JP5469612B2 - Rotary fluid machinery - Google Patents
Rotary fluid machinery Download PDFInfo
- Publication number
- JP5469612B2 JP5469612B2 JP2010541207A JP2010541207A JP5469612B2 JP 5469612 B2 JP5469612 B2 JP 5469612B2 JP 2010541207 A JP2010541207 A JP 2010541207A JP 2010541207 A JP2010541207 A JP 2010541207A JP 5469612 B2 JP5469612 B2 JP 5469612B2
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- fluid machine
- rotary fluid
- wall
- machine according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 title claims description 33
- 238000007906 compression Methods 0.000 claims description 49
- 230000006835 compression Effects 0.000 claims description 48
- 238000003860 storage Methods 0.000 claims description 21
- 238000005057 refrigeration Methods 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 10
- PGJHURKAWUJHLJ-UHFFFAOYSA-N 1,1,2,3-tetrafluoroprop-1-ene Chemical compound FCC(F)=C(F)F PGJHURKAWUJHLJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000007788 liquid Substances 0.000 description 15
- 239000010721 machine oil Substances 0.000 description 14
- 239000003921 oil Substances 0.000 description 11
- 239000003507 refrigerant Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- -1 HFO1234yf Chemical compound 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F04C18/3562—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
- F04C18/3564—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/028—Means for improving or restricting lubricant flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
Description
本発明は、冷凍空調機器等に搭載されるロータリ流体機械に関する。 The present invention relates to a rotary fluid machine mounted on a refrigeration air conditioner or the like.
近年、環境負荷低減やコストの観点から圧縮機小型化の必要性が高まっている。空気調和機を例にとると、空気調和機の冷凍能力の大小に合わせて搭載圧縮機の気筒容積を調整している。ここで、搭載圧縮機は、必要な気筒容積毎に圧縮機の外形寸法を変え、最適となるように組み合わされており、例えば気筒容積の小さい圧縮機を開発する場合には、現状製品を相似的に縮小する手法により設計することが一般的であった。逆に気筒容積を大きくする場合には圧縮機の大径化が不可避であった。例えば現存するロータリ圧縮機の気筒容積と圧縮機外径の関係は、概略10cc未満では概略φ90、概略8〜18ccでは概略φ110となっている。 In recent years, the need for downsizing of the compressor is increasing from the viewpoint of environmental load reduction and cost. Taking an air conditioner as an example, the cylinder volume of the mounted compressor is adjusted in accordance with the refrigeration capacity of the air conditioner. Here, the compressor mounted on the compressor is combined in an optimal manner by changing the external dimensions of the compressor for each required cylinder volume. For example, when developing a compressor with a small cylinder volume, the current product is similar. It was common to design by a method of reducing the size. Conversely, when the cylinder volume is increased, it is inevitable to increase the diameter of the compressor. For example, the relationship between the cylinder volume of an existing rotary compressor and the outer diameter of the compressor is approximately φ90 for approximately less than 10 cc and approximately φ110 for approximately 8 to 18 cc.
また地球温暖化防止を目的とした自然系冷媒への切替えの必要性も高まっており、現状空調機に用いられているR410A冷媒の代替としてテトラフルオロプロペンなど、例えばHFO1234yfを使用する場合においては、冷媒物性の違いから冷凍サイクルの必要冷媒循環量が略2倍となることも知られており、同一サイクルを使用した際の圧縮機には気筒容積の拡大或いは運転周波数の拡大が必要となる。 In addition, there is an increasing need to switch to a natural refrigerant for the purpose of preventing global warming, and when using tetrafluoropropene, such as HFO1234yf, as an alternative to the R410A refrigerant currently used in air conditioners, It is also known that the refrigerant circulation amount required for the refrigeration cycle is approximately doubled due to the difference in refrigerant physical properties, and it is necessary to increase the cylinder volume or the operating frequency in the compressor when using the same cycle.
なお、圧縮機外径の小型化に関し、従来技術として特許文献1に開示の技術が知られている。 Regarding the downsizing of the compressor outer diameter, a technique disclosed in Patent Document 1 is known as a conventional technique.
前記背景を受け、冷凍空調機の能力を維持し且つ圧縮機外径を縮小すること或いは冷凍空調機の能力を拡大し且つ圧縮機外径を維持することができる圧縮機の開発が必要となっており、以下の課題に直面した。 In response to the above background, it is necessary to develop a compressor capable of maintaining the capacity of the refrigeration air conditioner and reducing the outer diameter of the compressor or expanding the capacity of the refrigeration air conditioner and maintaining the outer diameter of the compressor. And faced the following challenges:
1つ目の課題として、前記冷凍空調機の能力維持と圧縮機の性能及び信頼性の両立が挙げられる。従来技術の如く圧縮機の外径と共に気筒容積を低減した際、圧縮機の運転周波数を増加することで能力を維持することが可能となるが、この運転周波数が過大となると、圧縮機構部に見られる摺動部における機械損失の増大による効率低下や騒音増加等の性能を阻害する要因となる。同時に圧縮仕事が増えるため、軸受部等の摺動部における負荷が増大し、信頼性の確保が困難となる。このため、圧縮機の運転周波数の増加は自ずと限界点が発生することとなり、気筒容積を確保すべく、外径のみを縮小することができる圧縮機構部を考案する必要がある。 As a first problem, there is a balance between maintaining the capacity of the refrigeration air conditioner and the performance and reliability of the compressor. When the cylinder volume is reduced together with the outer diameter of the compressor as in the prior art, the capacity can be maintained by increasing the operating frequency of the compressor, but if this operating frequency becomes excessive, the compression mechanism section This is a factor that hinders performance such as efficiency reduction and noise increase due to an increase in mechanical loss in the sliding part. At the same time, since the compression work increases, the load on the sliding portion such as the bearing portion increases, making it difficult to ensure reliability. For this reason, an increase in the operating frequency of the compressor naturally causes a limit point, and it is necessary to devise a compression mechanism portion that can reduce only the outer diameter in order to secure the cylinder volume.
2つ目の課題として、圧縮機密閉容器内の空間容積の確保が挙げられる。前記圧縮機構部が収納されている前記密閉容器内の下部には、前記密閉容器内壁と前記圧縮機構部外壁とによって形成される空間に前記圧縮機構部の摺動部の潤滑或いは冷却を主目的とする冷凍機油を収納する必要がある。前記冷凍機油の収納量によって決まる前記密閉容器内での冷凍機油の圧縮機底面からの液面高さには、圧縮機の性能及び信頼性を確保する上で適正位置が存在する。前記液面高さが過大となると前記密閉容器内上部に設けられた電動機部の回転運動により攪拌され、圧縮機動力損失の発生による効率低下や前記密閉容器外への冷凍機油持出しによる冷凍サイクル内での熱交換阻害や圧力損失が発生し効率低下や圧縮機内の冷凍機油不足による信頼性低下を招く。また前記液面高さが過小となると圧縮機構部側面からの給油が必要となるシリンダのベーン摺動部に十分な量を供給することができず、信頼性低下を招く。ここで前記冷凍機油は冷凍サイクル内で冷媒と混ざり希釈され粘度低下等が発生するため、収納される冷凍機油量は維持されなければならない。このため圧縮機径縮小或いは気筒容積拡大を図ると前記冷凍機油を収納する空間容積が小さくなり前記冷凍機油の液面高さは過大傾向となるため、前記空間容積の確保が必要となる。 As a second problem, it is necessary to secure a space volume in the compressor hermetic container. The lower part of the sealed container in which the compression mechanism part is accommodated is mainly used for lubrication or cooling of the sliding part of the compression mechanism part in a space formed by the inner wall of the sealed container and the outer wall of the compression mechanism part. It is necessary to store refrigeration oil. The liquid level height from the bottom of the compressor of the refrigerating machine oil in the sealed container determined by the storage amount of the refrigerating machine oil has an appropriate position for ensuring the performance and reliability of the compressor. When the liquid level is excessive, the motor is stirred by the rotational movement of the motor part provided in the upper part of the sealed container, the efficiency is reduced due to the loss of compressor power, and the refrigeration cycle is brought out of the chiller oil out of the sealed container. This causes a heat exchange hindrance and pressure loss, resulting in a decrease in efficiency and a decrease in reliability due to a shortage of refrigerating machine oil in the compressor. On the other hand, if the liquid level is too small, a sufficient amount cannot be supplied to the vane sliding portion of the cylinder that requires oil supply from the side surface of the compression mechanism, leading to a decrease in reliability. Here, since the refrigerating machine oil is mixed with the refrigerant in the refrigerating cycle and diluted to cause a decrease in viscosity, the amount of refrigerating machine oil to be stored must be maintained. For this reason, when the compressor diameter is reduced or the cylinder volume is increased, the space volume for storing the refrigerating machine oil becomes smaller and the liquid level of the refrigerating machine oil tends to be excessive, so that it is necessary to secure the space volume.
上記課題を達成するため本発明は、容器内に、偏心部を有するクランク軸と、前記偏心部により駆動される圧縮機構部及び前記圧縮機構部をクランク軸方向に閉塞する閉塞部材と、を設け、前記圧縮機構部は、シリンダと、このシリンダ内に配置され且つ前記偏心部で回転駆動されるローラと、前記シリンダを軸方向に閉塞する閉塞部材と、前記ローラの外周に延びて、前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記ベーンをローラに押し付けるスプリングを有するロータリ流体機械において、前記シリンダは、前記容器内壁との間で冷凍機油が封入される空間を形成する略円形状のシリンダ外周部と、前記ベーンを収納するベーン収納部を設けているベーン収納部外壁とを備え、前記シリンダにおける前記略円形状のシリンダ外周部全体に亘って複数の凹部を設けたことを特徴とする。To achieve the above object, according to the present invention, a container is provided with a crankshaft having an eccentric portion, a compression mechanism portion driven by the eccentric portion, and a closing member for closing the compression mechanism portion in the crankshaft direction. The compression mechanism portion includes a cylinder, a roller disposed in the cylinder and driven to rotate by the eccentric portion, a closing member for closing the cylinder in the axial direction, and an outer periphery of the roller. In a rotary fluid machine having a vane that enters and exits a storage portion provided in the cylinder according to the eccentric motion of the cylinder and a spring that presses the vane against a roller, the cylinder is sealed with refrigeration oil between the container and the inner wall of the container. An outer peripheral portion of a substantially circular cylinder that forms a space to be closed, and a vane storage portion outer wall provided with a vane storage portion that stores the vane, the cylinder The substantially throughout the circular cylinder outer peripheral portion definitive, characterized in that a plurality of recesses.
本発明の他の特徴は、上記のロータリ流体機械において、前記シリンダにおける前記略円形状のシリンダ外周部全体に亘って複数の凹部を設けることに代えて、前記閉塞部材の外周部全体に亘って複数の凹部を設けたことにある。Another feature of the present invention is that in the above rotary fluid machine, instead of providing a plurality of recesses over the substantially circular cylinder outer peripheral portion of the cylinder, the entire outer peripheral portion of the closing member is provided. A plurality of recesses are provided.
本発明の更に他の特徴は、上記のロータリ流体機械において、前記閉塞部材を用いて、前記圧縮機構部を前記容器と係合させ、且つ前記シリンダおよび前記閉塞部材の外周部全体に亘って複数の凹部を設けたことにある。According to still another aspect of the present invention, in the rotary fluid machine described above, the closing member is used to engage the compression mechanism with the container, and the cylinder and the entire outer periphery of the closing member. Is provided with a recess.
ここで前記複数個の凹部は、強度や圧縮機構を形成するために必要となるシール性を考慮し、前記シリンダの圧縮室を構成する内壁から外周部の範囲に設けられた複数の孔に対し、
(前記凹部と前記シリンダ内壁の最小距離)≧(前記シリンダ内壁と前記孔間の最小距離)≧2.5mm
としたり、また
(前記凹部と前記孔間の最小距離)≧(前記シリンダ内壁と前記孔間の最小距離)≧2.5mm
を満足するように構成すると良い。
Here, in consideration of strength and sealing properties necessary for forming a compression mechanism, the plurality of recesses are formed with respect to a plurality of holes provided in the range from the inner wall to the outer peripheral portion constituting the compression chamber of the cylinder. ,
(Minimum distance between the recess and the cylinder inner wall ) ≧ (Minimum distance between the cylinder inner wall and the hole) ≧ 2.5 mm
Or (minimum distance between the recess and the hole) ≧ (minimum distance between the cylinder inner wall and the hole) ≧ 2.5 mm
It is better to configure to satisfy .
本発明によれば、容器の内壁とシリンダ或いは閉塞部材の外周部により形成される冷凍機油が封入される空間の容積を拡大することができるので、圧縮機構部の気筒容積に対して密閉容器をより小さくしつつ、冷凍機油封入時の液面高さの適正化に必要な空間を確保した圧縮機の設計が可能となる効果が得られる。 According to the present invention, Runode can refrigerating machine oil is formed by an outer circumference of the container inner wall and the cylinder or closure member to expand the volume of the space to be sealed, the sealed container into the cylinder capacity of the compression mechanism portion As a result, the compressor can be designed in such a manner that the space required for optimizing the liquid level at the time of filling the refrigeration oil is ensured.
以下、本発明に係る実施例を説明する。 Examples according to the present invention will be described below.
本発明の実施例として以下の構造を有する空気調和機用ロータリ圧縮機を例にとり説明する。密閉容器内に電動機部を収納し、前記電動機部の回転を伝達する偏心部を有したクランク軸と、前記偏心部により駆動される圧縮機構部及び前記圧縮機構部をクランク軸方向に閉塞する閉塞部材を設け、前記圧縮機構部は、シリンダと、前記シリンダ内に配置され且つ前記クランク軸の偏心部により回転駆動されるローラと、前記ローラの外周に延びて前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記ベーンをローラに押し付けるスプリングにより構成され、前記密閉容器内の電動機部下方に収納されている。前記閉塞部材は、前記クランク軸を保持する軸受を有し前記シリンダの上下を閉塞する上軸受と下軸受或いは前記圧縮機構部が複数ある場合は仕切り板から構成され、前記圧縮機構部内の圧縮室から密閉容器内に圧縮ガスを排出する吐出し孔は前記上軸受或いは下軸受に設けられている。前記圧縮機構部は単数或いは複数個とし、前記圧縮機構部の摺動部の潤滑或いは冷却を主目的とする冷凍機油を前記密閉容器内に備えている。 As an embodiment of the present invention, a rotary compressor for an air conditioner having the following structure will be described as an example. A motor part is housed in a sealed container, a crankshaft having an eccentric part for transmitting the rotation of the motor part, a compression mechanism part driven by the eccentric part, and a closure for closing the compression mechanism part in the crankshaft direction A member, and the compression mechanism section includes a cylinder, a roller disposed in the cylinder and driven to rotate by an eccentric portion of the crankshaft, and extends to an outer periphery of the roller according to the eccentric motion of the roller. It is comprised by the vane which goes in and out of the accommodating part provided in the cylinder, and the spring which presses the said vane to a roller, and is accommodated in the lower part of the motor part in the said airtight container. The closing member includes a bearing for holding the crankshaft, and includes an upper bearing and a lower bearing for closing the upper and lower sides of the cylinder, or a partition plate when there are a plurality of the compression mechanism portions, and a compression chamber in the compression mechanism portion. A discharge hole for discharging the compressed gas into the sealed container is provided in the upper bearing or the lower bearing. The compression mechanism part is single or plural, and the refrigerating machine oil whose main purpose is lubrication or cooling of the sliding part of the compression mechanism part is provided in the sealed container.
図1に本発明の実施例として圧縮機構部周辺の断面図を、図2に従来技術による圧縮機構部周辺の断面図を示す。ここでは圧縮機構部の気筒容積を維持した上で圧縮機の径を縮小する例を挙げ、それぞれの圧縮機における密閉容器50の内径は本発明の実施例である図1ではφ80、従来技術である図2ではφ112とし形態を述べる。それぞれの図においてシリンダ10は、シリンダ内壁11,略円形状のシリンダ外壁12,圧縮室20を低圧側と高圧側に仕切るベーン30を収納するベーン収納部13,ベーン収納部外壁14,前記シリンダ内壁11と前記シリンダ外壁12間に設けた孔15は用途別に閉塞部材締結に用いる孔15a,流体の流路となる孔15b,加工時等の基準となる孔15c等複数個あり、冷媒等の流体を前記シリンダ内壁11内に取込む吸込み孔16から構成されている。前記圧縮室20は前記シリンダ内壁11とローラ40の外壁とによって形成され、図の状態における圧縮室20の容積が圧縮機の気筒容積となる。前記ベーン30はクランク軸によって偏心運動する前記ローラ40の外壁との接触を保証するためスプリングによってシリンダの内壁中心に向かって押し付けられている。ここでそれぞれの図における前記圧縮室20は、前記シリンダ内壁11の径φ43及び前記ローラ40の外壁径を同値とすることで、同一の気筒容積を有しており、同一運転周波数における空気調和機の能力を同等とすることが達成されている。また前記閉塞部材との締結用或いは流体の流路となる複数個の孔15を形成する領域を確保する為、前記概略円形状となるシリンダ外壁12の平均径φ69も同値としている。前記密閉容器50の内径は前述の如く本発明の実施例におけるφ80と従来技術におけるφ112であり、前記シリンダのベーン収納部外壁14の径は前記密閉容器の内径と概略同等である。
FIG. 1 is a sectional view around a compression mechanism as an embodiment of the present invention, and FIG. 2 is a sectional view around a compression mechanism according to the prior art. Here, an example is given in which the diameter of the compressor is reduced while maintaining the cylinder volume of the compression mechanism, and the inner diameter of the sealed
図2に示す従来技術における前記シリンダ10は、前記シリンダのベーン収納部外壁14及び前記シリンダのベーン収納部13と概略180°ずれた方向に前記ベーン収納部外壁14と同一径をもつ突起17が設けられている。前記ベーン収納部外壁14及び突起17は前記密閉容器50と前記圧縮機構部100とを溶接(点18)或いは焼嵌,冷嵌などにより係合させることを目的に用いられている。そのため前記ベーン収納部外壁14及び前記突起17の径は、溶接熱或いは締結応力による前記シリンダ内壁11の変形を抑えるため、前記シリンダ内壁11の径に対し大きくとる必要があった。これに対し本発明の実施例では前記密閉容器50と前記圧縮機構部100との溶接或いは焼嵌,冷嵌などによる係合を閉塞部材60の一つである上軸受に施すことにより、前記ベーン収納部外壁14の径はベーン収納部が配置でき且つベーン可動による負荷に耐え得るだけの大きさを有する最小径とすることができる様になり、密閉容器の径を小型化することができる。
The
しかしながら前記密閉容器50の内壁とシリンダ10の外形によって形成される斜線部で表される密閉容器内の空間51には冷凍機油70が封入されるため、この空間51はある程度の容積を保証する必要がある。前記冷凍機油70の必要封入量は空気調和機のサイクル容量に応じた冷媒量により決定されるため、空気調和機の能力を維持する上では、圧縮機の径縮小と同時に前記冷凍機油封入量の低減することは信頼性上困難である。このため前記密閉容器50の内径を小とした際、同量の前記冷凍機油70を封入すると前記冷凍機油70は圧縮機軸方向へ流入することとなり、前述した冷凍機油封入時の圧縮機底面からの液面高さを上限である圧縮機構部上端とすることが困難となる。このように冷凍空調機の能力を確保すべく圧縮機の気筒容積を維持した上で前記密閉容器50のみ径を縮小すると、前記密閉容器50の内径に対する前記シリンダ10の径の占める割合は大きくなるため、前記空間51が小さくなり、特に前記密閉容器50の内径と前記シリンダ10の内径が
(シリンダの内径)/(密閉容器の内径)≧0.4
となる際に前記液面高さの確保が困難である。However, since the refrigerating
In such a case, it is difficult to ensure the liquid level.
図3に圧縮機の縦断面図を用い前記密閉容器50の内径と前記密閉容器50或いはクランク軸80の長さ違いによる前記液面71の高さを比較して示す。ここでは前記圧縮機構部100を2個持つ際の例を示し、前記シリンダ10の内電動機部90側のシリンダ10aの下端及び圧縮機底面側のシリンダ10bの上端を閉塞する仕切り板62が設けられている。ここで前記液面71は、前記ベーン収納部13への給油を前記シリンダ10の側面から行うことで前記ベーン30とのシール性及び潤滑性が高まるため下限を前記シリンダ10aの下端71aとし、前記電動機部90の回転による攪拌等の影響を少なくさせるため上限を前記シリンダ10の上端71bとすることで適正位置となる。図3(a)は従来技術による前記密閉容器50の内径がφ112である際の縦断面図である。図3(b)は前述の手法を用い密閉容器50の内径をφ80にした際の縦断面図であり、前記液面71は上限である前記シリンダの上端71bを超えている。図3(b)の状態に対し、従来技術においては図3(c)の縦断面図に示す如く密閉容器50を圧縮機構部100下方へ伸ばすことで空間容積拡大し前記液面71の高さ適正位置に下げることを図ってきたが、密閉容器50の延長及び給油路確保の為のクランク軸80延長が必要となり、十分な省資源化の達成が困難であった。
FIG. 3 shows a comparison between the inner diameter of the sealed
そこで本発明の実施例では図1に示す如く、シリンダ外壁12に複数個の凹部19を設けた。これにより従来技術である密閉容器50やクランク軸80を延長すること無く前記空間51の拡大が図れるため、前記液面71の高さ低減に有効となる。しかしながら前記空間51と前記圧縮室20間は概略吐出し圧力と同等の高圧ガスと概略吸込み圧力と同等の低圧ガスにより圧力差が生じる為、洩れを抑止する厚さが必要となるため、前記凹部19の設定には以下の条件が必要となる。
Therefore, in the embodiment of the present invention, a plurality of
前記圧力差による洩れを防止するための条件について述べる。前記空間51内の圧力は、例えば高圧チャンバ方式の場合高圧ガスとなり、前記孔15のうち流体の流路孔15bについても概略同等の高圧ガスで満たされている。これに対し前記圧縮室20内の圧力は圧縮工程に応じ前記吸込み圧力の低圧ガスから吐出し圧力の高圧ガスで満たされることとなる。従来の圧縮機において前記孔15bと前記シリンダ内壁11間は前記圧力差による洩れを防止できる距離は確保されているため、前記空間51の壁面となる前記凹部19と前記圧縮室20の外壁となるシリンダ内壁11間の距離は、前記孔15bとシリンダ内壁11間の距離を基準とし、
(凹部19とシリンダ内壁11間距離)≧(孔15bとシリンダ内壁11間距離)となる条件を設定することで、凹部19からシリンダ内壁11間の洩れを防止することができる。また低圧チャンバ方式においては、前記空間51は低圧ガスで満たされることとなり前記孔15b間の洩れを防止するため、前記凹部19と前記孔15b間の距離は、
(凹部19と孔15b間距離)≧(孔15bとシリンダ内壁11間距離)
とすることが条件となる。ここで上記それぞれの条件設定の基準とした(孔15bとシリンダ内壁11間距離)の具体的な数値を実験的に求めた結果、少なくとも2.5mm以上とする必要がある。また、本実施例においては前記シリンダ10における凹部の設定法を述べたが、同様の設定法にて前記閉塞部材60である上軸受61,仕切り板62,下軸受63に設けることも可能である。The conditions for preventing leakage due to the pressure difference will be described. The pressure in the
By setting the condition of (distance between the
(Distance between
Is a condition. Here, as a result of experimentally obtaining specific numerical values (distance between the
上記条件を満たした前記凹部19は必ずしも加工によって設ける必要が無く、素材段階で設定することにより、素材重量すなわちコスト低減にも有効となる。以上のごとく前記凹部19を設定することにより図3(b)における前記液面71の高さを上限である前記シリンダの上端71bとすることができる。図3(d)に本発明の実施例による縦断面図を示す。
The
また前述の代替冷媒HFO1234yf適用時等に必要となる気筒容積拡大による圧縮機外径増の抑制についても、上記と同様の手法を用いることで対応できる。 Further, the suppression of the increase in the outer diameter of the compressor due to the expansion of the cylinder volume, which is necessary when the above-described alternative refrigerant HFO1234yf is applied, can be handled by using the same method as described above.
以上によれば、圧縮機の気筒容積に対し必要最小限度の外径とし、外径縮小に伴う冷凍機油封入時の液面高さの適正化に必要な空間を確保した圧縮機の設計が可能となり、小型で効率及び信頼性の高い圧縮機を提供することができる。 Based on the above, it is possible to design a compressor that has a minimum required outside diameter relative to the cylinder volume of the compressor, and that secures the space necessary for optimizing the liquid level when filling refrigeration oil as the outside diameter is reduced Thus, a compact, highly efficient and reliable compressor can be provided.
尚本実施例では前記凹部19を前記概略円形状となるシリンダ外壁12に設定した例を述べたが、これに限定するものではなく、例えば前記ベーン収納部外壁14にも設定する際にも応用できる。
In the present embodiment, the example in which the
10…シリンダ、11…シリンダ内壁、12…シリンダ外壁、13…ベーン収納部、14…ベーン収納部外壁、15…シリンダ内壁とシリンダ外壁の間に設定された孔、16…冷媒等の流体を前記シリンダ内壁11内に取込む吸込み孔、17…ベーン収納部に対し概略180°に位置する突起、18…密閉容器との係合に用いる溶接点、19…本発明によるシリンダ外壁に設けられた凹部、20…シリンダ内壁とローラ外壁により形成される圧縮室、30…ベーン、40…ローラ、50…圧縮機の密閉容器、51…シリンダ外壁と密閉容器内壁により形成される空間、60…閉塞部材、61…上軸受、62…仕切り板、63…下軸受、70…冷凍機油、71…冷凍機油を圧縮機内に封入した際の液面、80…クランク軸、90…電動機部、100 圧縮機構部。
DESCRIPTION OF
Claims (11)
前記圧縮機構部は、シリンダと、このシリンダ内に配置され且つ前記偏心部で回転駆動されるローラと、前記シリンダを軸方向に閉塞する閉塞部材と、前記ローラの外周に延びて、前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記ベーンをローラに押し付けるスプリングを有するロータリ流体機械において、
前記シリンダは、前記容器内壁との間で冷凍機油が封入される空間を形成する略円形状のシリンダ外周部と、前記ベーンを収納するベーン収納部を設けているベーン収納部外壁とを備え、
前記シリンダにおける前記略円形状のシリンダ外周部全体に亘って複数の凹部を設けたことを特徴とするロータリ流体機械。 In the container, a crankshaft having an eccentric portion, a compression mechanism portion driven by the eccentric portion, and a closing member that closes the compression mechanism portion in the crankshaft direction are provided.
The compression mechanism section includes a cylinder, a roller disposed in the cylinder and driven to rotate by the eccentric section, a closing member that closes the cylinder in the axial direction, and an outer periphery of the roller. In a rotary fluid machine having a vane that enters and exits a storage portion provided in the cylinder according to an eccentric motion, and a spring that presses the vane against a roller,
The cylinder includes a substantially circular cylinder outer peripheral portion that forms a space in which refrigeration oil is sealed between the container inner wall and a vane storage portion outer wall provided with a vane storage portion that stores the vane.
A rotary fluid machine characterized in that a plurality of recesses are provided over the entire outer circumference of the substantially circular cylinder in the cylinder .
(前記凹部と前記孔間の最小距離)≧(シリンダ内壁と前記孔間の最小距離)
となるように構成していることを特徴したロータリ流体機械。 4. The rotary fluid machine according to claim 1, further comprising: a plurality of holes provided in a range from an inner wall to an outer peripheral portion constituting a compression chamber of the cylinder; and (the concave portion and the hole). Minimum distance) ≧ (minimum distance between the cylinder inner wall and the hole)
A rotary fluid machine characterized by being configured as follows .
(前記シリンダ内壁と前記凹部間の最小距離)≧(前記シリンダ内壁と前記孔間の最小距離)
となるように構成していることを特徴したロータリ流体機械。 4. The rotary fluid machine according to claim 1, wherein a plurality of holes are provided in a range from an inner wall constituting the compression chamber of the cylinder to an outer peripheral portion, and (a minimum between the cylinder inner wall and the concave portion). Distance) ≧ (Minimum distance between the cylinder inner wall and the hole)
A rotary fluid machine characterized by being configured as follows .
(前記シリンダ内壁と前記凹部間の最小距離)≧2.5mm
となるように構成していることを特徴したロータリ流体機械。 4. The rotary fluid machine according to claim 1, wherein a plurality of holes are provided in a range from an inner wall constituting the compression chamber of the cylinder to an outer peripheral portion, and (a minimum between the cylinder inner wall and the concave portion). Distance) ≧ 2.5mm
A rotary fluid machine characterized by being configured as follows .
(前記凹部と前記孔間の最小距離)≧2.5mm
となるように構成していることを特徴したロータリ流体機械。 The rotary fluid machine according to any one of claims 1 to 3, wherein a plurality of holes are provided in a range from an inner wall constituting the compression chamber of the cylinder to an outer peripheral portion, and (a minimum distance between the concave portion and the hole). ) ≧ 2.5mm
A rotary fluid machine characterized by being configured as follows .
(前記シリンダ内径)/(容器内径)≧0.4
であることを特徴とするロータリ流体機械。 The rotary fluid machine according to any one of claims 1 to 3,
(Cylinder inner diameter) / (Container inner diameter) ≧ 0.4
A rotary fluid machine characterized by the above.
作動流体にテトラフルオロプロペンを用いたことを特徴とするロータリ流体機械。 The rotary fluid machine according to any one of claims 1 to 3,
A rotary fluid machine using tetrafluoropropene as a working fluid.
作動流体にHFO1234yfを用いたことを特徴とするロータリ流体機械。 The rotary fluid machine according to any one of claims 1 to 3,
A rotary fluid machine using HFO1234yf as a working fluid.
(容器内径)≦90mm
であることを特徴とするロータリ流体機械。 The rotary fluid machine according to any one of claims 1 to 3,
(Inner diameter) ≤ 90mm
A rotary fluid machine characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010541207A JP5469612B2 (en) | 2008-12-01 | 2009-11-24 | Rotary fluid machinery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008305837 | 2008-12-01 | ||
JP2008305837 | 2008-12-01 | ||
JP2010541207A JP5469612B2 (en) | 2008-12-01 | 2009-11-24 | Rotary fluid machinery |
PCT/JP2009/006314 WO2010064377A1 (en) | 2008-12-01 | 2009-11-24 | Rotary fluid machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2010064377A1 JPWO2010064377A1 (en) | 2012-05-10 |
JP5469612B2 true JP5469612B2 (en) | 2014-04-16 |
Family
ID=42233036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010541207A Active JP5469612B2 (en) | 2008-12-01 | 2009-11-24 | Rotary fluid machinery |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5469612B2 (en) |
KR (1) | KR101300920B1 (en) |
CN (1) | CN102224345B (en) |
WO (1) | WO2010064377A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105114301B (en) * | 2015-09-09 | 2017-06-23 | 山东科灵新能源发展有限公司 | Rotor liquid pump without external leakage |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003161278A (en) * | 2001-11-22 | 2003-06-06 | Hitachi Ltd | Hermetic rotary compressor |
JP2008208262A (en) * | 2007-02-27 | 2008-09-11 | Nippon Oil Corp | Refrigerating machine oil composition and working fluid composition for refrigerating machine |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2862260B2 (en) * | 1989-03-16 | 1999-03-03 | 株式会社日立製作所 | Rotary compressor |
KR19990025773A (en) * | 1997-09-18 | 1999-04-06 | 구자홍 | Cylinder fixing structure of hermetic rotary compressor |
CN1538071A (en) * | 2003-04-16 | 2004-10-20 | 松下电器产业株式会社 | Rotation compressor |
-
2009
- 2009-11-24 JP JP2010541207A patent/JP5469612B2/en active Active
- 2009-11-24 KR KR1020117012398A patent/KR101300920B1/en active IP Right Grant
- 2009-11-24 CN CN200980147309.0A patent/CN102224345B/en active Active
- 2009-11-24 WO PCT/JP2009/006314 patent/WO2010064377A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003161278A (en) * | 2001-11-22 | 2003-06-06 | Hitachi Ltd | Hermetic rotary compressor |
JP2008208262A (en) * | 2007-02-27 | 2008-09-11 | Nippon Oil Corp | Refrigerating machine oil composition and working fluid composition for refrigerating machine |
Also Published As
Publication number | Publication date |
---|---|
WO2010064377A1 (en) | 2010-06-10 |
CN102224345A (en) | 2011-10-19 |
KR20110073620A (en) | 2011-06-29 |
KR101300920B1 (en) | 2013-08-27 |
CN102224345B (en) | 2014-12-03 |
JPWO2010064377A1 (en) | 2012-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4892238B2 (en) | Scroll compressor | |
US8408024B2 (en) | Fluid machine and refrigeration cycle apparatus | |
JP2011027076A (en) | Scroll compressor | |
JP2008240667A (en) | Rotary compressor | |
JPWO2008139680A1 (en) | Fluid machine and refrigeration cycle apparatus including the same | |
JP6521048B2 (en) | Scroll compressor | |
JP6568841B2 (en) | Hermetic rotary compressor and refrigeration air conditioner | |
JP2010168977A (en) | Sealed compressor | |
EP1851437B1 (en) | Capacity varying type rotary compressor | |
JP2010121546A (en) | Rotary compressor | |
JP5469612B2 (en) | Rotary fluid machinery | |
JP6057535B2 (en) | Refrigerant compressor | |
JP2008309078A (en) | Scroll compressor | |
JP6118702B2 (en) | Scroll compressor and refrigeration equipment | |
JP5766165B2 (en) | Rotary compressor | |
JPH06264881A (en) | Rotary compressor | |
JP2017172346A (en) | Scroll compressor and air conditioner | |
KR101337079B1 (en) | Two stage rotary compressor | |
JP5181463B2 (en) | Fluid machinery | |
JP2008267140A (en) | Scroll compressor | |
WO2023139829A1 (en) | Rotary compressor | |
JP5077194B2 (en) | Scroll expander | |
KR20120085628A (en) | Rotary compressor | |
JP2018071476A (en) | Rotary Compressor | |
JP2009052462A (en) | Scroll compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140131 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5469612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |