JP5465860B2 - Photovoltaic element and manufacturing method thereof - Google Patents
Photovoltaic element and manufacturing method thereof Download PDFInfo
- Publication number
- JP5465860B2 JP5465860B2 JP2008270260A JP2008270260A JP5465860B2 JP 5465860 B2 JP5465860 B2 JP 5465860B2 JP 2008270260 A JP2008270260 A JP 2008270260A JP 2008270260 A JP2008270260 A JP 2008270260A JP 5465860 B2 JP5465860 B2 JP 5465860B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- electrode layer
- transparent electrode
- type semiconductor
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本発明は、導電性を有するp型でカルコパイライト構造の化合物にて薄膜形成された光吸収層を有する光起電力素子、および、その製造方法に関する。 The present invention relates to a photovoltaic element having a light-absorbing layer formed into a thin film from a p-type chalcopyrite structure compound having conductivity, and a method for manufacturing the photovoltaic element.
太陽電池は、無尽蔵の太陽光をエネルギー源とするクリーンな発電素子であることから、種々の用途に広く利用されている。太陽電池は、シリコン、化合物半導体等を光電変換材料として用い、この光電変換材料に太陽光等の光が入射したときに当該光電変換材料に生じる光起電力を利用した素子を備えている。
そして、太陽電池は、幾つかに分類することができるが、単結晶シリコン太陽電池や多結晶シリコン太陽電池では、高価なシリコン基板を使用する。このことから、材料費の大幅な低減が期待される薄膜構造の太陽電池が利用されている。
Solar cells are widely used for various applications because they are clean power generation elements using inexhaustible sunlight as an energy source. A solar cell uses silicon, a compound semiconductor, or the like as a photoelectric conversion material, and includes an element that uses a photovoltaic force generated in the photoelectric conversion material when light such as sunlight enters the photoelectric conversion material.
And although a solar cell can be classified into some, a monocrystalline silicon solar cell and a polycrystalline silicon solar cell use an expensive silicon substrate. For this reason, a solar cell having a thin film structure, which is expected to greatly reduce the material cost, is used.
薄膜構造の太陽電池としては、光電変換材料として非シリコン系の半導体材料である、カルコパイライト型の結晶構造を有する化合物、なかでも、銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなるCIGS系の化合物を用いたCIGS系太陽電池が注目されている。
CIGS系太陽電池の構成としては、例えば、ガラス基板上に形成された下部電極薄膜と、銅・インジウム・ガリウム・セレンを含むCIGS系化合物からなる光吸収層薄膜と、光吸収層薄膜の上にInS、ZnS、CdS、ZnO等で形成される高抵抗のバッファ層薄膜と、ZnOAl等で形成される上部電極薄膜とから構成されている(例えば、特許文献1参照)。
この特許文献1に記載のようなCIGS系太陽電池は、CIGS系半導体材料の光吸収率が高いこと、発電層を蒸着やスパッタリング等の方法で形成可能であることから、その厚さを数μmと薄くできる。そのため、小型化や材料コストを低く抑えることができ、太陽電池製造時の省エネルギー化も図ることができる。
Thin-film solar cells include non-silicon-based semiconductor materials as photoelectric conversion materials, compounds with chalcopyrite-type crystal structures, especially copper (Cu), indium (In), gallium (Ga), and selenium. A CIGS solar cell using a CIGS compound made of (Se) has attracted attention.
As a configuration of the CIGS solar cell, for example, a lower electrode thin film formed on a glass substrate, a light absorbing layer thin film made of a CIGS compound containing copper, indium, gallium, and selenium, and a light absorbing layer thin film It is composed of a high-resistance buffer layer thin film formed of InS, ZnS, CdS, ZnO or the like and an upper electrode thin film formed of ZnOAl or the like (for example, see Patent Document 1).
The CIGS solar cell as described in Patent Document 1 has a thickness of several μm because the CIGS semiconductor material has a high light absorption rate and a power generation layer can be formed by a method such as vapor deposition or sputtering. And can be thin. Therefore, downsizing and material cost can be kept low, and energy saving at the time of manufacturing a solar cell can be achieved.
しかしながら、限られた設置領域で高いエネルギー変換効率が望まれているが、従来のカルコパイライト型の結晶構造を有する化合物にて光吸収層を形成する太陽電池では、さらなる高いエネルギー変換効率が望まれている。
本発明は、このような点に鑑みて、カルコパイライト型の結晶構造を有する化合物にて形成された光吸収層でも、高いエネルギー変換効率を提供できる光起電力素子、および、その製造方法を提供することを目的とする。
However, high energy conversion efficiency is desired in a limited installation area. However, in a solar cell in which a light absorption layer is formed from a compound having a conventional chalcopyrite type crystal structure, higher energy conversion efficiency is desired. ing.
In view of these points, the present invention provides a photovoltaic device that can provide high energy conversion efficiency even in a light absorption layer formed of a compound having a chalcopyrite type crystal structure, and a method for manufacturing the photovoltaic device. The purpose is to do.
本発明に記載の光起電力素子は、ガラス基板と、このガラス基板の一面に設けられた裏面電極層と、カルコパイライト構造の化合物にて前記裏面電極層に積層形成された導電性を有するp型の光吸収層と、この光吸収層に積層形成されて前記光吸収層とpn接合する透光性でn型のバッファ層と、このバッファ層に積層形成され前記バッファ層より高抵抗で前記光吸収層に対してn型となる透光性のn型半導体層と、このn型半導体層に積層されるとともに前記積層する光吸収層、バッファ層およびn型半導体層の一側から前記裏面電極層に亘って設けられた透光性の透明電極層と、を備え、前記n型半導体層および前記透明電極層は、それぞれ酸化インジウムおよび酸化亜鉛を主要成分とした同一の構成材料にて形成され、前記n型半導体層は、仕事関数が4eV以上5.2eV以下、かつ、エネルギーバンドギャップが3eV以上4eV以下であり、前記n型半導体層と前記透明電極層との仕事関数の差が0.3eV未満で、前記n型半導体層と前記透明電極層とのエネルギーバンドギャップの差が0.2eV未満に形成されたことを特徴とする。 The photovoltaic device according to the present invention has a glass substrate, a back electrode layer provided on one surface of the glass substrate, and a conductive p laminated on the back electrode layer with a chalcopyrite structure compound. Type light-absorbing layer, a light-transmitting n-type buffer layer laminated on the light-absorbing layer and pn-junction with the light-absorbing layer, and laminated on the buffer layer and having a higher resistance than the buffer layer. A light-transmitting n-type semiconductor layer that is n-type with respect to the light absorption layer, and the back surface from one side of the light absorption layer, the buffer layer, and the n-type semiconductor layer stacked on the n-type semiconductor layer comprising an electrode layer over and provided with a light-transmitting transparent electrode layer, wherein the n-type semiconductor layer and the transparent electrode layer is formed respectively indium oxide and zinc oxide in the same materials of construction as a main component The n-type semiconductor The work function 4eV than 5.2eV or less, and the energy band gap is at 4eV less than 3 eV, the work function difference between the transparent electrode layer and the n-type semiconductor layer is less than 0.3 eV, the n The difference in energy band gap between the type semiconductor layer and the transparent electrode layer is less than 0.2 eV.
そして、本発明では、前記n型半導体層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された構成とすることが好ましい。 In the present invention, the n-type semiconductor layer is formed by sputtering film formation using a mixed gas of argon (Ar) and oxygen (O 2 ), so that the oxygen partial pressure of the mixed gas is 1 × 10 −2 Pa or more. It is preferable that at least one of a condition of 2 Pa or less and a condition of a substrate temperature of 100 ° C. or more and 200 ° C. or less is set to form an amorphous thin film. .
また、本発明では、前記透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された構成とすることが好ましい。 In the present invention, the transparent electrode layer is formed by sputtering film formation using a mixed gas of argon (Ar) and oxygen (O 2 ), and the oxygen partial pressure of the mixed gas is 1 × 10 −3 Pa or more and 5 ×. A structure in which at least one of a condition of 10 −2 Pa or less and a condition of a substrate temperature of 100 ° C. or more and 200 ° C. or less is set to form an amorphous thin film. Is preferred.
そして、本発明では、前記透明電極層は、組成In2O3/(In2O3+ZnO)が50質量%以上95質量%以下に形成された構成とすることが好ましい。 In the present invention, it is preferable that the transparent electrode layer has a composition In 2 O 3 / (In 2 O 3 + ZnO) of 50% by mass to 95% by mass.
また、本発明では、前記透明電極層は、酸化インジウムおよび酸化亜鉛を主要成分とする組成における第3成分量は、20質量%以下である構成とすることが好ましい。 In the present invention, the transparent electrode layer preferably has a configuration in which the amount of the third component in the composition containing indium oxide and zinc oxide as main components is 20% by mass or less.
また、本発明では、前記透明電極層に積層形成され導電性および透光性を有し前記透明電極層より屈折率が小さい表面透明電極層を備えた構成とすることが好ましい。 Moreover, in this invention, it is preferable to set it as the structure provided with the surface transparent electrode layer laminated | stacked on the said transparent electrode layer and having electroconductivity and translucency and a refractive index smaller than the said transparent electrode layer.
さらに、本発明では、前記表面透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された構成とすることが好ましい。 Furthermore, in the present invention, the surface transparent electrode layer is formed by sputtering film formation using a mixed gas of argon (Ar) and oxygen (O 2 ), and the oxygen partial pressure of the mixed gas is 1 × 10 −3 Pa or more 5 At least one of a condition of × 10 −2 Pa or less and a condition of a substrate temperature of 100 ° C. or more and 200 ° C. or less is set to form an amorphous thin film. It is preferable.
そして、本発明では、前記表面透明電極層は、前記透明電極層と同一の構成材料にて形成された構成とすることが好ましい。 In the present invention, the surface transparent electrode layer is preferably formed of the same constituent material as the transparent electrode layer.
本発明に記載の光起電力素子の製造方法は、ガラス基板上に裏面電極層を薄膜形成する裏面電極層形成工程と、前記裏面電極層上にカルコパイライト構造の化合物にてp型の光吸収層を薄膜形成する光吸収層形成工程と、前記光吸収層上に前記光吸収層とpn接合するn型のバッファ層を薄膜形成するバッファ層形成工程と、前記バッファ層上にこのバッファ層より高抵抗で前記光吸収層に対してn型となる透光性のn型半導体層を薄膜形成するn型半導体層形成工程と、前記n型半導体層上に透明電極層を形成する透明電極層形成工程と、を実施する光起電力素子の製造方法であって、前記n型半導体層形成工程および前記透明電極層形成工程は、酸化インジウムおよび酸化亜鉛を主要成分とした同一の構成材料にて形成され、前記n型半導体層を、仕事関数が4eV以上5.2eV以下、かつ、エネルギーバンドギャップが3eV以上4eV以下に設定し、前記n型半導体層と前記透明電極層との仕事関数の差が0.3eV未満で、前記n型半導体層と前記透明電極層とのエネルギーバンドギャップの差が0.2eV未満に、前記n型半導体層および前記透明電極層を薄膜形成することを特徴とする。 The method for manufacturing a photovoltaic device according to the present invention includes a back electrode layer forming step of forming a back electrode layer on a glass substrate as a thin film, and a p-type light absorption with a chalcopyrite structure compound on the back electrode layer. A light absorbing layer forming step of forming a thin layer, a buffer layer forming step of forming an n-type buffer layer pn-junctioned with the light absorbing layer on the light absorbing layer, and a buffer layer formed on the buffer layer from the buffer layer An n-type semiconductor layer forming step of forming a thin film of a light-transmitting n-type semiconductor layer having high resistance and n-type with respect to the light absorption layer, and a transparent electrode layer forming a transparent electrode layer on the n-type semiconductor layer Forming step, wherein the n-type semiconductor layer forming step and the transparent electrode layer forming step are made of the same constituent material containing indium oxide and zinc oxide as main components . Formed and said n-type half The body layer, a work function 4eV than 5.2eV or less, and the energy band gap is set to less than 4eV than 3 eV, the work function difference between the transparent electrode layer and the n-type semiconductor layer is less than 0.3eV The n-type semiconductor layer and the transparent electrode layer are formed in a thin film so that the difference in energy band gap between the n-type semiconductor layer and the transparent electrode layer is less than 0.2 eV.
本発明によれば、ガラス基板の一面に設けられた裏面電極層にカルコパイライト構造の化合物にて導電性を有するp型の光吸収層を設け、この光吸収層とpn接合する透光性でn型のバッファ層を光吸収層に積層形成し、光吸収層とpn接合する透光性でバッファ層より高抵抗のn型半導体層をバッファ層に積層形成し、n型半導体層に積層し、光吸収層、バッファ層およびn型半導体層の一側から裏面電極層に亘って透光性の透明電極層を設けて構成した光起電力素子におけるn型半導体層を、酸化インジウムおよび酸化亜鉛を主要成分とし、n型半導体層と透明電極層との仕事関数の差が0.3eV未満で、n型半導体層と透明電極層とのエネルギーバンドギャップの差が0.2eV未満に形成するので、所定の高抵抗のn型半導体層を設ける簡単な構成で、正孔移動および電子移動が良好に制御され、高いエネルギー変換効率が得られる。 According to the present invention, a p-type light absorption layer having conductivity with a compound having a chalcopyrite structure is provided on the back electrode layer provided on one surface of the glass substrate, and the light-transmitting property is pn-junction with the light absorption layer. An n-type buffer layer is stacked on the light absorption layer, a light-transmitting n-type semiconductor layer having a higher resistance than the buffer layer is formed on the buffer layer, and is stacked on the n-type semiconductor layer. The n-type semiconductor layer in the photovoltaic device constituted by providing a light-transmitting transparent electrode layer from one side of the light-absorbing layer, the buffer layer and the n-type semiconductor layer to the back electrode layer is formed of indium oxide and zinc oxide. Is the main component, the work function difference between the n-type semiconductor layer and the transparent electrode layer is less than 0.3 eV, and the energy band gap difference between the n-type semiconductor layer and the transparent electrode layer is less than 0.2 eV. A predetermined high resistance n-type semiconductor layer Kicking with a simple structure, hole mobility and electron transfer are well controlled, the resulting high energy conversion efficiency.
以下、本発明の光起電力素子に係る一実施の形態について、図面を参照して説明する。
図1は、本実施形態における太陽電池を構成する光起電力素子の概略構成を示す断面図である。
Hereinafter, an embodiment according to a photovoltaic device of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a photovoltaic element constituting the solar cell in the present embodiment.
[光起電力素子の構成]
図1において、100は光起電力素子で、この光起電力素子100は、光の入射により起電力を発生する素子である。この光起電力素子100は例えば直列状に複数接続され、電気エネルギーとして取り出し可能な太陽電池に構成される。
そして、光起電力素子100は、ガラス基板110上に、裏面電極層120、光吸収層130、バッファ層140、n型半導体層150、透明電極層160、表面透明電極層170が、順次積層された層構造に構成されている。
ガラス基板110は、例えばソーダライムガラス等のアルカリガラスなどが用いられるが、この限りではない。
[Configuration of photovoltaic element]
In FIG. 1,
In the
The
(裏面電極層)
裏面電極層120は、導電性材料にてガラス基板110の一面に薄膜形成されている。この裏面電極層120は、平面領域が所定の広さとなる状態に絶縁距離を介して並列状に複数設けられている。この裏面電極層120は、例えばMo(モリブデン)をDCスパッタなどにて製膜した後に、レーザー光照射などによって絶縁距離の幅で分割されて形成される。この絶縁距離の幅の裏面電極層120間の溝を分割溝121として図1に示す。
なお、導電性材料としては、詳細は後述するが光吸収層130としてCIGS系を例示するのでMoを例示したが、これに限らず、金、銀、銅、アルミニウム、ニッケル、鉄、クロム、モリブデン、タングステン、チタン、コバルト、タンタル、ニオブ、ジルコニウム等の金属または合金が挙げられる。特に、反射率の高い金属が好ましい。また、製膜方法としては、DCスパッタに限らず、蒸着法、各種スパッタ法、CVD法、スプレー法、スピンオン法、ディップ法などが例示できる。
そして、裏面電極層120は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると抵抗値が上昇するおそれがある。一方、1μmより厚くなると、剥離するおそれがある。このことにより、裏面電極層120の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
さらに、裏面電極層120は、表面が平坦に限らず、表面に凹凸形状を形成して光を乱反射させる機能を付与してもよい。すなわち、積層される光吸収層130で吸収しきれなかった長波長光を散乱させて、光吸収層130内での光路長を延ばすことで、光起電力素子100の長波長感度が向上し、短絡電流が増大する。その結果、光電変換効率を向上できる。なお、光を散乱するための凹凸形状は、凹凸の山と谷の高低差がRmaxで、0.2μm以上2.0μm以下とすることが望ましい。ここで、Rmaxが2.0μmより大きくなると、カバレッジ性が低下し、膜厚斑ができ、抵抗値に斑を生じるおそれがあるので、凹凸形状を設ける場合にはRmaxで0.2μm以上2.0μm以下に設定することが好ましい。この凹凸形状の加工としては、ドライエッチング、ウェットエッチング、サンドブラスト、加熱などの各種方法を適用できる。
(Back electrode layer)
The
As the conductive material, Mo will be exemplified since the CIGS type is exemplified as the
The
Further, the
(光吸収層)
光吸収層130は、p型の導電性を有するカルコパイライト構造の化合物であるカルコパイライト化合物にて、裏面電極層120の上面に隣接する裏面電極層120に亘って架橋する状態に薄膜形成されている。
具体的には、光吸収層130は、ZnSe、CdS、ZnOなどのII-VI族半導体、GaAs、InP、GaNなどのIII-V族半導体、SiC、SiGeなどのIV族化合物半導体、Cu(In,Ga)Se2やCu(In,Ga)(Se,S)2、あるいはCuInS2などのカルコパイライト系半導体(I-III-VI族半導体)を用いることができる。本実施形態では、Cu、In、Ga、Seをスパッタリングや蒸着などにて薄膜形成された、いわゆるCIGS系の光吸収層130が設けられる構成を例示する。すなわち、製膜状態でカルコパイライト構造の組成となるように、各種材料を用いて各種製膜方法で製膜される。
この製膜は、例えば分子線エピタキシー装置を用いた多元蒸着法で製造される。
そして、光吸収層130は、厚さ寸法が0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下に形成されることが好ましい。ここで、0.1μmより薄くなると外光からの光の吸収量が低減するおそれがある。一方、10μmより厚くなると、生産性が低下したり、膜応力により剥離しやすくなるおそれがある。このことにより、光吸収層130の厚さ寸法は、0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下に設定される。
また、光吸収層130は、仕事関数が5eV以上7eV以下、好ましくは5.5eV以上7eV以下で、エネルギーバンドギャップが1eV以上2eV以下に形成されている。
なお、この光吸収層130は、裏面電極層120上に製膜後、後述するバッファ層140をさらに製膜した後に、例えばメカニカルスクライビングなどによって裏面電極層120が露出する状態に分割されて、隣接する裏面電極層120に亘って架橋する状態に形成される。光吸収層130は、これらの方法に限らず、例えばCu−In−Gaをアニーリングにてセレン化するなど、各種方法が利用できる。また、光吸収層130としては、Cu、In、Ga、Seに限られるものではない。
(Light absorption layer)
The
Specifically, the
This film formation is manufactured by, for example, a multi-source deposition method using a molecular beam epitaxy apparatus.
The
The
The
(バッファ層)
バッファ層140は、光吸収層130の上面に薄膜状に積層形成されている。このバッファ層140は、光吸収層130に積層されてpn接合する透光性で比較的に低抵抗のn型の半導体層である。また、バッファ層140は、光吸収層130の表面に残存し、シャントパスとして機能するCu2Seのような半金属抵抗層に対して障壁としても機能する。
このバッファ層140は、例えばInSを溶液成長させて薄膜成形する。この製膜としては、例えばCBD(Chemical Bath Deposition)の製造条件で製造される。
そして、バッファ層140は、厚さ寸法が0.01μm以上0.5μm以下、好ましくは0.1μm以上0.5μm以下に形成されることが好ましい。ここで、0.01μmより薄くなるとpn接合斑が生じるおそれがある。一方、0.5μmより厚くなると、外光からの光が阻害され、光吸収層130の光吸収が低下するおそれがある。このことにより、バッファ層140の厚さ寸法は、0.01μm以上0.5μm以下、好ましくは0.1μm以上0.5μm以下に設定される。
また、バッファ層140は、仕事関数が4eV以上5eV以下、好ましくは4.2eV以上5eV以下で、エネルギーバンドギャップが3eV以上4eV以下に形成されている。
なお、光吸収層130として、CIGS系を例示するのでInSを例示したが、これに限らず、光吸収層130と良好にpn接合される材料であれば、いずれのものが利用できる。
そして、このバッファ層140は、上述した光吸収層130のメカニカルスクライビングなどにて光吸収層130とともに分割されている。
(Buffer layer)
The
The
The
The
In addition, although CIS system is illustrated as the
The
(n型半導体層)
n型半導体層150は、バッファ層140の上面に薄膜状に積層形成された非晶質層である。このn型半導体層150は、透光性を有し光吸収層130に対してn型の比較的に高抵抗な半導体層、すなわち、正孔のキャリアとして機能する光吸収層130に対して、電子のキャリアとして機能する。さらに、n型半導体層150は、開放端電圧の低下も防止する。
このn型半導体層150は、例えばIn、亜鉛(Zn)を適宜の酸素濃度雰囲気でDCスパッタや蒸着などにて薄膜したり、酸化インジウムおよび酸化亜鉛を主要成分とする組成物を用いてDCスパッタや蒸着などしたりして積層形成する。なお、このn型半導体層150の組成としては、(In2O3+ZnO)に限られるものではなく、SnO2などの他の導電性金属酸化物をさらに含む構成としてもよい。
さらに、n型半導体層150は、仕事関数が4eV以上5.2eV以下、好ましくは4.2eV以上5.2eV以下に形成される。ここで、仕事関数が4eVより小さくなると光吸収層130で発生した正孔のブロッキング効果が低下するおそれがある。一方、仕事関数が5.2eVより大きくなると積層形成される透明電極層160との間でのエネルギー障壁を生じ、電子の陽極への移動が阻害されるおそれがある。このことにより、n型半導体層150の仕事関数は、4eV以上5.2eV以下、好ましくは4.2eV以上5.2に設定される。
また、n型半導体層150は、エネルギーバンドギャップが3eV以上4eV以下、好ましくは3.3eV以上4eVに形成されている。ここで、エネルギーバンドギャップが3eVより小さくなるとバンド構造において荷電子帯上端(仕事関+バンドギャップ)が上がり、光吸収層130で発生した正孔のブロッキング効果が低下するおそれがある。一方、エネルギーバンドギャップが4eVより大きくなると導電性が著しく低下し、n型半導体としての機能が低下するおそれがある。このことにより、n型半導体層150のエネルギーバンドギャップは、3eV以上4eV以下、好ましくは3.3eV以上4eV以下に設定される。
そして、このn型半導体層150の製膜は、例えばアルゴン(Ar)と酸素(O2)との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて非晶質に製造される。
ここで、酸素分圧pO2が1×10-2Paより低くなると低抵抗膜が形成されるおそれがある。一方、酸素分圧pO2が0.2Paより高くなると直流スパッタリング製膜法においてプラズマの放電が不安定になり、安定した製膜ができなくなるおそれがある。また、基板温度が100℃より低くなるとn型のバッファ層140の成分(硫黄(S)など)とn型半導体層150との界面反応が進行せず、n型半導体層150が高抵抗化しなくなるおそれがある。一方、基板温度が200℃より高くなるとn型のバッファ層140が劣化するおそれがある。
そして、n型半導体層150は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると光吸収層130で発生した正孔のブロッキング効果が低下するおそれがある。一方、1μmより厚くなると、透過率が低下し、光吸収層130における外光の吸収が阻害されるおそれがある。このことにより、n型半導体層150の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
また、n型半導体層150は、上述したように、光吸収層130およびバッファ層140とともにメカニカルスクライビングなどにて分割されている。このメカニカルスクライビングなどにて形成され、光吸収層130、バッファ層140およびn型半導体層150間の裏面電極層120を露出させる溝を第1の加工溝131として図1に示す。
(N-type semiconductor layer)
The n-
The n-
Further, the n-
The n-
The n-
Here, if the oxygen partial pressure pO 2 is lower than 1 × 10 −2 Pa, a low resistance film may be formed. On the other hand, if the oxygen partial pressure pO 2 is higher than 0.2 Pa, the plasma discharge becomes unstable in the DC sputtering film forming method, and there is a possibility that stable film formation cannot be performed. Further, when the substrate temperature is lower than 100 ° C., the interface reaction between the n-
The n-
In addition, as described above, the n-
(透明電極層)
透明電極層160は、n型半導体層150の上面から、スクライビングされた光吸収層130、バッファ層140およびn型半導体層150の一側から裏面電極層120に亘る第1の加工溝131内に薄膜状に積層形成されている。この透明電極層160は、n型半導体層150と同一の構成材料、すなわち主要組成が(In2O3+ZnO)に、DCスパッタや蒸着などにて非晶質に薄膜形成される。つまり、構成材料を同一とすることで、同一の製膜装置を使用することを可能としている。
さらに、透明電極層160は、n型半導体層150との仕事関数の差が0.3eV未満で、仕事関数がn型半導体層150より大きく、例えば4eV以上5.5eV以下、好ましくは4.5eV以上5.5eV以下に形成される。ここで、仕事関数が4eVより小さくなると光吸収層130で発生した正孔のブロッキング効果が低下するおそれがある。一方、仕事関数が5.5eVより大きくなると積層形成される表面透明電極層または必要に応じて適宜に積層形成されるコンタクトメタル層との間でエネルギー障壁を生じ、電子の陽極への移動が阻害されるおそれがある。このことにより、透明電極層160の仕事関数は、4eV以上5.5eV以下、好ましくは4.5eV以上5.5eV以下に設定される。
また、透明電極層160は、n型半導体層150とのエネルギーバンドギャップの差が0.2eV未満で、例えば3eV以上4eV以下、好ましくは3.3eV以上4eV以下に形成されている。ここで、エネルギーバンドギャップが3eVより小さくなると、光吸収層130で発生した正孔のブロッキング効果が低下するおそれがある。一方、エネルギーバンドギャップが4eVより大きくなると、積層形成される表面透明電極層または必要に応じて適宜に積層形成されるコンタクトメタル層との間でエネルギー障壁を生じ、電子の陽極への移動が阻害されるおそれがある。このことにより、透明電極層160のエネルギーバンドギャップは、3eV以上4eV以下、好ましくは3.3eV以上4eV以下に設定される。
この透明電極層160の製膜は、例えばArとO2との混合ガスを用いたスパッタ製膜、特にn型半導体層150の製膜方法と同一の直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて非晶質に製造される。
ここで、酸素分圧pO2が1×10-3Paより低くなると透過率が低下するおそれがある。一方、酸素分圧pO2が5×10-2Paより高くなると透明電極層160の抵抗が増加する不都合を生じるおそれがある。また、基板温度が100℃より低くなると透明電極層160の安定性が低下するおそれがある。一方、基板温度が200℃より高くなるとn型のバッファ層140が劣化するおそれがある。
そして、透明電極層160は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると所定の低抵抗膜が得られないおそれがある。一方、1μmより厚くなると、透過率が低下し、光吸収層130における光吸収効率が低減するおそれがある。このことにより、透明電極層160の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
この透明電極層160は、後述する表面透明電極層170が成膜された後に、例えばメカニカルスクライビングなどによって光起電力素子100が直列接続される状態にn型半導体層150が露出する状態に分割される。
(Transparent electrode layer)
The
Further, the
The
The
Here, when the oxygen partial pressure pO 2 is lower than 1 × 10 −3 Pa, the transmittance may be lowered. On the other hand, when the oxygen partial pressure pO 2 is higher than 5 × 10 −2 Pa, there is a concern that the resistance of the
The
The
(表面透明電極層)
表面透明電極層170は、透明電極層160より屈折率が小さく、透明電極層160の上面に、同一の構成材料にて薄膜に積層形成、すなわち主要組成が(In2O3+ZnO)の非晶質に薄膜形成されている。
さらに、表面透明電極層170は、n型半導体層150または透明電極層160との仕事関数の差が0.3eV未満で、例えば4eV以上5.5eV以下、好ましくは4.5eV以上5.5eV以下に形成される。ここで、仕事関数が4eVより小さくなると光吸収層130で発生した正孔のブロッキング効果が低減するおそれがある。一方、仕事関数が5.5eVより大きくなると必要に応じて積層形成されるコンタクトメタル層との間でエネルギー障壁を生じ、電子の陽極への移動が制限されるおそれがある。このことにより、表面透明電極層170の仕事関数は、4eV以上5.5eV以下、好ましくは4.5eV以上5.5eV以下に設定される。
また、表面透明電極層170は、n型半導体層150または透明電極層160とのエネルギーバンドギャップの差が0.2eV未満で、例えば、エネルギーバンドギャップが3eV以上4eV以下、好ましくは3.3eV以上4eV以下に形成されている。ここで、エネルギーバンドギャップが3eVより小さくなると、光吸収層130で発生した正孔のブロッキング効果が低下するおそれがある。一方、エネルギーバンドギャップが4eVより大きくなると積層形成されるコンタクトメタル層との間でエネルギー障壁を生じ、電子の陽極への移動が阻害されるおそれがある。このことにより、表面透明電極層170のエネルギーバンドギャップは、3eV以上4eV以下、好ましくは3.3eV以上4eV以下に設定される。
この表面透明電極層170の製膜は、例えばArとO2との混合ガスを用いたスパッタ製膜、特にn型半導体層150および透明電極層160の製膜方法と同一の直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて非晶質に製造される。
ここで、酸素分圧pO2が1×10-3Paより低くなると透過率が低下するおそれがある。一方、酸素分圧pO2が5×10-2Paより高くなると表面透明電極層170の抵抗が増加する不都合を生じるおそれがある。また、基板温度が100℃より低くなると表面透明電極層170の安定性が低下するという不都合を生じるおそれがある。一方、基板温度が200℃より高くなるとn型のバッファ層140が劣化するという不都合を生じるおそれがある。
そして、表面透明電極層170は、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に形成されることが好ましい。ここで、0.01μmより薄くなると反射防止効果が低減し、光吸収層130への外光からの光が阻害され、光吸収層130の光吸収が低下するおそれがある。一方、1μmより厚くなると、透過率が低下し、光吸収層130への外光からの光が阻害され、光吸収層130の光吸収が低下するおそれがある。このことにより、表面透明電極層170の厚さ寸法は、0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に設定される。
また、表面透明電極層170は、上述した透明電極層160のメカニカルスクライビングなどにて透明電極層160とともに分割されている。このメカニカルスクライビングなどにて形成され、透明電極層160および表面透明電極層170間のn型半導体層150を露出させる溝を第2の加工溝171として図1に示す。
(Surface transparent electrode layer)
The surface
Further, the surface
The surface
The surface
Here, when the oxygen partial pressure pO 2 is lower than 1 × 10 −3 Pa, the transmittance may be lowered. On the other hand, when the oxygen partial pressure pO 2 is higher than 5 × 10 −2 Pa, there is a risk that the resistance of the surface
The surface
The surface
[光起電力素子の製造動作]
次に、上記光起電力素子100を製造する動作について説明する。
光起電力素子100の製造では、裏面電極層形成工程と、光吸収層形成工程と、バッファ層形成工程と、n型半導体層形成工程と、第1のスクライビング工程と、透明電極層形成工程と、表面透明電極層形成工程と、第2のスクライビング工程と、を順次実施する。
[Manufacturing operation of photovoltaic element]
Next, an operation for manufacturing the
In the production of the
(裏面電極層形成工程)
裏面電極層形成工程では、ガラス基板110上に裏面電極層120を薄膜形成する。
具体的には、Mo(モリブデン)などの電極材料を、DCスパッタなどの各種製膜方法により、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に、ガラス基板110上に製膜する。
そして、製膜後に、レーザー光照射やメカニカルスクライビング、エッチング処理などにより、平面領域が所定の広さの裏面電極層120となる状態に幅寸法が絶縁距離となる分割溝121を形成して並列状に分割する。
(Back electrode layer forming process)
In the back electrode layer forming step, the
Specifically, an electrode material such as Mo (molybdenum) is formed on the
Then, after the film formation, the dividing
(光吸収層形成工程)
光吸収層形成工程では、裏面電極層形成工程でガラス基板110上に形成された裏面電極層120上に、分割溝121に跨って架橋する状態に、光吸収層130を薄膜形成する。なお、本実施形態では、ガラス基板110の一面側のほぼ全面に製膜後に後述する第1のスクライビング工程にて分割して光吸収層130が形成されるが、説明の都合上、製膜した段階を光吸収層130の形成工程として説明する。
製膜に際しては、ZnSe、CdS、ZnOなどのII-VI族半導体、GaAs、InP、GaNなどのIII-V族半導体、SiC、SiGeなどのIV族化合物半導体、Cu(In,Ga)Se2やCu(In,Ga)(Se,S)2、あるいはCuInS2などのカルコパイライト系半導体(I-III-VI族半導体)などの半導体材料を用いる。これら半導体材料を、スパッタリングや蒸着などの各種製膜方法により、厚さ寸法が0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下で、仕事関数が5eV以上7eV以下、好ましくは5.5eV以上7eV以下で、エネルギーバンドギャップが1eV以上2eV以下に、カルコパイライト構造の組成に製膜する。
(Light absorption layer forming process)
In the light absorbing layer forming step, the
In film formation, II-VI group semiconductors such as ZnSe, CdS and ZnO, III-V group semiconductors such as GaAs, InP and GaN, IV group compound semiconductors such as SiC and SiGe, Cu (In, Ga) Se 2 and the like A semiconductor material such as chalcopyrite semiconductor (I-III-VI group semiconductor) such as Cu (In, Ga) (Se, S) 2 or CuInS 2 is used. These semiconductor materials are formed by various film forming methods such as sputtering and vapor deposition, so that the thickness dimension is 0.1 μm to 10 μm, preferably 0.5 μm to 5 μm, and the work function is 5 eV to 7 eV, preferably 5.5 eV. A film having a chalcopyrite structure composition is formed so that the energy band gap is 1 eV or more and 2 eV or less at 7 eV or less.
(バッファ層形成工程)
バッファ層形成工程では、光吸収層形成工程で形成された光吸収層130上に、光吸収層130とpn接合する透光性でn型のバッファ層140を形成する。なお、本実施形態では、上述した光吸収層130と同様、ガラス基板110の一面側のほぼ全面に光吸収層130となる層を形成した後に製膜し、後述する第1のスクライビング工程にて分割して光吸収層130とともにバッファ層140が形成されるが、説明の都合上、製膜した段階をバッファ層140の形成工程として説明する。
製膜に際しては、例えばInSをCBD(Chemical Bath Deposition)の製造条件で溶液成長させ、厚さ寸法が0.01μm以上0.5μm以下、好ましくは0.1μm以上0.5μm以下で、仕事関数が4eV以上5eV以下、好ましくは4.2eV以上5eV以下で、エネルギーバンドギャップが3eV以上4eV以下に薄膜形成する。
(Buffer layer forming step)
In the buffer layer forming step, a light-transmitting n-
In film formation, for example, InS is grown as a solution under the conditions of CBD (Chemical Bath Deposition), the thickness is 0.01 μm to 0.5 μm, preferably 0.1 μm to 0.5 μm, and the work function is A thin film is formed at 4 eV to 5 eV, preferably 4.2 eV to 5 eV and an energy band gap of 3 eV to 4 eV.
(n型半導体層形成工程)
n型半導体層形成工程では、バッファ層形成工程で形成されたバッファ層140上に、バッファ層140より高抵抗で光吸収層130に対してn型となる透光性で非晶質のn型半導体層150を薄膜形成する。なお、本実施形態では、上述した光吸収層130およびバッファ層140と同様に、ガラス基板110の一面側のほぼ全面にバッファ層140となる層を形成した後に製膜し、後述する第1のスクライビング工程にて分割して光吸収層130およびバッファ層140とともにn型半導体層150が形成されるが、説明の都合上、製膜した段階をn型半導体層150の形成工程として説明する。
このn型半導体層150の製膜に際しては、例えばIn、亜鉛(Zn)を適宜の条件で製膜する。具体的には、アルゴン(Ar)と酸素(O2)との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件で、DCスパッタや蒸着などにて薄膜したり、酸化インジウムおよび酸化亜鉛を主要成分とする組成物を用いてDCスパッタや蒸着などしたりする。
このようにして、(In2O3+ZnO)を主要組成とし、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に薄膜形成する。この製造条件により、n型半導体層150は、仕事関数が4eV以上5.2eV以下、好ましくは4.2eV以上5.2eV以下、エネルギーバンドギャップが3eV以上4eV以下の非晶質に形成される。
(N-type semiconductor layer forming step)
In the n-type semiconductor layer forming step, a light-transmitting and amorphous n-type is formed on the
In forming the n-
In this way, a thin film is formed with (In 2 O 3 + ZnO) as the main composition and a thickness dimension of 0.01 μm to 1 μm, preferably 0.1 μm to 1 μm. Under these manufacturing conditions, the n-
(第1のスクライビング工程)
第1のスクライビング工程では、バッファ層形成工程にて光吸収層130上にバッファ層140を形成した後、裏面電極層120と光吸収層130との対向する有効面積で起電力を発生させる素子工程とするためのメカニカルスクライビング処理である。
例えば、248nmのエキシマレーザーを用いたレーザー照射方法により、積層するn型半導体層150、バッファ層140および光吸収層130をスクライビングし、第1の加工溝131を形成して分割し、裏面電極層120の表面を露出させる。
(First scribing process)
In the first scribing process, after forming the
For example, the n-
(透明電極層形成工程)
透明電極層形成工程では、第1のスクライビング工程で、第1の加工溝131が設けられて複数分割されたn型半導体層150の上面から、第1の加工溝131内に臨む裏面電極層120までの領域に、非晶質の透明電極層160を薄膜形成する。
この透明電極層160の製膜に際しては、n型半導体層150と同一の構成材料を用いて同一の製膜装置により製膜する。具体的には、ArとO2との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件で製膜した。
このようにして、主要組成が(In2O3+ZnO)となる非晶質で、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に薄膜形成する。この製造条件により、透明電極層160は、n型半導体層150との仕事関数の差が0.3eV未満で、例えば4eV以上5.5eV以下、好ましくは4.5eV以上5eV以下、n型半導体層150とのエネルギーバンドギャップの差が0.2eV未満で、例えば3eV以上4eV以下の非晶質に形成される。
(Transparent electrode layer forming process)
In the transparent electrode layer forming step, the
When forming the
In this manner, an amorphous film having a main composition of (In 2 O 3 + ZnO) and a thickness of 0.01 μm to 1 μm, preferably 0.1 μm to 1 μm is formed. According to this manufacturing condition, the
(表面透明電極層形成工程)
表面透明電極層形成工程では、透明電極層形成工程で形成された透明電極層160の上面に、n型半導体層150および透明電極層160と同一の構成材料を用いて同一の製膜装置により製膜する。具体的には、ArとO2との混合ガスを用いたスパッタ製膜、特に直流スパッタリングにおいて、酸素分圧pO2を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件で製膜した。
このようにして、主要組成が(In2O3+ZnO)となる非晶質で、厚さ寸法が0.01μm以上1μm以下、好ましくは0.1μm以上1μm以下に薄膜形成する。この製造条件により、表面透明電極層170は、n型半導体層150または透明電極層160との仕事関数の差が0.3eV未満で、例えば4eV以上5.5eV以下、好ましくは4.5eV以上5eV以下、n型半導体層150または透明電極層160とのエネルギーバンドギャップの差が0.2eV未満で、例えば3eV以上4eV以下の非晶質に形成される。
(Surface transparent electrode layer forming process)
In the surface transparent electrode layer forming step, the same constituent material as that of the n-
In this manner, an amorphous film having a main composition of (In 2 O 3 + ZnO) and a thickness of 0.01 μm to 1 μm, preferably 0.1 μm to 1 μm is formed. According to this manufacturing condition, the surface
(第2のスクライビング工程)
第2のスクライビング工程では、表面透明電極層形成工程にて表面透明電極層170を形成した後、透明電極層160および表面透明電極層170を分割して、素子構成として直列接続する構成とするためのメカニカルスクライビング処理である。
例えば、金属針を用いたメカニカルスクライビング方法で積層する透明電極層160および表面透明電極層170をメカニカルスクライビングし、第2の加工溝171を形成して分割し、n型半導体層150の表面を露出させる。この工程により、ガラス基板110上の薄膜積層半導体構成である隣接する光起電力素子100が直列状に接続する構成となる。
(Second scribing process)
In the second scribing step, after forming the surface
For example, the
[光起電力素子の作用効果]
上述したように、上記実施の形態の光起電力素子100では、ガラス基板110の一面に設けられた対をなす裏面電極層120に亘ってカルコパイライト構造の化合物にて導電性を有するp型の光吸収層130を積層形成し、この光吸収層130とpn接合する透光性でn型のバッファ層140を光吸収層130に積層形成し、バッファ層140より高抵抗で光吸収層130とpn接合する透光性のn型半導体層150をバッファ層140に積層形成し、このn型半導体層150に積層するとともに光吸収層130、バッファ層140およびn型半導体層150の一側から裏面電極層120に亘って透光性の透明電極層160を設けて構成した光起電力素子100におけるn型半導体層150を、酸化インジウムおよび酸化亜鉛を主要成分とし、仕事関数が4eV以上5.2ev以下で、エネルギーバンドギャップが3eV以上4eV以下に形成するので、所定の高抵抗の開放端電圧の低下を防止できるn型半導体層を設ける簡単な構成で、正孔移動および電子移動が良好に制御され、高いエネルギー変換効率が得られる。
[Function and effect of photovoltaic element]
As described above, in the
そして、このn型半導体層150を、酸化インジウムおよび酸化亜鉛を主要成分とし、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリング製膜で、前記混合ガスの酸素分圧を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方に設定された条件で、で非晶質薄膜に形成している。
このため、上述した良好な特性が得られるn型半導体層150を容易に形成できる。
The n-
For this reason, the n-
また、透明電極層160を酸化インジウムおよび酸化亜鉛を主要成分として含有する非晶質薄膜に形成している。
このため、pn接合にて光の入射により発生する起電力を集電する透明電極を、加工が簡単なメカニカルスクライビングでも亀裂や欠落などの不都合を生じずに良好に加工できる。よって、製造性が向上して歩留まりを向上でき、製造コストも低減できる。
さらに、酸化インジウムおよび酸化亜鉛を主要成分とした非晶質であることから、耐熱性および耐光性に優れ光学特性変化を生じない安定した特性に形成でき、長期間安定したエネルギー変換効率を提供できる。そしてさらに、接続する層間界面の表面積が増大して高い界面接続信頼性を提供できる。
The
For this reason, the transparent electrode that collects the electromotive force generated by the incidence of light at the pn junction can be satisfactorily processed without causing inconveniences such as cracks and missing even with mechanical scribing that is easy to process. Therefore, manufacturability is improved, yield can be improved, and manufacturing cost can be reduced.
Furthermore, since it is an amorphous material mainly composed of indium oxide and zinc oxide, it can be formed with stable characteristics that are excellent in heat resistance and light resistance and do not cause changes in optical characteristics, and can provide stable energy conversion efficiency over a long period of time. . Further, the surface area of the interlayer interface to be connected is increased, and high interface connection reliability can be provided.
そして、ArとO2との混合ガスを用いるスパッタリング製膜により、混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に透明電極層160を形成している。
このため、簡便な例えば金属針を用いたメカニカルスクライビング法で、精度よくパターン加工でき、製造性を向上できる。
Then, by sputtering film formation using a mixed gas of Ar and O 2 , the oxygen partial pressure of the mixed gas is set to 1 × 10 −3 Pa to 5 × 10 −2 Pa and the substrate temperature is set to 100 ° C. or more and 200 ° C. The
For this reason, pattern processing can be performed with high accuracy by a simple mechanical scribing method using, for example, a metal needle, and productivity can be improved.
さらに、n型半導体層150を透明電極層160と同一の構成材料にて同一の製膜方法により形成している。
このため、n型半導体層150と透明電極層160とを同一の装置を用いて製膜でき、製造性の向上が得られる。よって、製造コストの低減が得られる。さらに、同一装置のスパッタ装置で連続して生産できるので、大気開放しなくても連続して透明電極層160を形成でき、表面汚染による接合界面の性能低下を防止できる。
Further, the n-
For this reason, the n-
そして、n型半導体層150と透明電極層160との構成材料を、酸化インジウムおよび酸化亜鉛としている。
このため、非晶質で比較的に低温条件で良好な特性の導電性の薄膜を形成できるとともに、クラックなども生じにくく、裏面電極層120との密着性も高く、良好な歩留まりで製造できる。
The constituent materials of the n-
For this reason, it is possible to form a conductive thin film that is amorphous and has favorable characteristics under relatively low temperature conditions, is less prone to cracks, has high adhesion to the
また、透明電極層160と同一の構成材料にて、導電性および透光性を有し透明電極層160より屈折率が小さい表面透明電極層170を透明電極層に積層形成している。
このため、効率的な光の入射が得られ、効率的に光エネルギーを電気エネルギーに変換できる。さらには、上述したように、同一装置のスパッタ装置で連続して生産できるので、大気開放しなくても連続して表面透明電極層170を形成でき、表面汚染による接合界面の性能低下を防止できる。
Further, a surface
Therefore, efficient light incidence can be obtained, and light energy can be efficiently converted into electrical energy. Furthermore, as described above, since it can be continuously produced by the same sputtering apparatus, the surface
[実施形態の変形例]
なお、以上に説明した態様は、本発明の一態様を示すものであって、本発明は、上述した実施形態に限定されるものではなく、本発明の目的および効果を達成できる範囲内での変形や改良は、本発明の内容に含まれるものである。また、本発明を実施する際における具体的な構成および形状などは、本発明の目的および効果を達成できる範囲内において、他の構成や形状などとしても問題はない。
[Modification of Embodiment]
The aspect described above shows one aspect of the present invention, and the present invention is not limited to the above-described embodiment, and is within a range where the object and effect of the present invention can be achieved. Modifications and improvements are included in the content of the present invention. In addition, the specific configuration and shape in carrying out the present invention are not problematic as other configurations and shapes within the range in which the object and effect of the present invention can be achieved.
すなわち、本発明の光起電力素子として、光吸収層130をいわゆるCIGS系で形成したが、例えばCISなどのカルコパイライト構造の化合物にて形成した構成としてもよい。
そして、n型半導体層150を設けた構成を例示して説明したが、この層を設けなくてもよい。同様に、表面透明電極層170を設けなくともよい。
また、第1のスクライビング工程、および、第2のスクライビング工程などを実施し、分割溝121、第1の加工溝131、第2の加工溝171を形成する構成で説明したが、例えば印刷やマスクを用いる等にて、あらかじめ分割溝121、第1の加工溝131、第2の加工溝171で分割される状態に製膜するなどしてもよい。
そして、n型半導体層150、透明電極層160および表面透明電極層170を同一の構成材料にて形成したが、この限りではない。
また、屈折率は、n型半導体層150、透明電極層160および表面透明電極層170の製膜状況に応じて、適宜設定できる。なお、効率よく光を入射できるとともに層内に閉じ込めるように反射させる構成とすることが好ましい。
さらに、仕事関数についても、光吸収層130の設定されるエネルギーバンドに応じて適宜設定すればよい。
That is, as the photovoltaic element of the present invention, the
The configuration in which the n-
In addition, the first scribing process, the second scribing process, and the like are performed to form the divided
And although the n-
Further, the refractive index can be appropriately set according to the film forming situation of the n-
Furthermore, the work function may be set as appropriate according to the energy band set for the
その他、本発明の実施における具体的な構成および形状などは、本発明の目的を達成できる範囲で他の構造などとしてもよい。 In addition, the specific configuration, shape, and the like in the implementation of the present invention may be other structures as long as the object of the present invention can be achieved.
次に、実施例を挙げて、本発明をより具体的に説明する。
なお、本発明は実施例などの内容に何ら限定されるものではない。
Next, an Example is given and this invention is demonstrated more concretely.
In addition, this invention is not limited to the content of an Example etc. at all.
(素子基板の作成)
縦寸法10cm、横寸法10cmのソーダライムガラス基板110上に、DCマグネトロンスパッタ装置を用い、Mo(モリブデン)を主成分とする裏面電極層120を室温で0.1μm膜厚で形成し、その上に、分子線エピタキシー装置を用いた共蒸着法で、CuS、InS、GaS、SeSを蒸着源に用いて、350℃でCIGSを主成分とする光吸収層130を1μm膜厚で形成し、更にその上に、CBD法によりInSを主成分とするバッファ層140を100℃で0.1μm膜厚で積層形成したものを素子基板に用いた。
(Creation of element substrate)
On a soda-
(膜厚の測定)
上記素子基板及び下記実施例において素子基板上に設ける各層の膜厚は、各製膜工程毎に、素子基板の他に、膜厚測定用のマスクを形成したソーダライムガラスを設置し、各層の製膜後にマスクを除去することで段差部を形成し、触針法(使用機器:Sloan社製のDEKTAK3030)によって測定した。
(Measurement of film thickness)
The film thickness of each layer provided on the element substrate in the above-mentioned element substrate and the following examples is set for each film forming process, in addition to the element substrate, a soda lime glass in which a mask for measuring the film thickness is installed, A step was formed by removing the mask after film formation, and measurement was performed by a stylus method (device used: DEKTAK3030 manufactured by Sloan).
(仕事関数の測定)
下記実施例において素子基板上に設ける各層の仕事関数は、各製膜工程毎に、素子基板の他に、仕事関数測定用のソーダライムガラスを設置し、各層の製膜後に仕事関数測定装置(使用機器:理研計器製AC−1)により測定した。
(Measurement of work function)
In the following examples, the work function of each layer provided on the element substrate is a soda lime glass for work function measurement in addition to the element substrate for each film forming process, and a work function measuring device ( Equipment used: Measured by Riken Keiki AC-1).
(バンドギャップの測定)
下記実施例において素子基板上に設ける各層のバンドギャップは、各製膜工程毎に、素子基板の他に、バンドギャップ測定用のソーダライムガラスを設置し、各層の製膜後に分光法(使用機器:日立製作所製U3210)により測定した。
(Band gap measurement)
In the following examples, the band gap of each layer provided on the element substrate is determined by installing a soda lime glass for band gap measurement in addition to the element substrate for each film forming step, : Measured by Hitachi U3210).
(素子評価)
下記実施例において製造した光起電力素子の光電変換効率は、透明電極層又は表面透明電極層を正極、Moを負極として利用し、Agペーストを用いたスクリーン印刷法により、透明電極層又は表面透明電極層およびMo層上に30μm□、膜厚0.5μmの取出し電極を形成し、開放電圧(Voc)、短絡電流密度(Isc)、曲線因子(FF)を評価することで算出した。なお、光源にはキセノンランプからの光を特定の光学フィルターで調整したもの(ソーラーシミュレーション)を光源として用いた。
(Element evaluation)
The photoelectric conversion efficiency of the photovoltaic device manufactured in the following examples is obtained by using a transparent electrode layer or a surface transparent electrode layer as a positive electrode and Mo as a negative electrode, and by screen printing using Ag paste, the transparent electrode layer or the surface transparent An extraction electrode having a thickness of 30 μm □ and a thickness of 0.5 μm was formed on the electrode layer and the Mo layer, and the open circuit voltage (Voc), the short circuit current density (Isc), and the fill factor (FF) were evaluated. In addition, what adjusted the light from a xenon lamp with the specific optical filter (solar simulation) was used as a light source as a light source.
(高温高湿試験)
下記実施例において製造した光起電力素子の高温高湿試験は、光起電力素子のAgペースト印刷前の段階で80℃、85%RHの高温高湿槽に1000時間暴露後、上記素子評価の手法でAgペーストを印刷後、開放電圧(Voc)、短絡電流密度(Isc)、曲線因子(FF)を評価することで光電変換効率を算出した。
(High temperature and high humidity test)
The high-temperature and high-humidity test of the photovoltaic device manufactured in the following example was conducted after exposing the photovoltaic device to a high-temperature and high-humidity bath at 80 ° C. and 85% RH for 1000 hours before Ag paste printing. After printing the Ag paste by the method, the photoelectric conversion efficiency was calculated by evaluating the open circuit voltage (Voc), the short circuit current density (Isc), and the fill factor (FF).
[実施例1]
(n型半導体層150の形成)
上記素子基板上にDCマグネトロンスパッタ装置、IZOターゲット(In2O3:ZnO=90[質量%]:10[質量%])を用い、スパッタ圧力0.5Pa、アルゴン(Ar)と酸素(O2)との混合ガスを酸素分圧が0.2Paになるように調整し、室温でn型半導体層150を0.1μm膜厚で形成した。
素子基板と同時に製膜装置に設置したソーダライムガラス上に製膜されたn型半導体層150のバンドギャップを分光法、仕事関数を仕事関数測定装置により測定したところ、バンドギャップは3.6eV、仕事関数は5.2eVであった。
(透明電極層160の形成)
上記n型半導体層150の上に、IZOターゲット(In2O3:ZnO=90[質量%]:10[質量%])を用い、スパッタ圧力0.5Pa、アルゴン(Ar)と酸素(O2)との混合ガスを酸素分圧が0.001Paになるように調整し、室温で透明電極層160を0.2μm膜厚で形成した。
素子基板と同時に製膜装置に設置したソーダライムガラス上に製膜された透明電極層160のバンドギャップを分光法、仕事関数を仕事関数測定装置により測定したところ、バンドギャップは3.6eV、仕事関数は5.1eVであった。
(表面透明電極層170の形成)
上記透明電極層160の上に、IZOターゲット(In2O3:ZnO=90[質量%]:10[質量%])を用い、スパッタ圧力0.5Pa、アルゴン(Ar)と酸素(O2)との混合ガスを酸素分圧が0.001Paになるように調整し、200℃で表面透明電極層170を0.1μm膜厚で形成した。
素子基板と同時に製膜装置に設置したソーダライムガラス上に製膜された表面透明電極層170のバンドギャップを分光法、仕事関数を仕事関数測定装置により測定したところ、表1に示すように、バンドギャップは3.5eV、仕事関数は5.1eVであった。
[Example 1]
(Formation of n- type semiconductor layer 150)
A DC magnetron sputtering apparatus and an IZO target (In 2 O 3 : ZnO = 90 [mass%]: 10 [mass%]) were used on the element substrate, with a sputtering pressure of 0.5 Pa, argon (Ar) and oxygen (O 2 ) Was adjusted so that the partial pressure of oxygen was 0.2 Pa, and the n-
When the band gap of the n-
(Formation of transparent electrode layer 160)
On the n-
When the band gap of the
(Formation of surface transparent electrode layer 170)
On the
As shown in Table 1, when the band gap of the surface
素子基板上にn型半導体層150、透明電極層160、表面透明電極層170を積層した1つの光起電力素子の表面透明電極層およびMo裏面電極層120上にAgペーストを用いたスクリーン印刷で取出し電極を形成し、光電変換効率を測定したところ、Vocは620mV、Iscは39mA、FF(曲線因子)/Pin(標準入射パワー)は0.67で、これらから算出した光電変換効率は16.2%であった。
素子基板上にn型半導体層150、透明電極層160、表面透明電極層170を積層したもう1つの光起電力素子を80℃、85%RHの高温高湿条件の中に1000時間暴露試験を行い、試験後の表面透明電極層及びMo裏面電極層上にAgペーストを用いたスクリーン印刷で取出し電極を形成し、光電変換効率を測定したところ、Vocは619mV、Iscは39mA、FF/Pinは0.67で、これらから算出した光電変換効率は16.2%であった。
なお、表中、n層はn型半導体層150、TCOは透明電極層160、S−TCOは表面透明電極層170を示す。
Screen printing using Ag paste on the surface transparent electrode layer and the Mo back
Another photovoltaic device in which an n-
In the table, n layer represents the n-
[実施例2〜38および比較例1〜14]
製膜条件、ターゲット組成、表面透明電極層170の有無以外は、実施例1と同様に素子基板上にn型半導体層150、透明電極層160、表面透明電極層170を適宜形成し、各層のバンドギャップ、仕事関数、初期の素子評価、高温高湿試験後の素子評価を行い、結果を表1〜3に示した。
[Examples 2-38 and Comparative Examples 1-14]
The n-
[結果]
上記表1から表3までに示す実験結果から、n型半導体層150と透明電極層160、表面透明電極層170の仕事関数が近い程、エネルギー変換効率が向上することがわかる。
[result]
From the experimental results shown in Table 1 to Table 3, it can be seen that the energy conversion efficiency improves as the work functions of the n-
本発明は、カルコパイライト構造の化合物にて薄膜形成された導電性を有するp型の光吸収層を有する光起電力素子として利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used as a photovoltaic element having a conductive p-type light absorption layer formed into a thin film with a chalcopyrite structure compound.
100…光起電力素子
110…ガラス基板
120…裏面電極層
121…分割溝
130…光吸収層
131…第1の加工溝
140…バッファ層
150…n型半導体層
160…透明電極層
170…表面透明電極層
171…第2の加工溝
DESCRIPTION OF
Claims (9)
このガラス基板の一面に設けられた裏面電極層と、
カルコパイライト構造の化合物にて前記裏面電極層に積層形成された導電性を有するp型の光吸収層と、
この光吸収層に積層形成されて前記光吸収層とpn接合する透光性でn型のバッファ層と、
このバッファ層に積層形成され前記バッファ層より高抵抗で前記光吸収層に対してn型となる透光性のn型半導体層と、
このn型半導体層に積層されるとともに前記積層する光吸収層、バッファ層およびn型半導体層の一側から前記裏面電極層に亘って設けられた透光性の透明電極層と、を備え、
前記n型半導体層および前記透明電極層は、それぞれ酸化インジウムおよび酸化亜鉛を主要成分とした同一の構成材料にて形成され、
前記n型半導体層は、仕事関数が4eV以上5.2eV以下、かつ、エネルギーバンドギャップが3eV以上4eV以下であり、
前記n型半導体層と前記透明電極層との仕事関数の差が0.3eV未満で、前記n型半導体層と前記透明電極層とのエネルギーバンドギャップの差が0.2eV未満に形成された
ことを特徴とした光起電力素子。 A glass substrate;
A back electrode layer provided on one surface of the glass substrate;
A p-type light-absorbing layer having conductivity formed by stacking on the back electrode layer with a compound of chalcopyrite structure;
A light-transmitting n-type buffer layer laminated on the light absorption layer and pn-junction with the light absorption layer;
A light-transmitting n-type semiconductor layer formed on the buffer layer and having a higher resistance than the buffer layer and being n-type with respect to the light absorption layer;
A light-transmitting transparent electrode layer provided on the back electrode layer from one side of the light absorption layer, the buffer layer, and the n-type semiconductor layer, which is stacked on the n-type semiconductor layer,
The n-type semiconductor layer and the transparent electrode layer are formed of the same constituent material mainly composed of indium oxide and zinc oxide ,
The n-type semiconductor layer has a work function of 4 eV or more and 5.2 eV or less, and an energy band gap of 3 eV or more and 4 eV or less.
The work function difference between the n-type semiconductor layer and the transparent electrode layer is less than 0.3 eV, and the energy band gap difference between the n-type semiconductor layer and the transparent electrode layer is less than 0.2 eV. A photovoltaic device characterized by
前記n型半導体層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタ
リング製膜により、前記混合ガスの酸素分圧を1×10-2Pa以上0.2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された
ことを特徴とした光起電力素子。 The photovoltaic device according to claim 1, wherein
The n-type semiconductor layer is formed by sputtering film formation using a mixed gas of argon (Ar) and oxygen (O 2 ) so that the oxygen partial pressure of the mixed gas is 1 × 10 −2 Pa or more and 0.2 Pa or less. And at least one of the conditions for setting the substrate temperature to 100 ° C. or higher and 200 ° C. or lower, and formed into an amorphous thin film.
前記透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッタリ
ング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された
ことを特徴とした光起電力素子。 The photovoltaic device according to claim 1 or 2, wherein
The transparent electrode layer is formed by sputtering film formation using a mixed gas of argon (Ar) and oxygen (O 2 ), and the oxygen partial pressure of the mixed gas is 1 × 10 −3 Pa or more and 5 × 10 −2 Pa or less. A photovoltaic element characterized in that it is formed into an amorphous thin film by setting at least one of the following conditions: a condition in which the substrate temperature is 100 ° C. or more and 200 ° C. or less.
前記透明電極層は、組成In2O3/(In2O3+ZnO)が50質量%以上95質量%以下に形成された
ことを特徴とした光起電力素子。 The photovoltaic device according to any one of claims 1 to 3, wherein
The photovoltaic device, wherein the transparent electrode layer has a composition In 2 O 3 / (In 2 O 3 + ZnO) of 50% by mass to 95% by mass.
前記透明電極層は、酸化インジウムおよび酸化亜鉛を主要成分とする組成における第3成分量は、20質量%以下である
ことを特徴とした光起電力素子。 The photovoltaic device according to any one of claims 1 to 4, wherein:
The photovoltaic device, wherein the transparent electrode layer has a third component amount of 20 mass% or less in a composition mainly composed of indium oxide and zinc oxide.
前記透明電極層に積層形成され導電性および透光性を有し前記透明電極層より屈折率が小さい表面透明電極層を備えた
ことを特徴とした光起電力素子。 The photovoltaic device according to any one of claims 1 to 5 , wherein
A photovoltaic element comprising a surface transparent electrode layer formed on the transparent electrode layer and having conductivity and translucency and having a refractive index smaller than that of the transparent electrode layer.
前記表面透明電極層は、アルゴン(Ar)と酸素(O2)との混合ガスを用いるスパッ
タリング製膜により、前記混合ガスの酸素分圧を1×10-3Pa以上5×10-2Pa以下とする条件と、基板温度を100℃以上200℃以下とする条件とのうちの少なくともいずれか一方の条件が設定されて、非晶質薄膜に製膜された
ことを特徴とした光起電力素子。 The photovoltaic device according to claim 6 , wherein
The surface transparent electrode layer is formed by sputtering using a mixed gas of argon (Ar) and oxygen (O 2 ), and the oxygen partial pressure of the mixed gas is 1 × 10 −3 Pa or more and 5 × 10 −2 Pa or less. And at least one of a condition for setting the substrate temperature to 100 ° C. or more and 200 ° C. or less, and is formed into an amorphous thin film. .
前記表面透明電極層は、前記透明電極層と同一の構成材料にて形成された
ことを特徴とした光起電力素子。 The photovoltaic device according to claim 6 or 7 , wherein
The surface transparent electrode layer is formed of the same constituent material as the transparent electrode layer.
前記裏面電極層上にカルコパイライト構造の化合物にてp型の光吸収層を薄膜形成する光吸収層形成工程と、
前記光吸収層上に前記光吸収層とpn接合するn型のバッファ層を薄膜形成するバッファ層形成工程と、
前記バッファ層上にこのバッファ層より高抵抗で前記光吸収層に対してn型となる透光性のn型半導体層を薄膜形成するn型半導体層形成工程と、
前記n型半導体層上に透明電極層を形成する透明電極層形成工程と、
を実施する光起電力素子の製造方法であって、
前記n型半導体層形成工程および前記透明電極層形成工程は、酸化インジウムおよび酸化亜鉛を主要成分とした同一の構成材料にて形成され、前記n型半導体層を、仕事関数が4eV以上5.2eV以下、かつ、エネルギーバンドギャップが、3eV以上4eV以下に設定し、
前記n型半導体層と前記透明電極層との仕事関数の差が0.3eV未満で、前記n型半導体層と前記透明電極層とのエネルギーバンドギャップの差が0.2eV未満に、前記n型半導体層および前記透明電極層を薄膜形成する
ことを特徴とする光起電力素子の製造方法。 A back electrode layer forming step of forming a back electrode layer in a thin film on a glass substrate;
A light absorption layer forming step of forming a thin p-type light absorption layer with a chalcopyrite structure compound on the back electrode layer;
A buffer layer forming step of forming a thin n-type buffer layer that forms a pn junction with the light absorption layer on the light absorption layer;
An n-type semiconductor layer forming step of forming a thin film of a translucent n-type semiconductor layer having a higher resistance than the buffer layer and being n-type with respect to the light absorption layer on the buffer layer;
A transparent electrode layer forming step of forming a transparent electrode layer on the n-type semiconductor layer;
A method of manufacturing a photovoltaic device that implements
The n-type semiconductor layer forming step and the transparent electrode layer forming step are formed of the same constituent material mainly composed of indium oxide and zinc oxide, and the n-type semiconductor layer has a work function of 4 eV or more and 5.2 eV. And the energy band gap is set to 3 eV or more and 4 eV or less,
The difference in work function between the n-type semiconductor layer and the transparent electrode layer is less than 0.3 eV, and the difference in energy band gap between the n-type semiconductor layer and the transparent electrode layer is less than 0.2 eV. A method for producing a photovoltaic element, comprising forming a semiconductor layer and the transparent electrode layer as a thin film.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008270260A JP5465860B2 (en) | 2008-10-20 | 2008-10-20 | Photovoltaic element and manufacturing method thereof |
US13/124,902 US20110197967A1 (en) | 2008-10-20 | 2009-10-19 | Photovoltaic element and method for manufacturing same |
PCT/JP2009/068012 WO2010047309A1 (en) | 2008-10-20 | 2009-10-19 | Photovoltaic element and method for manufacturing same |
EP09822006.4A EP2360733A4 (en) | 2008-10-20 | 2009-10-19 | Photovoltaic element and method for manufacturing same |
KR1020117011455A KR20110091683A (en) | 2008-10-20 | 2009-10-19 | Photovoltaic element and method for manufacturing same |
CN200980142325.0A CN102187472B (en) | 2008-10-20 | 2009-10-19 | Photovoltaic element and method for manufacturing the same |
TW098135433A TW201034213A (en) | 2008-10-20 | 2009-10-20 | Photovoltaic element and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008270260A JP5465860B2 (en) | 2008-10-20 | 2008-10-20 | Photovoltaic element and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010098266A JP2010098266A (en) | 2010-04-30 |
JP5465860B2 true JP5465860B2 (en) | 2014-04-09 |
Family
ID=42259721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008270260A Expired - Fee Related JP5465860B2 (en) | 2008-10-20 | 2008-10-20 | Photovoltaic element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5465860B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5642005B2 (en) * | 2010-08-31 | 2014-12-17 | 京セラ株式会社 | PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION MODULE |
KR101352537B1 (en) * | 2012-06-08 | 2014-01-21 | 한국과학기술연구원 | Se or S based thin film solar cell and method for fabricating the same |
JP6702190B2 (en) * | 2014-08-21 | 2020-05-27 | ソニー株式会社 | Imaging device and solid-state imaging device |
KR102018381B1 (en) * | 2017-01-26 | 2019-09-04 | 엘지전자 주식회사 | Solar cell and method for manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3308785B2 (en) * | 1995-11-10 | 2002-07-29 | キヤノン株式会社 | Photovoltaic element |
JP2004158619A (en) * | 2002-11-06 | 2004-06-03 | Matsushita Electric Ind Co Ltd | Electronic device and manufacturing method therefor |
JP4229803B2 (en) * | 2003-10-23 | 2009-02-25 | パナソニック株式会社 | Method for producing transparent conductive film |
JP4841173B2 (en) * | 2005-05-27 | 2011-12-21 | 昭和シェル石油株式会社 | High resistance buffer layer / window layer continuous film forming method and film forming apparatus for CIS thin film solar cell |
US20070093006A1 (en) * | 2005-10-24 | 2007-04-26 | Basol Bulent M | Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto |
-
2008
- 2008-10-20 JP JP2008270260A patent/JP5465860B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010098266A (en) | 2010-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010047309A1 (en) | Photovoltaic element and method for manufacturing same | |
US9812593B2 (en) | Solar cell and preparing method of the same | |
KR101144570B1 (en) | Solar cell and method of fabircating the same | |
JP2011155237A (en) | Compound thin film solar cell, method of manufacturing compound thin film solar cell, and compound thin film solar cell module | |
WO2007043219A1 (en) | Solar battery and its fabrication method | |
JP6366914B2 (en) | Multi-junction solar cell | |
JP2013506991A (en) | Photovoltaic power generation apparatus and manufacturing method thereof | |
JP2008021713A (en) | Integrated thin-film solar cell and its manufacturing method | |
KR101034150B1 (en) | Solar cell and method of fabircating the same | |
KR20120035756A (en) | Solar cell | |
JP2012204617A (en) | Photovoltaic element and method of manufacturing the same | |
KR20120024048A (en) | Solar cell and method of manufacturing the same | |
US20130029450A1 (en) | Method for manufacturing solar cell | |
JP5465860B2 (en) | Photovoltaic element and manufacturing method thereof | |
KR101415251B1 (en) | Multiple-Layered Buffer, and Its Fabrication Method, and Solor Cell with Multiple-Layered Buffer. | |
KR101219835B1 (en) | Solar cell apparatus and method of fabricating the same | |
JP4975528B2 (en) | Integrated solar cell | |
JP5465859B2 (en) | Photovoltaic element and manufacturing method thereof | |
KR101189415B1 (en) | Solar cell apparatus and method of fabricating the same | |
KR101592582B1 (en) | Solar cell and method of fabircating the same | |
KR101327126B1 (en) | Solar cell and solar cell module unsing the same | |
JP5530618B2 (en) | Photovoltaic element and manufacturing method thereof | |
JP5594949B2 (en) | Photovoltaic element and manufacturing method thereof | |
EP2787537B1 (en) | THIN FILM SOLAR CELL with indium sulfide buffer layer | |
WO2013099947A1 (en) | Photoelectric conversion apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140123 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |