[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5459925B2 - MEMS structure for gas sensor - Google Patents

MEMS structure for gas sensor Download PDF

Info

Publication number
JP5459925B2
JP5459925B2 JP2005326346A JP2005326346A JP5459925B2 JP 5459925 B2 JP5459925 B2 JP 5459925B2 JP 2005326346 A JP2005326346 A JP 2005326346A JP 2005326346 A JP2005326346 A JP 2005326346A JP 5459925 B2 JP5459925 B2 JP 5459925B2
Authority
JP
Japan
Prior art keywords
bridge
gas sensor
stage
gas
bridges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005326346A
Other languages
Japanese (ja)
Other versions
JP2007132814A (en
Inventor
義晴 谷口
真一 谷口
伸一郎 田中
英幸 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2005326346A priority Critical patent/JP5459925B2/en
Publication of JP2007132814A publication Critical patent/JP2007132814A/en
Application granted granted Critical
Publication of JP5459925B2 publication Critical patent/JP5459925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

発明はマイクロマシーニング技術を利用したガスセンサの構造に関するものである。詳しくは,マイクロマシーニング技術を利用してブリッジ構造を形成し,そのブリッジ構造上に電極とヒーター及びガス感応層を設けたガスセンサのMEMS構造体に関すものである。   The present invention relates to the structure of a gas sensor using micromachining technology. More specifically, the present invention relates to a MEMS structure of a gas sensor in which a bridge structure is formed using micromachining technology and an electrode, a heater, and a gas sensitive layer are provided on the bridge structure.

一般にセラミックガスセンサは,目的のガスを検出し濃度表示出力,警報出力あるいは制御信号を出力する機器に使用されている。ガスセンサが特定のガスに曝される時,ガス感応物質であるセラミックの電気伝導度の変化あるいは起電力の発生が生じ,その値から目的ガスの存在及びガス濃度を検出することができる。この種のガスセンサは,他のセンサに比べて消費電力が非常に大きい。従って,セラミックガスセンサの応用範囲を拡大するためには,小さいエネルギーでセンサ温度を維持できる低電力型のセラミックガスセンサを提供することは非常に意義がある。   In general, a ceramic gas sensor is used in a device that detects a target gas and outputs a concentration display output, an alarm output, or a control signal. When the gas sensor is exposed to a specific gas, a change in electrical conductivity or generation of an electromotive force occurs in the ceramic, which is a gas sensitive substance, and the presence and gas concentration of the target gas can be detected from the value. This type of gas sensor consumes much more power than other sensors. Therefore, in order to expand the application range of the ceramic gas sensor, it is very significant to provide a low power ceramic gas sensor that can maintain the sensor temperature with a small energy.

従来のガスセンサは,絶縁セラミック基板の片面あるいは両面を利用して,電極とヒーターを形成し電極面にはガス感応物質を印刷又は塗布したセンサ素子をリード線により宙づりにした構造であった。この構造では,十分な低消費電力化を実現するのは困難であった。   A conventional gas sensor has a structure in which an electrode and a heater are formed using one or both surfaces of an insulating ceramic substrate, and a sensor element on which a gas-sensitive material is printed or applied is suspended by a lead wire. With this structure, it has been difficult to achieve sufficiently low power consumption.

一方,最近従来のセラミックセンサの小型化が進み印刷タイプや薄膜タイプも出現していると同時に,極細の貴金属線コイルにガス感応セラミック粉体を塗布した極低電力型も出現してきた。しかし,従来のセラミック粉体を立体的なコイルに塗りつけたセンサは粉体と電極兼用のコイルとの剥離が発生するなど欠点も見られる。また,依然として宙づり構造であるので振動や衝撃に弱い。   On the other hand, the conventional ceramic sensor has recently been miniaturized, and the print type and thin film type have also appeared. At the same time, an ultra-low power type in which gas-sensitive ceramic powder is applied to an extremely fine noble metal wire coil has also appeared. However, the conventional sensor in which ceramic powder is applied to a three-dimensional coil has drawbacks such as peeling between the powder and the electrode coil. In addition, since it is still suspended, it is vulnerable to vibration and impact.

その他の開発動向として,シリコンのマイクロマシーニング技術を利用してダイアフラムを形成し,その上にマイクロヒーターを,更にその上に絶縁層を介して検出用電極を設け,さらにガス感応層を設けたMEMS構造を有するガスセンサも出現している。MEMS型の構造を有するガスセンサは,大量生産に向きコスト的にも低価格を実現できる可能性がある。しかし,機械的な特性,耐熱衝撃性,耐久性などの特性でまだ実用化の段階に達していない。例えば,昨今自動車の空質の制御用にガスセンサが使用されるようになったが,未だに従来型のセラミックガスセンサが使用されているのはMEMS型ガスセンサの信頼性が自動車の信頼性のレベルに達していないからである。   As another development trend, a diaphragm was formed using silicon micromachining technology, a microheater was provided on it, a detection electrode was further provided on the insulating layer, and a gas sensitive layer was further provided. Gas sensors having a MEMS structure have also appeared. A gas sensor having a MEMS type structure is suitable for mass production and can be realized at a low cost. However, it has not yet reached the stage of practical use because of its mechanical characteristics, thermal shock resistance, and durability. For example, gas sensors have recently been used to control the air quality of automobiles, but conventional ceramic gas sensors are still used because the reliability of MEMS gas sensors has reached the level of reliability of automobiles. Because it is not.

このような車載を目的とする用途の様に機械的な特性,耐熱衝撃性,耐久性などの特性が必要とされる場合,既存のMEMS型ガスセンサ構造の上述の状況を鑑み,先願特許 特願2005−325455は,発明された。その結果,車載用に耐えうるMEMS構造となっている。しかし,4本のブリッジが各対角線上に位置しているため,ブリッジ方向に発生する膨張収縮による応力を緩和する構造となっていない。
特願2005−325455
When mechanical characteristics, thermal shock resistance, durability, and other characteristics are required, such as in-vehicle applications, in view of the above-mentioned situation of existing MEMS gas sensor structures, Application 2005-325455 was invented. As a result, it has a MEMS structure that can withstand in-vehicle use. However, since four bridges are located on each diagonal line, the structure is not designed to relieve stress due to expansion and contraction generated in the bridge direction.
Japanese Patent Application No. 2005-325455

図1に先願特許 特願2005−325455の構成を示す。ただし,ここで示したのは4本のブリッジ3とそれらによって支えられるステージ2とシリコンフレーム1による構成のみとし,ヒーターや電極等を割愛して示した。ヒーターと電極はステージ2上に形成され,ブリッジ3上の配線パターンを通してガスセンサの信号とヒーター電力が供給される。   FIG. 1 shows the configuration of Japanese Patent Application No. 2005-325455. However, only the configuration of the four bridges 3, the stage 2 supported by them and the silicon frame 1 is shown here, and the heaters, electrodes, etc. are omitted. A heater and electrodes are formed on the stage 2, and a gas sensor signal and heater power are supplied through a wiring pattern on the bridge 3.

ブリッジ3を通してヒータ電力がステージ2に供給され加熱されると,ステージ2およびブリッジ3が膨張し,電力供給を停止し常温に戻すと収縮し元に戻る。図1において,ブリッジはB1とB3及びB2とB4がそれぞれ一直線上に位置されている。その為,前述のようにステージ2に電力供給がなされ加熱されると,相対するブリッジB1とB3あるいはB2とB4がステージ2を挟んで押し合い,結果として常温を維持しているシリコンフレーム1を押しつけようとする力が働く。ここで発生する応力はブリッジ3とシリコンフレーム1の境界付近に集中する。その為加熱・冷却を何度も繰り返すと,繰り返される応力発生及び緩和によりブリッジ3およびステージ2の部分に疲労が発生して破損する可能性がある。この応力発生と緩和による疲労を可能な限り緩和することが課題である。   When the heater power is supplied to the stage 2 through the bridge 3 and heated, the stage 2 and the bridge 3 expand, and when the power supply is stopped and returned to room temperature, it contracts and returns to its original state. In FIG. 1, B1 and B3 and B2 and B4 are positioned on a straight line, respectively. Therefore, when the stage 2 is supplied with power and heated as described above, the opposing bridges B1 and B3 or B2 and B4 press against each other with the stage 2 interposed therebetween, and as a result, the silicon frame 1 that maintains the normal temperature is pressed. The power to try works. The stress generated here is concentrated near the boundary between the bridge 3 and the silicon frame 1. Therefore, if heating / cooling is repeated many times, the bridge 3 and the stage 2 may be damaged due to repeated generation and relaxation of stress. The challenge is to reduce the fatigue caused by stress generation and relaxation as much as possible.

課題を解決するために,図2に示すようにブリッジ3を相対するブリッジに対し,一直線上に配置することを避け,平行関係に位置するように設けることである。   In order to solve the problem, as shown in FIG. 2, the bridge 3 is provided so as to be positioned in a parallel relationship while avoiding being arranged in a straight line with respect to the opposing bridge.

本発明における構成は,この境界に応力が集中することを避ける為,ブリッジ3と対向するブリッジ3をステージ2の幅にほぼ相当する間隔を持たせ,平行な位置関係に配置することによって,加熱時に相対するブリッジ3は互いに膨張するが,膨張することでステージ2を回転させるような力に変換され,上述の応力は緩和される。   In the configuration of the present invention, in order to avoid the concentration of stress on this boundary, the bridge 3 facing the bridge 3 is provided with an interval substantially corresponding to the width of the stage 2 and arranged in a parallel positional relationship. The bridges 3 that are sometimes opposed to each other expand, but by being expanded, they are converted into a force that rotates the stage 2, and the above-described stress is relieved.

図2に示すように相対するブリッジ3をステージ2の幅に相当する間隔で平行に位置するように設けることで,加熱時の膨張における応力をステージ2を回転させる力に変え,シリコンフレーム1とブリッジ3の境界に集中していた応力を緩和させることができる。   As shown in FIG. 2, the opposing bridges 3 are provided so as to be located in parallel at intervals corresponding to the width of the stage 2, thereby changing the stress in expansion during heating into a force for rotating the stage 2, The stress concentrated on the boundary of the bridge 3 can be relaxed.

図1は,先願特許 特願2005−325455の構成を示し,図2は本発明の構成を示す。ブリッジ3の4本にそれぞれB1,B2,B3,B4と識別記号を付けて表記する。図1では,B1とB3あるいはB2とB4は相対するブリッジで有り一直線上に位置している。図2ではB1の一直線上にB3は存在せず,図1でB3のあった位置よりステージ2の幅分だけ移動した位置に設けた。B2とB4の位置関係も同様である。   FIG. 1 shows the configuration of Japanese Patent Application No. 2005-325455, and FIG. 2 shows the configuration of the present invention. The four bridges 3 are shown with identification symbols B1, B2, B3, and B4, respectively. In FIG. 1, B1 and B3 or B2 and B4 are opposed bridges and are located on a straight line. In FIG. 2, B3 does not exist on a straight line of B1, and it is provided at a position moved by the width of the stage 2 from the position where B3 is located in FIG. The positional relationship between B2 and B4 is the same.

図2bのように4本のブリッジ3の位置関係はシリコンフレーム1およびステージ2の形状が四角から丸となっても同様である。その他設計により,ブリッジ3,ステージ2及びシリコンフレーム1の形状に細かな変更を加えたとしても,このように一直線上に配置していたブリッジの位置を変更して応力を回転方向の力に変換することにより,上述の問題点である応力を緩和することがかのである。   As shown in FIG. 2b, the positional relationship of the four bridges 3 is the same even when the shape of the silicon frame 1 and the stage 2 is changed from a square to a circle. Even if minor changes are made to the shape of the bridge 3, stage 2 and silicon frame 1 by other design, the position of the bridge arranged in a straight line is changed in this way to convert the stress into rotational force By doing so, the stress, which is the above-mentioned problem, can be relaxed.

先行特許 特願2005−325455では考慮されていなかったブリッジ方向の応力緩和を実現でき,車載用ガスセンサとしてのMEMSガスセンサの信頼性を更に向上することができる。   Prior art patents Japanese Patent Application No. 2005-325455 can realize stress relaxation in the bridge direction, which can be further improved in reliability of the MEMS gas sensor as an in-vehicle gas sensor.

先願する特許 特願2005−325455の構成。Patent of prior application Structure of Japanese Patent Application No. 2005-325455. ブリッジ3を平行関係に位置させた本発明の構成。The configuration of the present invention in which the bridge 3 is positioned in parallel.

符号の説明Explanation of symbols

1…シリコンフレーム
2…ステージ
3…ブリッジ
B1…ブリッジ(B3と対向する,もしくは平行関係にある)
B2…ブリッジ(B4と対向する,もしくは平行関係にある)
B3…ブリッジ(B1と対向する,もしくは平行関係にある)
B4…ブリッジ(B2と対向する,もしくは平行関係にある)

DESCRIPTION OF SYMBOLS 1 ... Silicon frame 2 ... Stage 3 ... Bridge B1 ... Bridge (opposite or parallel to B3)
B2 ... Bridge (opposite or parallel to B4)
B3 ... Bridge (opposite or parallel to B1)
B4 ... Bridge (opposite or parallel to B2)

Claims (1)

シリコン基板とSiO2層及びSiNX層からなるダイアフラム構造体において、該ダイアフラム部の一部を除去して形成される4本のブリッジを有するブリッジ構造体であって、独立する該ブリッジ個々は、全体が直線形状となっており、且つ対角線上の相対する対をなすブリッジが平行な位置関係を有することを特徴とするガスセンサ用MEMS構造体。 In the diaphragm structure comprising a silicon substrate and the SiO2 layer and SiNX layer, a bridge structure having four bridges which are formed by removing a portion of the diaphragm portion, the bridge each for independently it is entirely A MEMS structure for a gas sensor, wherein the bridge is formed in a straight line and has a parallel positional relationship with a pair of opposing bridges on a diagonal line.
JP2005326346A 2005-11-10 2005-11-10 MEMS structure for gas sensor Active JP5459925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005326346A JP5459925B2 (en) 2005-11-10 2005-11-10 MEMS structure for gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005326346A JP5459925B2 (en) 2005-11-10 2005-11-10 MEMS structure for gas sensor

Publications (2)

Publication Number Publication Date
JP2007132814A JP2007132814A (en) 2007-05-31
JP5459925B2 true JP5459925B2 (en) 2014-04-02

Family

ID=38154599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005326346A Active JP5459925B2 (en) 2005-11-10 2005-11-10 MEMS structure for gas sensor

Country Status (1)

Country Link
JP (1) JP5459925B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100733B2 (en) 2009-10-05 2012-12-19 北陸電気工業株式会社 Gas sensor element and manufacturing method thereof
CN111044577B (en) * 2019-12-27 2020-10-27 安徽芯淮电子有限公司 MEMS semiconductor type gas sensor based on glass substrate and manufacturing method thereof
JP2023184338A (en) * 2022-06-17 2023-12-28 日清紡マイクロデバイス株式会社 gas sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849395B2 (en) * 1989-02-15 1999-01-20 株式会社リコー Driving method of gas sensor
JPH08220035A (en) * 1995-02-14 1996-08-30 Ricoh Co Ltd Gas sensor
JPH08315969A (en) * 1995-05-22 1996-11-29 Seiko Epson Corp Microheater, its manufacture, and gas sensor
JPH10318758A (en) * 1997-05-21 1998-12-04 Murata Mfg Co Ltd Piezoelectric micro angular speed sensor and fabrication thereof
JP3405219B2 (en) * 1998-08-26 2003-05-12 松下電工株式会社 Semiconductor acceleration sensor element and method of manufacturing the same
JP2002189011A (en) * 2000-12-21 2002-07-05 Figaro Eng Inc Gas sensor and its manufacturing method
JP2006528766A (en) * 2003-07-25 2006-12-21 パラゴン アクチエンゲゼルシャフト Gas sensor and method for manufacturing a gas sensor
JP2005049320A (en) * 2003-07-30 2005-02-24 Microstone Corp Acceleration sensor
JP4381117B2 (en) * 2003-12-01 2009-12-09 日本特殊陶業株式会社 Sensor element mounting package

Also Published As

Publication number Publication date
JP2007132814A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP2007132762A (en) Structure of gas sensor
KR102210634B1 (en) Micro heater and Micro sensor
US20160084787A1 (en) Micro Heater and Micro Sensor and Manufacturing Methods Thereof
JP2007286008A (en) Sensor device having membrane and its manufacturing method
JP2008168423A (en) Rotating mems device
JP5240072B2 (en) Thermal element and method for manufacturing thermal element
JP5459925B2 (en) MEMS structure for gas sensor
JP5070901B2 (en) Humidity sensor device
JP2009058389A (en) Gas detection element
JP4798961B2 (en) HEATER DEVICE AND GAS SENSOR DEVICE USING THE SAME
JP6978611B2 (en) Sensor element for pressure and temperature measurement
JP2009264804A (en) Planar temperature detection sensor
JP2004309474A (en) Pressure sensor
JP2009079907A (en) Catalytic combustion type gas sensor
JPH01203957A (en) Hanger construction for sensor having thermosensitive semiconductor device
JP5086195B2 (en) Contact combustion type gas sensor
JP7187139B2 (en) Catalytic combustion gas sensor
KR101992022B1 (en) Semiconductor gas sensor
KR102190862B1 (en) Manufacturing method of micro heater and Micro sensor and Manufacturing method of micro sensor
JPH0384425A (en) Thermosensitive flow sensor
JP5014938B2 (en) Contact combustion type gas sensor
JP2004093425A (en) Microsensor and method for manufacturing the same
JP6536059B2 (en) Humidity sensor
JP5230833B2 (en) Contact combustion type gas sensor
JP2010230387A (en) Membrane-type gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5459925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250