[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5468723B2 - Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same - Google Patents

Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP5468723B2
JP5468723B2 JP2006341366A JP2006341366A JP5468723B2 JP 5468723 B2 JP5468723 B2 JP 5468723B2 JP 2006341366 A JP2006341366 A JP 2006341366A JP 2006341366 A JP2006341366 A JP 2006341366A JP 5468723 B2 JP5468723 B2 JP 5468723B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrolyte secondary
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006341366A
Other languages
Japanese (ja)
Other versions
JP2008153117A (en
Inventor
竜一 笠原
幸典 高橋
達治 沼田
裕 坂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2006341366A priority Critical patent/JP5468723B2/en
Publication of JP2008153117A publication Critical patent/JP2008153117A/en
Application granted granted Critical
Publication of JP5468723B2 publication Critical patent/JP5468723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用負極およびそれを用いた非水電解質二次電池に関し、特に充放電サイクル寿命を改善した非水電解質二次電池用負極およびそれを用いた非水電解質二次電池に関する。   The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same, and more particularly to a negative electrode for a non-aqueous electrolyte secondary battery with improved charge / discharge cycle life and a non-aqueous electrolyte secondary using the same. Next battery.

携帯電話やノートパソコン等のモバイル機器の普及により、その電力源となる二次電池の役割が重要視されている。これらの二次電池には小型・軽量でかつ高容量であり、充放電を繰り返しても、劣化しにくい性能が求められることから、現在はリチウムイオン二次電池が最も多く使用されている。   With the widespread use of mobile devices such as mobile phones and laptop computers, the role of secondary batteries as power sources is gaining importance. Since these secondary batteries are small, light and have a high capacity and are required to have a performance that does not easily deteriorate even after repeated charge and discharge, lithium ion secondary batteries are most frequently used.

リチウムイオン二次電池の負極には、主として黒鉛やハードカーボン等の炭素を用いている。炭素は、充放電サイクルを良好に繰り返すことができるものの、理論容量付近まで容量向上を実現していることから、今後大幅な容量は期待出来ない。その一方で、リチウムイオン二次電池の容量向上の要求は強いことから、炭素よりも高容量すなわち高エネルギー密度を有する負極材料の検討が行われている。   Carbon such as graphite and hard carbon is mainly used for the negative electrode of the lithium ion secondary battery. Although carbon can repeat charge / discharge cycles satisfactorily, it has not been expected to have a significant capacity in the future because it has improved capacity to near the theoretical capacity. On the other hand, since there is a strong demand for improving the capacity of lithium ion secondary batteries, negative electrode materials having a higher capacity, that is, a higher energy density than carbon, have been studied.

リチウムイオン二次電池の負極には、高エネルギー密度でかつ軽量という観点から金属リチウムの検討もされているが、充放電サイクルの進行にともない、充電時に金属リチウム表面にデンドライト(樹枝状晶)が析出し、この結晶がセパレータを貫通し、内部短絡を起こし、寿命が短いという問題点があった。   In the negative electrode of lithium ion secondary batteries, metal lithium has been studied from the viewpoint of high energy density and light weight, but as the charge / discharge cycle progresses, dendrites (dendrites) are formed on the surface of the metal lithium during charging. There is a problem that the crystals are deposited and the crystal penetrates the separator, causing an internal short circuit and a short life.

エネルギー密度を高める材料として、組成式がLiA(Aはアルミニウムなどの元素からなる)で表されるリチウムと合金を形成するLi吸蔵物質を負極活物質として用いることが検討されている。この負極は単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量である。最近では、特にケイ素を負極活物質として用いることが、非特許文献1に記載されている。このような負極材料を用いることによって、高容量の負極が得られるとされている。 As a material for increasing the energy density, it has been studied to use, as a negative electrode active material, a Li storage material that forms an alloy with lithium represented by the composition formula Li X A (A is an element such as aluminum). This negative electrode has a large amount of occlusion and release of lithium ions per unit volume, and has a high capacity. Recently, the use of silicon as a negative electrode active material is described in Non-Patent Document 1. It is said that a high capacity negative electrode can be obtained by using such a negative electrode material.

この種のケイ素を用いた負極は、単位体積当りのリチウムイオンの吸蔵放出量が多く、高容量であるものの、リチウムイオンが吸蔵放出される際に電極活物質自体が膨脹収縮するために微粉化が進行し、初回充放電における不可逆容量が大きく、また充放電サイクル寿命が短いという問題点があった。   Although this type of silicon-based negative electrode has a large amount of lithium ion storage and release per unit volume and high capacity, the electrode active material itself expands and contracts when lithium ion is stored and released. Progressed, the irreversible capacity in the first charge / discharge was large, and the charge / discharge cycle life was short.

ケイ素を用いた不可逆容量の低減及び充放電サイクル寿命の改善対策として、ケイ素酸化物を活物質として用いる方法が特許文献1で提案されている。特許文献1においては、ケイ素酸化物を活物質として用いることにより活物質単位重量あたりの体積膨張収縮を減らすことができるためサイクル特性の向上が確認されている。一方、酸化物の導電性が低いため、集電性が低下し、不可逆容量が大きいという問題点を有していた。また、ケイ素酸化物を活物質として用いた際の集電性を向上させるために、ケイ素酸化物に鉄やチタンを添加することが特許文献2で提案されている。しかし、これらの金属は電解質に対する耐食性や、耐酸化性が弱いために、金属を添加しただけではサイクルを繰り返すと導電性が低下してしまうという問題点を有していた。さらに容量及び充放電サイクル寿命の改善対策として、ケイ素、ケイ素酸化物に炭素材料を複合化させた粒子を活物質として用いる方法が特許文献3で提案されている。これによりサイクル特性の向上が確認されたものの、まだ不十分であった。   Patent Document 1 proposes a method of using silicon oxide as an active material as a measure for reducing irreversible capacity using silicon and improving charge / discharge cycle life. In Patent Document 1, since the volume expansion / shrinkage per unit weight of the active material can be reduced by using silicon oxide as the active material, improvement in cycle characteristics has been confirmed. On the other hand, since the conductivity of the oxide is low, there is a problem that the current collecting property is lowered and the irreversible capacity is large. In addition, Patent Document 2 proposes that iron or titanium is added to silicon oxide in order to improve current collecting performance when silicon oxide is used as an active material. However, since these metals have weak corrosion resistance and oxidation resistance with respect to the electrolyte, there is a problem that the conductivity decreases when the cycle is repeated only by adding the metal. Furthermore, as a countermeasure for improving capacity and charge / discharge cycle life, Patent Document 3 proposes a method using particles obtained by combining a carbon material with silicon and silicon oxide as an active material. Although this improved the cycle characteristics, it was still insufficient.

その一方で、従来から、サイクル特性改善を目的として、バインダ(結着材)として熱硬化性を有する樹脂材料を用いることが報告されている。具体的には、酸化スズと酸化ケイ素と炭素をポリイミドバインダと混合して焼結させる方法が特許文献4で提案され、ケイ素及び/またはケイ素合金を含む活物質粒子と導電性金属粉末の混合物をポリイミドバインダと混合させたものを前記集電体の表面上に非酸化性雰囲気下で焼結させる方法が特許文献5で提案されている。しかしこれらは、実使用上での判断となる炭素負極並のサイクル特性を実現するには至らなかった。   On the other hand, it has been conventionally reported that a resin material having thermosetting properties is used as a binder (binder) for the purpose of improving cycle characteristics. Specifically, a method of mixing and sintering tin oxide, silicon oxide, and carbon with a polyimide binder is proposed in Patent Document 4, and a mixture of active material particles containing silicon and / or silicon alloy and conductive metal powder is prepared. Patent Document 5 proposes a method of sintering a mixture with a polyimide binder on the surface of the current collector in a non-oxidizing atmosphere. However, these have not led to the realization of cycle characteristics comparable to those of a carbon negative electrode, which is a judgment in actual use.

特許第2997741号公報Japanese Patent No. 2999741 特許第3010226号公報Japanese Patent No. 3010226 特開2004−139886号公報JP 2004-139886 A 特開2002−117835号公報JP 2002-117835 A 特開2002−260637号公報Japanese Patent Laid-Open No. 2002-260637 リー(Li)他4名, 「ア ハイ キャパシティ ナノ−シリコン コンポジット アノード マテリアル フォー リチウム リチャージャブル バッテリーズ(A High Capapcity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries)」,エレクトロケミカル アンド ソリッドステート レターズ(Electorochemical and Solid-State Letters), 第2巻, 第11号, p547−549(1999)Li and four others, “A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries”, Electrochemical and Solid State Letters Solid-State Letters), Vol. 2, No. 11, p547-549 (1999)

本発明の課題は、集電性を向上させ、初回充放電での充放電効率が高く、かつ、エネルギー密度の高い良好なサイクル特性を持つ非水電解質二次電池用負極およびそれを用いた非水電解質二次電池を提供することにある。   An object of the present invention is to improve the current collecting performance, to have high charge / discharge efficiency in the first charge / discharge, and to have a good cycle characteristic with high energy density and a non-aqueous electrolyte secondary battery negative electrode using the same The object is to provide a water electrolyte secondary battery.

上記課題を解決するため本発明による非水電解質二次電池用負極は、単体ケイ素とケイ素酸化物の混合物の周囲をアモルファスカーボン及び黒鉛の混合組成からなる炭素で被覆した活物質粒子と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、前記熱硬化性樹脂により前記活物質粒子間、および前記活物質粒子と集電体とが結着されていることを特徴とする。また、活物質粒子中に含まれる炭素が重量比で5%以上50%以下であることが好ましく、電極密度が0.5g/cm以上1.5g/cm以下であることが好ましく、活物質粒子中の、単体ケイ素とケイ素酸化物の混合物の粒径D95が5μm以上30μm以下であることが好ましく、さらに、活物質粒子の粒径D95が10μm以上50μm以下であることが好ましい。 In order to solve the above problems, a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention comprises active material particles in which a mixture of simple silicon and silicon oxide is coated with carbon composed of a mixed composition of amorphous carbon and graphite, and by heating. It includes a mixture of thermosetting resins that cause a dehydration condensation reaction, and is characterized in that the active material particles are bound to each other and the active material particles and the current collector by the thermosetting resin. Further, the carbon contained in the active material particles is preferably 5% to 50% by weight, and the electrode density is preferably 0.5 g / cm 3 to 1.5 g / cm 3. The particle diameter D 95 of the mixture of simple substance silicon and silicon oxide in the material particles is preferably 5 μm or more and 30 μm or less, and the particle diameter D 95 of the active material particles is preferably 10 μm or more and 50 μm or less.

また、本発明による非水電解質二次電池は前記非水電解質二次電池用負極を用い放電終止電圧値が1.5V以上2.7V以下であることを特徴とする。   The nonaqueous electrolyte secondary battery according to the present invention is characterized in that the negative electrode for a nonaqueous electrolyte secondary battery is used and a discharge end voltage value is 1.5 V or more and 2.7 V or less.

本発明によれば、高容量を示す半面、充電による体積膨張の大きい単体ケイ素にケイ素酸化物を混合し、さらにその周辺をアモルファスカーボンで被覆することにより、電極活物質自体の膨脹収縮を緩和するため、非水電解質二次電池の充放電サイクル寿命の改善につながる。一方、単体ケイ素とケイ素酸化物の混合物に黒鉛を被覆することにより、集電性を向上させて初回充放電容量向上につながるだけでなく、活物質であるケイ素の電解質に対する耐食性や耐酸化性を保つことが出来る。またバインダとして機能する熱硬化性樹脂は、加熱により脱水縮合反応を生じるため、活物質粒子間、及び活物質粒子−集電体間を強固に結着させる作用を示すため、接触抵抗の低減ひいては集電性の向上により非水電解質二次電池の初回充放電容量を向上させることが出来る。   According to the present invention, the expansion and contraction of the electrode active material itself is mitigated by mixing silicon oxide with simple silicon that exhibits high capacity and large volume expansion by charging, and further coating the periphery with amorphous carbon. Therefore, it leads to the improvement of the charge / discharge cycle life of the nonaqueous electrolyte secondary battery. On the other hand, by coating graphite on a mixture of simple silicon and silicon oxide, not only improves current collection and improves the initial charge / discharge capacity, but also provides corrosion resistance and oxidation resistance to the active silicon electrolyte. I can keep it. In addition, since the thermosetting resin that functions as a binder causes a dehydration condensation reaction by heating, it exhibits an action of firmly binding between the active material particles and between the active material particles and the current collector. The initial charge / discharge capacity of the nonaqueous electrolyte secondary battery can be improved by improving the current collecting property.

本発明の実施の形態について図面を参照して説明する。図1に本発明の非水電解質二次電池用負極の活物質粒子の模式断面図を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic cross-sectional view of active material particles of a negative electrode for a non-aqueous electrolyte secondary battery of the present invention.

図1に示すように、負極の活物質粒子5は、単体ケイ素1、ケイ素酸化物2を核とし、その混合物の周囲にアモルファスカーボン3、黒鉛4の混合物である炭素で被覆した好ましくは粒径D95が10μm以上50μm以下、さらに望ましくは10μm以上20μm以下の粒子である。なおD95はある粒径以下の体積割合の合計が95%となるときの粒径を示す。ここで上記活物質中の粒子の核となる、単体ケイ素とケイ素酸化物の混合物の粒径はD95が5μm以上30μm以下であることが望ましいが、5μm以上としたのは製造工程における取り扱いに配慮したものであり、30μm以下としたのは充放電の繰り返しによる放電容量の劣化を防ぐためである。また負極活物質粒子のD95を10μm以上50μm以下としているが、この理由としては単体ケイ素とケイ素酸化物の混合物の粒径を規定したのと同様である。すなわち、10μm以上としたのは製造工程における取り扱いに配慮したものであり、50μm以下としたのは充放電の繰り返しによる放電容量の劣化を防ぐためである。 As shown in FIG. 1, the active material particles 5 of the negative electrode preferably have a particle size in which simple silicon 1 and silicon oxide 2 are used as the core, and the mixture is coated with carbon which is a mixture of amorphous carbon 3 and graphite 4 around the mixture. D 95 is a particle having a size of 10 μm or more and 50 μm or less, more preferably 10 μm or more and 20 μm or less. D 95 indicates the particle size when the sum of the volume ratios below a certain particle size is 95%. Here the core particles in the active material, although the particle size of the mixture of elemental silicon and silicon oxide is desirably D 95 is 5μm or more 30μm or less, it had a 5μm or more in handling in the manufacturing process In consideration of this, the reason why the thickness is 30 μm or less is to prevent deterioration of the discharge capacity due to repeated charge and discharge. Further, D 95 of the negative electrode active material particles is set to 10 μm or more and 50 μm or less for the same reason as that for defining the particle size of the mixture of simple silicon and silicon oxide. That is, the thickness is set to 10 μm or more in consideration of handling in the manufacturing process, and the thickness is set to 50 μm or less in order to prevent the discharge capacity from being deteriorated due to repeated charge and discharge.

単体ケイ素1は、充放電の際Liを吸蔵あるいは放出する。ケイ素酸化物2は活物質自体の膨脹収縮を緩和する役目がある。外側にある炭素被覆層は、アモルファスカーボン3、黒鉛4の混合物である。上記負極活物質中に被覆される炭素が重量比で5%以上50%未満となることが好ましい。上記の理由は、炭素重量比5%未満の場合充放電の繰り返しによる放電容量の劣化が大きくなる問題があり、また50%以上の場合は放電容量の絶対値が小さく、従来の炭素材料に対するメリットが得られないためである。   The simple silicon 1 occludes or releases Li during charge / discharge. The silicon oxide 2 has a role of relaxing expansion and contraction of the active material itself. The carbon coating layer on the outside is a mixture of amorphous carbon 3 and graphite 4. The carbon coated in the negative electrode active material is preferably 5% or more and less than 50% by weight. The reason for this is that when the carbon weight ratio is less than 5%, there is a problem that the deterioration of the discharge capacity due to repeated charge and discharge is large, and when it is 50% or more, the absolute value of the discharge capacity is small, which is an advantage over conventional carbon materials. This is because cannot be obtained.

負極活物質粒子の作製方法としては、最初に核となるケイ素とケイ素酸化物を混合し、高温減圧下にて焼結させる。次に高温非酸素雰囲気下で有機化合物の気体雰囲気中にケイ素とケイ素酸化物の混合焼結物を導入する、もしくは高温非酸素雰囲気下でケイ素とケイ素酸化物の混合焼結物と炭素の前駆体樹脂を混合させることで、ケイ素とケイ素酸化物の核の周囲に炭素の被覆層が形成される。ここで炭素の被覆層中の黒鉛の割合は被覆層形成時の温度が高いほど多くなる。   As a method for producing the negative electrode active material particles, first, silicon and silicon oxide as nuclei are mixed and sintered under high temperature and reduced pressure. Next, a mixed sintered product of silicon and silicon oxide is introduced into a gaseous atmosphere of an organic compound in a high temperature non-oxygen atmosphere, or a mixed sintered product of silicon and silicon oxide and a precursor of carbon in a high temperature non-oxygen atmosphere. By mixing the body resin, a carbon coating layer is formed around the core of silicon and silicon oxide. Here, the proportion of graphite in the carbon coating layer increases as the temperature during the coating layer formation increases.

図2に本発明の非水電解質二次電池の断面図を示す。図2に示すように本発明の非水電解液二次電池は銅箔などの負極集電体7上に形成した活物質層6からなる負極8とアルミニウム箔などの正極集電体10に形成した活物質層9からなる正極11がセパレータ12を介して対向配置されている構造となっている。セパレータ12としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムを用いることができる。負極8と正極11から、それぞれ電極端子取り出しのための負極リードタブ14、正極リードタブ15が引き出され、それぞれの先端を除いて、ラミネートフィルムなどの外装フィルム13を用いて外装する。   FIG. 2 shows a cross-sectional view of the nonaqueous electrolyte secondary battery of the present invention. As shown in FIG. 2, the non-aqueous electrolyte secondary battery of the present invention is formed on a negative electrode 8 comprising an active material layer 6 formed on a negative electrode current collector 7 such as a copper foil and a positive electrode current collector 10 such as an aluminum foil. The positive electrode 11 made of the active material layer 9 is arranged so as to face each other with the separator 12 interposed therebetween. As the separator 12, a polyolefin film such as polypropylene or polyethylene, or a porous film such as a fluororesin can be used. From the negative electrode 8 and the positive electrode 11, a negative electrode lead tab 14 and a positive electrode lead tab 15 for taking out electrode terminals are drawn out, respectively, and are packaged using an exterior film 13 such as a laminate film except for the respective ends.

負極の活物質層6は上記の方法で生成した負極の活物質粒子と、バインダーとしてポリイミド、ポリアミド、ポリアミドイミド、ポリアクリル酸系樹脂、ポリメタクリル酸系樹脂に代表される熱硬化性を有する結着剤とをN−メチル−2−ピロリドン(NMP)等の溶剤に分散させ混練し、負極集電体7の上に塗布し、高温雰囲気で乾燥することにより形成される。負極の活物質層6中には、必要に応じて導電性を付与するため、カーボンブラックやアセチレンブラック等を混合してもよい。生成した負極活物質層6の電極密度は0.5g/cm以上1.5g/cm以下であることが好ましい。電極密度が低い場合は放電容量の絶対値が小さく、従来の炭素材料に対するメリットが得られない。逆に高い場合、電極に電解質を含浸させることが難しく、やはり放電容量が低下する。負極集電体7の厚みは、強度を保てるような厚みとすることが好ましいことから、4〜100μmであることが好ましく、エネルギー密度を高めるためには、5〜30μmであることがさらに好ましい。 The negative electrode active material layer 6 is composed of negative electrode active material particles produced by the above-described method and a thermosetting bond represented by polyimide, polyamide, polyamideimide, polyacrylic acid resin, and polymethacrylic acid resin as a binder. The adhesive is formed by dispersing and kneading in a solvent such as N-methyl-2-pyrrolidone (NMP), applying the mixture onto the negative electrode current collector 7, and drying in a high temperature atmosphere. In the active material layer 6 of the negative electrode, carbon black, acetylene black, or the like may be mixed in order to impart conductivity as necessary. The electrode density of the produced negative electrode active material layer 6 is preferably 0.5 g / cm 3 or more and 1.5 g / cm 3 or less. When the electrode density is low, the absolute value of the discharge capacity is small, and a merit over the conventional carbon material cannot be obtained. On the other hand, when it is high, it is difficult to impregnate the electrode with an electrolyte, and the discharge capacity is also lowered. The thickness of the negative electrode current collector 7 is preferably 4 to 100 μm because it is preferable to maintain the strength, and more preferably 5 to 30 μm in order to increase the energy density.

正極の活物質層9は活物質として、マンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウム、及びこれらの混合物、並びにマンガン、コバルト、ニッケル部分をアルミニウム、マグネシウム、チタン、亜鉛等で置換したもの、さらにはリン酸鉄リチウムなどを用いることができる。   The active material layer 9 of the positive electrode includes, as an active material, lithium manganate, lithium cobaltate, lithium nickelate, and a mixture thereof, and manganese, cobalt, nickel portions substituted with aluminum, magnesium, titanium, zinc, etc. May be lithium iron phosphate.

また、電池に用いる電解質としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトン、アニソール、N−メチルピロリドン、などの非プロトン性有機溶媒を一種又は二種以上を混合して使用し、これらの有機溶媒に溶解するリチウム塩を溶解させる。リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類などがあげられる。また、電解質に代えてポリマー電解質を用いてもよい。 Moreover, as electrolyte used for a battery, cyclic carbonates, such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, Chain ethers such as 2-ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide Dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2 -Using an aprotic organic solvent such as oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, or a mixture of two or more of these, A lithium salt that dissolves in an organic solvent is dissolved. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ). 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides and the like. Further, a polymer electrolyte may be used instead of the electrolyte.

上記のようにして製造される非水電解質二次電池の、放電終止電圧値は1.5V以上2.7V以下であることが望ましい。放電終止電圧値が低くなる程充放電の繰り返しによる放電容量の劣化が大きくなる問題がある。1.5V以下とするのは回路設計上の難易度も高い。また2.7V以上の場合放電容量の絶対値が小さく従来の炭素材料に対するメリットが得られない。   The non-aqueous electrolyte secondary battery produced as described above preferably has a discharge end voltage value of 1.5 V or more and 2.7 V or less. There is a problem that the deterioration of the discharge capacity due to repeated charge / discharge increases as the discharge end voltage value decreases. Setting the voltage to 1.5 V or less has a high degree of difficulty in circuit design. Further, when the voltage is 2.7 V or more, the absolute value of the discharge capacity is small and no merit over the conventional carbon material can be obtained.

本発明の実施例について以下に説明する。   Examples of the present invention will be described below.

(実施例1)
単体ケイ素とケイ素酸化物をモル比1:1にて混合し、1400℃、13.3Paにて溶融、急冷させてケイ素−ケイ素酸化物混合粉末を形成した。混合物の粒径D95は20μm以下であった。エタノール溶液中ボールミルにて最大粒径50μm以下に粉砕した。上記粉末とフェノール樹脂を混合し、窒素雰囲気下、900℃にて焼成した後、D95が30μm以下となるよう粉砕処理を行った。これにより活物質中の炭素比率が重量比で20%となる活物質粒子を作製した。このようにして生成した活物質粒子を用いて、以下のようにして活物質層を作成した。
Example 1
Single silicon and silicon oxide were mixed at a molar ratio of 1: 1, and melted and rapidly cooled at 1400 ° C. and 13.3 Pa to form a silicon-silicon oxide mixed powder. The particle size D 95 of the mixture was 20 μm or less. It grind | pulverized to the maximum particle size of 50 micrometers or less with the ball mill in the ethanol solution. Mixing the powder and the phenol resin, under a nitrogen atmosphere, after calcination at 900 ° C., it was subjected to grinding processing so that the D 95 is 30μm or less. This produced active material particles in which the carbon ratio in the active material was 20% by weight. Using the active material particles thus generated, an active material layer was prepared as follows.

負極の活物質層は上記活物質粒子、ポリイミド、及びNMPを混合した電極材を10μmの銅箔からなる負極集電体の上に塗布し、125℃、5分間乾燥した後、ロールプレスにて圧縮成型を行い、再度乾燥炉にて300℃、10分間乾燥処理を行い作製した。この銅箔からなる負極集電体上に形成された活物質層を30×28mmに打ち抜き負極とし、電荷取り出しのためのニッケルからなる負極リードタブを超音波により融着した。正極の活物質層については、コバルト酸リチウムからなる活物質粒子、バインダとしてポリフッ化ビニリデン、溶剤としてNMPを混合した電極材を20μmのアルミ箔からなる正極集電体の上に塗布し、125℃、5分間乾燥処理を行い作製した。アルミ箔からなる正極集電体上に形成された活物質層を30×28mmに打ち抜き正極とし、電荷取り出しのためのアルミからなる正極リードタブを超音波により融着した。負極、セパレータ、正極の順に、活物質層がセパレータと対面するように積層した後、ラミネートフィルムをはさみ、電解質を注液し、真空下にて封止することによりラミネート型電池を作製した。なお電解質には、ECと、DECと、EMCとの3:5:2の混合溶媒に1mol/lのLiPFを溶解したものを用いた。 The active material layer of the negative electrode was prepared by applying an electrode material mixed with the above active material particles, polyimide, and NMP onto a negative electrode current collector made of 10 μm copper foil, drying at 125 ° C. for 5 minutes, and then using a roll press. It compression-molded and produced again by drying at 300 degreeC for 10 minutes in a drying furnace. The active material layer formed on the negative electrode current collector made of copper foil was punched out to 30 × 28 mm to form a negative electrode, and a negative electrode lead tab made of nickel for taking out charges was fused by ultrasonic waves. For the active material layer of the positive electrode, an active material particle made of lithium cobaltate, an electrode material mixed with polyvinylidene fluoride as a binder, and NMP as a solvent were applied on a positive electrode current collector made of 20 μm aluminum foil, and 125 ° C. It was prepared by drying for 5 minutes. The active material layer formed on the positive electrode current collector made of aluminum foil was punched out to 30 × 28 mm to form a positive electrode, and a positive electrode lead tab made of aluminum for charge extraction was fused by ultrasonic waves. After laminating the negative electrode, the separator, and the positive electrode in this order so that the active material layer faces the separator, the laminate film was sandwiched, the electrolyte was injected, and the laminate type battery was sealed under vacuum. The electrolyte used was a solution of 1 mol / l LiPF 6 in a 3: 5: 2 mixed solvent of EC, DEC, and EMC.

(実施例2)
活物質粒子中の炭素比率が重量比で3%となる他は実施例1と同様にして活物質粒子を作製し、電池を作製した。
(Example 2)
Active material particles were produced in the same manner as in Example 1 except that the carbon ratio in the active material particles was 3% by weight, and a battery was produced.

(実施例3)
活物質粒子中の炭素比率が重量比で5%となる他は実施例1と同様にして活物質粒子を作製し、電池を作製した。
(Example 3)
Active material particles were produced in the same manner as in Example 1 except that the carbon ratio in the active material particles was 5% by weight, and a battery was produced.

(実施例4)
活物質粒子中の炭素比率が重量比で10%となる他は実施例1と同様にして活物質粒子を作製し、電池を作製した。
Example 4
Active material particles were produced in the same manner as in Example 1 except that the carbon ratio in the active material particles was 10% by weight, and a battery was produced.

(実施例5)
活物質粒子中の炭素比率が重量比で50%となる他は実施例1と同様にして活物質粒子を作製し、電池を作製した。
(Example 5)
Active material particles were produced in the same manner as in Example 1 except that the carbon ratio in the active material particles was 50% by weight, and a battery was produced.

(実施例6)
活物質粒子中の炭素比率が重量比で70%となる他は実施例1と同様にして活物質粒子を作製し、電池を作製した。
(Example 6)
Active material particles were produced in the same manner as in Example 1 except that the carbon ratio in the active material particles was 70% by weight, and a battery was produced.

(実施例7)
核となる単体ケイ素とケイ素酸化物の混合物の粒径D95を20μm以下、負極活物質のD95を50μm以下としたものを作製した。その他は実施例1と同様にして電池を作製した。
(Example 7)
A mixture of simple silicon and silicon oxide as a core having a particle size D 95 of 20 μm or less and a negative electrode active material D 95 of 50 μm or less was prepared. Otherwise, a battery was fabricated in the same manner as in Example 1.

(実施例8)
核となる単体ケイ素とケイ素酸化物の混合物の粒径D95を30μm、負極活物質のD95を50μmとしたものを作製した。その他は実施例1と同様にして電池を作製した。
(Example 8)
A mixture of single silicon and silicon oxide serving as a nucleus having a particle size D 95 of 30 μm and a negative electrode active material D 95 of 50 μm was prepared. Otherwise, a battery was fabricated in the same manner as in Example 1.

(実施例9)
核となる単体ケイ素とケイ素酸化物の混合物の粒径D95を40μm、負極活物質のD95を50μmとしたものを作製した。その他は実施例1と同様にして電池を作製した。
Example 9
A mixture of single silicon and silicon oxide serving as a core having a particle size D 95 of 40 μm and a negative electrode active material D 95 of 50 μm was prepared. Otherwise, a battery was fabricated in the same manner as in Example 1.

(実施例10)
核となる単体ケイ素とケイ素酸化物の混合物の粒径D95を20μm、負極活物質のD95を70μmとしたものを作製した。その他は実施例1と同様にして電池を作製した。
(Example 10)
A particle having a particle size D 95 of 20 μm and a negative electrode active material D 95 of 70 μm was prepared. Otherwise, a battery was fabricated in the same manner as in Example 1.

(実施例11)
ポリイミドに替えてポリアクリル酸系樹脂を負極の活物質層作製時のバインダとして用いた。その他は実施例1と同様にして電池を作製した。
(Example 11)
Instead of polyimide, a polyacrylic acid-based resin was used as a binder when producing the active material layer of the negative electrode. Otherwise, a battery was fabricated in the same manner as in Example 1.

(比較例1)
ポリフッ化ビニリデン樹脂を負極の活物質層作製時のバインダとして用いた。その他は実施例1と同様にして電池を作製した。
(Comparative Example 1)
Polyvinylidene fluoride resin was used as a binder when producing the active material layer of the negative electrode. Otherwise, a battery was fabricated in the same manner as in Example 1.

(比較例2)
単体ケイ素とケイ素酸化物をモル比1:1にて混合し、1400℃、13.3Paにて溶融、急冷させてケイ素−ケイ素酸化物混合粉末を形成した。混合物の粒径D95は20μmであった。エタノール溶液中ボールミルにて最大粒径50μmとなるように粉砕した。上記粉末とフェノール樹脂を混合し、窒素雰囲気下、500℃にて焼成した後、粒径D95が30μmとなるよう粉砕処理を行った。これにより活物質中の炭素比率が20%となる複合粒子を作製した。その他は実施例1と同様にして電池を作製した。
(Comparative Example 2)
Single silicon and silicon oxide were mixed at a molar ratio of 1: 1, and melted and rapidly cooled at 1400 ° C. and 13.3 Pa to form a silicon-silicon oxide mixed powder. The particle size D 95 of the mixture was 20 μm. It grind | pulverized so that it might become a maximum particle size of 50 micrometers with the ball mill in an ethanol solution. The powder and the phenol resin were mixed and fired at 500 ° C. in a nitrogen atmosphere, and then pulverized so that the particle size D 95 was 30 μm. Thus, composite particles having a carbon ratio in the active material of 20% were produced. Otherwise, a battery was fabricated in the same manner as in Example 1.

(比較例3)
単体ケイ素とケイ素酸化物をモル比1:1にて混合し、1400℃、13.3Paにて溶融、急冷させてケイ素−ケイ素酸化物混合粉末を形成した。混合物の粒径D95は20μmであった。エタノール溶液中ボールミルにてD95が50μmとなるように粉砕した。上記粉末、黒鉛粉末、及びポリフッ化ビニリデンを混合し、窒素雰囲気下、900℃にて焼成した後、D95が30μmとなるよう粉砕処理を行った。これにより活物質中の炭素比率が20%となる複合粒子を作製した。その他は実施例1と同様にして電池を作製した。
(Comparative Example 3)
Single silicon and silicon oxide were mixed at a molar ratio of 1: 1, and melted and rapidly cooled at 1400 ° C. and 13.3 Pa to form a silicon-silicon oxide mixed powder. The particle size D 95 of the mixture was 20 μm. D 95 in ethanol in a ball mill was pulverized so that 50 [mu] m. The above powder, graphite powder, and polyvinylidene fluoride were mixed, fired at 900 ° C. in a nitrogen atmosphere, and then pulverized to a D 95 of 30 μm. Thus, composite particles having a carbon ratio in the active material of 20% were produced. Otherwise, a battery was fabricated in the same manner as in Example 1.

(比較例4)
負極活物質粒子に黒鉛粉末を用いた。その他は実施例1と同様にして電池を作製した。
(Comparative Example 4)
Graphite powder was used for the negative electrode active material particles. Otherwise, a battery was fabricated in the same manner as in Example 1.

上記の方法にて作製したそれぞれの電池について、まず負極の電極密度を測定した。次に、作製した電池を充放電電流20mAとして、電圧4.2Vから3.0、 2.7、 2.5、 2.2Vの範囲における放電容量特性を測定した。また電圧4.2Vから2.5Vの範囲における充放電サイクル試験を実施した。   For each battery produced by the above method, the electrode density of the negative electrode was first measured. Next, the discharge capacity characteristic in the range of voltage 4.2V to 3.0, 2.7, 2.5, and 2.2V was measured by setting the produced battery to a charge / discharge current of 20 mA. In addition, a charge / discharge cycle test was performed in a voltage range of 4.2 V to 2.5 V.

表1に実施例1〜実施例11および比較例1〜比較例4のケイ素−ケイ素酸化物の混合物の粒径D95(μm)、活物質粒子の粒径D95(μm)、電極密度、初回充放電効率、比較例4の初回電極放電容量(活物質層の単位体積当たり)を1としたときの相対的な初回電極放電容量、および100サイクル後の容量維持率((100サイクル目における放電容量)/(1サイクル目における放電容量))を示す。 Table 1 shows the particle diameter D 95 (μm) of the silicon-silicon oxide mixtures of Examples 1 to 11 and Comparative Examples 1 to 4, the particle diameter D 95 (μm) of the active material particles, the electrode density, Initial charge / discharge efficiency, relative initial electrode discharge capacity when the initial electrode discharge capacity (per unit volume of the active material layer) of Comparative Example 4 is 1, and capacity retention rate after 100 cycles ((in the 100th cycle) Discharge capacity) / (discharge capacity in the first cycle)).

Figure 0005468723
Figure 0005468723

さらに、実施例1〜実施例11および比較例1〜比較例4における、放電終止電圧値を3.0、2.7、2.5、 2.2Vに変化させたときの、比較例4に対する相対的な電極放電容量(活物質層の単位体積当たり)を表2に示す。   Furthermore, with respect to Comparative Example 4 when the discharge end voltage value in Examples 1 to 11 and Comparative Examples 1 to 4 was changed to 3.0, 2.7, 2.5, and 2.2 V Table 2 shows the relative electrode discharge capacity (per unit volume of the active material layer).

Figure 0005468723
Figure 0005468723

実施例1〜実施例6では、活物質中の炭素比率を変化させている。その結果、実施例6を除いて比較例4より大きい電極放電容量を示した。また、実施例6の電極放電容量は比較例とほぼ同等であった。実施例2の、炭素比率が3%の場合のみサイクル後の容量維持率が劣っていたが、その他の水準では良好であった。このことから、複合粒子における活物質の炭素比率が5%以上であれば、電極放電容量、初回充放電効率、及び100サイクル後の容量維持率の改善のいずれにも効果があることが分かる。   In Examples 1 to 6, the carbon ratio in the active material is changed. As a result, the electrode discharge capacity was larger than that of Comparative Example 4 except for Example 6. Moreover, the electrode discharge capacity of Example 6 was almost the same as that of the comparative example. The capacity maintenance rate after the cycle was inferior only when the carbon ratio of Example 2 was 3%, but it was good at other levels. From this, it can be seen that if the carbon ratio of the active material in the composite particles is 5% or more, the electrode discharge capacity, the initial charge / discharge efficiency, and the improvement of the capacity retention rate after 100 cycles are all effective.

実施例7〜実施例9では、活物質粒子のケイ素とケイ素酸化物の混合物の粒径D95を変化させている。いずれの水準共に比較例4より電極放電容量が大きいが、混合物の粒径が大きい程サイクル後の容量維持率及び初回充放電効率の低下が見られ、実施例9では特性の低下が見られる。このことから、活物質粒子のケイ素とケイ素酸化物の混合物の粒径D95を、少なくとも30μm以下とすると効果が大きいことが分かる。 In Example 7 to Example 9, the particle size D 95 of the mixture of silicon and silicon oxide as active material particles is changed. In any level, the electrode discharge capacity is larger than that of Comparative Example 4, but the capacity retention rate after the cycle and the initial charge / discharge efficiency decrease as the particle size of the mixture increases. In Example 9, the characteristics decrease. From this, it can be seen that the effect is large when the particle size D 95 of the mixture of silicon and silicon oxide of the active material particles is at least 30 μm or less.

実施例1、7、10では、負極活物質粒子の粒径D95を変化させている。いずれの水準共に比較例4より電極放電容量が大きいが、負極活物質粒子の粒径が大きい程サイクル後の容量維持率、及び初回充放電効率の低下が見られ、実施例10では容量維持率の低下に加え、初期容量の低下も見られる。このことから、負極活物質粒子の粒径D95を、少なくとも50μm以下とすると効果が大きいことが分かる。 In Examples 1, 7, and 10, the particle diameter D 95 of the negative electrode active material particles is changed. In all the levels, the electrode discharge capacity was larger than that of Comparative Example 4, but the capacity retention rate after the cycle and the initial charge / discharge efficiency were decreased as the particle size of the negative electrode active material particles was larger. In addition to the decrease in the initial capacity, the initial capacity is also decreased. From this, it can be seen that the effect is large when the particle diameter D 95 of the negative electrode active material particles is at least 50 μm or less.

実施例1、11、比較例1では、負極活物質に用いているバインダの種類を変えている。いずれの水準共に電極放電容量に差は見られない。実施例1、11では熱硬化性バインダを用いておりサイクル後の容量維持率が良好であるが、比較例1では熱膨潤性バインダを用いておりサイクル後の容量維持率が低下する傾向にある。さらに実施例1のポリイミドバインダは実施例11のポリアクリル酸系樹脂より熱硬化性が大きく、これが実施例1と11のサイクル特性の差となって表れている。このことから、負極活物質に熱硬化性バインダを用いる必要があり、熱硬化性が大きいほどサイクル特性が良好であることがわかる。   In Examples 1 and 11 and Comparative Example 1, the type of binder used for the negative electrode active material is changed. There is no difference in the electrode discharge capacity at any level. In Examples 1 and 11, a thermosetting binder is used and the capacity retention rate after cycling is good, but in Comparative Example 1, a heat-swellable binder is used and the capacity maintenance rate after cycling tends to decrease. . Furthermore, the polyimide binder of Example 1 has a higher thermosetting property than the polyacrylic acid resin of Example 11, and this appears as a difference in cycle characteristics between Examples 1 and 11. From this, it is necessary to use a thermosetting binder for the negative electrode active material, and it can be seen that the greater the thermosetting property, the better the cycle characteristics.

実施例1と比較例2、3では、ケイ素とケイ素酸化物の混合物の周辺に被覆する炭素の種類が異なっている。電池組立前の負極にてX線回折測定を行ったところ、実施例1ではアモルファス及び黒鉛の混合組成であり、比較例2ではアモルファスカーボンであり、比較例3では黒鉛であることを確認した。比較例2ではサイクル後の容量維持率は実施例1と同様良好であるものの、初回充放電効率の低下が大きい。比較例3では逆にサイクル後の容量維持率が低下する。これらの結果から、被覆する炭素の種類として、アモルファス及び黒鉛の両方が必要となることがわかる。   In Example 1 and Comparative Examples 2 and 3, the kind of carbon coated around the mixture of silicon and silicon oxide is different. When X-ray diffraction measurement was performed on the negative electrode before battery assembly, it was confirmed that Example 1 had a mixed composition of amorphous and graphite, Comparative Example 2 was amorphous carbon, and Comparative Example 3 was graphite. In Comparative Example 2, the capacity retention rate after cycling is as good as in Example 1, but the initial charge / discharge efficiency is greatly reduced. In Comparative Example 3, on the contrary, the capacity retention rate after the cycle is lowered. From these results, it is understood that both amorphous and graphite are required as the types of carbon to be coated.

なお表1より、電極密度はいずれも1.5g/cm以下であり、比較例3の黒鉛負極と比較して低密度に設計することにより、良好な特性を得ることがわかる。さらに表2より、負極活物質粒子に黒鉛粉末を用いた比較例4を除いて、放電終止電圧値が3.0Vでは2.7Vと比較して容量が低下する。放電終止電圧値を少なくとも2.7V以下にすれば負極活物質の持つ容量を引き出すことが出来る。 Table 1 shows that the electrode density is 1.5 g / cm 3 or less, and good characteristics can be obtained by designing it at a lower density than the graphite negative electrode of Comparative Example 3. Furthermore, from Table 2, except for Comparative Example 4 in which graphite powder is used for the negative electrode active material particles, the capacity is reduced when the final discharge voltage value is 3.0 V compared to 2.7 V. If the discharge end voltage value is at least 2.7 V or less, the capacity of the negative electrode active material can be extracted.

このように、負極活物質粒子の構造、組成、及び電池設計の最適化により、初回充放電効率が高く、電極のエネルギー密度が高くかつサイクル特性の良い電池を提供出来ることを確認した。   As described above, it was confirmed that by optimizing the structure, composition, and battery design of the negative electrode active material particles, a battery having high initial charge / discharge efficiency, high electrode energy density, and good cycle characteristics can be provided.

本発明の非水電解質二次電池用負極の活物質粒子の模式断面図。The schematic cross section of the active material particle of the negative electrode for nonaqueous electrolyte secondary batteries of this invention. 本発明の非水電解質二次電池の断面図。Sectional drawing of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 単体ケイ素
2 ケイ素酸化物
3 アモルファスカーボン
4 黒鉛
5 (負極の)活物質粒子
6 (負極の)活物質層
7 負極集電体
8 負極
9 (正極の)活物質層
10 正極集電体
11 正極
12 セパレータ
13 外装フィルム
14 負極リードタブ
15 正極リードタブ
DESCRIPTION OF SYMBOLS 1 Elementary silicon 2 Silicon oxide 3 Amorphous carbon 4 Graphite 5 (Negative electrode) Active material particle 6 (Negative electrode) Active material layer 7 Negative electrode collector 8 Negative electrode 9 (Positive electrode) Active material layer 10 Positive electrode collector 11 Positive electrode 12 Separator 13 Exterior film 14 Negative electrode lead tab 15 Positive electrode lead tab

Claims (7)

負極と正極とリチウムイオン導電性の非水電解質とを有する非水電解質二次電池に用いられる負極が、
単体ケイ素とケイ素酸化物の混合焼結物を核とし、アモルファスカーボン及び黒鉛の混合組成からなる炭素を被覆層とする活物質粒子と、
加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、
前記熱硬化性樹脂により前記活物質粒子間、および前記活物質粒子と集電体とが結着されていることを特徴とする非水電解質二次電池用負極。
A negative electrode used in a non-aqueous electrolyte secondary battery having a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte,
Active material particles having a mixed sinter of simple silicon and silicon oxide as a core, and a coating layer of carbon composed of a mixed composition of amorphous carbon and graphite,
Including a mixture of thermosetting resins that undergo a dehydration condensation reaction upon heating;
A negative electrode for a non-aqueous electrolyte secondary battery, wherein the active material particles are bound between the active material particles and the active material particles and a current collector by the thermosetting resin.
負極と正極とリチウムイオン導電性の非水電解質とを有する非水電解質二次電池に用いられる負極が、単体ケイ素とケイ素酸化物の混合焼結物の周囲を、混合焼結物とフェノール樹脂を混合し、窒素雰囲気下、900℃にて焼成して得られた、アモルファスカーボン及び黒鉛の混合組成からなる炭素で被覆した活物質粒子と、加熱により脱水縮合反応を生じる熱硬化性樹脂の混合物を含み、前記熱硬化性樹脂により前記活物質粒子間、および前記活物質粒子と集電体とが結着されていることを特徴とする非水電解質二次電池用負極。 A negative electrode used in a non-aqueous electrolyte secondary battery having a negative electrode, a positive electrode, and a lithium ion conductive non-aqueous electrolyte is formed by mixing a mixed sintered product and a phenol resin around a mixed sintered product of simple silicon and silicon oxide. A mixture of active material particles coated with carbon having a mixed composition of amorphous carbon and graphite, obtained by mixing and firing at 900 ° C. in a nitrogen atmosphere, and a thermosetting resin that causes a dehydration condensation reaction upon heating. A negative electrode for a non-aqueous electrolyte secondary battery, wherein the active material particles are bound between the active material particles and the active material particles and a current collector. 前記活物質粒子中に含まれる炭素が重量比で5%以上50%以下であることを特徴とする請求項1または2に記載の非水電解質二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2 , wherein the carbon contained in the active material particles is 5% or more and 50% or less by weight. 前記負極の電極密度が0.5g/cm3以上1.5g/cm3以下であることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池用負極。 The electrode density of the negative electrode 0.5 g / cm 3 or more 1.5 g / cm 3 negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1-3, characterized in that less. 前記活物質粒子中の、単体ケイ素とケイ素酸化物の混合焼結物の粒径D95が5μm以上30μm以下であることを特徴とする請求項1〜のいずれか1項に記載の非水電解質二次電池用負極。 The non-aqueous solution according to any one of claims 1 to 4 , wherein a particle size D 95 of a mixed sintered product of simple silicon and silicon oxide in the active material particles is 5 µm or more and 30 µm or less. Negative electrode for electrolyte secondary battery. 前記活物質粒子の粒径D95が10μm以上50μm以下であることを特徴とする請求項1〜のいずれか1項に記載の非水電解質二次電池用負極。 The active material particle size negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, characterized in that D 95 is 10μm or more 50μm or less of the particles. 請求項1〜のいずれか1項に記載の非水電解質二次電池用負極を用いた非水電解質二次電池であって、放電終止電圧値が1.5V以上2.7V以下であることを特徴とする非水電解質二次電池。 It is a nonaqueous electrolyte secondary battery using the negative electrode for nonaqueous electrolyte secondary batteries of any one of Claims 1-6 , Comprising: Discharge final voltage value is 1.5V or more and 2.7V or less A non-aqueous electrolyte secondary battery.
JP2006341366A 2006-12-19 2006-12-19 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Active JP5468723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341366A JP5468723B2 (en) 2006-12-19 2006-12-19 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341366A JP5468723B2 (en) 2006-12-19 2006-12-19 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008153117A JP2008153117A (en) 2008-07-03
JP5468723B2 true JP5468723B2 (en) 2014-04-09

Family

ID=39655076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341366A Active JP5468723B2 (en) 2006-12-19 2006-12-19 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5468723B2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158410B2 (en) * 2007-10-12 2013-03-06 トヨタ自動車株式会社 Secondary battery electrode material powder and method for producing the same
JP5279018B2 (en) * 2008-12-02 2013-09-04 Necエナジーデバイス株式会社 Lithium ion secondary battery and manufacturing method thereof
JP5704633B2 (en) 2009-09-29 2015-04-22 Necエナジーデバイス株式会社 Secondary battery
JP5748193B2 (en) * 2009-09-29 2015-07-15 Necエナジーデバイス株式会社 Secondary battery
CN102640328A (en) * 2009-11-25 2012-08-15 日本电气硝子株式会社 Negative electrode material for an electrical storage device, and negative electrode using said material
KR101378125B1 (en) * 2010-04-19 2014-03-25 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP5867396B2 (en) * 2010-09-02 2016-02-24 日本電気株式会社 Secondary battery
JP5867397B2 (en) * 2010-09-02 2016-02-24 日本電気株式会社 Secondary battery
JP5867395B2 (en) * 2010-09-02 2016-02-24 日本電気株式会社 Secondary battery
WO2012056765A1 (en) * 2010-10-29 2012-05-03 日本電気株式会社 Secondary battery and method for manufacturing same
JP2012186119A (en) * 2011-03-08 2012-09-27 Toyota Industries Corp Negative electrode mixture for secondary battery, negative electrode for secondary battery, secondary battery, and vehicle comprising the same
US9005823B2 (en) * 2011-05-04 2015-04-14 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
US9601228B2 (en) * 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
CN103620837B (en) * 2011-06-03 2019-04-23 日本电气株式会社 Electrode of lithium secondary cell adhesive and its manufacturing method, negative electrode for lithium secondary battery, lithium secondary battery and its manufacturing method and automobile
JP6194794B2 (en) * 2011-06-23 2017-09-13 日本電気株式会社 Lithium secondary battery
JP6021336B2 (en) * 2012-01-05 2016-11-09 帝人株式会社 Ultrafine fiber nonwoven fabric and method for producing the same
US9748608B2 (en) 2012-03-02 2017-08-29 Nec Corporation Second battery comprising a phosphate ester compound and a fluorinated carbonate compound
JP5601388B2 (en) * 2012-03-27 2014-10-08 Tdk株式会社 Negative electrode and lithium ion secondary battery
CN102646818B (en) * 2012-04-28 2014-04-30 中南大学 Preparation method for composite cathode material of lithium ion battery
CN103515666B (en) * 2012-06-22 2017-03-01 日立麦克赛尔株式会社 Lithium secondary battery
KR101461220B1 (en) * 2012-12-27 2014-11-13 주식회사 포스코 Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
CN103915609B (en) * 2012-12-31 2017-10-13 宁波杉杉新材料科技有限公司 Silica SiClx carbon composite, ion secondary battery cathode material lithium, its preparation method and application
JP5827261B2 (en) * 2013-03-28 2015-12-02 信越化学工業株式会社 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN103618086B (en) * 2013-11-21 2016-02-10 广东烛光新能源科技有限公司 A kind of lithium ion battery anode material
KR101561274B1 (en) * 2013-12-24 2015-10-19 주식회사 포스코 Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
WO2015098024A1 (en) * 2013-12-25 2015-07-02 三洋電機株式会社 Negative electrode active substance for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell using such negative electrode active substance
DE102014202156A1 (en) * 2014-02-06 2015-08-06 Wacker Chemie Ag Si / G / C composites for lithium-ion batteries
WO2015140984A1 (en) * 2014-03-20 2015-09-24 株式会社 東芝 Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
US10062903B2 (en) 2014-09-01 2018-08-28 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
JP6794982B2 (en) 2015-03-24 2020-12-02 日本電気株式会社 Lithium ion secondary battery
JP6787310B2 (en) 2015-03-24 2020-11-18 日本電気株式会社 Lithium ion secondary battery
KR102455017B1 (en) * 2016-03-29 2022-10-14 안테오 테크놀로지스 피티와이 엘티디 Conductive Composites
JP6902732B2 (en) * 2016-08-09 2021-07-14 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
KR102307911B1 (en) * 2017-04-27 2021-10-01 삼성에스디아이 주식회사 Anode active material for lithium secondary battery and lithium secondary battery comprising anode including the anode active material
KR20230078383A (en) * 2021-11-26 2023-06-02 삼성에스디아이 주식회사 Composite anode active material, Anode and Lithium battery containing composite anode active material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2004335195A (en) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
JP2006278123A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5196118B2 (en) * 2006-09-14 2013-05-15 信越化学工業株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008153117A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP5468723B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP5279018B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP5288448B2 (en) Nonaqueous electrolyte secondary battery
JP5192703B2 (en) Nonaqueous electrolyte secondary battery
JP5360871B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP5115697B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5210503B2 (en) Nonaqueous electrolyte secondary battery
JP5150966B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US8956762B2 (en) Lithium ion secondary battery and method for manufacturing the same
JP5278994B2 (en) Lithium secondary battery
JP6052179B2 (en) Lithium ion secondary battery
JP5158578B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2013065453A (en) Lithium secondary battery
JP5561803B2 (en) Nonaqueous electrolyte secondary battery
JP5322259B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same
JP2011086448A (en) Lithium ion secondary battery
JP5213011B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP5267976B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5502977B2 (en) Nonaqueous electrolyte secondary battery
JP5625848B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2014007183A1 (en) Lithium ion secondary battery
JP5441196B2 (en) Lithium ion battery and manufacturing method thereof
JP5424322B2 (en) Non-aqueous electrolyte secondary battery
JP5605867B2 (en) Positive electrode for secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5468723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250