[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5460991B2 - Linear motor stator - Google Patents

Linear motor stator Download PDF

Info

Publication number
JP5460991B2
JP5460991B2 JP2008249717A JP2008249717A JP5460991B2 JP 5460991 B2 JP5460991 B2 JP 5460991B2 JP 2008249717 A JP2008249717 A JP 2008249717A JP 2008249717 A JP2008249717 A JP 2008249717A JP 5460991 B2 JP5460991 B2 JP 5460991B2
Authority
JP
Japan
Prior art keywords
stator
linear motor
mover
magnetic
salient pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008249717A
Other languages
Japanese (ja)
Other versions
JP2010081769A (en
Inventor
庸市 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2008249717A priority Critical patent/JP5460991B2/en
Publication of JP2010081769A publication Critical patent/JP2010081769A/en
Application granted granted Critical
Publication of JP5460991B2 publication Critical patent/JP5460991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

本発明は、工作機械等の産業機械で使用するリニアモータの固定子に関する。   The present invention relates to a stator for a linear motor used in industrial machines such as machine tools.

従来から、工作機械等の産業機械では、高速、高精度化を実現するための手段としてリニアモータが使用されている。このようなリニアモータの中で、特に長ストロークの機械において、高価な永久磁石を可動子側に配置することで、永久磁石の使用量を少なくして、モータの低コスト化を実現したリニアモータが特許文献1に開示されている。   Conventionally, in an industrial machine such as a machine tool, a linear motor has been used as a means for realizing high speed and high accuracy. Among such linear motors, especially in long-stroke machines, the use of expensive permanent magnets on the mover side reduces the amount of permanent magnets used and realizes cost reduction of the motor. Is disclosed in Patent Document 1.

図4は、特許文献1に開示された従来のリニアモータを示すもので、(a)は断面構造図、(b)は永久磁石の着磁方向を示す図である。図4(a)において、12は固定子であり例えば工作機械のベッドに固定される。固定子12は、電磁鋼板等の軟磁性体で形成され、表面にはピッチPで固定子突極10が形成されている。また、11は可動子であり例えば工作機械のテーブルに固定され、工作機械のベッドとテーブル間に設けたころがりガイド等で図4のX軸方向に移動可能に支持される。可動子11も固定子12と同様、例えば電磁鋼板を積層して形成される。さらに、13,14,15は可動子11を構成するU,V,W相のティースであり、それぞれがX軸方向に相対的に電気角120°に相当する(P/3)ピッチだけずらして配置されている。   4A and 4B show a conventional linear motor disclosed in Patent Document 1, in which FIG. 4A is a cross-sectional structure diagram, and FIG. 4B is a diagram showing a magnetization direction of a permanent magnet. In FIG. 4A, reference numeral 12 denotes a stator which is fixed to, for example, a machine tool bed. The stator 12 is made of a soft magnetic material such as an electromagnetic steel plate, and the stator salient poles 10 are formed on the surface with a pitch P. Reference numeral 11 denotes a mover, which is fixed to a table of a machine tool, for example, and is supported so as to be movable in the X-axis direction of FIG. 4 by a rolling guide or the like provided between the bed of the machine tool and the table. Similarly to the stator 12, the mover 11 is formed by laminating electromagnetic steel plates, for example. Further, 13, 14 and 15 are teeth of U, V and W phases constituting the mover 11, and each is shifted by a (P / 3) pitch corresponding to an electrical angle of 120 ° relative to the X-axis direction. Has been placed.

16,17,18は各ティースに巻回されたU,V,W相の交流巻線、19は可動子11の表面にN,S,N,・・の順に交互に配置された永久磁石であり、各相ティースには図4(b)で示すようにN,Sを一組とすると3組の永久磁石がピッチPで配置されている。20は可動子磁気ヨーク、21は固定子磁気ヨーク、22は交流巻線16,17,18にU→VWの方向に電流を与えた状態における磁束の様子を表している。尚、交流巻線16,17,18は、図5に示すようにU相,V相,W相が中性点で接続されているスター巻線に結線されている。   16, 17, and 18 are U, V, and W-phase AC windings wound around each tooth, and 19 is a permanent magnet that is alternately arranged in the order of N, S, N,. Each phase tooth has three sets of permanent magnets arranged at a pitch P, where N and S are a set, as shown in FIG. Reference numeral 20 denotes a mover magnetic yoke, 21 denotes a stator magnetic yoke, and 22 denotes a state of magnetic flux in a state where a current is applied to the AC windings 16, 17, and 18 in the direction of U → VW. The AC windings 16, 17, and 18 are connected to star windings in which the U phase, V phase, and W phase are connected at neutral points as shown in FIG.

いま、交流巻線16,17,18に電流を印加すると、3相のティースはY軸方向のプラスあるいはマイナス方向に励磁される。その際、永久磁石19のうち、交流巻線の励磁方向と同一の磁性方向に配置された永久磁石の磁束は強められ、励磁方向と反対の磁性方向に配置された永久磁石の磁束は弱められるため、各相のティースはN極もしくはS極のどちらか一方に励磁され、N極もしくはS極の大きな一つの磁極となる。そして各ティースおよび固定子側を通過した磁束は図4の22に示すような閉ループを構成する。この時、可動子と固定子に位置に応じた磁気吸引力が生ずることで、可動子に推力が発生する。   Now, when a current is applied to the AC windings 16, 17, and 18, the three-phase teeth are excited in the positive or negative direction in the Y-axis direction. At this time, among the permanent magnets 19, the magnetic flux of the permanent magnets arranged in the same magnetic direction as the excitation direction of the AC winding is strengthened, and the magnetic flux of the permanent magnets arranged in the magnetic direction opposite to the excitation direction is weakened. Therefore, the teeth of each phase are excited to either the N pole or the S pole, and become one magnetic pole having a large N pole or S pole. And the magnetic flux which passed each tooth | gear and the stator side comprises a closed loop as shown by 22 of FIG. At this time, a magnetic attraction force corresponding to the position is generated in the mover and the stator, so that a thrust is generated in the mover.

さらに詳しく磁束の流れについて説明する。いま、U→V,W相、すなわち交流巻線16は図示した巻線方向、交流巻線17,18には図示した巻線方向と反対方向に電流を流すと、図4のティース13はS極に、ティース14,15はN極になり、磁束22で示すように、磁束はティース13からティース14,15に流れ、つぎに固定子12を通って再びティース13に戻るという磁路を形成する。すると、可動子11にはX軸方向に磁気吸引力が働き推力が発生する。   The flow of magnetic flux will be described in more detail. If the current flows in the U → V, W phase, that is, the AC winding 16 is in the winding direction shown in the figure and the AC windings 17 and 18 are in the opposite direction to the winding direction shown in the figure, the teeth 13 in FIG. At the poles, the teeth 14 and 15 become N poles, and as shown by the magnetic flux 22, the magnetic flux flows from the teeth 13 to the teeth 14 and 15, and then passes through the stator 12 and returns to the teeth 13 again. To do. Then, a magnetic attraction force acts on the mover 11 in the X-axis direction to generate a thrust.

図4に示した従来のリニアモータの特徴は、高価な永久磁石を可動子側に配置しているので、リニアモータのストロークが長くなる場合には永久磁石の使用量が少なく済むため、リニアモータの低コスト化を実現できることである。また、可動子の永久磁石19で構成された各相の複数の磁極を一つの巻線で励磁する巻線方式にしたので、巻線長が短くなり、電流が巻線内を流れる電機抵抗による損失、いわゆる銅損が小さくなり効率が高くなるという特徴も有する。   The feature of the conventional linear motor shown in FIG. 4 is that an expensive permanent magnet is arranged on the side of the mover. Therefore, when the stroke of the linear motor becomes long, the amount of permanent magnet used can be reduced. The cost reduction can be realized. In addition, since a plurality of magnetic poles of each phase composed of the permanent magnet 19 of the mover are excited by one winding, the winding length is shortened, and the electric current flows through the winding due to the electrical resistance. There is also a characteristic that loss, so-called copper loss, is reduced and efficiency is increased.

尚、交流巻線の接続方法については、図5に示したスター巻線の他にも、Δ巻線を採用することも可能である。   In addition to the star winding shown in FIG. 5, a Δ winding can be adopted as a method for connecting the AC winding.

図6は従来技術による一般的な固定子12を示す図である。ステータに発生する渦電流を減らすために、電磁鋼板を積層して構成される。また、可動子との間に発生する磁気吸引力により固定子が変形し、モータ特性が低下したり、可動子と固定子が接触したりすることを避けるために、電磁鋼板を接着材で固定して剛性を上げている。   FIG. 6 is a view showing a general stator 12 according to the prior art. In order to reduce the eddy current generated in the stator, the magnetic steel sheets are laminated. In addition, the magnetic steel sheet is fixed with an adhesive to prevent the stator from being deformed by the magnetic attractive force generated between the mover and the motor characteristics being deteriorated or the mover and the stator being in contact with each other. To increase rigidity.

特開2005−185061号公報JP 2005-185061 A

しかし、上述したような従来のリニアモータの固定子には以下に説明するような課題があった。   However, the conventional linear motor stator as described above has the following problems.

積層される各電磁鋼板の表面には、磁気絶縁コーティングが施されているため、嫌気性接着材等の自然硬化型の接着材では、接着強度が弱く使用できない。そこで、エポキシ系の熱硬化型の接着材や、あらかじめ接着材がコーティングされた接着コート付き電磁鋼板を使用するのが一般的である。接着材を塗布して積層した固定子は、120℃から200℃程度の炉に一定時間入れられ硬化させる。   Since the surface of each laminated steel sheet is magnetically coated, the adhesive strength is weak and cannot be used with a naturally curable adhesive such as an anaerobic adhesive. Therefore, it is common to use an epoxy thermosetting adhesive or an electrical steel sheet with an adhesive coat that has been previously coated with an adhesive. The stator laminated with the adhesive is placed in a furnace at about 120 ° C. to 200 ° C. for a certain period of time and cured.

この熱硬化作業により、図7に示すように固定子12に反りが発生する。その原因は、固定子の可動子に対向する面に固定子突極が設けられており、その反対側の裏面は平面であるため、熱を加えると、両側の面で発生する熱応力が異なるためである。このように固定子に反りが発生すると、可動子とのエアギャップが均一ではなくなるため、組付後のエアギャップの確認が困難となる。そのため、組付精度の低下や、エアギャップが部分的に広くなり、広くなったエアギャップ部の磁気抵抗が増加するため、磁束密度が低下し、所望の推力が得られなくなる。   Due to this thermosetting operation, the stator 12 is warped as shown in FIG. The reason is that the stator salient poles are provided on the surface of the stator that faces the mover, and the back surface on the opposite side is flat. Therefore, when heat is applied, the thermal stress generated on both surfaces differs. Because. When the stator is warped in this way, the air gap with the mover is not uniform, making it difficult to check the air gap after assembly. For this reason, the assembly accuracy is lowered, the air gap is partially widened, and the magnetic resistance of the widened air gap is increased, so that the magnetic flux density is lowered and the desired thrust cannot be obtained.

また、この反りを無くすために、固定子の突極上面を追加加工して平面にすることもできるが、加工により電磁鋼板のプレス加工で固定子突極の角部に生成される0.3mm程度のR部が無くなるため、この部分でのパーミアンス変化が急峻になり、モータリップルが大きくなる。また、固定子表面を加工することにより隣同士の電磁鋼板と電気的に接触することになるため、うず電流が発生しモータの損失が発生する。さらに、加工工数の増加により原価アップとなることから実施は困難である。   Moreover, in order to eliminate this warp, the upper surface of the salient pole of the stator can be additionally processed into a flat surface. However, the 0.3 mm generated at the corner of the stator salient pole by press working of the electromagnetic steel sheet by processing. Since there is no such R portion, the permeance change in this portion becomes steep and the motor ripple increases. In addition, since the stator surface is electrically contacted with the adjacent magnetic steel sheets, an eddy current is generated and a motor loss occurs. In addition, it is difficult to implement due to increased costs due to an increase in processing steps.

発明におけるリニアモータにおいては、可動子の移動方向に沿って所定の間隔を設けて配置され、表面にピッチPの間隔で同じ幅の複数の固定子突極を備えたリニアモータの固定子において、前記固定子突極の形状と同じ形状の突極が、前記固定子の前記可動子に対向する面と反対側の裏面にも配置されており、該裏面に配置された前記突極の凹部には、該凹部を埋めるように凸部を有する固定子補助ヨークが嵌合されていることを特徴とする。 In the linear motor according to the present invention, in the stator of the linear motor, which is arranged with a predetermined interval along the moving direction of the mover, and has a plurality of stator salient poles having the same width at the pitch P on the surface. , salient pole shape and the same shape of said stator salient poles, is disposed on the reverse side of the opposing surface opposite to said movable element of said stator, said salient poles disposed on back surface the recess, characterized that you have been fitted into the stator auxiliary yoke having a convex portion so as to fill the recess.

また、前記固定子は、電磁鋼板を積層して構成され、積層された前記電磁鋼板は、それぞれ接着固定されていることを特徴とする。   Further, the stator is configured by laminating electromagnetic steel sheets, and the laminated electromagnetic steel sheets are bonded and fixed to each other.

可動子の移動方向に所定の間隔を設けて配置され、表面にピッチPの間隔で同じ幅の複数の固定子突極を備えたリニアモータの固定子において、前記固定子突極の形状と略同じ形状の突極を、可動子に対向する面と反対側の裏面に配置することで、接着硬化時の固定子の反りを低減できるため、可動子と固定子のエアギャップを均一に保つことができ、所望のモータ推力を得ることができる。   In a stator of a linear motor that is arranged with a predetermined interval in the moving direction of the mover and has a plurality of stator salient poles having the same width at the pitch P on the surface, the shape of the stator salient pole is substantially the same. By arranging the salient poles of the same shape on the back surface opposite to the surface facing the mover, it is possible to reduce the warpage of the stator during adhesive hardening, so the air gap between the mover and the stator is kept uniform. The desired motor thrust can be obtained.

以下、図面を参照しつつ本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施例1に係るリニアモータの固定子を示す図である。30は本発明による固定子を示しており、複数の電磁鋼板を積層接着して構成されている。固定子30には、可動子と対向する面に固定子突極10aが配置されており、反対側の裏面にも固定子突極10aと同形状の突極10bが配置されている。可動子およびその他の記号は、図4と同じである。   FIG. 1 is a diagram illustrating the stator of the linear motor according to the first embodiment. Reference numeral 30 denotes a stator according to the present invention, which is formed by laminating and bonding a plurality of electromagnetic steel sheets. In the stator 30, a stator salient pole 10a is disposed on the surface facing the mover, and a salient pole 10b having the same shape as the stator salient pole 10a is also disposed on the back surface on the opposite side. The mover and other symbols are the same as those in FIG.

実施例1のリニアモータの固定子は、可動子の対向する面と、反対側の裏面とに、それぞれ略同じ形状の突極が配置されている。したがって、電磁鋼板の接着硬化時に温度を上げても、熱応力が両面で均一にかかるため、固定子の反りが無くなる。   In the stator of the linear motor according to the first embodiment, salient poles having substantially the same shape are disposed on the opposing surface of the mover and the opposite back surface. Therefore, even if the temperature is raised during the adhesion hardening of the electromagnetic steel sheet, the thermal stress is uniformly applied on both sides, so that the warp of the stator is eliminated.

尚、固定子30の固定子磁気ヨーク32は、図4の固定子磁気ヨーク21と同じ幅Hyを確保するようにしている。これは、固定子磁気ヨークの幅Hyが狭くなると、固定子磁気ヨーク部に生成される磁束22の磁気飽和限界が低くなってしまい、ピーク推力が低下するからである。したがって、固定子30の幅H1は、図4の従来のリニアモータの固定子の幅H4と比較して、突極10bの高さHcだけ、広くなる。   The stator magnetic yoke 32 of the stator 30 has the same width Hy as the stator magnetic yoke 21 of FIG. This is because when the width Hy of the stator magnetic yoke is reduced, the magnetic saturation limit of the magnetic flux 22 generated in the stator magnetic yoke portion is lowered, and the peak thrust is reduced. Therefore, the width H1 of the stator 30 is increased by the height Hc of the salient pole 10b as compared with the width H4 of the stator of the conventional linear motor of FIG.

図2は、実施例2に係るリニアモータの固定子を示す図である。35は本発明によるリニアモータの固定子を示しており、可動子と対向する面に固定子突極36a、反対側の裏面に固定子突極36aと同形状の突極36bが配置されている。また、突極36bの凹部を埋めるように、凸部を有する固定子補助ヨーク37が接着等により固定されている。可動子およびその他の記号は、図4と同じである。   FIG. 2 is a diagram illustrating the stator of the linear motor according to the second embodiment. Reference numeral 35 denotes a stator of a linear motor according to the present invention, in which a stator salient pole 36a is disposed on the surface facing the movable element, and a salient pole 36b having the same shape as the stator salient pole 36a is disposed on the back surface on the opposite side. . A stator auxiliary yoke 37 having a convex portion is fixed by adhesion or the like so as to fill the concave portion of the salient pole 36b. The mover and other symbols are the same as those in FIG.

実施例2の固定子突極36aと突極36bは、実施例1と同じ内容であるが、突極36bには、固定子補助ヨーク37が嵌合されているため、磁束22は、突極36bの凹部に嵌合された固定子補助ヨーク37を通過することができる。したがって、固定子35の固定子磁気ヨーク38の幅Hy2は、図4の固定子磁気ヨーク21の幅Hyと同じ幅にすることができ、固定子35の幅H2も固定子30の幅H1と同じにできる。   The stator salient pole 36a and salient pole 36b of the second embodiment are the same as those of the first embodiment, but the stator auxiliary yoke 37 is fitted to the salient pole 36b. The stator auxiliary yoke 37 fitted in the recess 36b can be passed through. Therefore, the width Hy2 of the stator magnetic yoke 38 of the stator 35 can be the same as the width Hy of the stator magnetic yoke 21 of FIG. 4, and the width H2 of the stator 35 is also equal to the width H1 of the stator 30. Can be the same.

このように、実施例2のリニアモータの固定子は、従来のリニアモータと同じサイズであるが、固定子35は、可動子に対向する面と、その反対側の裏面とにそれぞれ略同じ形状の突極を配置しているため、電磁鋼板の接着硬化時に温度を上げても、熱応力が両面で均一にかかり、固定子の反りが無くなる。   Thus, although the stator of the linear motor of Example 2 is the same size as the conventional linear motor, the stator 35 has substantially the same shape on the surface facing the mover and the back surface on the opposite side. Therefore, even if the temperature is raised during the adhesion hardening of the electromagnetic steel sheet, the thermal stress is applied uniformly on both sides, and the warp of the stator is eliminated.

尚、固定子補助ヨーク37は、凸部である突極39と、突極39と接続する接続部40とで構成されているが、接続部40は無くても、実施例2と同様の効果が得られる。ただし、固定子補助ヨーク37は一体とした方が、固定子35に固定する際に、一つ一つの突極39を、固定子突極36bの凹部に嵌め込む作業に比べると作業時間を短くできる。   The stator auxiliary yoke 37 includes a salient pole 39 that is a convex portion and a connecting portion 40 that is connected to the salient pole 39. Even if the connecting portion 40 is not provided, the same effect as in the second embodiment is obtained. Is obtained. However, when the stator auxiliary yoke 37 is integrated, the working time is shortened compared to the work of fitting each of the salient poles 39 into the recess of the stator salient pole 36b when the stator auxiliary yoke 37 is fixed to the stator 35. it can.

また、固定子補助ヨーク37は、固定子突極36bを打ち抜いた電磁鋼板等の残材を利用して製造できるが、通常、打ち抜いた固定子補助ヨーク37の突極39の幅は、固定子突極36bの幅よりも大きくなるため、嵌合が難しくなる。このため、突極36bと突極39とを台形形状にすると、容易に嵌合できる。   Further, the stator auxiliary yoke 37 can be manufactured by using a remaining material such as an electromagnetic steel plate from which the stator salient pole 36b is punched. Usually, the width of the salient pole 39 of the stamped stator auxiliary yoke 37 is set to the stator. Since it becomes larger than the width of the salient pole 36b, the fitting becomes difficult. For this reason, if the salient pole 36b and the salient pole 39 are trapezoidal, they can be easily fitted.

図3は、本発明を磁気吸引力相殺型のリニアモータに適用した場合を示しており、図1のリニアモータを、中心軸63を対称軸として、折り返した構造となっている。SIDE−AとSIDE−Bに発生する磁気吸引力は、同じ大きさで方向が反対となるため、磁気吸引力は相殺される。磁気吸引力相殺型では、取り付けた機器にモータの磁気吸引力が伝わらないため、リニアモータを取り付けた機器のガイドの寿命が延び、磁気吸引力による機器の変形を防止できる。   FIG. 3 shows a case where the present invention is applied to a magnetic attraction force canceling type linear motor. The linear motor shown in FIG. 1 is folded around a central axis 63 as an axis of symmetry. Since the magnetic attractive force generated in SIDE-A and SIDE-B is the same magnitude and opposite in direction, the magnetic attractive force is canceled out. In the magnetic attraction force canceling type, since the magnetic attraction force of the motor is not transmitted to the attached device, the life of the guide of the device to which the linear motor is attached can be extended, and deformation of the device due to the magnetic attraction force can be prevented.

図3の磁気吸引力相殺型においても、実施例2と同様の固定子構造であるため、実施例2と同様の効果を得ることができる。勿論、実施例1と同様の構造とすることもできる。   Also in the magnetic attraction force cancellation type of FIG. 3, since the stator structure is the same as in the second embodiment, the same effects as in the second embodiment can be obtained. Of course, the same structure as that of the first embodiment may be adopted.

上記において、固定子突極の形状と略同じ形状の突極が、前記固定子の前記可動子に対向する面と反対側の裏面にも配置されるものとして説明した。ここで略同じ形状というのは、理想的には、両者が全く同じ形状であることが好ましいが、実際には、両者が全く同じ形状でなくても、ある程度同じ形状であれば、電磁鋼板の接着硬化時に温度を上げたときに熱応力が両面でほぼ均一にかかり、固定子の反りが無くなるという効果を同様に奏する。すなわち、固定子突極の形状と裏面の突極の形状とは、実質的に同一と考えられる範囲であればよい。例えば、固定子突極の形状の各部の寸法の一部と、裏面の突極の形状の各部の寸法の一部とが相互に異なっていても、突極全体としてみたときに、両者がほぼ同一の形状、すなわち実質的に同一の形状であればよい。また、熱応力の均一化の効果の必要度に応じ、両者の形状に相違を設けてもよい。例えば、図1等では、固定子突極の矩形形状と同じ矩形形状の突極を裏面に配置するものとしたが、熱応力の効果の必要度に応じ、裏面の突極の形状として矩形形状から適宜変形したものを用いることができる。   In the above description, the salient pole having substantially the same shape as that of the stator salient pole is described as being disposed on the back surface of the stator opposite to the surface facing the mover. Here, it is preferable that the two substantially have the same shape. However, in practice, even if they are not exactly the same shape, if they are the same shape to some extent, When the temperature is raised at the time of adhesive curing, the thermal stress is applied almost uniformly on both sides, and the effect of eliminating the warpage of the stator is similarly achieved. That is, the shape of the stator salient poles and the shape of the back salient poles may be in a range that is considered to be substantially the same. For example, even if a part of the dimension of each part of the shape of the stator salient pole and a part of the dimension of each part of the shape of the salient pole on the back surface are different from each other, It is only necessary that the shape is the same, that is, substantially the same shape. Moreover, you may provide a difference in both shapes according to the necessity degree of the effect of equalization of thermal stress. For example, in FIG. 1 and the like, the rectangular salient poles that are the same as the rectangular shape of the stator salient poles are arranged on the back surface, but depending on the necessity of the effect of thermal stress, Can be appropriately modified.

本発明に係るリニアモータの固定子の適用は、ここで開示した原理のリニアモータに限定されるものではなく、固定子突極を有し、電磁鋼板を積層して構成された固定子であれば、リニアモータの原理が違っていても、同様の効果を得ることができる。   The application of the stator of the linear motor according to the present invention is not limited to the linear motor of the principle disclosed here, but may be a stator having a stator salient pole and configured by laminating electromagnetic steel plates. Even if the principle of the linear motor is different, the same effect can be obtained.

本発明に係るリニアモータの実施例1を示す図である。It is a figure which shows Example 1 of the linear motor which concerns on this invention. 本発明に係るリニアモータの実施例2を示す図である。It is a figure which shows Example 2 of the linear motor which concerns on this invention. 本発明を磁気吸引力相殺型リニアモータに適用した場合を示す図である。It is a figure which shows the case where this invention is applied to a magnetic attraction force cancellation type | mold linear motor. 従来のリニアモータの固定子を示す図である。It is a figure which shows the stator of the conventional linear motor. リニアモータの交流巻線を示す図である。It is a figure which shows the alternating current winding of a linear motor. 従来のリニアモータの固定子を示す図である。It is a figure which shows the stator of the conventional linear motor. 従来のリニアモータの固定子における変形の様子を示す図である。It is a figure which shows the mode of a deformation | transformation in the stator of the conventional linear motor.

符号の説明Explanation of symbols

10,10a,36a 固定子突極、10b,36b 突極、11 可動子、12,30,35 固定子、13,14,15 ティース、16,17,18 交流巻線、19 永久磁石、22 磁束、37 固定子補助ヨーク。   10, 10a, 36a Stator pole, 10b, 36b Salient pole, 11 Movable, 12, 30, 35 Stator, 13, 14, 15 Teeth, 16, 17, 18 AC winding, 19 Permanent magnet, 22 Magnetic flux 37 Stator auxiliary yoke.

Claims (2)

可動子の移動方向に沿って所定の間隔を設けて配置され、表面にピッチPの間隔で複数の固定子突極を備えたリニアモータの固定子において、
前記固定子突極の形状と同じ形状の突極が、前記固定子の前記可動子に対向する面と反対側の裏面にも配置されており、該裏面に配置された前記突極の凹部には、該凹部を埋めるように凸部を有する固定子補助ヨークが嵌合されていることを特徴とするリニアモータの固定子。
In a stator of a linear motor that is arranged with a predetermined interval along the moving direction of the mover and has a plurality of stator salient poles on the surface at intervals of a pitch P,
Salient pole shape and the same shape of said stator salient poles, the recess of the well on the back of the opposing surface opposite to the movable element is arranged, said salient poles disposed on said back surface of said stator the linear motor stator, characterized that you have stator auxiliary yoke having a convex portion is fitted so as to fill the recess.
前記固定子は、電磁鋼板を積層して構成され、積層された前記電磁鋼板は、それぞれ接着されていることを特徴とする請求項1に記載のリニアモータの固定子。 The stator is constructed by laminating electromagnetic steel plates, the electromagnetic steel plates stacked, the linear motor stator according to claim 1, characterized that you have been bonded respectively.
JP2008249717A 2008-09-29 2008-09-29 Linear motor stator Expired - Fee Related JP5460991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249717A JP5460991B2 (en) 2008-09-29 2008-09-29 Linear motor stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249717A JP5460991B2 (en) 2008-09-29 2008-09-29 Linear motor stator

Publications (2)

Publication Number Publication Date
JP2010081769A JP2010081769A (en) 2010-04-08
JP5460991B2 true JP5460991B2 (en) 2014-04-02

Family

ID=42211554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249717A Expired - Fee Related JP5460991B2 (en) 2008-09-29 2008-09-29 Linear motor stator

Country Status (1)

Country Link
JP (1) JP5460991B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379930B2 (en) * 2014-09-26 2018-08-29 日立金属株式会社 Linear motor stator
JP6455061B2 (en) * 2014-10-10 2019-01-23 日立金属株式会社 Linear motor stator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293960A (en) * 1990-04-11 1991-12-25 Nec Gumma Ltd Secondary iron core of linear pulse motor
JP2002119041A (en) * 2000-10-10 2002-04-19 Matsushita Electric Ind Co Ltd Linear actuator
JP2004304932A (en) * 2003-03-31 2004-10-28 Yaskawa Electric Corp Cooling structure of linear motor
JP2005245074A (en) * 2004-02-25 2005-09-08 Alps Electric Co Ltd Linear driving device

Also Published As

Publication number Publication date
JP2010081769A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5370313B2 (en) Linear motor
JP5770417B2 (en) Linear motor
Du et al. High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets
US7154198B2 (en) Linear motor
KR102141793B1 (en) Method of manufacturing a stator of a permanent magnet synchronous machine and a permanent magnet synchronous machine
JP5859297B2 (en) Rotating electric machine
JP4382437B2 (en) Linear motor
JP5357434B2 (en) Linear motor mounting structure
TWI664795B (en) Linear motor
JP2019004665A (en) Linear motor
JP5224050B2 (en) Linear motor armature, linear motor, and table feed device using the same.
WO2012066868A1 (en) Linear motor
JP5460991B2 (en) Linear motor stator
JP3744437B2 (en) Drive device
JP5908819B2 (en) Linear motor
JP4110335B2 (en) Linear motor
JP3944766B2 (en) Permanent magnet synchronous linear motor
JP5261080B2 (en) Linear motor
JP5991286B2 (en) Linear motor armature and linear motor
JP4369797B2 (en) Stator core manufacturing method
JP6416826B2 (en) Rotating electric machine
JP2003134790A (en) Linear motor
JP2020178443A (en) Synchronous linear motor and manufacturing method of synchronous linear motor
JP6001828B2 (en) Linear motor stator
JP2006136156A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5460991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees