[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5469612B2 - Rotary fluid machinery - Google Patents

Rotary fluid machinery Download PDF

Info

Publication number
JP5469612B2
JP5469612B2 JP2010541207A JP2010541207A JP5469612B2 JP 5469612 B2 JP5469612 B2 JP 5469612B2 JP 2010541207 A JP2010541207 A JP 2010541207A JP 2010541207 A JP2010541207 A JP 2010541207A JP 5469612 B2 JP5469612 B2 JP 5469612B2
Authority
JP
Japan
Prior art keywords
cylinder
fluid machine
rotary fluid
wall
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010541207A
Other languages
Japanese (ja)
Other versions
JPWO2010064377A1 (en
Inventor
直洋 土屋
康弘 岸
利行 寺井
裕吉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010541207A priority Critical patent/JP5469612B2/en
Publication of JPWO2010064377A1 publication Critical patent/JPWO2010064377A1/en
Application granted granted Critical
Publication of JP5469612B2 publication Critical patent/JP5469612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、冷凍空調機器等に搭載されるロータリ流体機械に関する。   The present invention relates to a rotary fluid machine mounted on a refrigeration air conditioner or the like.

近年、環境負荷低減やコストの観点から圧縮機小型化の必要性が高まっている。空気調和機を例にとると、空気調和機の冷凍能力の大小に合わせて搭載圧縮機の気筒容積を調整している。ここで、搭載圧縮機は、必要な気筒容積毎に圧縮機の外形寸法を変え、最適となるように組み合わされており、例えば気筒容積の小さい圧縮機を開発する場合には、現状製品を相似的に縮小する手法により設計することが一般的であった。逆に気筒容積を大きくする場合には圧縮機の大径化が不可避であった。例えば現存するロータリ圧縮機の気筒容積と圧縮機外径の関係は、概略10cc未満では概略φ90、概略8〜18ccでは概略φ110となっている。   In recent years, the need for downsizing of the compressor is increasing from the viewpoint of environmental load reduction and cost. Taking an air conditioner as an example, the cylinder volume of the mounted compressor is adjusted in accordance with the refrigeration capacity of the air conditioner. Here, the compressor mounted on the compressor is combined in an optimal manner by changing the external dimensions of the compressor for each required cylinder volume. For example, when developing a compressor with a small cylinder volume, the current product is similar. It was common to design by a method of reducing the size. Conversely, when the cylinder volume is increased, it is inevitable to increase the diameter of the compressor. For example, the relationship between the cylinder volume of an existing rotary compressor and the outer diameter of the compressor is approximately φ90 for approximately less than 10 cc and approximately φ110 for approximately 8 to 18 cc.

また地球温暖化防止を目的とした自然系冷媒への切替えの必要性も高まっており、現状空調機に用いられているR410A冷媒の代替としてテトラフルオロプロペンなど、例えばHFO1234yfを使用する場合においては、冷媒物性の違いから冷凍サイクルの必要冷媒循環量が略2倍となることも知られており、同一サイクルを使用した際の圧縮機には気筒容積の拡大或いは運転周波数の拡大が必要となる。   In addition, there is an increasing need to switch to a natural refrigerant for the purpose of preventing global warming, and when using tetrafluoropropene, such as HFO1234yf, as an alternative to the R410A refrigerant currently used in air conditioners, It is also known that the refrigerant circulation amount required for the refrigeration cycle is approximately doubled due to the difference in refrigerant physical properties, and it is necessary to increase the cylinder volume or the operating frequency in the compressor when using the same cycle.

なお、圧縮機外径の小型化に関し、従来技術として特許文献1に開示の技術が知られている。   Regarding the downsizing of the compressor outer diameter, a technique disclosed in Patent Document 1 is known as a conventional technique.

特開2001−50184号公報Japanese Patent Laid-Open No. 2001-50184

前記背景を受け、冷凍空調機の能力を維持し且つ圧縮機外径を縮小すること或いは冷凍空調機の能力を拡大し且つ圧縮機外径を維持することができる圧縮機の開発が必要となっており、以下の課題に直面した。   In response to the above background, it is necessary to develop a compressor capable of maintaining the capacity of the refrigeration air conditioner and reducing the outer diameter of the compressor or expanding the capacity of the refrigeration air conditioner and maintaining the outer diameter of the compressor. And faced the following challenges:

1つ目の課題として、前記冷凍空調機の能力維持と圧縮機の性能及び信頼性の両立が挙げられる。従来技術の如く圧縮機の外径と共に気筒容積を低減した際、圧縮機の運転周波数を増加することで能力を維持することが可能となるが、この運転周波数が過大となると、圧縮機構部に見られる摺動部における機械損失の増大による効率低下や騒音増加等の性能を阻害する要因となる。同時に圧縮仕事が増えるため、軸受部等の摺動部における負荷が増大し、信頼性の確保が困難となる。このため、圧縮機の運転周波数の増加は自ずと限界点が発生することとなり、気筒容積を確保すべく、外径のみを縮小することができる圧縮機構部を考案する必要がある。   As a first problem, there is a balance between maintaining the capacity of the refrigeration air conditioner and the performance and reliability of the compressor. When the cylinder volume is reduced together with the outer diameter of the compressor as in the prior art, the capacity can be maintained by increasing the operating frequency of the compressor, but if this operating frequency becomes excessive, the compression mechanism section This is a factor that hinders performance such as efficiency reduction and noise increase due to an increase in mechanical loss in the sliding part. At the same time, since the compression work increases, the load on the sliding portion such as the bearing portion increases, making it difficult to ensure reliability. For this reason, an increase in the operating frequency of the compressor naturally causes a limit point, and it is necessary to devise a compression mechanism portion that can reduce only the outer diameter in order to secure the cylinder volume.

2つ目の課題として、圧縮機密閉容器内の空間容積の確保が挙げられる。前記圧縮機構部が収納されている前記密閉容器内の下部には、前記密閉容器内壁と前記圧縮機構部外壁とによって形成される空間に前記圧縮機構部の摺動部の潤滑或いは冷却を主目的とする冷凍機油を収納する必要がある。前記冷凍機油の収納量によって決まる前記密閉容器内での冷凍機油の圧縮機底面からの液面高さには、圧縮機の性能及び信頼性を確保する上で適正位置が存在する。前記液面高さが過大となると前記密閉容器内上部に設けられた電動機部の回転運動により攪拌され、圧縮機動力損失の発生による効率低下や前記密閉容器外への冷凍機油持出しによる冷凍サイクル内での熱交換阻害や圧力損失が発生し効率低下や圧縮機内の冷凍機油不足による信頼性低下を招く。また前記液面高さが過小となると圧縮機構部側面からの給油が必要となるシリンダのベーン摺動部に十分な量を供給することができず、信頼性低下を招く。ここで前記冷凍機油は冷凍サイクル内で冷媒と混ざり希釈され粘度低下等が発生するため、収納される冷凍機油量は維持されなければならない。このため圧縮機径縮小或いは気筒容積拡大を図ると前記冷凍機油を収納する空間容積が小さくなり前記冷凍機油の液面高さは過大傾向となるため、前記空間容積の確保が必要となる。   As a second problem, it is necessary to secure a space volume in the compressor hermetic container. The lower part of the sealed container in which the compression mechanism part is accommodated is mainly used for lubrication or cooling of the sliding part of the compression mechanism part in a space formed by the inner wall of the sealed container and the outer wall of the compression mechanism part. It is necessary to store refrigeration oil. The liquid level height from the bottom of the compressor of the refrigerating machine oil in the sealed container determined by the storage amount of the refrigerating machine oil has an appropriate position for ensuring the performance and reliability of the compressor. When the liquid level is excessive, the motor is stirred by the rotational movement of the motor part provided in the upper part of the sealed container, the efficiency is reduced due to the loss of compressor power, and the refrigeration cycle is brought out of the chiller oil out of the sealed container. This causes a heat exchange hindrance and pressure loss, resulting in a decrease in efficiency and a decrease in reliability due to a shortage of refrigerating machine oil in the compressor. On the other hand, if the liquid level is too small, a sufficient amount cannot be supplied to the vane sliding portion of the cylinder that requires oil supply from the side surface of the compression mechanism, leading to a decrease in reliability. Here, since the refrigerating machine oil is mixed with the refrigerant in the refrigerating cycle and diluted to cause a decrease in viscosity, the amount of refrigerating machine oil to be stored must be maintained. For this reason, when the compressor diameter is reduced or the cylinder volume is increased, the space volume for storing the refrigerating machine oil becomes smaller and the liquid level of the refrigerating machine oil tends to be excessive, so that it is necessary to secure the space volume.

上記課題を達成するため本発明は、容器内に、偏心部を有するクランク軸と、前記偏心部により駆動される圧縮機構部及び前記圧縮機構部をクランク軸方向に閉塞する閉塞部材と、を設け、前記圧縮機構部は、シリンダと、このシリンダ内に配置され且つ前記偏心部で回転駆動されるローラと、前記シリンダを軸方向に閉塞する閉塞部材と、前記ローラの外周に延びて、前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記ベーンをローラに押し付けるスプリングを有するロータリ流体機械において、前記シリンダは、前記容器内壁との間で冷凍機油が封入される空間を形成する略円形状のシリンダ外周部と、前記ベーンを収納するベーン収納部を設けているベーン収納部外壁とを備え、前記シリンダにおける前記略円形状のシリンダ外周部全体に亘って複数の凹部を設けたことを特徴とする。To achieve the above object, according to the present invention, a container is provided with a crankshaft having an eccentric portion, a compression mechanism portion driven by the eccentric portion, and a closing member for closing the compression mechanism portion in the crankshaft direction. The compression mechanism portion includes a cylinder, a roller disposed in the cylinder and driven to rotate by the eccentric portion, a closing member for closing the cylinder in the axial direction, and an outer periphery of the roller. In a rotary fluid machine having a vane that enters and exits a storage portion provided in the cylinder according to the eccentric motion of the cylinder and a spring that presses the vane against a roller, the cylinder is sealed with refrigeration oil between the container and the inner wall of the container. An outer peripheral portion of a substantially circular cylinder that forms a space to be closed, and a vane storage portion outer wall provided with a vane storage portion that stores the vane, the cylinder The substantially throughout the circular cylinder outer peripheral portion definitive, characterized in that a plurality of recesses.

本発明の他の特徴は、上記のロータリ流体機械において、前記シリンダにおける前記略円形状のシリンダ外周部全体に亘って複数の凹部を設けることに代えて、前記閉塞部材の外周部全体に亘って複数の凹部を設けたことにある。Another feature of the present invention is that in the above rotary fluid machine, instead of providing a plurality of recesses over the substantially circular cylinder outer peripheral portion of the cylinder, the entire outer peripheral portion of the closing member is provided. A plurality of recesses are provided.
本発明の更に他の特徴は、上記のロータリ流体機械において、前記閉塞部材を用いて、前記圧縮機構部を前記容器と係合させ、且つ前記シリンダおよび前記閉塞部材の外周部全体に亘って複数の凹部を設けたことにある。According to still another aspect of the present invention, in the rotary fluid machine described above, the closing member is used to engage the compression mechanism with the container, and the cylinder and the entire outer periphery of the closing member. Is provided with a recess.

ここで前記複数個の凹部は、強度や圧縮機構を形成するために必要となるシール性を考慮し、前記シリンダの圧縮室を構成する内壁から外周部の範囲に設けられた複数の孔に対し、
(前記凹部と前記シリンダ内壁の最小距離)≧(前記シリンダ内壁と前記孔間の最小距離)≧2.5mm
としたり、また
(前記凹部と前記孔間の最小距離)≧(前記シリンダ内壁と前記孔間の最小距離)≧2.5mm
を満足するように構成すると良い。
Here, in consideration of strength and sealing properties necessary for forming a compression mechanism, the plurality of recesses are formed with respect to a plurality of holes provided in the range from the inner wall to the outer peripheral portion constituting the compression chamber of the cylinder. ,
(Minimum distance between the recess and the cylinder inner wall ) ≧ (Minimum distance between the cylinder inner wall and the hole) ≧ 2.5 mm
Or (minimum distance between the recess and the hole) ≧ (minimum distance between the cylinder inner wall and the hole) ≧ 2.5 mm
It is better to configure to satisfy .

本発明によれば、容器の内壁とシリンダ或いは閉塞部材の外周部により形成される冷凍機油が封入される空間の容積を拡大することができるので、圧縮機構部の気筒容積に対して密閉容器をより小さくしつつ、冷凍機油封入時の液面高さの適正化に必要な空間を確保した圧縮機の設計が可能となる効果が得られる。 According to the present invention, Runode can refrigerating machine oil is formed by an outer circumference of the container inner wall and the cylinder or closure member to expand the volume of the space to be sealed, the sealed container into the cylinder capacity of the compression mechanism portion As a result, the compressor can be designed in such a manner that the space required for optimizing the liquid level at the time of filling the refrigeration oil is ensured.

本発明による圧縮機構部周辺の断面図。Sectional drawing of the compression mechanism part periphery by this invention. 従来技術による圧縮機構部周辺の断面図。Sectional drawing of the compression mechanism part periphery by a prior art. 圧縮機の径縮小に伴う冷凍機油液面高さ比較断面図。Refrigerator oil liquid level height comparison sectional view accompanying diameter reduction of a compressor.

以下、本発明に係る実施例を説明する。   Examples according to the present invention will be described below.

本発明の実施例として以下の構造を有する空気調和機用ロータリ圧縮機を例にとり説明する。密閉容器内に電動機部を収納し、前記電動機部の回転を伝達する偏心部を有したクランク軸と、前記偏心部により駆動される圧縮機構部及び前記圧縮機構部をクランク軸方向に閉塞する閉塞部材を設け、前記圧縮機構部は、シリンダと、前記シリンダ内に配置され且つ前記クランク軸の偏心部により回転駆動されるローラと、前記ローラの外周に延びて前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記ベーンをローラに押し付けるスプリングにより構成され、前記密閉容器内の電動機部下方に収納されている。前記閉塞部材は、前記クランク軸を保持する軸受を有し前記シリンダの上下を閉塞する上軸受と下軸受或いは前記圧縮機構部が複数ある場合は仕切り板から構成され、前記圧縮機構部内の圧縮室から密閉容器内に圧縮ガスを排出する吐出し孔は前記上軸受或いは下軸受に設けられている。前記圧縮機構部は単数或いは複数個とし、前記圧縮機構部の摺動部の潤滑或いは冷却を主目的とする冷凍機油を前記密閉容器内に備えている。   As an embodiment of the present invention, a rotary compressor for an air conditioner having the following structure will be described as an example. A motor part is housed in a sealed container, a crankshaft having an eccentric part for transmitting the rotation of the motor part, a compression mechanism part driven by the eccentric part, and a closure for closing the compression mechanism part in the crankshaft direction A member, and the compression mechanism section includes a cylinder, a roller disposed in the cylinder and driven to rotate by an eccentric portion of the crankshaft, and extends to an outer periphery of the roller according to the eccentric motion of the roller. It is comprised by the vane which goes in and out of the accommodating part provided in the cylinder, and the spring which presses the said vane to a roller, and is accommodated in the lower part of the motor part in the said airtight container. The closing member includes a bearing for holding the crankshaft, and includes an upper bearing and a lower bearing for closing the upper and lower sides of the cylinder, or a partition plate when there are a plurality of the compression mechanism portions, and a compression chamber in the compression mechanism portion. A discharge hole for discharging the compressed gas into the sealed container is provided in the upper bearing or the lower bearing. The compression mechanism part is single or plural, and the refrigerating machine oil whose main purpose is lubrication or cooling of the sliding part of the compression mechanism part is provided in the sealed container.

図1に本発明の実施例として圧縮機構部周辺の断面図を、図2に従来技術による圧縮機構部周辺の断面図を示す。ここでは圧縮機構部の気筒容積を維持した上で圧縮機の径を縮小する例を挙げ、それぞれの圧縮機における密閉容器50の内径は本発明の実施例である図1ではφ80、従来技術である図2ではφ112とし形態を述べる。それぞれの図においてシリンダ10は、シリンダ内壁11,略円形状のシリンダ外壁12,圧縮室20を低圧側と高圧側に仕切るベーン30を収納するベーン収納部13,ベーン収納部外壁14,前記シリンダ内壁11と前記シリンダ外壁12間に設けた孔15は用途別に閉塞部材締結に用いる孔15a,流体の流路となる孔15b,加工時等の基準となる孔15c等複数個あり、冷媒等の流体を前記シリンダ内壁11内に取込む吸込み孔16から構成されている。前記圧縮室20は前記シリンダ内壁11とローラ40の外壁とによって形成され、図の状態における圧縮室20の容積が圧縮機の気筒容積となる。前記ベーン30はクランク軸によって偏心運動する前記ローラ40の外壁との接触を保証するためスプリングによってシリンダの内壁中心に向かって押し付けられている。ここでそれぞれの図における前記圧縮室20は、前記シリンダ内壁11の径φ43及び前記ローラ40の外壁径を同値とすることで、同一の気筒容積を有しており、同一運転周波数における空気調和機の能力を同等とすることが達成されている。また前記閉塞部材との締結用或いは流体の流路となる複数個の孔15を形成する領域を確保する為、前記概略円形状となるシリンダ外壁12の平均径φ69も同値としている。前記密閉容器50の内径は前述の如く本発明の実施例におけるφ80と従来技術におけるφ112であり、前記シリンダのベーン収納部外壁14の径は前記密閉容器の内径と概略同等である。   FIG. 1 is a sectional view around a compression mechanism as an embodiment of the present invention, and FIG. 2 is a sectional view around a compression mechanism according to the prior art. Here, an example is given in which the diameter of the compressor is reduced while maintaining the cylinder volume of the compression mechanism, and the inner diameter of the sealed container 50 in each compressor is φ80 in FIG. In FIG. 2, the form is described as φ112. In each figure, a cylinder 10 includes a cylinder inner wall 11, a substantially circular cylinder outer wall 12, a vane storage portion 13 for storing a vane 30 that partitions the compression chamber 20 into a low pressure side and a high pressure side, a vane storage portion outer wall 14, and the cylinder inner wall. 11 and the cylinder outer wall 12 have a plurality of holes 15 such as a hole 15a used for fastening a closing member for each application, a hole 15b used as a fluid flow path, a hole 15c used as a reference during processing, and the like. Is formed of a suction hole 16 for taking the gas into the cylinder inner wall 11. The compression chamber 20 is formed by the cylinder inner wall 11 and the outer wall of the roller 40, and the volume of the compression chamber 20 in the state shown in the figure becomes the cylinder volume of the compressor. The vane 30 is pressed toward the center of the inner wall of the cylinder by a spring in order to ensure contact with the outer wall of the roller 40 that is eccentrically moved by the crankshaft. Here, the compression chamber 20 in each figure has the same cylinder volume by making the diameter φ43 of the cylinder inner wall 11 and the outer wall diameter of the roller 40 equal, and an air conditioner at the same operating frequency. The ability to equalize has been achieved. Further, in order to secure a region for forming a plurality of holes 15 for fastening with the closing member or as a fluid flow path, the average diameter φ69 of the substantially cylindrical outer wall 12 is also set to the same value. As described above, the inner diameter of the sealed container 50 is φ80 in the embodiment of the present invention and φ112 in the prior art, and the diameter of the outer wall 14 of the vane housing portion of the cylinder is substantially equal to the inner diameter of the sealed container.

図2に示す従来技術における前記シリンダ10は、前記シリンダのベーン収納部外壁14及び前記シリンダのベーン収納部13と概略180°ずれた方向に前記ベーン収納部外壁14と同一径をもつ突起17が設けられている。前記ベーン収納部外壁14及び突起17は前記密閉容器50と前記圧縮機構部100とを溶接(点18)或いは焼嵌,冷嵌などにより係合させることを目的に用いられている。そのため前記ベーン収納部外壁14及び前記突起17の径は、溶接熱或いは締結応力による前記シリンダ内壁11の変形を抑えるため、前記シリンダ内壁11の径に対し大きくとる必要があった。これに対し本発明の実施例では前記密閉容器50と前記圧縮機構部100との溶接或いは焼嵌,冷嵌などによる係合を閉塞部材60の一つである上軸受に施すことにより、前記ベーン収納部外壁14の径はベーン収納部が配置でき且つベーン可動による負荷に耐え得るだけの大きさを有する最小径とすることができる様になり、密閉容器の径を小型化することができる。   The cylinder 10 according to the prior art shown in FIG. 2 has a protrusion 17 having the same diameter as the vane storage portion outer wall 14 in a direction substantially shifted by 180 ° from the vane storage portion outer wall 14 of the cylinder and the vane storage portion 13 of the cylinder. Is provided. The outer wall 14 and the protrusion 17 of the vane storage portion are used for the purpose of engaging the sealed container 50 and the compression mechanism portion 100 by welding (point 18) or shrink fitting or cold fitting. Therefore, the diameters of the vane storage portion outer wall 14 and the protrusion 17 need to be larger than the diameter of the cylinder inner wall 11 in order to suppress deformation of the cylinder inner wall 11 due to welding heat or fastening stress. On the other hand, in the embodiment of the present invention, the vane is formed by applying an engagement between the sealed container 50 and the compression mechanism 100 by welding, shrink fitting, cold fitting or the like to an upper bearing which is one of the closing members 60. The diameter of the storage section outer wall 14 can be set to a minimum diameter that allows the vane storage section to be disposed and has a size that can withstand the load caused by the movement of the vanes, and the diameter of the sealed container can be reduced.

しかしながら前記密閉容器50の内壁とシリンダ10の外形によって形成される斜線部で表される密閉容器内の空間51には冷凍機油70が封入されるため、この空間51はある程度の容積を保証する必要がある。前記冷凍機油70の必要封入量は空気調和機のサイクル容量に応じた冷媒量により決定されるため、空気調和機の能力を維持する上では、圧縮機の径縮小と同時に前記冷凍機油封入量の低減することは信頼性上困難である。このため前記密閉容器50の内径を小とした際、同量の前記冷凍機油70を封入すると前記冷凍機油70は圧縮機軸方向へ流入することとなり、前述した冷凍機油封入時の圧縮機底面からの液面高さを上限である圧縮機構部上端とすることが困難となる。このように冷凍空調機の能力を確保すべく圧縮機の気筒容積を維持した上で前記密閉容器50のみ径を縮小すると、前記密閉容器50の内径に対する前記シリンダ10の径の占める割合は大きくなるため、前記空間51が小さくなり、特に前記密閉容器50の内径と前記シリンダ10の内径が
(シリンダの内径)/(密閉容器の内径)≧0.4
となる際に前記液面高さの確保が困難である。
However, since the refrigerating machine oil 70 is sealed in the space 51 in the sealed container represented by the hatched portion formed by the inner wall of the sealed container 50 and the outer shape of the cylinder 10, this space 51 needs to guarantee a certain volume. There is. Since the required amount of the refrigeration oil 70 is determined by the amount of refrigerant corresponding to the cycle capacity of the air conditioner, in order to maintain the performance of the air conditioner, the amount of the refrigeration oil enclosed is reduced simultaneously with the diameter reduction of the compressor. It is difficult to reduce the reliability. For this reason, when the inside diameter of the sealed container 50 is made small, if the same amount of the refrigerating machine oil 70 is sealed, the refrigerating machine oil 70 flows in the axial direction of the compressor. It becomes difficult to set the liquid level height to the upper end of the compression mechanism unit, which is the upper limit. In this way, if the diameter of only the sealed container 50 is reduced while maintaining the cylinder volume of the compressor to ensure the capacity of the refrigeration air conditioner, the ratio of the diameter of the cylinder 10 to the inner diameter of the sealed container 50 increases. Therefore, the space 51 is reduced, and in particular, the inner diameter of the sealed container 50 and the inner diameter of the cylinder 10 are (the inner diameter of the cylinder) / (the inner diameter of the sealed container) ≧ 0.4.
In such a case, it is difficult to ensure the liquid level.

図3に圧縮機の縦断面図を用い前記密閉容器50の内径と前記密閉容器50或いはクランク軸80の長さ違いによる前記液面71の高さを比較して示す。ここでは前記圧縮機構部100を2個持つ際の例を示し、前記シリンダ10の内電動機部90側のシリンダ10aの下端及び圧縮機底面側のシリンダ10bの上端を閉塞する仕切り板62が設けられている。ここで前記液面71は、前記ベーン収納部13への給油を前記シリンダ10の側面から行うことで前記ベーン30とのシール性及び潤滑性が高まるため下限を前記シリンダ10aの下端71aとし、前記電動機部90の回転による攪拌等の影響を少なくさせるため上限を前記シリンダ10の上端71bとすることで適正位置となる。図3(a)は従来技術による前記密閉容器50の内径がφ112である際の縦断面図である。図3(b)は前述の手法を用い密閉容器50の内径をφ80にした際の縦断面図であり、前記液面71は上限である前記シリンダの上端71bを超えている。図3(b)の状態に対し、従来技術においては図3(c)の縦断面図に示す如く密閉容器50を圧縮機構部100下方へ伸ばすことで空間容積拡大し前記液面71の高さ適正位置に下げることを図ってきたが、密閉容器50の延長及び給油路確保の為のクランク軸80延長が必要となり、十分な省資源化の達成が困難であった。   FIG. 3 shows a comparison between the inner diameter of the sealed container 50 and the height of the liquid surface 71 due to the difference in the length of the sealed container 50 or the crankshaft 80, using a longitudinal sectional view of the compressor. Here, an example in the case of having two compression mechanism sections 100 is shown, and a partition plate 62 for closing the lower end of the cylinder 10a on the inner motor section 90 side of the cylinder 10 and the upper end of the cylinder 10b on the bottom face side of the compressor is provided. ing. Here, the liquid surface 71 has a lower limit as a lower end 71a of the cylinder 10a because the sealing performance and the lubricity with the vane 30 are increased by performing oil supply to the vane storage portion 13 from the side surface of the cylinder 10, In order to reduce the influence of agitation and the like due to the rotation of the electric motor unit 90, the upper limit is set to the upper end 71b of the cylinder 10 to obtain an appropriate position. FIG. 3A is a longitudinal sectional view when the inner diameter of the sealed container 50 according to the prior art is φ112. FIG. 3B is a longitudinal sectional view when the inner diameter of the sealed container 50 is set to φ80 using the above-described method, and the liquid level 71 exceeds the upper end 71b of the cylinder which is the upper limit. In contrast to the state shown in FIG. 3B, in the prior art, as shown in a longitudinal sectional view of FIG. Although attempts have been made to lower it to an appropriate position, extension of the sealed container 50 and extension of the crankshaft 80 for securing the oil supply passage are necessary, and it has been difficult to achieve sufficient resource saving.

そこで本発明の実施例では図1に示す如く、シリンダ外壁12に複数個の凹部19を設けた。これにより従来技術である密閉容器50やクランク軸80を延長すること無く前記空間51の拡大が図れるため、前記液面71の高さ低減に有効となる。しかしながら前記空間51と前記圧縮室20間は概略吐出し圧力と同等の高圧ガスと概略吸込み圧力と同等の低圧ガスにより圧力差が生じる為、洩れを抑止する厚さが必要となるため、前記凹部19の設定には以下の条件が必要となる。   Therefore, in the embodiment of the present invention, a plurality of recesses 19 are provided in the cylinder outer wall 12 as shown in FIG. As a result, the space 51 can be expanded without extending the closed container 50 or the crankshaft 80, which is a conventional technique, which is effective in reducing the height of the liquid level 71. However, since a pressure difference is generated between the space 51 and the compression chamber 20 by the high pressure gas equivalent to the approximate discharge pressure and the low pressure gas equivalent to the approximate suction pressure, a thickness to suppress leakage is required. The setting of 19 requires the following conditions.

前記圧力差による洩れを防止するための条件について述べる。前記空間51内の圧力は、例えば高圧チャンバ方式の場合高圧ガスとなり、前記孔15のうち流体の流路孔15bについても概略同等の高圧ガスで満たされている。これに対し前記圧縮室20内の圧力は圧縮工程に応じ前記吸込み圧力の低圧ガスから吐出し圧力の高圧ガスで満たされることとなる。従来の圧縮機において前記孔15bと前記シリンダ内壁11間は前記圧力差による洩れを防止できる距離は確保されているため、前記空間51の壁面となる前記凹部19と前記圧縮室20の外壁となるシリンダ内壁11間の距離は、前記孔15bとシリンダ内壁11間の距離を基準とし、
(凹部19とシリンダ内壁11間距離)≧(孔15bとシリンダ内壁11間距離)となる条件を設定することで、凹部19からシリンダ内壁11間の洩れを防止することができる。また低圧チャンバ方式においては、前記空間51は低圧ガスで満たされることとなり前記孔15b間の洩れを防止するため、前記凹部19と前記孔15b間の距離は、
(凹部19と孔15b間距離)≧(孔15bとシリンダ内壁11間距離)
とすることが条件となる。ここで上記それぞれの条件設定の基準とした(孔15bとシリンダ内壁11間距離)の具体的な数値を実験的に求めた結果、少なくとも2.5mm以上とする必要がある。また、本実施例においては前記シリンダ10における凹部の設定法を述べたが、同様の設定法にて前記閉塞部材60である上軸受61,仕切り板62,下軸受63に設けることも可能である。
The conditions for preventing leakage due to the pressure difference will be described. The pressure in the space 51 is, for example, a high-pressure gas in the case of a high-pressure chamber system, and the fluid passage hole 15b of the hole 15 is also filled with a substantially equivalent high-pressure gas. On the other hand, the pressure in the compression chamber 20 is discharged from the low pressure gas at the suction pressure and filled with the high pressure gas at the pressure according to the compression process. In the conventional compressor, a distance is secured between the hole 15b and the cylinder inner wall 11 to prevent leakage due to the pressure difference, so that the recess 19 serving as the wall surface of the space 51 and the outer wall of the compression chamber 20 are formed. The distance between the cylinder inner walls 11 is based on the distance between the hole 15b and the cylinder inner wall 11,
By setting the condition of (distance between the recess 19 and the cylinder inner wall 11) ≧ (distance between the hole 15b and the cylinder inner wall 11), leakage between the recess 19 and the cylinder inner wall 11 can be prevented. In the low-pressure chamber system, the space 51 is filled with low-pressure gas and the distance between the recess 19 and the hole 15b is set to prevent leakage between the holes 15b.
(Distance between recess 19 and hole 15b) ≧ (Distance between hole 15b and cylinder inner wall 11)
Is a condition. Here, as a result of experimentally obtaining specific numerical values (distance between the hole 15b and the cylinder inner wall 11) as the criteria for setting each of the above conditions, it is necessary to set at least 2.5 mm or more. In the present embodiment, the method for setting the recesses in the cylinder 10 has been described. However, it is possible to provide the upper bearing 61, the partition plate 62, and the lower bearing 63 as the closing member 60 by the same setting method. .

上記条件を満たした前記凹部19は必ずしも加工によって設ける必要が無く、素材段階で設定することにより、素材重量すなわちコスト低減にも有効となる。以上のごとく前記凹部19を設定することにより図3(b)における前記液面71の高さを上限である前記シリンダの上端71bとすることができる。図3(d)に本発明の実施例による縦断面図を示す。   The concave portion 19 that satisfies the above conditions does not necessarily need to be provided by machining, and setting at the material stage is effective in reducing the material weight, that is, the cost. By setting the recess 19 as described above, the height of the liquid level 71 in FIG. 3B can be set to the upper end 71b of the cylinder, which is the upper limit. FIG. 3D is a longitudinal sectional view according to the embodiment of the present invention.

また前述の代替冷媒HFO1234yf適用時等に必要となる気筒容積拡大による圧縮機外径増の抑制についても、上記と同様の手法を用いることで対応できる。   Further, the suppression of the increase in the outer diameter of the compressor due to the expansion of the cylinder volume, which is necessary when the above-described alternative refrigerant HFO1234yf is applied, can be handled by using the same method as described above.

以上によれば、圧縮機の気筒容積に対し必要最小限度の外径とし、外径縮小に伴う冷凍機油封入時の液面高さの適正化に必要な空間を確保した圧縮機の設計が可能となり、小型で効率及び信頼性の高い圧縮機を提供することができる。   Based on the above, it is possible to design a compressor that has a minimum required outside diameter relative to the cylinder volume of the compressor, and that secures the space necessary for optimizing the liquid level when filling refrigeration oil as the outside diameter is reduced Thus, a compact, highly efficient and reliable compressor can be provided.

尚本実施例では前記凹部19を前記概略円形状となるシリンダ外壁12に設定した例を述べたが、これに限定するものではなく、例えば前記ベーン収納部外壁14にも設定する際にも応用できる。   In the present embodiment, the example in which the concave portion 19 is set to the substantially circular cylinder outer wall 12 has been described. However, the present invention is not limited to this. For example, the concave portion 19 can be applied to the vane storage portion outer wall 14. it can.

10…シリンダ、11…シリンダ内壁、12…シリンダ外壁、13…ベーン収納部、14…ベーン収納部外壁、15…シリンダ内壁とシリンダ外壁の間に設定された孔、16…冷媒等の流体を前記シリンダ内壁11内に取込む吸込み孔、17…ベーン収納部に対し概略180°に位置する突起、18…密閉容器との係合に用いる溶接点、19…本発明によるシリンダ外壁に設けられた凹部、20…シリンダ内壁とローラ外壁により形成される圧縮室、30…ベーン、40…ローラ、50…圧縮機の密閉容器、51…シリンダ外壁と密閉容器内壁により形成される空間、60…閉塞部材、61…上軸受、62…仕切り板、63…下軸受、70…冷凍機油、71…冷凍機油を圧縮機内に封入した際の液面、80…クランク軸、90…電動機部、100 圧縮機構部。 DESCRIPTION OF SYMBOLS 10 ... Cylinder, 11 ... Cylinder inner wall, 12 ... Cylinder outer wall, 13 ... Vane storage part, 14 ... Vane storage part outer wall, 15 ... Hole set between cylinder inner wall and cylinder outer wall, 16 ... Fluid, such as a refrigerant | coolant, said A suction hole to be taken into the cylinder inner wall 11, 17... A projection positioned at approximately 180 ° with respect to the vane storage portion, 18. 20 ... Compression chamber formed by cylinder inner wall and roller outer wall, 30 ... Vane, 40 ... Roller, 50 ... Sealed container of compressor, 51 ... Space formed by cylinder outer wall and sealed container inner wall, 60 ... Closure member, 61 ... Upper bearing, 62 ... Partition plate, 63 ... Lower bearing, 70 ... Refrigerating machine oil, 71 ... Liquid level when the refrigerating machine oil is enclosed in the compressor, 80 ... Crankshaft, 90 ... Electric motor part, 1 0 compression mechanism.

Claims (11)

容器内に、偏心部を有するクランク軸と、前記偏心部により駆動される圧縮機構部及び前記圧縮機構部をクランク軸方向に閉塞する閉塞部材と、を設け、
前記圧縮機構部は、シリンダと、このシリンダ内に配置され且つ前記偏心部で回転駆動されるローラと、前記シリンダを軸方向に閉塞する閉塞部材と、前記ローラの外周に延びて、前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記ベーンをローラに押し付けるスプリングを有するロータリ流体機械において、
前記シリンダは、前記容器内壁との間で冷凍機油が封入される空間を形成する略円形状のシリンダ外周部と、前記ベーンを収納するベーン収納部を設けているベーン収納部外壁とを備え、
前記シリンダにおける前記略円形状のシリンダ外周部全体に亘って複数の凹部を設けたことを特徴とするロータリ流体機械。
In the container, a crankshaft having an eccentric portion, a compression mechanism portion driven by the eccentric portion, and a closing member that closes the compression mechanism portion in the crankshaft direction are provided.
The compression mechanism section includes a cylinder, a roller disposed in the cylinder and driven to rotate by the eccentric section, a closing member that closes the cylinder in the axial direction, and an outer periphery of the roller. In a rotary fluid machine having a vane that enters and exits a storage portion provided in the cylinder according to an eccentric motion, and a spring that presses the vane against a roller,
The cylinder includes a substantially circular cylinder outer peripheral portion that forms a space in which refrigeration oil is sealed between the container inner wall and a vane storage portion outer wall provided with a vane storage portion that stores the vane.
A rotary fluid machine characterized in that a plurality of recesses are provided over the entire outer circumference of the substantially circular cylinder in the cylinder .
請求項1に記載のロータリ流体機械において、前記シリンダにおける前記略円形状のシリンダ外周部全体に亘って複数の凹部を設けることに代えて、前記閉塞部材の外周部全体に亘って複数の凹部を設けたことを特徴とするロータリ流体機械。 The rotary fluid machine according to claim 1, wherein instead of providing a plurality of recesses over the entire outer periphery of the substantially circular cylinder in the cylinder, a plurality of recesses are provided over the entire outer periphery of the closing member. A rotary fluid machine characterized by being provided. 請求項1に記載のロータリ流体機械において、前記閉塞部材を用いて、前記圧縮機構部を前記容器と係合させ、且つ前記シリンダおよび前記閉塞部材の外周部全体に亘って複数の凹部を設けたことを特徴とするロータリ流体機械。 In the rotary fluid machine according to claim 1, with the closing member, the compression mechanism portion engaged with said container, provided with a plurality of recesses and over the entire outer periphery of said cylinder and said closure member A rotary fluid machine characterized by the above. 請求項1乃至3の何れか1項に記載のロータリ流体機械において、前記シリンダの圧縮室を構成する内壁から外周部の範囲に設けられた複数の孔を有し、且つ
(前記凹部と前記孔間の最小距離)≧(シリンダ内壁と前記孔間の最小距離)
となるように構成していることを特徴したロータリ流体機械。
4. The rotary fluid machine according to claim 1, further comprising: a plurality of holes provided in a range from an inner wall to an outer peripheral portion constituting a compression chamber of the cylinder; and (the concave portion and the hole). Minimum distance) ≧ (minimum distance between the cylinder inner wall and the hole)
A rotary fluid machine characterized by being configured as follows .
請求項1乃至3の何れか1項に記載のロータリ流体機械において、前記シリンダの圧縮室を構成する内壁から外周部の範囲に複数の孔を設け、且つ
(前記シリンダ内壁と前記凹部間の最小距離)≧(前記シリンダ内壁と前記孔間の最小距離)
となるように構成していることを特徴したロータリ流体機械。
4. The rotary fluid machine according to claim 1, wherein a plurality of holes are provided in a range from an inner wall constituting the compression chamber of the cylinder to an outer peripheral portion, and (a minimum between the cylinder inner wall and the concave portion). Distance) ≧ (Minimum distance between the cylinder inner wall and the hole)
A rotary fluid machine characterized by being configured as follows .
請求項1乃至3の何れか1項に記載のロータリ流体機械において、前記シリンダの圧縮室を構成する内壁から外周部の範囲に複数の孔を設け、且つ
(前記シリンダ内壁と前記凹部間の最小距離)≧2.5mm
となるように構成していることを特徴したロータリ流体機械。
4. The rotary fluid machine according to claim 1, wherein a plurality of holes are provided in a range from an inner wall constituting the compression chamber of the cylinder to an outer peripheral portion, and (a minimum between the cylinder inner wall and the concave portion). Distance) ≧ 2.5mm
A rotary fluid machine characterized by being configured as follows .
請求項1乃至3の何れか1項に記載のロータリ流体機械において、前記シリンダの圧縮室を構成する内壁から外周部の範囲に複数の孔を設け、且つ
(前記凹部と前記孔間の最小距離)≧2.5mm
となるように構成していることを特徴したロータリ流体機械。
The rotary fluid machine according to any one of claims 1 to 3, wherein a plurality of holes are provided in a range from an inner wall constituting the compression chamber of the cylinder to an outer peripheral portion, and (a minimum distance between the concave portion and the hole). ) ≧ 2.5mm
A rotary fluid machine characterized by being configured as follows .
請求項1乃至3の何れか1項に記載のロータリ流体機械において、
(前記シリンダ内径)/(容器内径)≧0.4
であることを特徴とするロータリ流体機械。
The rotary fluid machine according to any one of claims 1 to 3,
(Cylinder inner diameter) / (Container inner diameter) ≧ 0.4
A rotary fluid machine characterized by the above.
請求項1乃至3の何れか1項に記載のロータリ流体機械において、
作動流体にテトラフルオロプロペンを用いたことを特徴とするロータリ流体機械。
The rotary fluid machine according to any one of claims 1 to 3,
A rotary fluid machine using tetrafluoropropene as a working fluid.
請求項1乃至3の何れか1項に記載のロータリ流体機械において、
作動流体にHFO1234yfを用いたことを特徴とするロータリ流体機械。
The rotary fluid machine according to any one of claims 1 to 3,
A rotary fluid machine using HFO1234yf as a working fluid.
請求項1乃至3の何れか1項に記載のロータリ流体機械において、
(容器内径)≦90mm
であることを特徴とするロータリ流体機械。
The rotary fluid machine according to any one of claims 1 to 3,
(Inner diameter) ≤ 90mm
A rotary fluid machine characterized by the above.
JP2010541207A 2008-12-01 2009-11-24 Rotary fluid machinery Active JP5469612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541207A JP5469612B2 (en) 2008-12-01 2009-11-24 Rotary fluid machinery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008305837 2008-12-01
JP2008305837 2008-12-01
JP2010541207A JP5469612B2 (en) 2008-12-01 2009-11-24 Rotary fluid machinery
PCT/JP2009/006314 WO2010064377A1 (en) 2008-12-01 2009-11-24 Rotary fluid machine

Publications (2)

Publication Number Publication Date
JPWO2010064377A1 JPWO2010064377A1 (en) 2012-05-10
JP5469612B2 true JP5469612B2 (en) 2014-04-16

Family

ID=42233036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010541207A Active JP5469612B2 (en) 2008-12-01 2009-11-24 Rotary fluid machinery

Country Status (4)

Country Link
JP (1) JP5469612B2 (en)
KR (1) KR101300920B1 (en)
CN (1) CN102224345B (en)
WO (1) WO2010064377A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105114301B (en) * 2015-09-09 2017-06-23 山东科灵新能源发展有限公司 Rotor liquid pump without external leakage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161278A (en) * 2001-11-22 2003-06-06 Hitachi Ltd Hermetic rotary compressor
JP2008208262A (en) * 2007-02-27 2008-09-11 Nippon Oil Corp Refrigerating machine oil composition and working fluid composition for refrigerating machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862260B2 (en) * 1989-03-16 1999-03-03 株式会社日立製作所 Rotary compressor
KR19990025773A (en) * 1997-09-18 1999-04-06 구자홍 Cylinder fixing structure of hermetic rotary compressor
CN1538071A (en) * 2003-04-16 2004-10-20 松下电器产业株式会社 Rotation compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161278A (en) * 2001-11-22 2003-06-06 Hitachi Ltd Hermetic rotary compressor
JP2008208262A (en) * 2007-02-27 2008-09-11 Nippon Oil Corp Refrigerating machine oil composition and working fluid composition for refrigerating machine

Also Published As

Publication number Publication date
WO2010064377A1 (en) 2010-06-10
CN102224345A (en) 2011-10-19
KR20110073620A (en) 2011-06-29
KR101300920B1 (en) 2013-08-27
CN102224345B (en) 2014-12-03
JPWO2010064377A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP4892238B2 (en) Scroll compressor
US8408024B2 (en) Fluid machine and refrigeration cycle apparatus
JP2011027076A (en) Scroll compressor
JP2008240667A (en) Rotary compressor
JPWO2008139680A1 (en) Fluid machine and refrigeration cycle apparatus including the same
JP6521048B2 (en) Scroll compressor
JP6568841B2 (en) Hermetic rotary compressor and refrigeration air conditioner
JP2010168977A (en) Sealed compressor
EP1851437B1 (en) Capacity varying type rotary compressor
JP2010121546A (en) Rotary compressor
JP5469612B2 (en) Rotary fluid machinery
JP6057535B2 (en) Refrigerant compressor
JP2008309078A (en) Scroll compressor
JP6118702B2 (en) Scroll compressor and refrigeration equipment
JP5766165B2 (en) Rotary compressor
JPH06264881A (en) Rotary compressor
JP2017172346A (en) Scroll compressor and air conditioner
KR101337079B1 (en) Two stage rotary compressor
JP5181463B2 (en) Fluid machinery
JP2008267140A (en) Scroll compressor
WO2023139829A1 (en) Rotary compressor
JP5077194B2 (en) Scroll expander
KR20120085628A (en) Rotary compressor
JP2018071476A (en) Rotary Compressor
JP2009052462A (en) Scroll compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140131

R150 Certificate of patent or registration of utility model

Ref document number: 5469612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250