速度制御を行う。つまり、本実施形態において、制御部108は、検出した軸反転位置を加工する際に、この減速率に基づいて速度指令値を補正するように、減速率に応じたオーバーライドを切り換えて速度制御を行う。
これにより、検出した軸反転位置の加工の開始位置において、駆動軸は十分に減速されることになる。よって、駆動軸に対する軸反転位置までの速度制御において、その減速による加速度が許容加速度に収まることになる。このように、制御部108は、各駆動軸の加速度が各駆動軸の許容加速度を超えないように、駆動軸の速度制御を行っている。
ここで、制御部108の速度制御の対象について説明する。まず、軸反転位置において軸反転する駆動軸が速度ゼロとなるため、軸反転位置を指令する位置指令値(Dn)による加工の開始位置から軸反転位置までの加速度が許容加速度以下とする必要がある。そのため、上述したように、軸反転する駆動軸の指令速度と移動速度とを算出している。そして、この指令速度が移動速度を上回っていることから、軸反転位置を指令する位置指令値(Dn)は、制御部108の速度制御の対象とされ速度指令値が補正される。これにより、位置指令値(Dn)による加工の開始位置において、駆動軸は十分に減速されることになる。
この時、軸反転位置を指令する位置指令値(Dn)の前の位置指令値(Dn−1)による加工において各駆動軸が減速することになる。そして、制御部108は、当該各駆動軸の減速についても速度制御の対象とすることがある。これは、位置指令値(Dn−1)の加工の開始位置から位置指令値(Dn)の加工の開始位置までの加速度が許容加速度以下とする必要があることに起因する。つまり、位置指令値(Dn−1)について、軸反転する駆動軸の指令速度と移動速度を算出し、指令速度が移動速度を上回っている場合に、位置指令値(Dn−1)は、制御部108の速度制御の対象とされ速度指令値が補正される。これにより、位置指令値(Dn−1)による加工の開始位置において、駆動軸は十分に減速されることになる。
制御部108は、これを繰り返し、軸反転する駆動軸の指令速度が移動速度以下となる位置指令値(Dn−m+1)の手前の位置指令値(Dn−m)までを速度制御の対象とする。つまり、制御部108は、何れの位置指令値(Dn〜Dn−m)においても各駆動軸の加速度の大きさが許容加速度を超えないように、軸反転位置を指令する位置指令値(Dn)から遡及して対象とする位置指令値(Dn〜Dn−m)を決定し速度制御を行っている。また、本実施形態において、制御部108は、上述したように速度制御の対象を決定するものとした。これに対して、制御部108は、簡易的に固定数の位置指令値、または、軸反転位置における加工形状に応じた適宜数の位置指令値を速度制御の対象とするものとしてもよい。
<本実施形態の効果>
以上説明した工作機械1の制御装置によれば、制御装置100は、軸反転位置(軸反転する加工位置)を検出し、制御部108により駆動軸の速度制御を行う構成となっている。ここで、軸反転による加工誤差は、軸反転が伴う駆動軸の加速度に依存することが知られている。さらに、駆動軸を制御して加工を行う際に、離間距離L1,L2が大きくなるほど、軸反転による加工誤差が大きくなる傾向にある。そこで、離間距離L1,L2と許容位置誤差Δとに基づいて算出される許容角度誤差θ1,θ2に基づいて、回転軸の許容加速度を算出している。
これにより、回転軸の速度制御をより適正に行うことができる。よって、回転軸の軸反転による加工誤差の発生を抑制し、加工面精度を向上することができる。さらに、制御データに含まれる複数の位置指令値のうち、軸反転位置を指令する位置指令値に対して速度制御を行っている。これにより、他の位置指令値に対して不要な減速を加えるような速度制御を防止できる。よって、軸反転による加工誤差を低減するために制御データ全体に対して加工速度を低減さえる場合と比較して、加工時間を短縮することができる。また、離間距離L1,L2を反映させた回転軸の許容角度誤差θ1,θ2を算出することで、より正確な回転軸の許容加速度を決定することができる。
また、制御装置100は、検出部102により直進軸が軸反転する加工位置を検出し、制御部108により直進軸を含む駆動軸の速度制御を行う構成となっている。これにより、直進軸および回転軸を含む駆動軸を制御して行う加工において、直進軸の軸反転による象限突起の発生を抑制し、加工面精度を向上することができる。また、直進軸および回転軸が軸反転する加工位置を検出しようとすると、ある位置指令値において複数の駆動軸が軸反転する加工位置が検出されることがある。このような場合に、それぞれ求められた許容加速度に基づいて速度制御することで、より確実に軸反転による加工誤差を抑制することができる。
さらに、許容加速度決定部107は、機械特性と許容位置誤差Δまたは許容角度誤差θ1,θ2とに基づいて、駆動軸の許容加速度を決定する構成となっている。これにより、工作機械1の機械特性を反映し、より適正な許容加速度を決定することができる。また、この工作機械1の機械特性は、軸反転位置における加工形状に応じたものとなっている。
これにより、許容加速度決定部107は、その加工形状に応じた機械特性に基づいて、より適正な許容加速度を決定することができる。つまり、軸反転位置における加工形状が加工面精度に大きく影響する直線部に属する場合には、十分に小さな加速度をもって減速し、軸反転による加工誤差を抑制することができる。また、軸反転位置における加工形状が加工面精度への影響が比較的小さいコーナー部に属する場合には、過剰な減速を防止しながら軸反転による加工誤差を抑制することができる。よって、一様に減速するように速度制御する場合と比較して、加工時間を短縮することができる。
また、制御部108は、制御データに基づいた工作機械1による加工時において、速度指令値を補正することにより駆動軸の速度制御を行なっている。つまり、制御部108は、駆動軸の指令速度と移動速度の比から減速率を算出し、検出した軸反転位置を指令する位置指令値による加工をする際に、減速率に応じたオーバーライドを切り換えて速度制御を行う。これにより、速度制御の対象に含まれるそれぞれの位置指令値による加工の開始位置において、駆動軸は十分に減速されることになり、軸反転位置までの速度制御における加速度が許容加速度に収まることになる。よって、許容加速度を確実に、且つ簡易に反映することができる。従って、より確実に軸反転による加工誤差を抑制した駆動軸の速度制御を行うことができる。
<実施形態の変形態様>
本実施形態において、制御部108は、制御データに含まれる速度指令値と許容加速度に基づいて算出した減速率に応じてオーバーライドを切り換えることにより速度指令値を補正し、速度制御を行うものとした。これに対して、制御部108は、オーバーライドを切り換えることなく、制御データに基づいた工作機械1による加工の前に、制御データに含まれる速度指令値そのものを補正することにより駆動軸の速度制御を行うものとしてもよい。
つまり、本実施形態の制御部108は、例えば、工作機械による加工時において、減速率に応じてオーバーライドを切り換え、フィードバック制御を行う駆動軸のドライブに指令値を出力することにより、速度制御を行うものである。これに対して、例えば、制御部108は、まず上記減速率に応じた速度指令値の補正値を算出する。そして、工作機械が制御データに基づいて加工する前に、速度指令値をこの補正値に予め更新する。このようにして、制御部108は、記憶された制御データに含まれる速度指令値を補正することにより駆動軸の速度制御を行う構成とする。
これにより、補正された制御データに基づいて工作機械1が加工する際に、軸反転位置を指令する位置指令値による加工の開始位置において、軸反転する駆動軸は十分に減速されることになる。そして、軸反転位置を指令する位置指令値による加工の開始位置から軸反転位置までの速度制御において、十分に小さな加速度をもって減速する。つまり、軸反転位置における加速度が許容加速度に収まることになる。よって、許容加速度を反映してより適正に速度制御を行うことができる。従って、より確実に軸反転による加工誤差を抑制することができる。
また、制御部108は、速度指令値の更新と、オーバーライドの切り換えとを適宜組み合わせることにより駆動軸の速度制御を行うものとしてもよい。このような構成により、予め速度指令値を概ね適正な値に更新し、工作機械が制御データに基づいて加工する際に、オーバーライドを切り換えることによりさらに正確な速度制御をすることができる。従って、不要な減速処理を低減し、加工面精度をより向上させることができる。さらに、検出した軸反転位置を指令する位置指令値に相当するNCプログラムにおける位置指令値を検出し、当該位置指令値に対する速度指令値を予め更新するものとしてもよい。このような構成においても同様の効果を奏する。但し、ワーク座標系のNCプログラムを更新する場合には、工具の位置情報、および、加工に使用される工具の長さなどの変更に伴い補正値が変動することに留意する必要がある。
また、5軸マシニングセンタである工作機械1は、工具60をA軸旋回可能とし、工作物WをB軸回転可能とするものとした。これに対して、5軸マシニングセンタは、縦形マシニングセンタとして、工具をA軸回転およびB軸回転可能とする構成としてもよい。この他、5軸マシニングセンタは、例えば、チルトテーブルと回転テーブルを備え、ワークWがA軸回転およびB軸回転可能とする構成としてもよい。このような工作機械である場合でも同様に、それぞれに対応した離間距離L1,L2と許容位置誤差Δに基づいて許容角度誤差θ1,θ2を算出する。さらに、工作機械の構成が異なることから、それぞれの工作機械に応じた機械特性を使用することで本発明の適用が可能となり、それぞれの工作機械においてもより適正な駆動軸の許容加速度を決定することができる。よって、決定した許容加速度に基づいて駆動軸の速度制御を行うことによって、より確実に軸反転による加工誤差を抑制することができる。
1:工作機械、 2:ベッド
10:X軸移動体
20:Y軸移動体、 21:A軸モータ
30:Z軸移動体、 31:B軸モータ
40:主軸基体
50:回転テーブル
60:工具
100:制御装置、 101:制御データ算出部、 102:検出部
103:許容位置誤差設定部、 104:許容角度誤差算出部
105:形状判定部、 106:機械特性記憶部、 107:許容加速度決定部
108:制御部
L1,L2:離間距離、 P1:指令加工位置、 P2:実加工位置
W:ワーク、 Δ:許容位置誤差、 θ1,θ2:許容角度誤差

Claims (7)

  1. 機械座標系の制御データに基づいて直進軸および回転軸を含む駆動軸を動作させることにより工作物に対する工具の加工位置および加工姿勢を制御する工作機械の制御装置であって、
    前記制御データに基づいた前記工作機械による加工において前記回転軸が軸反転する前記加工位置を検出する検出手段と、
    指令加工位置と実加工位置との許容位置誤差を設定する許容位置誤差設定手段と、
    検出された軸反転する前記加工位置から前記回転軸の中心までの離間距離と前記許容位置誤差とに基づいて、前記回転軸の指令角度と前記回転軸の実角度との差である許容角度誤差を算出する許容角度誤差算出手段と、
    前記離間距離と設定された前記許容位置誤差とにより算出された前記許容角度誤差に基づいて、前記回転軸の許容加速度を決定する許容加速度決定手段と、
    前記許容加速度に基づいて前記駆動軸の速度制御を行う制御手段と、
    を備えることを特徴とする工作機械の制御装置。
  2. 請求項1において、
    前記検出手段は、前記制御データに基づいた前記工作機械による加工において前記直進軸が軸反転する前記加工位置を検出し、
    前記許容加速度決定手段は、前記許容位置誤差に基づいて前記直進軸の前記許容加速度を決定することを特徴とする工作機械の制御装置。
  3. 請求項1または2において、
    前記制御装置は、前記工作機械の構成に応じて前記駆動軸の前記許容加速度が異なる特性であり、前記工作機械の実動作において測定される前記指令加工位置と前記実加工位置との実位置誤差に基づいて予め設定される前記工作機械の機械特性を記憶する機械特性記憶手段をさらに備え、
    前記許容加速度決定手段は、前記機械特性と前記許容位置誤差に基づいて前記駆動軸の前記許容加速度を決定することを特徴とする工作機械の制御装置。
  4. 請求項1〜3の何れか一項において、
    前記許容加速度決定手段は、検出された軸反転する前記加工位置における加工形状と前記許容位置誤差とに基づいて前記駆動軸の前記許容加速度を決定することを特徴とする工作機械の制御装置。
  5. 請求項1〜4の何れか一項において、
    前記制御手段は、検出された軸反転する前記加工位置において前記制御データに含まれる速度指令値から算出される前記駆動軸の指令速度と、前記許容加速度から算出される前記駆動軸の移動速度と、に基づいて前記速度指令値を補正することにより前記駆動軸の速度制御を行うことを特徴とする工作機械の制御装置。
  6. 請求項5において、
    前記制御手段は、前記指令速度と前記移動速度の比から減速率を算出し、前記工作機械が当該指令速度を指令する前記速度指令値に基づいて加工する際に、前記減速率に応じたオーバーライドを切り換えることにより前記速度指令値を補正することを特徴とする工作機械の制御装置。
  7. 請求項5または6において、
    前記制御手段は、前記指令速度と前記移動速度の比から減速率を算出し、前記工作機械が前記制御データに基づいて加工する前に、当該指令速度を指令する前記速度指令値を前記減速率に応じた補正値に予め更新することにより前記速度指令値を補正することを特徴とする工作機械の制御装置。
JP2009193143A 2009-08-24 2009-08-24 工作機械の制御装置 Expired - Fee Related JP5471159B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009193143A JP5471159B2 (ja) 2009-08-24 2009-08-24 工作機械の制御装置
US12/853,614 US8818549B2 (en) 2009-08-24 2010-08-10 Controller for machine tool and five-axis simultaneous control machine tool controlled thereby
EP20100173677 EP2293163B1 (en) 2009-08-24 2010-08-23 Controller for machine tool and five-axis simultaneous control machine tool controlled thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193143A JP5471159B2 (ja) 2009-08-24 2009-08-24 工作機械の制御装置

Publications (2)

Publication Number Publication Date
JP2011044081A JP2011044081A (ja) 2011-03-03
JP5471159B2 true JP5471159B2 (ja) 2014-04-16

Family

ID=43050931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193143A Expired - Fee Related JP5471159B2 (ja) 2009-08-24 2009-08-24 工作機械の制御装置

Country Status (3)

Country Link
US (1) US8818549B2 (ja)
EP (1) EP2293163B1 (ja)
JP (1) JP5471159B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975872B1 (ja) 2011-02-25 2012-07-11 ファナック株式会社 多軸加工機用速度制御機能を有する数値制御装置
JP5291820B2 (ja) 2011-05-26 2013-09-18 ファナック株式会社 揺動体の揺動制御装置及び工作機械
CN102284795B (zh) * 2011-08-16 2013-08-28 江苏扬力数控机床有限公司 一种混联五轴激光切割机
CN102581622A (zh) * 2012-02-27 2012-07-18 广州市技师学院 用于小型五轴加工装置的转台及底座组合结构
US10133244B2 (en) * 2012-06-13 2018-11-20 James R. Glidewell Dental Ceramics, Inc. Chair side mill for fabricating dental restorations
WO2015114811A1 (ja) * 2014-01-31 2015-08-06 株式会社牧野フライス製作所 切削加工方法および制御装置
US9517512B2 (en) * 2014-09-26 2016-12-13 Chuan Liang Industrial Co., Ltd. Ultrasonic positioning device for five-axis machine
JP6262706B2 (ja) * 2015-11-25 2018-01-17 ファナック株式会社 カム形状データ作成装置及び同期制御装置
JP6640822B2 (ja) 2017-12-06 2020-02-05 ファナック株式会社 数値制御装置
FR3078643B1 (fr) * 2018-03-12 2020-05-08 Jtekt Europe Procede d’usinage d’une denture a pas variable sur une cremaillere de direction
CN110549201B (zh) * 2018-05-31 2023-01-17 长濑因特格莱斯株式会社 机床
CN111142477B (zh) * 2019-12-31 2022-08-12 科德数控股份有限公司 一种机床快捷复位系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156309A (ja) * 1984-12-27 1986-07-16 Toshiba Mach Co Ltd 速度段差平滑機能を備えた数値制御装置
JP2681630B2 (ja) * 1986-08-16 1997-11-26 ファナック 株式会社 オーバライドプレイバック方式
JP3171298B2 (ja) * 1994-09-29 2001-05-28 キタムラ機械株式会社 数値制御工作機械
JP3520142B2 (ja) 1995-09-11 2004-04-19 株式会社森精機製作所 象限突起補正パラメータ決定装置
JPH11245118A (ja) 1998-03-03 1999-09-14 Brother Ind Ltd ネジ加工制御装置
JP3703664B2 (ja) * 1998-12-28 2005-10-05 三菱電機株式会社 バックラッシ補正装置
JP2000311010A (ja) * 1999-04-27 2000-11-07 Mitsubishi Electric Corp 軌跡制御装置、プログラム作成装置およびプログラム変換装置
JP3815167B2 (ja) * 2000-02-07 2006-08-30 三菱電機株式会社 数値制御装置
JP2002172543A (ja) 2000-09-29 2002-06-18 Toyoda Mach Works Ltd 加工装置の制御パラメータ設定装置及び制御パラメータ設定方法
JP3568119B2 (ja) * 2000-11-17 2004-09-22 福岡県 加工データ作成方法及び加工データ作成方法を記録した記録媒体
JP4372018B2 (ja) * 2005-01-12 2009-11-25 オークマ株式会社 数値制御装置
JP4708299B2 (ja) 2006-10-04 2011-06-22 三菱電機株式会社 数値制御装置
JP2008225780A (ja) * 2007-03-12 2008-09-25 Okuma Corp 工作機械における旋回軸のバックラッシ補正方法
JP4879091B2 (ja) * 2007-05-28 2012-02-15 株式会社牧野フライス製作所 数値制御工作機械の制御方法及び数値制御工作機械
CA2704365C (en) * 2007-11-02 2015-05-05 Makino Milling Machine Co., Ltd. Method and device for preparing error map and numerically controlled machine tool having error map preparation function
DE102008005937B3 (de) * 2008-01-24 2009-06-18 Haas Schleifmaschinen Gmbh Werkzeugmaschine

Also Published As

Publication number Publication date
US20110044778A1 (en) 2011-02-24
EP2293163A2 (en) 2011-03-09
JP2011044081A (ja) 2011-03-03
EP2293163B1 (en) 2015-05-13
US8818549B2 (en) 2014-08-26
EP2293163A3 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP5471159B2 (ja) 工作機械の制御装置
JP5615369B2 (ja) スクロール加工方法および加工装置
CN102736559B (zh) 机床的校正值运算方法以及机床的控制装置
JP5293389B2 (ja) 工作機械の制御装置
JP4708299B2 (ja) 数値制御装置
JP5291820B2 (ja) 揺動体の揺動制御装置及び工作機械
WO2011111088A1 (ja) 数値制御装置及び数値制御装置の制御方法
JP2010017801A (ja) 切削加工方法及び切削加工装置
US20060136088A1 (en) Numerical control apparatus and numerical control system
WO2012101789A1 (ja) 数値制御装置
JP2007044802A (ja) 多軸工作機械における旋回軸中心測定方法
JP5581825B2 (ja) 工作機械の基準位置検出装置および基準位置検出方法
WO2010143227A1 (ja) 数値制御装置及び数値制御工作システム
US11559851B2 (en) Laser machining device and laser machining method
JP6803043B2 (ja) 工作機械の幾何誤差測定方法
JP5355693B2 (ja) 誤差補正方法及び工作機械
JP2014238782A (ja) 工作機械の制御方法
JP6865413B2 (ja) Nc旋盤及びこれを用いた切削加工方法
JP2787872B2 (ja) 数値制御装置
JP7208151B2 (ja) 工作機械
WO2021182305A1 (ja) 数値制御装置
JP2012232375A (ja) 幾何誤差同定装置
CN116619060A (zh) 可消除曲面加工非线性误差的动态可调七轴工作台和方法
JP2021131337A (ja) ツール位置検出装置及び該装置を備えたロボット
WO2002060628A1 (en) Manufacturing converging surfaces method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees