[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5470650B2 - Myocardial action potential measurement probe and myocardial action potential measurement method - Google Patents

Myocardial action potential measurement probe and myocardial action potential measurement method Download PDF

Info

Publication number
JP5470650B2
JP5470650B2 JP2009274499A JP2009274499A JP5470650B2 JP 5470650 B2 JP5470650 B2 JP 5470650B2 JP 2009274499 A JP2009274499 A JP 2009274499A JP 2009274499 A JP2009274499 A JP 2009274499A JP 5470650 B2 JP5470650 B2 JP 5470650B2
Authority
JP
Japan
Prior art keywords
action potential
heart
myocardial
myocardial action
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009274499A
Other languages
Japanese (ja)
Other versions
JP2011115319A (en
Inventor
慎一 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Institute
Original Assignee
Kitasato Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitasato Institute filed Critical Kitasato Institute
Priority to JP2009274499A priority Critical patent/JP5470650B2/en
Publication of JP2011115319A publication Critical patent/JP2011115319A/en
Application granted granted Critical
Publication of JP5470650B2 publication Critical patent/JP5470650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、心筋活動電位測定用プローブ及び心筋活動電位の測定方法に関する。   The present invention relates to a probe for measuring myocardial action potential and a method for measuring myocardial action potential.

心臓に係る研究や医薬品の開発にとって、心筋の活動電位の測定は重要である。心筋細胞の活動電位は、心筋の細胞膜に微細ガラス電極を吸着させるパッチクランプ法により測定することができる。一方、複数の心筋細胞が集合した心筋組織の平均的活動電位(以下、心筋活動電位と呼ぶ)は、心筋組織に微細ガラス電極を刺入する方法や、心筋組織に電極を押し付けた後吸着させるフランク法(Frank法)により測定することができる。しかし、これらの方法を、呼吸運動や拍動により運動している心臓に適用することは困難である。   Measurement of the action potential of the myocardium is important for heart research and drug development. The action potential of cardiomyocytes can be measured by a patch clamp method in which a fine glass electrode is adsorbed on the myocardial cell membrane. On the other hand, the average action potential of myocardial tissue in which a plurality of myocardial cells are aggregated (hereinafter referred to as myocardial action potential) is adsorbed by inserting a fine glass electrode into the myocardial tissue or by pressing the electrode into the myocardial tissue. It can be measured by the Frank method. However, it is difficult to apply these methods to the heart moving by breathing or pulsation.

このような状況に鑑み、本発明者は、針状の電極を心筋に刺入することにより、運動中の心臓の活動電位を測定する方法を開発した。   In view of such circumstances, the present inventor has developed a method for measuring the action potential of the heart during exercise by inserting a needle-like electrode into the myocardium.

Junko Saito, Shinichi Niwano, Hiroe Niwano, Takayuki Inomata, Yoshihiro Yumoto, Kazuko Ikeda, Kimiatsu Inouo, Jisho Kojima, Minoru Horie, and Tohru Ishuzumi, "Elecrical Remodeling of Ventricular Myocardium in Myocarditis -Studies of Rat Experimental Autoimmune Mycarditis-", Ciculation Journal Vol.66, 97-103, 2002.Junko Saito, Shinichi Niwano, Hiroe Niwano, Takayuki Inomata, Yoshihiro Yumoto, Kazuko Ikeda, Kimiatsu Inouo, Jisho Kojima, Minoru Horie, and Tohru Ishuzumi, "Elecrical Remodeling of Ventricular Myocardium in Myocarditis -Studies of Rat Experimental Autoimmune Mycarditis" Journal Vol. 66, 97-103, 2002.

しかし、この方法でも、実験動物の心臓の運動により、刺入電極が心筋組織内でその刺入経路に沿って揺れ動き、刺入電極と心筋組織の電気的接触が不良になりやすい。刺入電極と心筋組織の間に接触不良が起きると、測定信号にノイズが誘起され、心電図(心筋活動電位と時間の関係を表すグラフ)のSN比(signal to noise ratio)が劣化する。このノイズは、心臓の研究に重要な単相性活動電位(monophasic action potential; MAP)の測定にとって、極めて有害である。   However, even in this method, due to the movement of the heart of the experimental animal, the insertion electrode swings along the insertion path in the myocardial tissue, and the electrical contact between the insertion electrode and the myocardial tissue tends to be poor. When a contact failure occurs between the insertion electrode and the myocardial tissue, noise is induced in the measurement signal, and the SN ratio (signal to noise ratio) of the electrocardiogram (a graph representing the relationship between the myocardial action potential and time) deteriorates. This noise is extremely detrimental to the measurement of monophasic action potential (MAP), which is important for heart research.

そこで、本発明の目的は、呼吸運動や心臓の拍動に起因するノイズ発生を抑制する、心筋活動電位測定用プローブ及び心筋活動電位の測定方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a myocardial action potential measurement probe and a myocardial action potential measurement method that suppress the generation of noise caused by respiratory motion and heart pulsation.

上記の目的を達成するために、本発明の第1の観点によれば、導線と、前記導線を被覆する被膜とを有する可撓性の被覆導線と、心筋に刺し入れられる刺入電極を有し、前記刺入電極が、前記被覆導線の先端に固定され、且つ前記導線に電気的に接続されている心筋活動電位測定用プローブが提供される。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a flexible coated conductive wire having a conductive wire and a coating covering the conductive wire, and a penetration electrode inserted into the myocardium. A probe for measuring the myocardial action potential is provided in which the insertion electrode is fixed to the tip of the covered conducting wire and is electrically connected to the conducting wire.

また、本発明の第2の観点によれば、導線と、前記導線を被覆する被膜とを有する可撓性の被覆導線と、心筋に刺し入れられる刺入電極を有し、前記刺入電極が、前記被覆導線の先端に固定され、且つ前記導線に電気的に接続されている心筋活動電位測定用プローブの前記刺入電極を、運動中の心臓に刺し入れる第1の工程と、前記被覆導線の第1の部位に力を加えて前記先端を前記心臓に押し当てて、前記先端と前記第1の部位の間で、前記被覆導線を撓ませる第2の工程と、前記先端と前記第1の部位の間を撓ませたまま、前記被覆導線の第2の部位を固定する第3の工程と、前記心臓を有する生体に装着した参照電極と前記刺入電極の間の電圧を測定する第4の工程を有する心筋活動電位の測定方法が提供される。   Moreover, according to the 2nd viewpoint of this invention, it has a flexible covering conducting wire which has a conducting wire and the film which coat | covers the said conducting wire, and the piercing electrode pierced by the myocardium, A first step of inserting the insertion electrode of the probe for measuring a myocardial action potential fixed to the distal end of the covered conductor and electrically connected to the conductor; and the covered conductor A second step of applying a force to the first part and pressing the tip against the heart to bend the covered conducting wire between the tip and the first part; and the tip and the first A third step of fixing the second portion of the covered conductor while the space between the portions is bent, and a step of measuring a voltage between the reference electrode and the insertion electrode attached to the living body having the heart A method for measuring myocardial action potential having four steps is provided.

本発明によれば、呼吸運動や心臓の拍動に起因するノイズの発生を抑制した、心筋活動電位の測定が可能になる。   According to the present invention, it is possible to measure the myocardial action potential while suppressing the generation of noise due to respiratory motion and heart beat.

実施の形態の心筋活動電位測定用プローブの断面図である。It is sectional drawing of the probe for myocardial action potential measurement of embodiment. 実施の形態の心筋活動電位の測定方法に使用する、心筋活動電位測定システムの構成を説明する図である。It is a figure explaining the structure of the myocardial action potential measuring system used for the measuring method of the myocardial action potential of embodiment. 心筋活動電位測定用プローブを、実験動物の心臓に装着する工程を説明する図である。It is a figure explaining the process of mounting | wearing the heart of an experimental animal with the probe for myocardial action potential measurement. 実施の形態により測定したMAPを説明する図である。It is a figure explaining MAP measured by an embodiment. 比較例の心筋活動電位測定用プローブを、実験動物の心臓に装着する工程を説明する図である。It is a figure explaining the process of mounting | wearing the heart of an experimental animal with the probe for myocardial action potential measurement of a comparative example. 比較例により測定したMAPを説明する図である。It is a figure explaining MAP measured by the comparative example.

以下、図面にしたがって本発明の実施の形態について説明する。但し、本発明の技術的範囲はこれらの実施の形態に限定されず、特許請求の範囲に記載された事項とその均等物まで及ぶものである。尚、図面が異なっても対応する部分には同一符号を付し、その説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the technical scope of the present invention is not limited to these embodiments, but extends to the matters described in the claims and equivalents thereof. In addition, the same code | symbol is attached | subjected to the corresponding part even if drawings differ, and the description is abbreviate | omitted.

(1)心筋活動電位測定用プローブの構成
図1は、本実施の形態の心筋活動電位測定用プローブ2の断面図である。
(1) Configuration of Myocardial Action Potential Measurement Probe FIG. 1 is a cross-sectional view of a myocardial action potential measurement probe 2 of the present embodiment.

本実施の形態の心筋活動電位測定用プローブ2は、図1に示すように、導線4と、導線4を被覆する絶縁性の被膜6とを有する可撓性の被覆導線8を有している。ここで、導線4は、例えば、複数のニッケル・コバルト合金の細線又は複数の銅線を縒り合わせて形成した縒り線である。また、被膜6は、例えば、ポリウレタン又はシリコーンで形成した被膜である。被覆導線8の可撓性(一端が固定された状態で押されると曲がり、押す力が取り除かれると形状が元の直線状に戻る性質)は、このポリウレタン又はシリコーンの弾力性による。このような被覆導線8としては、例えばペースメーカのリード線がある。この被覆導線8の長さは、例えば、0.1〜2.0mである。   As shown in FIG. 1, the myocardial action potential measurement probe 2 of the present embodiment has a flexible covered conductor 8 having a conductor 4 and an insulating film 6 that covers the conductor 4. . Here, the conducting wire 4 is, for example, a twisted wire formed by twisting a plurality of fine nickel-cobalt alloy wires or a plurality of copper wires. Moreover, the film 6 is a film formed of, for example, polyurethane or silicone. The flexibility of the coated conductor 8 (the property of bending when pressed with one end fixed and returning the shape to the original straight line when the pressing force is removed) is due to the elasticity of the polyurethane or silicone. An example of such a coated conductor 8 is a pacemaker lead. The length of the covered conductor 8 is, for example, 0.1 to 2.0 m.

また、心筋活動電位測定用プローブ2は、心筋に刺し入れられる刺入電極10を有している。本実施の形態の刺入電極10は、図1に示すように、白金又はタングステン製の導電性の針である。ここで、刺入電極10は、導線4の先端に半田又は圧着スリーブにより電気的に接続されている。また、刺入電極10は、熱収縮チューブ12により、被覆導線8の先端に固定されている。   The myocardial action potential measurement probe 2 has an insertion electrode 10 which is inserted into the myocardium. As shown in FIG. 1, the penetration electrode 10 of the present embodiment is a conductive needle made of platinum or tungsten. Here, the insertion electrode 10 is electrically connected to the tip of the conducting wire 4 by solder or a crimping sleeve. In addition, the insertion electrode 10 is fixed to the tip of the covered conductor 8 by a heat shrinkable tube 12.

ここで、刺入電極10の長さは、例えば、1〜5mmである。また、刺入電極10の直径は、0.1〜0.4mmである。このように、本実施の形態の刺入電極10は、微細な電極である。但し、実験動物が大型の場合には、刺入電極は、より大型であってもよい。   Here, the length of the insertion electrode 10 is, for example, 1 to 5 mm. Moreover, the diameter of the penetration electrode 10 is 0.1-0.4 mm. Thus, the penetration electrode 10 of this Embodiment is a fine electrode. However, when the experimental animal is large, the insertion electrode may be larger.

また、心筋活動電位測定用プローブ2は、被覆導線8の終端に設けられた接続端子(プラグ)14を有している。この接続端子14の電極16には、導線4の終端が、電気的に接続されている。   The myocardial action potential measurement probe 2 has a connection terminal (plug) 14 provided at the end of the covered conductor 8. The terminal of the conducting wire 4 is electrically connected to the electrode 16 of the connection terminal 14.

(2)心筋活動電位の測定方法
次に、図1の心筋活動電位測定用プローブ2を用いた、心筋活動電位の測定方法を説明する。図2は、本実施の形態の心筋活動電位の測定方法に使用する、心筋活動電位測定システム18の構成を説明する図である。尚、図2には、測定対象である実験動物34や実験台32も図示されている。
(2) Method for Measuring Myocardial Action Potential Next, a method for measuring myocardial action potential using the myocardial action potential measuring probe 2 of FIG. 1 will be described. FIG. 2 is a diagram for explaining the configuration of the myocardial action potential measurement system 18 used in the myocardial action potential measurement method of the present embodiment. FIG. 2 also shows an experimental animal 34 and an experimental table 32 that are measurement targets.

図2に示すように、本方法に用いる心筋活動電位測定システム18は、上述した心筋活動電位測定用プローブ2と、参照電極19が先端に設けられた被覆導線20からなるケーブル22とを有している。尚、参照電極は、例えば、ステンレス・フック電極である。   As shown in FIG. 2, the myocardial action potential measurement system 18 used in the present method has the above-described myocardial action potential measurement probe 2 and a cable 22 composed of a coated conducting wire 20 provided with a reference electrode 19 at the tip. ing. The reference electrode is, for example, a stainless steel hook electrode.

また、心筋活動電位測定システム18は、心筋活動電位測定用プローブ2の接続端子16及びケーブル22の終端に設けられた接続端子24が接続される、生体用増幅器(polygraph)26と、生体用増幅器26に接続されたアナログデジタル変換機28と、アナログデジタル変換機28に接続されたコンピュータ30を有している。   The myocardial action potential measurement system 18 includes a living body amplifier (polygraph) 26 to which the connection terminal 16 of the myocardial action potential measurement probe 2 and the connection terminal 24 provided at the end of the cable 22 are connected, and a living body amplifier. An analog-digital converter 28 connected to the computer 26 and a computer 30 connected to the analog-digital converter 28 are included.

本実施の形態の心筋活動電位の測定方法は、このシステムを用いて、以下の手順に従って行われる。   The myocardial action potential measurement method of the present embodiment is performed according to the following procedure using this system.

(i)実験動物の処置
まず、実験台32の上で実験動物(マウス、ラット等)34の胸を開き、その心臓36を露出させる(図2参照)。その後、ケーブル22の先端の参照電極19を、実験動物34の胸壁の皮下組織に固定する。すなわち、心臓36を有する生体(実験動物34)に参照電極19を装着する。その後、例えば粘着テープ(図示せず)により、ケーブル22を、実験台32に固定する。
(I) Treatment of Experimental Animal First, the chest of the experimental animal (mouse, rat, etc.) 34 is opened on the experimental table 32 to expose the heart 36 (see FIG. 2). Thereafter, the reference electrode 19 at the tip of the cable 22 is fixed to the subcutaneous tissue of the chest wall of the experimental animal 34. That is, the reference electrode 19 is attached to a living body (experimental animal 34) having a heart 36. Thereafter, the cable 22 is fixed to the experimental table 32 with, for example, an adhesive tape (not shown).

(ii)刺入工程
図3は、心筋活動電位測定用プローブ2を実験動物の心臓に装着する工程を説明する図である。尚、図3では、実験動物の体(心臓は除く)は、省略されている。
(Ii) Insertion Step FIG. 3 is a diagram illustrating a step of mounting the myocardial action potential measurement probe 2 on the heart of an experimental animal. In FIG. 3, the experimental animal body (excluding the heart) is omitted.

本工程では、図3(a)のように、刺入電極10を、被覆導線8の、刺入電極10に近い部位P1を持って、運動中の心臓36に刺し入れる(刺して入れる)。   In this step, as shown in FIG. 3A, the insertion electrode 10 is inserted into the moving heart 36 with the portion P1 of the coated conductor 8 close to the insertion electrode 10.

(iii)撓ませ工程及び固定工程
次に、部位P1より後方の部位P2を把持し、部位P1から手を離す。その後、この部位P2に力を加えて被覆導線8の先端38を心臓36に押し当てて、先端38と部位P2の間で、被覆導線8を撓ませる(図3(b)参照)。
(Iii) Bending step and fixing step Next, the part P2 behind the part P1 is gripped, and the hand is released from the part P1. Thereafter, a force is applied to the part P2 to press the tip 38 of the covered conductor 8 against the heart 36, and the covered conductor 8 is bent between the tip 38 and the part P2 (see FIG. 3B).

次に、先端38と部位P2の間を撓ませたまま、部位P2より少し後方の部位を、例えば粘着テープ40により、実験台32に固定する(図3(b)参照)。その後、更に後方の部位を粘着テープ40aで固定して、被覆導線8を確実に実験台32に固定する。   Next, a part slightly rearward from the part P2 is fixed to the experimental table 32 with, for example, the adhesive tape 40 while the gap between the tip 38 and the part P2 is bent (see FIG. 3B). Thereafter, the rear portion is fixed with the adhesive tape 40 a, and the coated conductor 8 is securely fixed to the experimental table 32.

以上のように、被覆導線8は、運動中の心臓36に刺入電極10を刺入し、被覆導線8の一部分(部位P2)に力を加えて刺入電極10を心臓36に押し当てた時に、先端38と上記一部分(部位P2)の間で撓むように形成されている。   As described above, the covered conductor 8 inserts the insertion electrode 10 into the moving heart 36 and applies a force to a part (part P2) of the covered conductor 8 to press the insertion electrode 10 against the heart 36. Sometimes, it is formed to bend between the tip 38 and the portion (part P2).

ところで、心臓36は、常に拍動している。更に、心臓全体が、実験動物の呼吸に合わせて揺れ動いている。このような心臓36の運動に追随できない場合、刺入電極10は、刺入経路に沿って心筋組織内を動き回ることになる。   By the way, the heart 36 is constantly beating. In addition, the entire heart is shaking as the experimental animal breathes. When the movement of the heart 36 cannot be followed, the insertion electrode 10 moves around the myocardial tissue along the insertion path.

しかし、本実施の形態によれば、被覆導線8の撓みにより、その先端38が常に心臓36に押し当てられるので、刺入電極10は、心臓の運動に追随して移動する。従って、刺入電極10が、心筋組織内を動き回ることはない。すなわち、刺入電極10は、心筋組織に対して固定されている。   However, according to the present embodiment, the distal end 38 is always pressed against the heart 36 due to the bending of the covered conductor 8, so that the insertion electrode 10 moves following the movement of the heart. Therefore, the insertion electrode 10 does not move around in the myocardial tissue. That is, the insertion electrode 10 is fixed to the myocardial tissue.

(iv)活動電位の測定工程
次に、参照電極19と刺入電極10の間の電圧を、生体用増幅器26で増幅する。次に、この電圧を、アナログデジタル変換機28でデジタル信号に変換する。その後、このデジタル信号をコンピュータ30が取り込み、そのハードディスク(図示せず)に記録する。この電圧の記録は、実験動物に対する実験(例えば、医薬に対する反応を調べる実験)の間継続する。以上により、参照電極19と刺入電極10の間の電圧を測定する。
(Iv) Action Potential Measurement Step Next, the voltage between the reference electrode 19 and the insertion electrode 10 is amplified by the biological amplifier 26. Next, this voltage is converted into a digital signal by the analog-digital converter 28. Thereafter, the digital signal is captured by the computer 30 and recorded on the hard disk (not shown). This voltage recording continues during the experiment on the experimental animal (eg, the experiment examining the response to the drug). As described above, the voltage between the reference electrode 19 and the insertion electrode 10 is measured.

コンピュータ30は、実験中及び実験後、操作者の指令に応答して、ハードディスクに記録した、上記電圧に対応するデータをグラフ化し、その表示画面又はプリンタ(図示せず)に出力する。   The computer 30 graphs the data corresponding to the voltage recorded in the hard disk and outputs it to a display screen or a printer (not shown) in response to an operator command during and after the experiment.

生体用増幅器26は、通過帯域の遮断周波数を所望の値に設定できる、バンドパスフィルタを有している。通常の心筋活動電位の測定では、低周波側の遮断周波数を例えば50Hzに設定し、高周波側の遮断周波数を300Hzに設定する。低周波側の遮断周波数を50Hzに設定した場合、細胞膜の脱分極に伴う急激な心筋活動電位の変化は測定できるが、細胞膜の再分極に伴う緩やかな心筋活動電位の変化を測定することはできない。   The biological amplifier 26 has a band-pass filter that can set the cutoff frequency of the pass band to a desired value. In the normal measurement of the myocardial action potential, the cutoff frequency on the low frequency side is set to 50 Hz, for example, and the cutoff frequency on the high frequency side is set to 300 Hz. When the cutoff frequency on the low frequency side is set to 50 Hz, a sudden change in myocardial action potential accompanying cell membrane depolarization can be measured, but a gradual change in myocardial action potential accompanying cell membrane repolarization cannot be measured. .

このような再分極に伴う緩やかな心筋活動電位の変化は、低周波側の遮断周波数を、例えば、0〜5Hzに設定することにより測定することができる。このような方法で測定される心筋活動電位は、単相性活動電位(monophasic action potential; MAP)と呼ばれ、近年その重要性が注目されている。   Such a gentle change in myocardial action potential accompanying repolarization can be measured by setting the low-frequency cutoff frequency to, for example, 0 to 5 Hz. The myocardial action potential measured by such a method is called a monophasic action potential (MAP), and its importance has attracted attention in recent years.

図4は、本実施の形態により測定したMAPを説明する図である。測定時のバンドパスフィルタの低周波側の遮断周波数は5Hzであり、高周波側の遮断周波数は300Hzである。横軸は時間であり、縦軸は心筋活動電位である。   FIG. 4 is a diagram for explaining the MAP measured according to the present embodiment. The cut-off frequency on the low frequency side of the bandpass filter during measurement is 5 Hz, and the cut-off frequency on the high frequency side is 300 Hz. The horizontal axis is time, and the vertical axis is myocardial action potential.

図4に示すように、本実施の形態により測定したMAPは、SN比の高い明瞭な心電図である。   As shown in FIG. 4, the MAP measured according to the present embodiment is a clear electrocardiogram with a high S / N ratio.

心筋組織と刺入電極10の間の電気的接触が良好でないと、商用交流電源等(例えば、周波数50Hz)からのノイズが、生体用増幅器26の入力信号に誘起される。ところで、MAPの測定では、上述したように、低周波側の遮断周波数を数Hz以下に設定する。このため、商用交流電源等からの低周波ノイズが生体用増幅器26の入力信号に重畳されると、生体用増幅器26は、このノイズを除去することができず、そのまま増幅してしまう。その結果、ノイズの多いMAPが、測定されてしまう。   If the electrical contact between the myocardial tissue and the insertion electrode 10 is not good, noise from a commercial AC power supply or the like (for example, frequency 50 Hz) is induced in the input signal of the biological amplifier 26. By the way, in the MAP measurement, as described above, the cutoff frequency on the low frequency side is set to several Hz or less. For this reason, when low frequency noise from a commercial AC power supply or the like is superimposed on the input signal of the biological amplifier 26, the biological amplifier 26 cannot remove this noise and amplifies it as it is. As a result, a noisy MAP is measured.

しかし、本実施の形態によれば、撓んだ被覆導線8により、その先端38が常に心臓36に押し当てられている。このため、心臓36の運動に追随して動くので、刺入電極10は、心筋組織内を動き回ることはない。すなわち、刺入電極10は、心筋組織に対して固定されている。従って、心筋組織と刺入電極10の間の電気的接触は常に良好であり、殆どノイズが発生しない。故に、MAPのSN比が、高くなる。   However, according to the present embodiment, the tip 38 is always pressed against the heart 36 by the bent covered conductor 8. For this reason, since it moves following the movement of the heart 36, the insertion electrode 10 does not move around in the myocardial tissue. That is, the insertion electrode 10 is fixed to the myocardial tissue. Therefore, the electrical contact between the myocardial tissue and the insertion electrode 10 is always good and almost no noise is generated. Therefore, the S / N ratio of MAP becomes high.

(3)比較例
本比較例の心筋活動電位測定用プローブの構成は、上記実施の形態の心筋活動電位測定用プローブ2の構成と略同じである。但し、本比較例の被覆導線は、銅の縒り線を、ポリ塩化ビニールで被覆した被覆導線である。この被覆導線は、電気装置の内部配線に広く用いられている電気ケーブルである。この被覆導線は非可撓性なので、外力が加えられると折れ曲がり、元の形状には戻らない。
(3) Comparative Example The configuration of the myocardial action potential measurement probe of this comparative example is substantially the same as the configuration of the myocardial action potential measurement probe 2 of the above embodiment. However, the coated conducting wire of this comparative example is a coated conducting wire in which a copper twisted wire is coated with polyvinyl chloride. This covered conductor is an electric cable widely used for internal wiring of an electric device. Since this covered conductor is inflexible, it is bent when an external force is applied, and does not return to its original shape.

図5は、本比較例の心筋活動電位測定用プローブ2aを、実験動物の心臓36に装着する工程を説明する図である。尚、図5では、実験動物の体(心臓は除く)は、省略されている。   FIG. 5 is a diagram illustrating a process of mounting the myocardial action potential measurement probe 2a of this comparative example on the heart 36 of the experimental animal. In FIG. 5, the experimental animal body (excluding the heart) is omitted.

まず、上記実施の形態と同様に、心筋活動電位測定用プローブ2aの刺入電極10を、被覆導線8の、刺入電極10に近い部位P3を持って、心臓36に刺入する(図5(a)参照)。心筋活動電位測定用プローブ2aは、測定を行っていない時には、折り畳まれた状態で、しまわれている。従って、被覆導線8aは、図5(a)に示すように、所々折れ曲がっている。   First, as in the above embodiment, the insertion electrode 10 of the myocardial action potential measurement probe 2a is inserted into the heart 36 with the portion P3 of the coated conductor 8 close to the insertion electrode 10 (FIG. 5). (See (a)). The myocardial action potential measurement probe 2a is folded in a folded state when no measurement is performed. Therefore, the covered conductor 8a is bent in some places as shown in FIG.

次に、部位P3より後方の部位P4を把持し、部位P3から手を離す。その後、この部位P4に力を加えて被覆導線8aの先端38を心臓36に軽く押し当てる(図5(b)参照)。この時、被覆導線8aは撓まない。   Next, the part P4 behind the part P3 is grasped, and the hand is released from the part P3. Thereafter, a force is applied to the part P4 to lightly press the tip 38 of the covered conductor 8a against the heart 36 (see FIG. 5B). At this time, the covered conductor 8a is not bent.

次に、図5(b)に示すように、部位P4より少し後方の部位を、例えば粘着テープ40により、実験台32に固定する。その後、更に後方の部位を粘着テープ40aで固定して、被覆導線8aを確実に実験台32に固定する。   Next, as shown in FIG. 5B, a part slightly behind the part P <b> 4 is fixed to the experimental bench 32 with, for example, an adhesive tape 40. Thereafter, the rear portion is fixed with the adhesive tape 40 a, and the coated conductor 8 a is securely fixed to the experimental table 32.

図6は、本比較例により測定したMAPを説明する図である。測定条件は、上記実施の形態と同じである。横軸は時間であり、縦軸は心筋活動電位である。   FIG. 6 is a diagram for explaining the MAP measured by this comparative example. The measurement conditions are the same as in the above embodiment. The horizontal axis is time, and the vertical axis is myocardial action potential.

図6に示すように、本比較例により測定したMAPは、大きなノイズを含む、SN比の低い心電図である。   As shown in FIG. 6, the MAP measured by this comparative example is an electrocardiogram with a low S / N ratio including a large noise.

本比較例では、上述したように、被覆導線8aは撓まない。このため、心臓36の運動に被覆導線8が追随できずに、刺入電極10が心筋内で動き回ってしまう。その結果、心筋組織と刺入電極10の間の電気的接触が不良になり、生体増幅器26の入力信号にノイズが誘起されて、SN比の低いMAPが測定されてしまう。   In this comparative example, as described above, the coated conductor 8a does not bend. For this reason, the covered lead 8 cannot follow the movement of the heart 36, and the insertion electrode 10 moves around in the myocardium. As a result, the electrical contact between the myocardial tissue and the insertion electrode 10 becomes poor, noise is induced in the input signal of the bioamplifier 26, and MAP with a low S / N ratio is measured.

以上の実施の形態では、MAPの測定に、本発明は適用されている。しかし、本発明は、他の心筋電位の測定にも適用できる。例えば、低周波側の遮断周波数を50Hz程度にして、通常の心電図を測定してもよい。   In the above embodiment, the present invention is applied to the measurement of MAP. However, the present invention can be applied to other myocardial potential measurements. For example, a normal electrocardiogram may be measured by setting the cut-off frequency on the low frequency side to about 50 Hz.

また、以上の例では、測定対象は実験動物である。しかし、本発明を人体に適用して、例えば、心臓病の診断に必要なデータを収集してもよい。   In the above example, the measurement object is an experimental animal. However, the present invention may be applied to the human body to collect data necessary for diagnosis of heart disease, for example.

2・・・心筋活動電位測定用プローブ
4・・・導線
6・・・被膜
8・・・被覆導線
10・・・刺入電極
20・・・被覆導線
38・・・先端
2 ... Probe for measuring myocardial action potential 4 ... Conductor 6 ... Coated 8 ... Coated conductor 10 ... Insertion electrode 20 ... Coated conductor 38 ... Tip

Claims (1)

導線と、前記導線を被覆する被膜とを有する可撓性の被覆導線と、心筋に刺し入れられる刺入電極を有し、前記刺入電極が、前記被覆導線の先端に固定され、且つ前記導線に電気的に接続されている心筋活動電位測定用プローブの前記刺入電極を、運動中の心臓に刺し入れる第1の工程と、
前記被覆導線の第1の部位に力を加えて前記先端を前記心臓(人体の心臓を除く)に押し当てて、前記先端と前記第1の部位の間で、前記被覆導線を撓ませる第2の工程と、
前記先端と前記第1の部位の間を撓ませたまま、前記被覆導線の第2の部位を固定する第3の工程と、
前記心臓を有する生体に装着した参照電極と前記刺入電極の間の電圧を測定する第4の工程を有する、
心筋活動電位の測定方法。
A flexible coated conductive wire having a conductive wire and a coating covering the conductive wire; and a piercing electrode inserted into a myocardium, wherein the piercing electrode is fixed to a tip of the coated conductive wire, and the conductive wire A first step of inserting the insertion electrode of the probe for measuring myocardial action potential electrically connected to the heart into a moving heart;
Said the first part of the coated conductive wire by applying a force by pressing the tip into the heart (except human heart), between the said distal end first portion, the deflecting said coated conductive wire Two steps;
A third step of fixing the second part of the covered conductor while the gap between the tip and the first part is bent;
A fourth step of measuring a voltage between a reference electrode attached to the living body having the heart and the insertion electrode;
A method for measuring myocardial action potential.
JP2009274499A 2009-12-02 2009-12-02 Myocardial action potential measurement probe and myocardial action potential measurement method Expired - Fee Related JP5470650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009274499A JP5470650B2 (en) 2009-12-02 2009-12-02 Myocardial action potential measurement probe and myocardial action potential measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009274499A JP5470650B2 (en) 2009-12-02 2009-12-02 Myocardial action potential measurement probe and myocardial action potential measurement method

Publications (2)

Publication Number Publication Date
JP2011115319A JP2011115319A (en) 2011-06-16
JP5470650B2 true JP5470650B2 (en) 2014-04-16

Family

ID=44281382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009274499A Expired - Fee Related JP5470650B2 (en) 2009-12-02 2009-12-02 Myocardial action potential measurement probe and myocardial action potential measurement method

Country Status (1)

Country Link
JP (1) JP5470650B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542166A (en) * 1991-08-20 1993-02-23 Inter Noba Kk Electrode catherter for high-frequency abrasion
US5161533A (en) * 1991-09-19 1992-11-10 Xomed-Treace Inc. Break-apart needle electrode system for monitoring facial EMG
JP4698128B2 (en) * 2003-03-28 2011-06-08 テルモ株式会社 Catheter with puncture sensor
JP2006034210A (en) * 2004-07-29 2006-02-09 Kumamoto Technology & Industry Foundation Method for measuring intracorpoleal information of mouse or rat body and mouse or rat of which intracorpoleal information can be measured

Also Published As

Publication number Publication date
JP2011115319A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
US11039773B2 (en) High density electrode mapping catheter
JP6375446B2 (en) Medical device for cardiac tissue mapping
TW201208645A (en) Dry electrode for measuring bio-medical signals
WO2009134763A1 (en) Biomedical sensors usable on un-prepared contact surfaces
JP6062460B2 (en) Equipment for electrode assembly
US11336034B2 (en) Electrode and cable connections in electrocardiography systems
JP2013034699A (en) Bioelectric signal measuring electrode, method of using the same and manufacturing method
JP5470650B2 (en) Myocardial action potential measurement probe and myocardial action potential measurement method
JP2004249107A (en) Patient monitoring system
EP1151720A1 (en) Electrophysiology catheter with enhanced sensing
JP5698163B2 (en) ECG signal transmission device
US20190175109A1 (en) Medical device with rotational flexible electrodes
CN106108885A (en) Assessment physical motion state and electrocardio disturb method and the instrument thereof of size
CN105769188B (en) Myoelectricity telescopic electrode with fixed band
US12011271B2 (en) Electrode catheter
CN105640551B (en) EMG detection electrode module
KR100971275B1 (en) Medical-treatment electrode
JP4672801B1 (en) Intracardiac defibrillation catheter system
US20230248293A1 (en) Lead Wire of ECG
Reynolds et al. The viability of conductive medical epoxy as an implantable electrode material
CN110123310A (en) Domain type flexible combination electrocardioelectrode
US20240260878A1 (en) Pediatric Electrocardiogram Electrode and Cover
RU74283U1 (en) ECG AND REO REGISTRATION DEVICE
JP2019084144A (en) Electrode catheter
CN208822769U (en) Antiwind electrode holder and electrocardiograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5470650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees