JP5463555B2 - Fluoride spray-coated member having black layer and method for producing the same - Google Patents
Fluoride spray-coated member having black layer and method for producing the same Download PDFInfo
- Publication number
- JP5463555B2 JP5463555B2 JP2012006984A JP2012006984A JP5463555B2 JP 5463555 B2 JP5463555 B2 JP 5463555B2 JP 2012006984 A JP2012006984 A JP 2012006984A JP 2012006984 A JP2012006984 A JP 2012006984A JP 5463555 B2 JP5463555 B2 JP 5463555B2
- Authority
- JP
- Japan
- Prior art keywords
- fluoride
- white
- coating
- black
- sprayed coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 title claims description 116
- 239000007921 spray Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000000576 coating method Methods 0.000 claims description 108
- 239000011248 coating agent Substances 0.000 claims description 101
- 238000005507 spraying Methods 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 28
- 238000010894 electron beam technology Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 21
- 230000000737 periodic effect Effects 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 6
- 150000002602 lanthanoids Chemical class 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910018137 Al-Zn Inorganic materials 0.000 claims description 3
- 229910018507 Al—Ni Inorganic materials 0.000 claims description 3
- 229910018573 Al—Zn Inorganic materials 0.000 claims description 3
- 229910003310 Ni-Al Inorganic materials 0.000 claims description 3
- 229910002061 Ni-Cr-Al alloy Inorganic materials 0.000 claims description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 claims description 3
- 238000010336 energy treatment Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 43
- 239000007789 gas Substances 0.000 description 30
- 239000002245 particle Substances 0.000 description 29
- 239000010410 layer Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 22
- 230000003628 erosive effect Effects 0.000 description 19
- 239000011148 porous material Substances 0.000 description 18
- 238000012545 processing Methods 0.000 description 17
- 230000007797 corrosion Effects 0.000 description 16
- 238000005260 corrosion Methods 0.000 description 16
- 238000007750 plasma spraying Methods 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 13
- 239000002585 base Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 229910052736 halogen Inorganic materials 0.000 description 10
- 150000002367 halogens Chemical class 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000007751 thermal spraying Methods 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010285 flame spraying Methods 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- -1 BF 3 Chemical class 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000002222 fluorine compounds Chemical class 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229940105963 yttrium fluoride Drugs 0.000 description 3
- RBORBHYCVONNJH-UHFFFAOYSA-K yttrium(iii) fluoride Chemical compound F[Y](F)F RBORBHYCVONNJH-UHFFFAOYSA-K 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005524 ceramic coating Methods 0.000 description 2
- 239000011195 cermet Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910016655 EuF 3 Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010288 cold spraying Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- AWDBHOZBRXWRKS-UHFFFAOYSA-N tetrapotassium;iron(6+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+6].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] AWDBHOZBRXWRKS-UHFFFAOYSA-N 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Laminated Bodies (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、黒色層を有するフッ化物溶射皮膜被覆部材およびその製造方法に関し、特に、皮膜表層部分に腐食性の強いハロゲンガスなどの雰囲気に曝されても良好な耐食性や耐プラズマエロージョン性を示す黒色層を有するフッ化物溶射皮膜被覆部材とそれの製造方法について提案する。 The present invention relates to a fluoride sprayed coating member having a black layer and a method for producing the same, and in particular, exhibits good corrosion resistance and plasma erosion resistance even when the coating surface layer is exposed to an atmosphere such as a corrosive halogen gas. A fluoride spray-coated member having a black layer and a method for manufacturing the same are proposed.
溶射法は、ArやH2などのガスプラズマ炎または炭化水素の燃焼炎などを用いて、金属(以下、合金を含めて金属と言う)やセラミックス、サーメットなどの粒子を、軟化もしくは溶融した状態にして被処理対象物(基材)の表面に吹付け、これらを堆積させて皮膜状にする表面処理技術の1つである。この技術は、熱によって軟化したり溶融する材料であれば、ガラスやプラスチックをはじめ、融点の高いタングステン(融点3,387℃)、タンタル(融点2,996℃)などの金属はもとより、Al2O3(融点2,015℃)、MgO(融点2,800℃)などの酸化物系セラミックスでも成膜することが可能であり、皮膜材料種の選択自由度が非常に大きいという利点がある。このため、溶射皮膜の特性を利用した用途が、多くの産業分野に拡大している。 The thermal spraying method uses a gas plasma flame such as Ar or H 2 or a hydrocarbon combustion flame to soften or melt particles of metal (hereinafter referred to as metal, including alloys), ceramics, cermet, etc. This is one of the surface treatment techniques for spraying onto the surface of the object to be treated (base material) and depositing them to form a film. In this technology, as long as it is a material that softens or melts by heat, not only glass and plastic, but also metals such as tungsten (melting point 3,387 ° C.) and tantalum (melting point 2,996 ° C.) having a high melting point, Al 2 Oxide ceramics such as O 3 (melting point: 2,015 ° C.) and MgO (melting point: 2,800 ° C.) can be formed, and there is an advantage that the degree of freedom in selecting the kind of coating material is very large. For this reason, the application using the characteristic of a thermal spray coating has expanded to many industrial fields.
また、溶射装置や溶射ガンなどについても、これらの良し悪しが溶射皮膜の品質に大きく影響することから、品質の向上や生産性の向上と共に、さらなる改善や開発が精力的に行なわれている。例えば、特許文献1では、大気中で溶射された金属皮膜の粒子は酸化物を多量に含むため皮膜を構成する粒子間の相互結合力や基材との密着力低下原因となるとして、空気を排除した50hPa〜200hPaの低圧アルゴンガス雰囲気下でプラズマ溶射(減圧プラズマ溶射)する方法やその装置を提案している。 In addition, the quality of sprayed coatings and spray guns greatly affect the quality of the sprayed coating, and therefore, further improvements and developments are energetically performed along with improvements in quality and productivity. For example, in Patent Document 1, since the metal film particles sprayed in the atmosphere contain a large amount of oxides, air is used as a cause of a decrease in mutual bonding force between particles constituting the film and adhesion with a substrate. A method and apparatus for plasma spraying (reduced pressure plasma spraying) in an excluded low pressure argon gas atmosphere of 50 hPa to 200 hPa are proposed.
また、特許文献2では、炭化物サーメット粒子のように、高温の熱源中において炭化物が分解したり酸化する現象を最少限に止めると共に熱源の運動エネルギーを最大限に利用して炭化物粒子の飛行速度を上げ、その粒子の被爆時間(温度)を極限まで短縮する高速フレーム溶射法を提案している。 In Patent Document 2, the phenomenon of carbide decomposition or oxidation in a high-temperature heat source, such as carbide cermet particles, is minimized and the kinetic energy of the heat source is used to maximize the flight speed of the carbide particles. A high-speed flame spraying method that shortens the exposure time (temperature) of the particles to the limit is proposed.
このように従来、溶射皮膜の品質や溶射装置については十分に検討されてきたが、溶射皮膜の成膜プロセスについての検討は未だ不十分である。例えば、溶射熱源中に投入された溶射粒子群には完全に溶融するものがある一方で、未溶融状態のままのものもあり、こうした粒子は基材表面に堆積した際、相互の融着が不完全ないしは不均等になることから、空隙(気孔)が不可避に発生し、これが皮膜の気孔となって顕在化する問題がある。 As described above, the quality of the thermal spray coating and the thermal spraying apparatus have been sufficiently studied. However, the examination of the film deposition process of the thermal spray coating is still insufficient. For example, some of the spray particles introduced into the thermal spray heat source completely melt, while others remain unmelted. When these particles are deposited on the surface of the substrate, mutual fusion occurs. Since it becomes incomplete or uneven, there is a problem that voids (pores) are inevitably generated and become apparent as pores of the film.
例えば、特許文献3によれば、減圧プラズマ溶射法で形成されたAl2O3やY2O3の溶射皮膜は、0.2〜7%程度の気孔が存在していることが明らかにされている。即ち、これらの気孔の大部分は、貫通気孔(皮膜の外部から基材の表面まで続いている気孔)として存在しているため、使用環境の中では腐食性のガスや流体の浸入通路を提供することとなって、基材表面の腐食が進行し、該皮膜と基材との接合力の低下を招いて剥離する原因となる。 For example, according to Patent Document 3, it is clarified that Al 2 O 3 or Y 2 O 3 sprayed coating formed by the low pressure plasma spraying method has pores of about 0.2 to 7%. ing. That is, most of these pores exist as penetrating pores (pores extending from the outside of the coating to the surface of the substrate), and therefore provide a corrosive gas or fluid infiltration path in the environment of use. As a result, the corrosion of the surface of the base material proceeds, causing a decrease in the bonding force between the film and the base material, which causes peeling.
このように、溶射皮膜というのは、気孔が不可避に存在することから成膜後に封孔処理を施すことが奨励されている。例えば、JIS H 9302セラミック溶射作業標準では、セラミック溶射皮膜を形成した後、その表面に無機系あるいは有機高分子系の封孔剤を塗布したり噴霧して、気孔内部に充填する方法が記載されている。 As described above, since the sprayed coating inevitably has pores, it is encouraged to perform a sealing treatment after the film formation. For example, JIS H 9302 ceramic spraying work standard describes a method in which after a ceramic spray coating is formed, an inorganic or organic polymer sealing agent is applied or sprayed on the surface to fill the pores. ing.
ところで、前述した溶射皮膜被覆部材が、半導体加工装置用部材、とくにハロゲンやハロゲン化合物が存在する環境下でプラズマ処理されたり、プラズマ処理によって発生する微細なパーティクルを洗浄除去することが必要な半導体加工装置の分野において使用される場合、さらに、以下のような表面処理の検討が必要であり、そのための従来技術についても幾つかの提案がある。 By the way, the above-mentioned sprayed coating member is subjected to plasma processing in an environment where there is a halogen or halogen compound, and particularly semiconductor processing in which fine particles generated by the plasma processing need to be cleaned and removed. When used in the field of equipment, it is necessary to consider the following surface treatment, and there are some proposals for the prior art for that purpose.
即ち、半導体加工および液晶製造プロセスに使用されるドライエッチャー、CVD、PVDなどの加工装置類では、シリコンやガラスなどの基板回路の高集積化に伴う微細加工とその精度向上の必要性から、加工環境として一段と高い清浄性が求められるようになってきた。その一方で、微細加工用の各種プロセスについては、フッ化物、塩化物をはじめとする腐食性の強い有害ガスあるいは水溶液を用いている。従って、これらのプロセスに配設されている部材類は腐食損耗速度が速く、その結果として、腐食生成物の発生とその飛散による二次的な環境汚染が懸念されている。 That is, in processing equipment such as dry etcher, CVD, PVD, etc. used in semiconductor processing and liquid crystal manufacturing processes, processing is required due to the need for microfabrication and higher accuracy associated with higher integration of substrate circuits such as silicon and glass. Higher cleanliness has been demanded as an environment. On the other hand, for various processes for microfabrication, highly corrosive harmful gases such as fluorides and chlorides or aqueous solutions are used. Therefore, the members disposed in these processes have a high corrosion wear rate, and as a result, there is a concern about the generation of corrosion products and secondary environmental contamination due to their scattering.
半導体ディバイスは、その素材が、SiやGa、As、Pなどから成る化合物半導体を主体としたものであり、その製造工程の多くは、真空もしくは減圧中で処理されるいわゆるドライプロセスに属し、これらの環境中において、各種の成膜、不純物の注入、エッチング、アッシング、洗浄などの処理が繰返し施されている。このようなドライプロセスに属する装置としては、酸化炉、CVD装置、PVD装置、エピタキシャル成長装置、イオン注入装置、拡散炉、反応性イオンエッチング装置およびこれらの装置に付属している配管、給排気ファン、真空ポンプ、バルブ類などの部材、部品がある。また、これらの装置類では、次に示すような腐食性の強い薬剤およびガスの使用が知られている。基本的には、BF3、PF3、PF6、NF3、WF3、HFなどのフッ化物、BCl3、PCl3、PCl5、POCl3、AsCl3、SnCl4、TiCl4、SiH2Cl2、SiCl4、HCl、Cl2などの塩化物、HBrなどの臭化物、NH3、Cl3Fなどの使用も散見されている。 Semiconductor devices are mainly composed of compound semiconductors composed of Si, Ga, As, P, etc., and many of the manufacturing processes belong to so-called dry processes that are processed in vacuum or reduced pressure. In these environments, various processes such as film formation, impurity implantation, etching, ashing, and cleaning are repeatedly performed. As an apparatus belonging to such a dry process, an oxidation furnace, a CVD apparatus, a PVD apparatus, an epitaxial growth apparatus, an ion implantation apparatus, a diffusion furnace, a reactive ion etching apparatus, piping attached to these apparatuses, a supply / exhaust fan, There are parts and parts such as vacuum pumps and valves. In these devices, the use of highly corrosive chemicals and gases as shown below is known. Basically, fluorides such as BF 3 , PF 3 , PF 6 , NF 3 , WF 3 , HF, BCl 3 , PCl 3 , PCl 5 , POCl 3 , AsCl 3 , SnCl 4 , TiCl 4 , SiH 2 Cl 2 , Chloride such as SiCl 4 , HCl and Cl 2 , bromide such as HBr, NH 3 , Cl 3 F and the like are also frequently used.
上述したハロゲン化物を用いるドライプロセスでは、反応の活性化と加工精度の向上のため、しばしばプラズマ(低温プラズマ)が用いられる。プラズマ使用環境中では、各種のハロゲン化物は腐食性の強い原子状またはイオン化したF、Cl、Br、Iとなって半導体素材の微細加工に大きな効果を発揮している。その一方で、プラズマ処理(特にプラズマエッチング処理)された半導体素材の表面からは、エッチング処理によって削りとられた微細なSiO2、Si3N4、Si、Wなどのパーティクルが環境中に浮遊し、これらが加工中あるいは加工後のディバイスの表面に付着してその品質を著しく低下させるという問題がある。 In the above-described dry process using a halide, plasma (low temperature plasma) is often used to activate the reaction and improve processing accuracy. In the plasma usage environment, various halides become highly corrosive atomic or ionized F, Cl, Br, and I, and have a great effect on fine processing of semiconductor materials. On the other hand, fine particles of SiO 2 , Si 3 N 4 , Si, W, and the like that are removed by the etching process float from the surface of the semiconductor material subjected to the plasma process (particularly plasma etching process) in the environment. There is a problem in that they adhere to the surface of the device during or after processing, and the quality of the device is significantly reduced.
これらの対策の一つとしては、従来、アルミニウム陽極酸化物(アルマイト)による表面処理がある。その他、Al2O3、Al2O3・TiO2、Y2O3などの酸化物をはじめ、周期律表IIIa族金属の酸化物を溶射法、蒸着法(CVD法、PVD法)などによって、装置用部材の表面を被覆したり、また、焼結材として利用する技術がある(特許文献4〜8)。 One of these countermeasures has conventionally been surface treatment with aluminum anodic oxide (alumite). In addition, oxides such as Al 2 O 3 , Al 2 O 3 .TiO 2 , Y 2 O 3, etc., and oxides of Group IIIa metals of the periodic table are sprayed, vapor deposition (CVD, PVD), etc. There are techniques for coating the surface of a device member or using it as a sintered material (Patent Documents 4 to 8).
さらに最近では、Y2O3やY2O3−Al2O3の溶射皮膜表面を、レーザビームや電子ビームを照射して該溶射皮膜の表面を再溶融することによって、耐プラズマエロージョン性を向上させる技術も開示されている(特許文献9〜12)。 More recently, plasma erosion resistance is improved by irradiating the surface of the sprayed coating of Y 2 O 3 or Y 2 O 3 —Al 2 O 3 with a laser beam or an electron beam to remelt the surface of the sprayed coating. Techniques for improvement are also disclosed (Patent Documents 9 to 12).
例えば、昨今の高性能半導体加工の製造環境の清浄化度を極限まで高める手段として、従来のY2O3皮膜の耐プラズマエロージョン性能を凌駕する材料としてYF3(フッ化イットリウム)を成膜状態で適用する方法が提案されている。具体的には、YAGなどの焼結体や周期律表IIIa族元素の酸化物の表面にYF3膜を被覆したり(特許文献13、14)、Y2O3やYb2O3、YF3などの混合物を成膜材料とした方法(特許文献15、16)、YF3を成膜材料として溶射法によって被覆形成する方法が(特許文献17、18)に見られる。 For example, YF 3 (yttrium fluoride) is used as a material that surpasses the plasma erosion resistance of conventional Y 2 O 3 coatings as a means to raise the cleanliness of the manufacturing environment of high-performance semiconductor processing to the limit. The method to apply in is proposed. Specifically, a YF 3 film is coated on the surface of a sintered body such as YAG or an oxide of a group IIIa element of the periodic table (Patent Documents 13 and 14), Y 2 O 3 , Yb 2 O 3 , YF A method using a mixture such as 3 as a film forming material (Patent Documents 15 and 16), and a method using YF 3 as a film forming material by a thermal spraying method (Patent Documents 17 and 18) can be seen.
以上説明したように、従来のフッ化物溶射皮膜は、フツ化物皮膜が有する耐ハロゲン腐食性を利用することを目的として開発されたものである。具体的には、特許文献13に記載されているように、大気または減圧プラズマ溶射法や高速フレーム溶射法によってフッ化物溶射皮膜を形成するに際し、基材を予熱したり、成膜後250℃〜500℃の熱処理を施して、アモルファス状フッ化物を斜方晶化させたり、特許文献16に開示されているように、低温の溶射熱源によるコールドスプレー法を利用する提案などである。 As described above, the conventional fluoride sprayed coating has been developed for the purpose of utilizing the halogen corrosion resistance of the fluoride coating. Specifically, as described in Patent Document 13, when a fluoride sprayed coating is formed by atmospheric or low-pressure plasma spraying or high-speed flame spraying, the substrate is preheated or 250 ° C. to For example, the amorphous fluoride is orthorhombically crystallized by heat treatment at 500 ° C., or a cold spray method using a low-temperature thermal spraying heat source as disclosed in Patent Document 16 is used.
また、特許文献14に開示されているように、酸化イットリウムの溶射皮膜や焼結
体の表面をフツ化物に変化させる提案などもある。これらの技術は、フッ化物皮膜の耐ハロゲンガス性の向上を目的とし、フッ化物皮膜の色彩については全く関心がないばかりか、前記特許文献13の(0010)段落に記載されているように「フッ化イットリウムを用いるだけでは、腐食性ハロゲンによりフッ化イットリウム膜の色が変化する」とし、その変色の原因は、溶射成膜状態のままでは皮膜の耐食性が十分でないことを示唆するものと判断し、その対策として、成膜後の熱処理の施工を提案している。
Further, as disclosed in Patent Document 14, there are proposals for changing the surface of a sprayed coating of yttrium oxide or a sintered body to fluoride. These techniques aim to improve the halogen gas resistance of the fluoride film, and are not interested at all in the color of the fluoride film. As described in paragraph (0010) of Patent Document 13, “ Judging from the fact that yttrium fluoride alone is used, the color of the yttrium fluoride film changes due to the corrosive halogen. '' However, as a countermeasure, it proposes a heat treatment after film formation.
このように、従来のフッ化物溶射皮膜については、皮膜の性質や性状、組成などの科学的・物理的な研究はあるものの、該フッ化物溶射皮膜が有する色(彩)に関しての研究や皮膜の意匠性などに及ぼす技術的な検討までは行なわれていないのが実情である。そのため、従来のフッ化物溶射皮膜は、この皮膜の原色(生成り色)である白色ないし乳白色のみの状態で製品化されている。 As described above, with regard to conventional fluoride spray coatings, although there are scientific and physical studies on the properties, properties, and composition of the coating, research on the color (color) of the fluoride spray coating and coating The actual situation is that no technical study has been conducted on the design properties. Therefore, the conventional fluoride sprayed coating is commercialized only in the state of white or milky white which is the primary color (generated color) of this coating.
本発明者らは、かって、白色のY2O3溶射皮膜を減圧雰囲気下で電子ビーム照射することによって、酸化物溶射皮膜を黒色化したり(特許第4398436号)、実質的に酸素を含まない雰囲気下で白色のY2O3粉末を用いて黒色のY2O3−x溶射皮膜を形成する技術を提案し(特許第4603018号)(特許4740932号)、白色の酸化物溶射皮膜では得られない熱放射特性を付与することに成功し、半導体加工作業の効率向上に寄与した経緯がある。 The inventors of the present invention blackened the oxide sprayed coating by irradiating the white Y 2 O 3 sprayed coating with an electron beam in a reduced-pressure atmosphere (Japanese Patent No. 4398436) or substantially free of oxygen. A technology for forming a black Y 2 O 3-x sprayed coating using white Y 2 O 3 powder in an atmosphere is proposed (Patent No. 4603018) (Patent No. 4740932), and obtained with a white oxide sprayed coating. The company has succeeded in imparting unacceptable thermal radiation characteristics and contributed to improving the efficiency of semiconductor processing operations.
そこで本発明の目的は、本来的には白色であるフッ化物溶射皮膜が有する優れた耐食性を損なうことなく、白色フッ化物溶射皮膜の表面の色を変化させて、文字や数字、図形、模様、あるいは社名や製造番号等の識別記号等を表示させて工業製品をデザイン化処理するのに有効な技術を提案することにある。 Therefore, the purpose of the present invention is to change the color of the surface of the white fluoride sprayed coating without impairing the excellent corrosion resistance of the fluoride sprayed coating that is essentially white, so that letters, numbers, figures, patterns, Alternatively, it is to propose an effective technique for designing an industrial product by displaying an identification symbol such as a company name or a production number.
また、本発明の他の目的は、フッ化物溶射皮膜の表面部分を、熱エネルギー照射による再溶融処理によって無気孔化し、良好な耐食性と耐プラズマエロージョン性とを兼ね備えたフッ化物溶射皮膜被覆部材を提供すること、およびこうした部材の有利な製造方法を提案することにある。 Another object of the present invention is to provide a fluoride sprayed coating member that has good corrosion resistance and plasma erosion resistance by making the surface portion of the fluoride sprayed coating non-porous by remelting treatment by thermal energy irradiation. It is to provide and propose an advantageous method of manufacturing such a member.
従来技術が抱えている上述した課題を解決するため鋭意検討を重ねた結果、発明者らは以下に述べるような知見を得た。すなわち、基材の表面に被覆形成した白色のフッ化物溶射皮膜の表面を高エネルギー照射して再溶融すると、その再溶融部のみが局部的に黒化変化し、未溶融部の白色部と鮮明に区別できるようになることである。その様子は白紙に鉛筆や黒インクによって文字を書いたり、絵を描いたりするような識別力が得られるほどである。とくに、発明者らの知見では、フッ化物の白色溶射皮膜を局部的に再溶融して黒色化する高エネルギー照射処理の方法としてはレーザービームが適しており、一方、広い面積を再溶融しかつ黒色化する高エネルギー照射処理には電子ビーム照射が好適であることが判った。 As a result of intensive studies in order to solve the above-described problems of the prior art, the inventors have obtained the following knowledge. That is, when the surface of the white fluoride sprayed coating formed on the surface of the base material is irradiated with high energy and remelted, only the remelted portion is locally blackened, and the white portion of the unmelted portion is clearly visible. It will be possible to distinguish. The situation is such that the discriminating power of writing letters or drawing pictures with a pencil or black ink on white paper is obtained. In particular, according to the knowledge of the inventors, a laser beam is suitable as a method of high energy irradiation treatment for locally remelting a white spray coating of fluoride to blacken, while remelting a large area and It has been found that electron beam irradiation is suitable for high energy irradiation treatment for blackening.
このような知見の下に開発した本発明は、基材と、その表面に直接またはアンダーコートを介して形成された、元素の周期律表IIIa族元素のフッ化物白色溶射皮膜とからなるものにおいて、そのフッ化物白色溶射皮膜の表面に、高エネルギー照射処理して得られる黒色緻密層を設けたことを特徴とする黒色層を有するフッ化物溶射皮膜被覆部材である。 The present invention developed under such knowledge is composed of a base material and a fluoride white sprayed coating of a group IIIa element of the periodic table of elements formed directly or through an undercoat on the surface thereof. A fluoride sprayed coating member having a black layer, characterized in that a black dense layer obtained by high energy irradiation treatment is provided on the surface of the fluoride white sprayed coating.
また、本発明は、基材の表面に、直接またはアンダーコートを介して、元素の周期律表のIIIa族のYおよび原子番号57〜71のランタノイド系元素のフッ化物からなる多孔質な白色溶射皮膜を形成し、その後、そのフッ化物溶射皮膜の表面を高エネルギー照射処理して黒色緻密層にすることを特徴とする黒色層を有するフッ化物溶射皮膜被覆部材の製造方法を提案する。 Further, the present invention provides a porous white thermal spray comprising a fluoride of a group IIIa Y of the periodic table of elements and a lanthanoid element having an atomic number of 57 to 71 directly or via an undercoat on the surface of the substrate. A method for producing a fluoride sprayed coating-coated member having a black layer is proposed in which a coating is formed, and then the surface of the fluoride sprayed coating is irradiated with high energy to form a dense black layer.
なお、本発明では、以下のような構成にすることがより好ましい解決手段である。
(1) 前記フッ化物白色溶射皮膜は、気孔率が0.2〜20%の多孔質層で、全体の厚さが30〜500μmであって、そのうちの該溶射皮膜表面から0.1〜3μmまでの範囲が電子ビーム照射またはレーザビーム照射処理によって黒色緻密層に変化していること、
(2)前記アンダーコートは、Al、Al−Ni、Al−Zn、Ni−Al、Ni−Cr、Ni−Cr−Alのうちから選ばれる1種以上の金属質溶射皮膜を、30〜150μmの厚さに形成したものであること、
(3)前記フッ化物白色溶射皮膜は、元素の周期律表IIIa族のYおよび原子番号57〜71のランタノイド系元素から選ばれる1種以上の元素のフッ化物であること、
(4)前記高エネルギー照射処理によって形成される黒色緻密層の部分が、文字や数字、図形、模様あるいは社名や製造番号、識別番号を表示する部分であること、
(5)前記フッ化物白色溶射皮膜を120〜250℃に予熱したのち、前記高エネルギー処理を施し、次いで、1分間当り1℃以下の冷却速度で室温まで冷却すること、
(6)前記高エネルギー照射処理により、前記白色溶射皮膜の表面に、文字や数字、図形、模様あるいは社名や製造番号商標のような識別番号等を表示する黒色緻密化層を形成すること、
(7)白色のフッ化物白色溶射皮膜は、フッ化物溶射粉末材料を、大気プラズマ溶射法や減圧プラズマ溶射法、高速フレーム溶射法、低温溶射法(コールドスプレー法)などにより、基材の表面に灰色(乳白色)に被覆形成したものであってもよい。
(8)前記のフッ化物白色の溶射皮膜がレーザー や電子ビームなどの高エネルギー源に照射された際、溶融した溶射皮膜が照射後の冷却過程において化学的性質を消失することがない溶射皮膜に対して適用できるものである。従って、高蒸気圧AlF3のように高エネルギー照射時に昇華するような皮膜には、照射条件を検討する必要がある。
In the present invention, the following configuration is a more preferable solution.
(1) The fluoride white thermal spray coating is a porous layer having a porosity of 0.2 to 20%, and has an overall thickness of 30 to 500 μm, and 0.1 to 3 μm from the surface of the thermal spray coating. The range up to is changed to a black dense layer by electron beam irradiation or laser beam irradiation treatment,
(2) The undercoat is formed of 30-150 μm of one or more metallic sprayed coatings selected from Al, Al—Ni, Al—Zn, Ni—Al, Ni—Cr, and Ni—Cr—Al. Be formed to a thickness,
(3) The fluoride white thermal spray coating is a fluoride of one or more elements selected from Y of the periodic table IIIa group of elements and lanthanoid elements of atomic numbers 57 to 71,
(4) portion of the black dense layer formed by the high-energy irradiation treatment, letters and numbers, it is a part that displays graphics, patterns or company name, serial number, an identification number,
(5) Preheating the fluoride white spray coating to 120 to 250 ° C., then applying the high energy treatment, and then cooling to room temperature at a cooling rate of 1 ° C. or less per minute,
(6) By the high energy irradiation treatment, forming a black densified layer on the surface of the white thermal spray coating that displays letters, numbers, figures, patterns, or identification numbers such as company names and serial numbers,
(7) White fluoride white sprayed coating is applied to the surface of the substrate by fluoride spray powder material by atmospheric plasma spraying, reduced pressure plasma spraying, high-speed flame spraying, low temperature spraying (cold spraying), etc. It may be formed in gray (milky white).
(8) When the above-mentioned fluoride white sprayed coating is irradiated to a high energy source such as a laser or an electron beam, the molten sprayed coating does not lose its chemical properties in the cooling process after irradiation. It can be applied to. Therefore, it is necessary to examine irradiation conditions for a film that sublimes when irradiated with high energy, such as high vapor pressure AlF 3 .
本発明に係るフッ化物白色の溶射皮膜の黒色化技術は、次のような効果が期待できる。
(1)本発明によれば、表面が白色〜乳白色であるフッ化物溶射皮膜の外観色一部のみまたは全体を黒色化させることができる。
(2)本発明によれば、黒色化したフッ化物溶射皮膜表面が、緻密化すると共に結晶化する傾向が強いため、皮膜の気孔率の減少に伴う耐食性の向上と耐ハロゲン性などの化学的性質の安定性が向上する。
(3)本発明によれば、黒色化したフッ化物溶射皮膜の表面層は、0.1〜3μmの範囲に限定され、その下層部のフッ化物層は、成膜当初の状態(フッ化物の白色溶射皮膜のままの状態)で存在しているため、黒色化するための高エネルギー照射に起因する熱影響が表層部のみに限定される。そのため、基材に対するフッ化物溶射皮膜の密着性などに悪影響が出ることはなく、成膜時の良好な性状を維持することができる。
(4)本発明によれば、フッ化物白色溶射皮膜の黒色化のための熱源として、レーザビームと電子ビームを使用するため、熱源の特性を利用することによって、皮膜の全面はもとより、文字や数字、複雑な図形、模様を描くなど、部分的、局部的に黒色化させる場合などに対応でき、選択の自由度が高い。
a.具体的には、レーザ熱源を使用すると、ビームの直径を変化させたり、レンズなどを利用することによって、大小さまざまな黒い線をフッ化物白色溶射皮膜の表面に描くことができる。従って、これらのレーザ熱源の特性を利用することによって、白色の溶射皮膜の表面に黒色の線による各種の模様をはじめ、文字、数字、社名、商標、製品番号、記号などを自由に表現することに可能となる。例えば、本発明によれば、半導体加工用装置内に配設される各種のフツ化物溶射皮膜被覆部に対して、黒色の製造番号、管理番号、製造日、責任者名の記入を通して、品質管理体制を充実させることができる。
b.一方、電子ビーム照射の熱源は、広く表面のフッ化物溶射皮膜の黒色化に有利に使用するので、被覆面積の大きい部材の全体を黒色化する場合などに適している。また、フッ化物皮膜の表面層の極浅い層(例えば0.1μm厚さ)のみを黒色化して、実際の半導体加工装置内で使用すると、ハロゲンガスによる化学的腐食作用やプラズマエロージョン性などの物理的作用によって、発生する皮膜の不均等な消耗状況が可視化できる利点がある。そのため、消耗の不均等性を是正するための部材形状の変更や皮膜厚さの増減などの対策が可能となる。
なお、フッ化物溶射皮膜の表面を電子ビーム照射するに際して、予め文字や数字などを切り抜いた高分子膜を貼付し、その上から照射処理を行うと文字や数字のみが黒色として印刷されるので、レーザ照射を同様な目的に利用できる。
The following effects can be expected from the technology for blackening a sprayed white fluoride film according to the present invention.
(1) According to the present invention, only a part or the whole of the appearance color of the fluoride sprayed coating whose surface is white to milky white can be blackened.
(2) According to the present invention, since the surface of the blackened fluoride sprayed coating has a strong tendency to be densified and crystallized, the chemical resistance such as improvement in corrosion resistance and halogen resistance accompanying the decrease in the porosity of the coating is obtained. Improved property stability.
(3) According to the present invention, the surface layer of the blackened fluoride sprayed coating is limited to the range of 0.1 to 3 μm, and the fluoride layer in the lower layer portion is in the initial state of film formation (of fluoride The thermal effect resulting from high energy irradiation for blackening is limited only to the surface layer portion. Therefore, there is no adverse effect on the adhesion of the fluoride sprayed coating to the substrate, and good properties during film formation can be maintained.
(4) According to the present invention, a laser beam and an electron beam are used as a heat source for blackening the fluoride white spray coating. Therefore, by utilizing the characteristics of the heat source, not only the entire surface but also letters and It is possible to cope with the case of partial or local blackening such as drawing numbers, complicated figures, patterns, etc., and the degree of freedom of selection is high.
a. Specifically, when a laser heat source is used, various black lines can be drawn on the surface of the fluoride white spray coating by changing the diameter of the beam or using a lens or the like. Therefore, by utilizing the characteristics of these laser heat sources, it is possible to freely express various patterns such as black lines on the surface of the white thermal spray coating, as well as letters, numbers, company names, trademarks, product numbers, symbols, etc. It becomes possible. For example, according to the present invention, quality control is performed through the entry of the black production number, control number, date of manufacture, and the name of the person responsible for various types of fluoride sprayed coatings disposed in the semiconductor processing apparatus. The system can be enhanced.
b. On the other hand, the heat source for electron beam irradiation is widely used advantageously for blackening the fluoride spray coating on the surface, and is therefore suitable for the case where the entire member having a large coating area is blackened. In addition, if only the very shallow surface layer (for example, 0.1 μm thickness) of the fluoride film is blackened and used in an actual semiconductor processing apparatus, physical corrosion such as chemical corrosion by halogen gas or plasma erosion properties will occur. There is an advantage that an uneven consumption state of the generated film can be visualized by the action of the target. Therefore, it is possible to take measures such as changing the shape of the member and increasing / decreasing the film thickness to correct the unevenness of wear.
In addition, when irradiating the surface of the fluoride spray coating with an electron beam, a polymer film that has been previously cut out of letters and numbers is pasted, and if irradiation treatment is performed from there, only letters and numbers are printed as black, Laser irradiation can be used for similar purposes.
本発明によれば、さらに次のような効果も期待できる。
(5)上掲の構成に係る本発明によれば、フッ化物白色溶射皮膜に対して電子ビームやレーザビーム照射処理を施して該溶射皮膜の表面部分を再溶融することにより、その表面層部分の開気孔の他、該皮膜内部の空隙を通じて繋がる貫通気孔が、融着現象によって全て封鎖できるので、気孔の存在によって誘発される前述の腐食問題を確実に解決することができる。
(6)本発明によれば、フッ化物溶射皮膜を高エネルギー照射処理したときの再溶融層については、これが急冷されたときに該溶射皮膜の照射面において発生する“ひび割れ”が、基材の予熱や徐冷によってほぼ完全に消滅して無気孔化するので、部材の耐食性をより一層向上すると共に、半導体や液晶の製造・加工装置などに適用した場合に耐プラズマエロージョン性をより一層向上させることができる。
According to the present invention, the following effects can be expected.
(5) According to the present invention relating to the above structure, the surface layer portion of the fluoride white sprayed coating is subjected to an electron beam or laser beam irradiation treatment to remelt the surface portion of the sprayed coating. In addition to the open pores, all the through pores connected through the voids inside the coating can be blocked by the fusing phenomenon, so that the above-described corrosion problem induced by the presence of the pores can be reliably solved.
(6) According to the present invention, regarding the remelted layer when the fluoride sprayed coating is subjected to the high energy irradiation treatment, the “crack” generated on the irradiated surface of the sprayed coating when this is rapidly cooled Pre-heating and gradual cooling almost completely extinguish and make pores non-porous, further improving the corrosion resistance of members and plasma erosion resistance when applied to semiconductor and liquid crystal manufacturing and processing equipment. be able to.
以下、本発明の好適実施形態について説明する。図1は、本発明の方法を実施するための工程の流れを示したものである。以下、その工程順に沿って、本発明の構成の詳細を説明する。
(1)基材および前処理
本発明に適用できる基材は、Alおよびその合金、Tiおよびその合金、ステンレス鋼、その他の合金鋼や炭素鋼、Niおよびその合金などの金属、石英や酸化物、炭化物、硼化物、珪化物、窒化物、およびこれらの混合物からなる無機化合物の焼結体などが好適である。また、本発明に用いる基材としては、表面に金属めっき(電気めっき、CVD、PVD)したものも使用することができる。これらの基材については、必要に応じ、脱脂や粗面化などの前処理を施すことが好ましい。
Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows a process flow for carrying out the method of the present invention. Details of the configuration of the present invention will be described below in the order of the steps.
(1) Substrate and pretreatment The substrate applicable to the present invention is Al and its alloys, Ti and its alloys, stainless steel, other alloy steels and carbon steels, metals such as Ni and its alloys, quartz and oxides A sintered body of an inorganic compound made of carbide, boride, silicide, nitride, and a mixture thereof is preferable. Moreover, as a base material used for this invention, what carried out metal plating (electroplating, CVD, PVD) on the surface can also be used. About these base materials, it is preferable to perform pretreatments, such as degreasing and roughening, as needed.
(2)基材表面へのフッ化物白色溶射皮膜の形成方法
前述したように、前記基材表面にフッ化物溶射皮膜を形成するに当たっては、JIS H9302に規定されているセラミック溶射作業標準に準拠した前処理を行なうことが好ましい。例えば、基材表面の錆や油脂類などを除去し、その後、Al2O3やSiCなどの研削粒子を吹付けて粗面化し、その表面に直接または金属質のアンダーコートを施した後に、その上にトップコートとしてフッ化物溶射皮膜を形成する。そのフッ化物白色溶射皮膜を基材表面に被覆形成する方法としては、大気プラズマ溶射法や減圧プラズマ溶射法、高速フレーム溶射法などが好適に用いられるが、特には限定されない。
(2) Method of forming fluoride white sprayed coating on substrate surface As described above, in forming a fluoride sprayed coating on the substrate surface, it conformed to the ceramic spraying work standard defined in JIS H9302. Pretreatment is preferably performed. For example, after removing rust and oils and fats on the surface of the substrate, and then roughening by spraying grinding particles such as Al 2 O 3 and SiC, and directly applying a metallic undercoat on the surface, A fluoride sprayed coating is formed thereon as a top coat. As a method for forming the fluoride white sprayed coating on the substrate surface, an atmospheric plasma spraying method, a low pressure plasma spraying method, a high-speed flame spraying method, or the like is preferably used, but is not particularly limited.
前記基材上への前記フッ化物白色溶射皮膜の形成は、その表面に直接またはアンダーコートを介して間接的に行なう。そのアンダーコートとしては、AlやAl−Ni合金、Al−Zn合金、Ni−Cr合金、Ni−Al合金、Ni−Cr−Al合金などの金属質のものを、30〜150μmの厚さに施工するのが好ましい。 The formation of the fluoride white spray coating on the substrate is performed directly on the surface or indirectly through an undercoat. As the undercoat, metallic materials such as Al, Al—Ni alloy, Al—Zn alloy, Ni—Cr alloy, Ni—Al alloy, Ni—Cr—Al alloy are applied to a thickness of 30 to 150 μm. It is preferable to do this.
なお、これらのアンダーコートは、フレーム溶射、電気アーク溶射法、高速フレーム溶射法、各種プラズマ溶射法などによって成膜できるが、他の成膜方法であってもよい。 These undercoats can be formed by flame spraying, electric arc spraying, high-speed flame spraying, various plasma spraying methods, etc., but other film forming methods may be used.
(3)フッ化物溶射材料
本発明において用いられるフッ化物溶射皮膜形成用溶射材料としては、元素の周期律表IIIaのY、原子番号57〜71に属するランタノイド系元素のフッ化物の粒子が用いられる。即ち、原子番号57〜71の金属元素としては、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジズプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)などがある。
(3) Fluoride spray material As the spray material for forming a fluoride spray coating used in the present invention, fluoride particles of lanthanoid elements belonging to Y in the periodic table IIIa of elements and atomic numbers 57 to 71 are used. . That is, as the metal elements having atomic numbers 57 to 71, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), and the like.
これらの金属からなるフッ化物溶射材料としては、粒径5〜80μmに調整し生成りの色(原色)が略白色の粒子を用いる。この粒径のものに限定する理由は、5μm未満の細粒では溶射熱源中で加熱された際に分解されて粒子径がさらに小さくなって成膜するより飛散するものの方が多くなるからである。一方、80μm超の粒子では、溶射ガンへの送給速度が不安定になると共に、成膜された皮膜の気孔が大きくなる傾向が認められるからである。 As the fluoride spray material made of these metals, particles having a particle diameter of 5 to 80 μm and a generated color (primary color) of substantially white are used. The reason for limiting to this particle size is that fine particles of less than 5 μm are decomposed when heated in a thermal spraying heat source, and the particle size is further reduced, so that more particles are scattered than film formation. . On the other hand, when the particle size exceeds 80 μm, the feed rate to the thermal spray gun becomes unstable and the pores of the deposited film tend to increase.
前記フッ化物溶射材料を溶射して得られるフッ化物白色溶射皮膜は、30〜500μmの厚さとなるように施工するのがよい。特に、50〜200μmの範囲が好適である。その理由は、30μmよりも薄い膜では、均等な膜厚のものを得にくく、一方、500μmより厚く形成すると、フッ化物膜の形成時における残留応力が大きくなって、基材から剥離しやすくなるからである。 The fluoride white spray coating obtained by spraying the fluoride spray material is preferably applied so as to have a thickness of 30 to 500 μm. The range of 50 to 200 μm is particularly suitable. The reason is that with a film thinner than 30 μm, it is difficult to obtain a film with a uniform film thickness. On the other hand, when it is formed thicker than 500 μm, the residual stress at the time of forming the fluoride film increases, and it is easy to peel off from the substrate. Because.
(4)フッ化物白色溶射皮膜の特徴
フッ化物共通の物理化学的性質として次のように考えられる。即ち、このフッ化物白色溶射皮膜は、金属皮膜やセラミック皮膜と比較すると、ハロゲン系ガスに対する化学的安定性を有するが、表面エネルギーが小さいために皮膜を構成するフッ化物粒子の相互結合力および基材の密着強さが弱いという問題がある。また、この皮膜は、溶射熱源中で分解(酸化)、蒸気化(気化)、溶融、軟化などの諸現象が極めて短時間(1/100〜1/1000秒)のうちに進行したフッ化物粒子の集合体であることから、多孔質(面積率0.2〜20%)で、皮膜中には大きな残留応力が発生するため、基材が僅かに変形しただけでも、皮膜が剥離することが多い。加えて、フッ化物自体は延性に乏しいため、皮膜が容易に“ひび割れ”し、前記成膜時に発生する気孔部とともに、酸やアルカリ洗浄液などの内部浸入を招き、このことが基材の腐食原因となりやすい。従って、フッ化物そのものの耐食性は良好であるものの、その性質を有効に利用できないという問題もある。
(4) Features of Fluoride White Sprayed Coating As physicochemical properties common to fluorides, it is considered as follows. That is, this fluoride white thermal spray coating has chemical stability against halogen-based gas as compared to metal coating and ceramic coating, but the surface energy is small, so the mutual bonding force and basicity of fluoride particles constituting the coating. There is a problem that the adhesion strength of the material is weak. In addition, this film is a fluoride particle in which various phenomena such as decomposition (oxidation), vaporization (vaporization), melting, and softening proceed in an extremely short time (1/100 to 1/1000 seconds) in a thermal spray heat source. Since it is an aggregate of the material, it is porous (the area ratio is 0.2 to 20%), and a large residual stress is generated in the film. Therefore, even if the substrate is slightly deformed, the film may be peeled off. Many. In addition, since the fluoride itself has poor ductility, the film easily “cracks” and, together with the pores generated during the film formation, leads to internal penetration of acid and alkaline cleaning liquids, which causes the corrosion of the substrate. It is easy to become. Therefore, although the corrosion resistance of the fluoride itself is good, there is a problem that the property cannot be effectively used.
(5)フッ化物白色溶射皮膜表面への高エネルギー照射処理
そこで本発明では、基材表面に被覆した前記フッ化物白色溶射皮膜中に存在する貫通気孔部や残留応力に起因して発生する「ひび割れ」防止を、該皮膜表面を電子ビームまたはレーザビームなどの高エネルギー照射処理して再溶融させて緻密な膜にすると同時に、上述した目的に沿って黒色に変化させることにした。例えば、再溶融による緻密化と黒色化のための処理として、本発明では、下記のような高エネルギー照射処理、例えば、下記の条件の電子ビームの照射やレーザービームの照射が好適である。
(5) High energy irradiation treatment on the surface of the fluoride white thermal spray coating Therefore, in the present invention, “cracks generated due to through-pores and residual stress existing in the fluoride white thermal spray coating coated on the substrate surface. In order to prevent this, the surface of the film was subjected to high energy irradiation treatment such as an electron beam or a laser beam to be remelted to form a dense film, and at the same time, changed to black in accordance with the above-described purpose. For example, as the treatment for densification and blackening by remelting, the following high energy irradiation treatment, for example, electron beam irradiation or laser beam irradiation under the following conditions is suitable.
(a)電子ビーム照射処理
照射雰囲気:1×10−1〜5×10−3MPaの不活性ガス雰囲気
照射出力:10〜30KeV、好ましくは12〜20KeV
照射速度:1〜50mm/s、好ましくは3〜10mm/s
照射回数:1〜30回(連続または不連続)、好ましくは3〜8回、但し、1回の照射で皮膜は黒色化する。
(A) Electron beam irradiation treatment irradiation atmosphere: 1 × 10 −1 to 5 × 10 −3 MPa inert gas atmosphere irradiation output: 10 to 30 KeV, preferably 12 to 20 KeV
Irradiation speed: 1 to 50 mm / s, preferably 3 to 10 mm / s
Number of times of irradiation: 1 to 30 times (continuous or discontinuous), preferably 3 to 8 times, but the film turns black by one time of irradiation.
(b)レーザビーム照射処理
フッ化物白色照射皮膜の表面に対して、CO2レーザ、YAGレーザ、半導体レーザ、エキシマレーザなどのレーザ熱源を照射して、前記溶射皮膜表面を溶融する。レーザビーム照射処理の雰囲気は、空気中、不活性ガス中、減圧(真空)中など自由に選択できる。なお、レーザビーム照射条件としては、下記のようなものが推奨される。
レーザ出力:1〜10kW、好ましくは3〜6kW
ビーム面積:1〜10mm2、好ましくは1〜3mm2(数字・文字は1mm以下でも可)
ビーム走査速度:1〜20mm/s、好ましくは1〜3mm/s
照射回数:1〜30回(連続または不連続)、このましくは1〜3回、但し、1回の照射で皮膜は黒色化する。
(B) Laser beam irradiation treatment The surface of the fluoride white irradiation film is irradiated with a laser heat source such as a CO 2 laser, a YAG laser, a semiconductor laser, or an excimer laser to melt the surface of the sprayed film. The atmosphere of the laser beam irradiation treatment can be freely selected in the air, in an inert gas, or in a reduced pressure (vacuum). As the laser beam irradiation conditions, the following are recommended.
Laser power: 1-10 kW, preferably 3-6 kW
Beam area: 1 to 10 mm 2 , preferably 1 to 3 mm 2 (numbers and letters can be 1 mm or less)
Beam scanning speed: 1 to 20 mm / s, preferably 1 to 3 mm / s
Number of irradiations: 1 to 30 times (continuous or discontinuous), preferably 1 to 3 times, but the film turns black after one irradiation.
前記フッ化物白色溶射皮膜は、電子ビームやレーザビームのような高エネルギー照射処理によって、その表面層が溶融する。このことによって、該溶射皮膜表面には緻密層になると同時に黒色化する。この黒色化した緻密層は、表面からの深さが0.1〜3μm程度となるように照射条件を決定する。その理由は、0.1μmより薄い黒色緻密層では黒色の程度が薄くまた緻密性が不十分である。一方、3μmより厚くしても黒色化および緻密化の程度の照射効果が飽和するうえ、再溶融後の冷却過程において“ひび割れ”を起しやくなるからである。 The surface layer of the fluoride white sprayed coating is melted by high energy irradiation treatment such as electron beam or laser beam. As a result, the surface of the sprayed coating becomes a dense layer and at the same time blackens. The blackened dense layer determines the irradiation conditions so that the depth from the surface is about 0.1 to 3 μm. The reason is that a black dense layer thinner than 0.1 μm has a thin black level and insufficient denseness. On the other hand, even if it is thicker than 3 μm, the irradiation effect of the degree of blackening and densification is saturated and “cracking” is likely to occur in the cooling process after remelting.
次に、フッ化物白色溶射皮膜を前記の高エネルギー照射処理するに際しては、照射処理層の厚さを考慮(厚さ)して被処理基材を予熱すること、および照射後には徐冷することが好ましく、その条件として次のような管理を行なうことが好ましい。具体的には、高エネルギー照射処理前に、120〜250℃の温度に予熱し、その温度を維持しつつ高エネルギー照射を行い、該フッ化物白色溶射皮膜の表面を再溶融黒色化する。 Next, when the high-energy irradiation treatment of the fluoride white spray coating is performed, the substrate to be treated is preheated (thickness) in consideration of the thickness of the irradiation treatment layer, and gradually cooled after the irradiation. It is preferable to perform the following management as the condition. Specifically, before the high energy irradiation treatment, preheating is performed at a temperature of 120 to 250 ° C., high energy irradiation is performed while maintaining the temperature, and the surface of the fluoride white spray coating is remelted and blackened.
その後、該溶射皮膜を冷却速度:1℃/min以下の速度にて徐冷することが好ましい。その理由は、フッ化物溶射皮膜の熱伝導率が小さく延性に乏しいため、予熱せずに高エネルギー溶射処理してから、室温(15〜30℃)状態にまで自然冷却すると、照射面に前記セラミックス溶射皮膜面の再溶融後と同様な“ひび割れ”現象を発生するからである。このため、実際の予熱−照射処理−徐冷の各操作は、0.1〜10hPa減圧中で実施することが望ましい。それは、減圧雰囲気だと、予熱温度を利用して照射できるうえ、そのまま放冷しても急冷されることなく、フッ化物溶射皮膜の表面が平滑化すると共に割れの発生を防止できるからである。なお、後述する実施例における本発明に係るフッ化物溶射皮膜の高エネルギー照射処理は、すべての減圧中で処理したものである。 Thereafter, the sprayed coating is preferably slowly cooled at a cooling rate of 1 ° C./min or less. The reason for this is that the thermal conductivity of the fluoride spray coating is small and its ductility is poor. Therefore, after high-energy spraying without preheating, and then naturally cooling down to room temperature (15-30 ° C), the ceramic surface is exposed to the ceramic surface. This is because a “cracking” phenomenon similar to that after remelting of the sprayed coating surface occurs. For this reason, it is desirable to implement each operation of actual preheating-irradiation process-slow cooling in 0.1-10 hPa pressure reduction. This is because, in a reduced pressure atmosphere, irradiation can be performed using the preheating temperature, and the surface of the fluoride sprayed coating can be smoothed and cracking can be prevented without being rapidly cooled even if left as it is. In addition, the high energy irradiation process of the fluoride sprayed coating which concerns on this invention in the Example mentioned later is processed in all the pressure reductions.
(6)高エネルギー照射処理によるフッ化物溶射皮膜の表面処理事例
図2は、本発明に係るYF3フッ化白色物溶射皮膜表面への高エネルギー照射による処理事例を示したものである。
a.図2(a)は、白色溶射皮膜を成膜直後のYF3フッ化物溶射皮膜、同図(b)は、そのひまく表面を電子ビーム照射処理した該皮膜表層部(外観)を示すものである。成膜直後のフッ化物溶射皮膜は、白色(乳白色)を呈しているが、この表面を電子ビーム照射すると、全面が均等に黒色化し、両者の色別が容易となるほか、黒色化によって熱放射特性を発揮するようになることがうかがえる。
(6) Surface treatment Case Figure 2 fluoride sprayed coating by high-energy irradiation treatment, shows the processing examples by high energy irradiation of the YF 3 fluoride white product sprayed coating surface according to the present invention.
a. 2 (a) is, YF 3 fluoride spray coating immediately after deposition white sprayed coating, Fig. (B) is intended to indicate said coating surface portion that electron beam irradiation treatment the film surface an exterior is there. The fluoride sprayed coating immediately after film formation is white (milky white), but when this surface is irradiated with an electron beam, the entire surface is blackened evenly, making it easy to distinguish between the two colors, and heat radiation due to blackening It seems that it comes to show the characteristic.
次に、図3(a)は、YF3フッ化白色物溶射皮膜の表面をレーザビームを照射して、四角状の模様を描いた例を示したものである。図3(b)は、同じくフッ化物溶射皮膜の表面を、レーザビーム照射によって、社名をアルファベット記載したものであり、白色の溶射皮膜表面に黒色の英文社名が明瞭に印字されている。 Next, FIG. 3 (a), the surface of the YF 3 fluoride white product sprayed coating by irradiating a laser beam, there is shown an example depicting a square-shaped pattern. In FIG. 3B, the surface of the fluoride sprayed coating is similarly written with laser beam irradiation and the company name is written in alphabet, and the black English company name is clearly printed on the surface of the white sprayed coating.
以上の説明から明らかなように、フッ化物白色溶射皮膜の表面に対して、レーザービームや電子ビーム照射することによって、白色溶射皮膜の全面および局部を黒色化することができる。従って、この現象を利用すれば、溶射皮膜の表面に、文字や数字、図形、模様あるいは社名、商標などを自由に記載することができ、また、デザイン化することも可能である。 As is clear from the above description, the entire surface and local portion of the white sprayed coating can be blackened by irradiating the surface of the fluoride white sprayed coating with a laser beam or an electron beam. Therefore, if this phenomenon is used, letters, numbers, figures, patterns, company names, trademarks, etc. can be freely described on the surface of the thermal spray coating, and it is also possible to design them.
なお、高エネルギー照射部が黒色に変化する理由については、汎用の光学顕微鏡、電子顕微鏡、X線回折装置などによる試験や解析では明かでないが、今後、放射光を利用した解析装置による試験を行って、黒色化機構を解明する予定である。 The reason why the high-energy irradiation part changes to black is not clear from tests and analysis using general-purpose optical microscopes, electron microscopes, X-ray diffractometers, etc., but in the future, tests using analyzers using synchrotron radiation will be conducted. We plan to elucidate the mechanism of blackening.
(実施例1)
この実施例では、基材に相当するSS400鋼試験片(寸法:幅50mm×縦70mm×厚3.2mm)の表面に直接、YF3、CeF3、ErF3のフッ化物溶射皮膜を、大気プラズマ溶射法によってそれぞれ100μmの厚さに形成し、その後、その溶射皮膜表面を高エネルギー照射して黒色の再溶融化した黒色緻密層を形成したものを準備し、該皮膜の貫通気孔の有無をフェロキシル試験方法によって調査した。なお、比較例として、高エネルギー照射処理をしないフッ化物白色溶射皮膜および耐プラズマエロージョン用溶射皮膜として知られているY2O3溶射皮膜についても、高エネルギー照射の有無を変動因子としてフェロキシル試験に供した。
Example 1
In this example, a fluoride sprayed coating of YF 3 , CeF 3 , and ErF 3 was directly applied to the surface of an SS400 steel test piece (size: width 50 mm × length 70 mm × thickness 3.2 mm) corresponding to the base material, and atmospheric plasma. Each was formed to a thickness of 100 μm by a thermal spraying method, and then the surface of the thermal spray coating was irradiated with high energy to form a black dense layer obtained by remelting black. It was investigated by the test method. In addition, as a comparative example, the fluoride white thermal spray coating without high energy irradiation treatment and the Y 2 O 3 thermal spray coating known as plasma erosion-resistant thermal spray coating were also subjected to the ferroxyl test with the presence or absence of high energy irradiation as a variable factor. Provided.
(1)フェロキシル試験(塩基噴霧試験)
このフェロキシル試験としては、ヘキサシアノ鉄(III)酸カリウム10gおよび塩化ナトリウム15gを1リットルの蒸留水に溶解し、これを分析用のろ紙に十分含浸させ、その後、このろ紙を試験片表面に貼付し、30分間静置した後、ろ紙を剥がして、ろ紙面での青色斑点の有無を目視判定する方法によった。この方法によれば、アモルファス状膜に貫通気孔が存在するとフェロキシル試験液が浸透し、鉄基材界面に達して鉄イオンを生成させ、これにヘキサシアノ(III)酸カリウム塩が反応して、ろ紙の表面に青色斑点を生成することによって判定することができる。
(1) Feroxyl test (base spray test)
In this ferroxyl test, 10 g of potassium hexacyanoferrate (III) and 15 g of sodium chloride were dissolved in 1 liter of distilled water, and this was sufficiently impregnated into a filter paper for analysis, and then this filter paper was affixed to the surface of the test piece. After leaving still for 30 minutes, the filter paper was peeled off, and the presence or absence of blue spots on the filter paper surface was visually judged. According to this method, if there are through-pores in the amorphous membrane, the ferroxyl test solution penetrates, reaches the iron base interface and generates iron ions, and this reacts with potassium hexacyano (III) acid, and filter paper. Can be determined by generating blue spots on the surface of the surface.
(2)試験結果
上記試験結果を表1に示した。この表に示す結果から明らかなように、フッ化物溶射皮膜、酸化物溶射皮膜(Y2O3)のいずれも成膜状態のままでは皮膜に多くの貫通気孔が存在するため、青色斑点が多数発生した(No.1、4、7、10)。また、酸化物溶射皮膜では(No.11、12)高エネルギー照射処理を行って皮膜表面を再溶融しても、溶融部の冷却過程において、皮膜に“ひび割れ”が発生するため、青色斑点数は少なくなるものの完全な緻密膜とはならなかった。
これに対して、フッ化物白色溶射皮膜を高エネルギー照射処理すると、皮膜の再溶融現象によって成膜時の貫通気孔部が消滅し、青色斑点は殆ど認められなくなり、酸、アルカリ、洗浄水などの内部浸入防止効果のあることが確認された。
(2) Test results The test results are shown in Table 1. As is apparent from the results shown in this table, there are many blue spots because both the fluoride spray coating and the oxide spray coating (Y 2 O 3 ) have many through-pores in the coating state. (No. 1, 4, 7, 10). In addition, in oxide sprayed coatings (Nos. 11 and 12), even when high-energy irradiation treatment is performed and the coating surface is re-melted, “cracking” occurs in the coating in the cooling process of the melted part. Although the score was reduced, it was not a complete dense film.
On the other hand, when high-energy irradiation treatment is applied to the fluoride white sprayed coating, the through-pores at the time of film formation disappear due to the remelting phenomenon of the coating, and blue spots are hardly observed, such as acid, alkali, washing water, etc. It was confirmed that there was an effect of preventing internal penetration.
(実施例2)
この実施例では、Al基材(寸法:幅50mm×縦50mm×厚3mm)の表面に、大気プラズマ照射法によって、いずれも白色のフッ化物(YF3、DyF3、CeF3)を80μmの厚さに溶射した後、その表面に対して電子ビーム照射またはレーザビーム照射を行なって再溶融処理して表面を黒色緻密層としたものを供試皮膜とし、これをプラズマエッチング処理を行なって、それぞれの皮膜の耐エロージョン性を評価した。なお、比較例の皮膜として、Y2O3、Dy2O3、CeO2 12mass%Y2O3−88mass%ZrO2溶射皮膜についても同条件でプラズマエッチング処理を行なって比較検討した。
(Example 2)
In this example, the surface of an Al base (dimensions: width 50 mm × length 50 mm × thickness 3 mm) is 80 μm thick with white fluoride (YF 3 , DyF 3 , CeF 3 ) by an atmospheric plasma irradiation method. After the thermal spraying, the surface was irradiated with an electron beam or a laser beam and remelted to form a black dense layer on the surface, and this was subjected to plasma etching, The erosion resistance of the film was evaluated. In addition, as a film of the comparative example, Y 2 O 3 , Dy 2 O 3 , CeO 2 12 mass% Y 2 O 3 -88 mass% ZrO 2 sprayed film were also subjected to a plasma etching treatment under the same conditions for comparison.
以下にプラズマエッチング雰囲気ガス組成と条件を示す。
(1)雰囲気ガスと流量条件
(a)含Fガス:CHF3/O2/Ar=80/100/160(1分間当りの流量cm3)
(b)含CHガス:C2H2/Ar=80/100(1分間当りの流量cm3)
(2)プラズマ照射出力
高周波電力:1300W
圧力:4Pa
温度:60℃
(3)プラズマエッチング試験の雰囲気
(a)含Fガス雰囲気中で実施
(b)含CHガス雰囲気中で実施
(C)含Fガス雰囲気1h⇔含CHガス雰囲気1hを交互に繰返す雰囲気中で実施
The plasma etching atmosphere gas composition and conditions are shown below.
(1) Atmospheric gas and flow rate conditions (a) F-containing gas: CHF 3 / O 2 / Ar = 80/100/160 (flow rate cm 3 per minute)
(B) CH-containing gas: C 2 H 2 / Ar = 80/100 (flow rate cm 3 per minute)
(2) Plasma irradiation output high frequency power: 1300W
Pressure: 4Pa
Temperature: 60 ° C
(3) Plasma etching test atmosphere (a) Conducted in an F-containing gas atmosphere (b) Implemented in a CH-containing gas atmosphere (C) Implemented in an atmosphere in which an F-containing gas atmosphere 1h and a CH-containing gas atmosphere 1h are alternately repeated
(4)評価方法
耐プラズマエロージョン試験は、エッチング処理によって供試皮膜から飛散する皮膜成分のパーティクル数を計測することによって、耐プラズマエロージョン性と耐環境汚染性を調査した。パーティクル類は、試験容器内に配設した直径8インチのシリコンウエハーの表面に付着する粒径0.2μm以上の粒子数が30個に達するまでの時間を測定することにより実施した。
(4) Evaluation Method In the plasma erosion resistance test, the plasma erosion resistance and the environmental pollution resistance were investigated by measuring the number of particles of the film component scattered from the test film by etching treatment. The particles were measured by measuring the time required for the number of particles having a particle size of 0.2 μm or more attached to the surface of an 8-inch diameter silicon wafer disposed in the test container to reach 30 particles.
(5)試験結果
試験結果を表2に示した。この表に示す結果から明らかなように、比較例の溶射皮膜(Nパーティクル発生量が許容値を超えるまでの時間を示した場合、含CHガス中ではパーティクルの発生が少なく、含Fガス中ではやや多くなり、許容値に達する時間が短くなる状況が見られる。しかし、含Fガスと含CHガスを交互に繰返す雰囲気下におけるパーティクル発生数は一段と多くなっていることが判明した。この原因は、含Fガス中におけるフッ化ガスの酸化作用とCHガスの還元作用の繰返しによって、酸化物セラミック皮膜の表面の酸化膜が常に不安定な状態となって飛散するためと考えられる。これに対して、皮膜表面に黒色緻密層を有するフッ化物溶射皮膜(No.2、4、6)は、含Fガス中、含CHガス中およびこれらのガスを交互に繰返し雰囲気中に供給した場合でも化学的に安定な状態を維持し、パーティクルの発生を抑制したものと考えられる。なお、フッ化物溶射皮膜からエロージョンにより削り取られるパーティクルの大きさは、酸化物セラミックからなる溶射皮膜に比較して1/5〜1/10程度小さいのものが多い点も耐環境汚染性をよくしているものと考えられる。
(5) Test results The test results are shown in Table 2. As is apparent from the results shown in this table, the thermal spray coating of the comparative example (when the time until the N particle generation amount exceeds the allowable value is shown, the generation of particles is small in the CH-containing gas, and in the F-containing gas. It is found that the number of particles generated in an atmosphere where F-containing gas and CH-containing gas are alternately repeated is further increased due to a slight increase in the time required to reach the permissible value. This is probably because the oxide film on the surface of the oxide ceramic film is always in an unstable state and scattered due to the repetition of the oxidizing action of the fluorinated gas and the reducing action of the CH gas in the F-containing gas. The fluoride sprayed coating (No. 2, 4, 6) having a black dense layer on the coating surface is in an atmosphere containing F gas, CH gas, and these gases alternately and repeatedly. It is considered that the chemical stable state is maintained even when it is supplied, and the generation of particles is suppressed.The size of particles scraped off from the fluoride sprayed coating by erosion is the same as that of the oxide sprayed ceramic coating. It is considered that the environmental contamination resistance is also improved because many of them are smaller by about 1/5 to 1/10.
(実施例3)
この実施例では、本発明に係る皮膜表面を黒色化したフッ化物溶射皮膜の耐プラズマエロ−ジョン性を調査した。
(1)供試皮膜、
基材として、JIS−H4000に規定のA3003〔寸法:幅50mm×縦50mm×厚5mm〕を用い、その表面に、大気プラズマ溶射法によって白色のYF3溶射材料を、そして、減圧プラズマ溶射法によって白色のEuF3溶射材料を、それぞれ80μmの厚さのフッ化物白色溶射皮膜を形成した。また、このフッ化物白色溶射皮膜の形成に先立って、アンダーコート(Ni−20mass%Cr)を30μmの厚さに施工した場合についても、その影響の有無を調査した。
上記のフッ化物白色溶射皮膜の表面に対して、電子ビームおよびレーザビームを照射して、それぞれの溶射皮膜の表層部全面を黒色化すると同時に再熔融処理に伴う緻密化を行なった。なお、比較例の溶射皮膜として、高エネルギー照射を実施しないフッ化物白色溶射皮膜を準備した。
(Example 3)
In this example, the plasma erosion resistance of a fluoride sprayed coating with a blackened coating surface according to the present invention was investigated.
(1) Test film,
A3003 (dimensions: width 50 mm × length 50 mm × thickness 5 mm) defined in JIS-H4000 is used as a base material, white YF 3 spraying material is applied to the surface by an atmospheric plasma spraying method, and by a low pressure plasma spraying method. Fluoride white sprayed coatings each having a thickness of 80 μm were formed from the white EuF 3 sprayed material. Further, prior to the formation of this fluoride white sprayed coating, whether or not an undercoat (Ni-20 mass% Cr) was applied to a thickness of 30 μm was investigated.
The surface of the above-mentioned fluoride white sprayed coating was irradiated with an electron beam and a laser beam to blacken the entire surface layer portion of each sprayed coating, and at the same time, densified with remelting treatment. In addition, the fluoride white thermal spray coating which does not implement high energy irradiation was prepared as the thermal spray coating of a comparative example.
(2)耐プラズマエロージョン試験方法
耐プラズマエロージョン試験は、実施例2の含Fガス雰囲気中で同条件で実施し、
試験結果の評価は試験終了後の各皮膜の減少厚さを測定することによって判定した。
(2) Plasma erosion resistance test method The plasma erosion resistance test was performed under the same conditions in the F-containing gas atmosphere of Example 2,
The evaluation of the test result was determined by measuring the reduced thickness of each coating after the test was completed.
(3)試験結果
試験結果を表3に示した。この表に示す結果から明らかなように、比較例の白色フッ化物皮膜(No.1、4、7、10)は、アンダーコートの有無に拘らず、プラズマエロージョン損失量が最も多く、2.2〜2.7μmに達した。これに対して、フッ化物白色溶射皮膜の表面を高エネルギー照射して得られた黒色緻密層を表面に形成した溶射皮膜(No.2、3、5、6、8、9、11、12)では損失量は0.6〜0.8μmの範囲にとどまり、優れた耐プラズマエロージョン性が確認された。
また、エロージョン損失量は、大気プラズマ溶射法で形成された多孔質なフッ化物白色皮膜(No.1.4)の方が、気孔率の小さい減圧プラズマ法による皮膜よりやや多くなっていることから、フッ化物溶射皮膜の気孔率が、この種の耐プラズマエロージョン特性に影響を与えることが窺え、皮膜表面が平滑でプラズマ粒子の集中的衝撃の目標とならない平滑な黒色緻密層が有利であることが認められる。
(3) Test results Table 3 shows the test results. As is apparent from the results shown in this table, the white fluoride film (No. 1, 4, 7, 10) of the comparative example has the largest amount of plasma erosion loss regardless of the presence or absence of the undercoat. It reached ˜2.7 μm. In contrast, a thermal spray coating (No. 2, 3, 5, 6, 8, 9, 11, 12) formed on the surface of a dense black layer obtained by irradiating the surface of the fluoride white thermal spray coating with high energy. However, the loss amount was in the range of 0.6 to 0.8 μm, and excellent plasma erosion resistance was confirmed.
In addition, the amount of erosion loss is slightly higher in the porous fluoride white coating (No. 1.4) formed by the atmospheric plasma spraying method than in the reduced-pressure plasma coating with a low porosity. The porosity of the fluoride sprayed coating can affect this type of plasma erosion resistance, and a smooth black dense layer that has a smooth coating surface and is not a target for concentrated impact of plasma particles is advantageous. Is recognized.
本発明に係る技術は、高度な耐ハロゲン腐食性と耐プラズマエロージョン性とが要求されている半導体の精密加工装置用部材に適用することができる。具体的には、ハロゲンおよびその化合物を含む処理ガスを用いて、プラズマ理される装置に配設されているテッポシールド、バッフルプレート、フォーカスリング、インシュレータリング、シルドリング、ベローズカバー、電極などに加え、類似のガス雰囲気の化学プラント装置用部材などの耐食皮膜として利用できる。 The technology according to the present invention can be applied to a member for a precision processing apparatus of a semiconductor that is required to have high halogen corrosion resistance and plasma erosion resistance. Specifically, using a processing gas containing halogen and its compound, in addition to the Teppo shield, baffle plate, focus ring, insulator ring, sill ring, bellows cover, electrode, etc., which are disposed in the plasma-treated apparatus, It can be used as a corrosion-resistant film for chemical plant equipment members having similar gas atmospheres.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012006984A JP5463555B2 (en) | 2012-01-17 | 2012-01-17 | Fluoride spray-coated member having black layer and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012006984A JP5463555B2 (en) | 2012-01-17 | 2012-01-17 | Fluoride spray-coated member having black layer and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013147680A JP2013147680A (en) | 2013-08-01 |
JP5463555B2 true JP5463555B2 (en) | 2014-04-09 |
Family
ID=49045483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012006984A Active JP5463555B2 (en) | 2012-01-17 | 2012-01-17 | Fluoride spray-coated member having black layer and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5463555B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5406324B2 (en) * | 2012-03-05 | 2014-02-05 | トーカロ株式会社 | Blackening method of white fluoride spray coating and fluoride spray coating covering member having black layer on surface |
JP5406323B2 (en) * | 2012-03-05 | 2014-02-05 | トーカロ株式会社 | Blackening method of white fluoride spray coating and fluoride spray coating covering member having black layer on surface |
JP5406317B2 (en) * | 2012-02-03 | 2014-02-05 | トーカロ株式会社 | Blackening method of white fluoride spray coating and fluoride spray coating covering member having black layer on surface |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0715141B2 (en) * | 1982-11-26 | 1995-02-22 | 株式会社東芝 | Heat resistant parts |
JPS61104062A (en) * | 1984-10-23 | 1986-05-22 | Tsukishima Kikai Co Ltd | Method for sealing pore of metallic or ceramic thermally sprayed coated film |
-
2012
- 2012-01-17 JP JP2012006984A patent/JP5463555B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013147680A (en) | 2013-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100939403B1 (en) | Ceramic Coating Member for Semiconductor Processing Apparatus | |
JP5521184B2 (en) | Method for producing fluoride spray coating coated member | |
JP2007247043A (en) | Method for producing ceramic-coated member for semiconductor working apparatus | |
JP2018184657A (en) | Oxy yttrium fluoride thermal spray coating, method for manufacturing the same, and thermal spray member | |
JP5568756B2 (en) | Cermet sprayed coating member excellent in corrosion resistance and plasma erosion resistance and method for producing the same | |
JP2010229492A (en) | Method for modifying surface of white yttrium oxide thermal-sprayed film, and member coated with yttrium oxide thermal-sprayed film | |
US20150064406A1 (en) | Method for forming fluoride spray coating, and fluoride spray coating covered member | |
JP5463555B2 (en) | Fluoride spray-coated member having black layer and method for producing the same | |
JP5167491B2 (en) | Thermal spray coating coated member with excellent corrosion resistance and plasma erosion resistance and crack prevention method for thermal spray coating treated with high energy irradiation | |
KR101617984B1 (en) | Method for blackening white fluoride spray coating, and fluoride spray coating covering member having black layer on surface | |
JP2008266724A (en) | Surface treatment method for thermal spray coating, and surface-treated thermal spray coating | |
JP5939592B2 (en) | Method for forming fluoride spray coating | |
JP5597840B2 (en) | Fluoride film-coated cermet composite film-coated member and method for producing the same | |
JP5629898B2 (en) | Method for forming cermet film excellent in plasma erosion resistance and cermet film coated member | |
JP5526364B2 (en) | Method of modifying the surface of white yttrium oxide sprayed coating | |
JP5651848B2 (en) | Fluoride cermet composite coating member and method for producing the same | |
JP5406323B2 (en) | Blackening method of white fluoride spray coating and fluoride spray coating covering member having black layer on surface | |
JP5406324B2 (en) | Blackening method of white fluoride spray coating and fluoride spray coating covering member having black layer on surface | |
JP5406317B2 (en) | Blackening method of white fluoride spray coating and fluoride spray coating covering member having black layer on surface | |
JP5119429B2 (en) | Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same | |
JP5720043B2 (en) | Powder material for cermet thermal spraying excellent in corrosion resistance and plasma erosion resistance and method for producing the same | |
JP5858431B2 (en) | Method for forming fluoride sprayed coating and member coated with fluoride sprayed coating | |
JP5524993B2 (en) | Method for forming fluoride sprayed coating and member coated with fluoride sprayed coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5463555 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |