JP5455942B2 - Ozone liquid generator, water purifier and cleaning method thereof - Google Patents
Ozone liquid generator, water purifier and cleaning method thereof Download PDFInfo
- Publication number
- JP5455942B2 JP5455942B2 JP2011010464A JP2011010464A JP5455942B2 JP 5455942 B2 JP5455942 B2 JP 5455942B2 JP 2011010464 A JP2011010464 A JP 2011010464A JP 2011010464 A JP2011010464 A JP 2011010464A JP 5455942 B2 JP5455942 B2 JP 5455942B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- ozone
- generator
- ozone gas
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 374
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims description 367
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 94
- 238000004140 cleaning Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 title claims description 12
- 238000003860 storage Methods 0.000 claims description 99
- 238000002156 mixing Methods 0.000 claims description 57
- 238000000746 purification Methods 0.000 claims description 16
- 238000001914 filtration Methods 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 11
- 230000005484 gravity Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 255
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 230000007423 decrease Effects 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Sorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
本発明は、オゾン液生成器に関するものであり、特にオゾン液生成器の洗浄が可能なオゾン液生成器、浄水器、及びその洗浄方法に関するものである。 The present invention relates to an ozone liquid generator, and more particularly to an ozone liquid generator, a water purifier, and a cleaning method thereof capable of cleaning the ozone liquid generator.
従来、オゾン液生成器はオゾンガスを発生するオゾンガス発生器が搭載され、水などの液体にオゾンガスを混合させることでオゾン液を生成している。一般的なオゾンガス発生器のメカニズムは絶縁物を挟んだ電極間に交流電圧を印加して無声放電を発生させ、電極間に大気圧以上の空気または酸素などの気体を通過させることによりオゾンガスを生成させている。電極形状の種類は様々なものがあり、2枚の平板の金属を並列に配列し放電させるタイプや、円筒形状をした金属と前記円筒形状の中心部分に配置された円柱状の金属との間で放電させるタイプなどがある。 Conventionally, an ozone gas generator that generates ozone gas is mounted on the ozone liquid generator, and the ozone liquid is generated by mixing ozone gas with a liquid such as water. The mechanism of a general ozone gas generator is that an alternating voltage is applied between electrodes sandwiching an insulator to generate silent discharge, and ozone gas is generated by passing a gas such as air or oxygen above atmospheric pressure between the electrodes. I am letting. There are various types of electrode shapes, such as a type in which two flat metal plates are arranged in parallel and discharged, or between a cylindrical metal and a columnar metal arranged in the central portion of the cylindrical shape. There is a type to discharge with.
しかしながら、これらのオゾンガス発生器を長時間利用する場合、電極表面に窒素酸化物や硝酸アンモニウムなどの物質が堆積し、オゾンガスの発生効率が低下してしまう問題が生じる。この問題は、オゾンガス発生器の無声放電により、大気中の窒素や水分が酸素と結び付き、窒素酸化物などが生成してしまうことに起因している。このため、オゾンガス発生器の電極表面に堆積された堆積物を除去し、オゾンガスの発生効率を復元させる浄水ユニットが知られている。 However, when these ozone gas generators are used for a long time, there arises a problem that substances such as nitrogen oxides and ammonium nitrate are deposited on the electrode surface, and the generation efficiency of ozone gas is lowered. This problem is caused by the fact that nitrogen or moisture in the atmosphere is combined with oxygen due to silent discharge of the ozone gas generator, and nitrogen oxides are generated. For this reason, the water purification unit which removes the deposit deposited on the electrode surface of an ozone gas generator and restores the generation efficiency of ozone gas is known.
例えば、特許文献1はオゾンガスを発生するオゾナイザーと、水とオゾンガスを混合するエジェクタ―からなるオゾン液生成器を備えた浴槽循環処理装置が開示され、オゾナイザーの洗浄時に液体の流動経路を切り換え、エジェクターからオゾナイザーに液体を導入させることで、オゾナイザーの電極表面に付着した塩を洗浄し、排水口から外部に洗浄に利用した液体を排水させている。 For example, Patent Document 1 discloses a bath circulation processing apparatus having an ozone liquid generator composed of an ozonizer that generates ozone gas and an ejector that mixes water and ozone gas. By introducing liquid into the ozonizer, the salt adhering to the electrode surface of the ozonizer is washed, and the liquid used for washing is drained to the outside from the drain port.
しかしながら、特許文献1のオゾン液生成器の洗浄方法は、エジェクターからオゾナイザーに液体を導入させることで、オゾナイザーの電極表面を洗浄し、排水させているため、液体の流動方向を制御する切り替え手段や新たに排水口を設ける必要があった。このため、例えば、従来のオゾン液生成器を浄水器などに搭載させるためには、少なくとも2つの排水経路、及び、排水処理に関する複雑な配管経路や切り替え手段を設ける必要があり、装置の大型化や、既存の設備を利用できないといった問題が生じていた。 However, the ozone liquid generator cleaning method of Patent Document 1 introduces liquid from the ejector to the ozonizer so that the electrode surface of the ozonizer is cleaned and drained. It was necessary to provide a new drainage port. For this reason, for example, in order to mount a conventional ozone liquid generator on a water purifier or the like, it is necessary to provide at least two drainage paths, complicated piping paths and switching means for drainage treatment, and increase the size of the apparatus. There was also a problem that existing facilities could not be used.
本発明は、上記課題に鑑みてなされたものであり、オゾンガス発生器に液体を循環させる簡易かつ省スペースな構成にて、オゾンガス発生器の洗浄または乾燥を可能にすることで、長期間にわたり安定したオゾンガス発生効率を維持できるオゾン液生成器を提供するものである。 The present invention has been made in view of the above-mentioned problems, and is stable over a long period of time by allowing the ozone gas generator to be washed or dried with a simple and space-saving configuration in which liquid is circulated through the ozone gas generator. An ozone liquid generator capable of maintaining the generated ozone gas generation efficiency is provided.
本発明に係るオゾン液生成器は、オゾンガスを発生するオゾンガス発生器と前記オゾンガスと液体を混合する混合部と、液体を貯液する貯液槽とを備え、前記オゾンガス発生器に液体を循環させる循環経路とを備えている。 An ozone liquid generator according to the present invention includes an ozone gas generator that generates ozone gas, a mixing unit that mixes the ozone gas and a liquid, and a liquid storage tank that stores the liquid, and circulates the liquid in the ozone gas generator. And a circulation path.
上記の構成によれば、循環経路を介してオゾンガスを含む気体を導入することが可能なため、高濃度なオゾン液を生成することが可能である。また、循環経路を介して液体を循環させ、オゾンガス発生器の洗浄を行ない、オゾンガス発生器の電極に形成した堆積物を洗浄、除去することが可能なため、オゾンガス発生効率が低下したオゾンガス発生器の発生効率の復元が可能である。 According to said structure, since the gas containing ozone gas can be introduce | transduced via a circulation path, it is possible to produce | generate a highly concentrated ozone liquid. Also, the ozone gas generator has a reduced ozone gas generation efficiency because it is possible to circulate the liquid through the circulation path, clean the ozone gas generator, and clean and remove deposits formed on the electrodes of the ozone gas generator. It is possible to restore the generation efficiency.
また上記の構成において、前記循環経路は、前記オゾン液生成器の内部と外部との間の、気体の流動を制御する流動制御手段が設けられ、前記貯液槽と前記流動制御手段との間の経路に気体または液体の流動を制御する制御手段が設けられていることが好ましい。 Further, in the above configuration, the circulation path is provided with a flow control means for controlling a gas flow between the inside and the outside of the ozone liquid generator, and between the liquid storage tank and the flow control means. It is preferable that a control means for controlling the flow of gas or liquid is provided in this path.
上記の構成によれば、オゾンガス発生効率の低下の要因となる湿度の高い空気や、オゾンガス発生器の電極に付着した液体を乾燥させることが可能なため、オゾンガス発生効率を高めることが可能である。 According to the above configuration, it is possible to dry high-humidity air that causes a decrease in ozone gas generation efficiency and liquid attached to the electrodes of the ozone gas generator, and therefore it is possible to increase the ozone gas generation efficiency. .
本発明に係るオゾン液生成器の洗浄方法は、オゾンガスを発生するオゾンガス発生器と、前記オゾンガスと液体を混合する混合部と、液体を貯液する貯液手段と、前記オゾンガス発生器に接続された循環経路とを備え、前記混合部に液体を導入し、前記循環経路を液体により密封状態にさせる第1の工程と、第1の工程の後に前記循環経路から前記オゾン液生成器の外部へ気体を導出させる第2の工程と、第2の工程の後に前記循環経路を密封状態にさせ、前記オゾンガス発生器に前記循環経路を介して液体を循環させる第3の工程とが含まれる。 The cleaning method for an ozone liquid generator according to the present invention is connected to the ozone gas generator for generating ozone gas, a mixing unit for mixing the ozone gas and liquid, a liquid storage means for storing liquid, and the ozone gas generator. A first step of introducing a liquid into the mixing unit and sealing the circulation route with the liquid; and after the first step, the circulation route to the outside of the ozone liquid generator. A second step of deriving gas and a third step of sealing the circulation path after the second process and circulating the liquid through the circulation path in the ozone gas generator are included.
上記の洗浄方法によれば、循環経路を介して液体を循環させ、オゾンガス発生器の洗浄を行ない、オゾンガス発生器の電極に形成した堆積物を洗浄、除去することが可能なため、オゾンガス発生効率が低下したオゾンガス発生器の発生効率の復元が可能である。 According to the above cleaning method, the liquid is circulated through the circulation path, the ozone gas generator is cleaned, and deposits formed on the electrodes of the ozone gas generator can be cleaned and removed. It is possible to restore the generation efficiency of the ozone gas generator in which the gas is reduced.
本発明によれば、オゾンガス発生器に液体を循環させる簡易かつ省スペースな構成にて、オゾンガス発生器の洗浄または乾燥を可能にすることで、長期間にわたり安定したオゾンガス発生効率を維持できるオゾン液生成器を提供するものである。 According to the present invention, an ozone liquid capable of maintaining stable ozone gas generation efficiency over a long period of time by allowing the ozone gas generator to be cleaned or dried with a simple and space-saving configuration that circulates liquid to the ozone gas generator. A generator is provided.
本発明の一実施形態について図1を用いて説明する。図1は本発明の一実施形態に係るオゾン液生成器の概略図である。図1のオゾン液生成器100は、気体または液体を循環する循環経路Aを有し、循環経路Aにオゾンガスを発生するオゾンガス発生器101と、液体とオゾンガスを混合する混合部102と、液体を貯液する貯液槽103が設けられている。 An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view of an ozone liquid generator according to an embodiment of the present invention. An ozone liquid generator 100 in FIG. 1 has a circulation path A for circulating gas or liquid, an ozone gas generator 101 for generating ozone gas in the circulation path A, a mixing unit 102 for mixing liquid and ozone gas, and a liquid. A liquid storage tank 103 for storing liquid is provided.
オゾンガス発生器101は、空気または酸素などの気体を導入する配管cと接続された導入口104と、金属などの電極により形成され導入された空気や酸素を材料にオゾンガスを発生するオゾンガス発生素子と、オゾンガスを導出する導出口105を備えている。導入口104より導入された酸素または空気に含まれる酸素の一部などからオゾンガスが生成され、導出口105からオゾンガスとして導出される。
The ozone gas generator 101 includes an introduction port 104 connected to a pipe c that introduces a gas such as air or oxygen, an ozone gas generation element that generates ozone gas using air or oxygen that is formed by an electrode made of metal or the like as a material, and And an outlet 105 for leading out ozone gas. Ozone gas is generated from oxygen introduced from the introduction port 104 or a part of oxygen contained in the air and the like, and is derived from the discharge port 105 as ozone gas.
ここで、オゾンガス発生器101の一実施形態の詳細について、図2を用いて説明する。図2は円筒型のオゾンガス発生器101(a)の斜視図である。円筒型のオゾンガス発生器101(a)は、空気などの気体を導入する導入口104と、オゾンガスを発生するオゾンガス発生素子21と、オゾンガスなどの気体を導出する導出口105を備えている。ここで、オゾンガス発生素子21は円筒型のオゾンガス発生器101(a)の中心に配置された導電性材料から形成された放電電極22と、放電電極22の周囲のケーシングに配置された筒状の対向電極23とを備えている。また、筒状の対向電極23は内側に誘電体が形成され、外側の表面に導電体が塗布された構成をしている。中心に配置された放電電極22とケーシングに配置された対向電極23は、各々、電源24と接続され、電圧を印加することで無声放電を生じさせることが可能である。このため、導入口104から空気を導入する場合、導入された空気は、放電現象が生じた放電電極22と対向電極23との間を通る過程で、空気に含まれる酸素の一部からオゾンガスを生成し、導出口105から空気と共にオゾンガスを導出する。 Here, the detail of one Embodiment of the ozone gas generator 101 is demonstrated using FIG. FIG. 2 is a perspective view of a cylindrical ozone gas generator 101 (a). The cylindrical ozone gas generator 101 (a) includes an introduction port 104 for introducing a gas such as air, an ozone gas generation element 21 for generating ozone gas, and a lead-out port 105 for deriving a gas such as ozone gas. Here, the ozone gas generating element 21 includes a discharge electrode 22 formed of a conductive material disposed at the center of a cylindrical ozone gas generator 101 (a), and a cylindrical shape disposed in a casing around the discharge electrode 22. And a counter electrode 23. Further, the cylindrical counter electrode 23 has a structure in which a dielectric is formed on the inner side and a conductor is applied on the outer surface. The discharge electrode 22 arranged in the center and the counter electrode 23 arranged in the casing are each connected to a power source 24 and can generate silent discharge by applying a voltage. Therefore, when introducing air from the inlet 104, the introduced air passes ozone gas from a part of oxygen contained in the air in the process of passing between the discharge electrode 22 where the discharge phenomenon has occurred and the counter electrode 23. Then, ozone gas is led out together with air from the outlet 105.
また、放電現象は空気からオゾンガスだけでなく、窒素酸化物などを発生させるため、長期間、オゾンガス発生器を使用する際、放電現象により発生した窒素酸化物などが放電電極22または対向電極23の表面に堆積し、放電効率を低下させることに起因するオゾン発生効率の低下といった問題が生じる。 In addition, since the discharge phenomenon generates not only ozone gas but also nitrogen oxides from the air, when using an ozone gas generator for a long period of time, nitrogen oxides generated by the discharge phenomenon are caused by the discharge electrode 22 or the counter electrode 23. There arises a problem that ozone generation efficiency is lowered due to deposition on the surface and lowering discharge efficiency.
なお、オゾンガス発生器の一実施形態として、オゾンガス発生器の中心に放電電極、ケーシングに対向電極を配置して説明をしたが、中心の内側に導電体を形成し、外側の表面に誘電体が塗布された対向電極を配置し、ケーシングに放電電極を配置した構成にしても構わない。 As an embodiment of the ozone gas generator, the discharge electrode is disposed at the center of the ozone gas generator and the counter electrode is disposed on the casing. However, a conductor is formed inside the center, and a dielectric is formed on the outer surface. A configuration may be adopted in which the coated counter electrode is arranged and the discharge electrode is arranged in the casing.
また、オゾンガス発生器101の他の一実施形態について、図3を用いて説明する。図3は平板型の電極を用いたオゾンガス発生器101(b)の斜視図である。平板型の電極を用いたオゾンガス発生器101(b)は、空気などの気体を導入する導入口104と、オゾンガスを発生するオゾンガス発生素子31と、オゾンガスなどの気体を導出する導出口105を備えている。ここで、導電性材料から形成された放電電極32と、導電性材料から形成され放電電極32に対向して配置された対向電極33を備えている。また、放電電極32と対向電極33は、各々、電源34と接続され、電圧を印加することで無声放電を生じさせることが可能である。このため、導入口104から空気を導入する場合、導入された空気に含まれる酸素は、放電現象が生じた放電電極32と対向電極33との間を通る過程で酸素の一部からオゾンガスが生成され、導出口105から空気と共にオゾンガスが導出される。なお、平板型の電極を備えたオゾンガス発生器101(b)は、長期間使用した際に、円筒型オゾンガス発生器101(a)と同様に窒素酸化物などが堆積する問題が生じる。 Another embodiment of the ozone gas generator 101 will be described with reference to FIG. FIG. 3 is a perspective view of an ozone gas generator 101 (b) using a flat electrode. An ozone gas generator 101 (b) using a flat electrode includes an inlet 104 for introducing a gas such as air, an ozone gas generating element 31 for generating ozone gas, and an outlet 105 for deriving a gas such as ozone gas. ing. Here, a discharge electrode 32 formed of a conductive material and a counter electrode 33 formed of a conductive material and disposed to face the discharge electrode 32 are provided. In addition, the discharge electrode 32 and the counter electrode 33 are each connected to a power source 34, and a silent discharge can be generated by applying a voltage. For this reason, when air is introduced from the inlet 104, the oxygen contained in the introduced air generates ozone gas from part of the oxygen in the process of passing between the discharge electrode 32 and the counter electrode 33 where the discharge phenomenon has occurred. Then, ozone gas is led out from the outlet 105 together with air. Note that the ozone gas generator 101 (b) having a flat electrode has a problem that nitrogen oxides and the like are deposited when used for a long period of time as in the case of the cylindrical ozone gas generator 101 (a).
ここで、オゾンガス発生器101の一実施形態にについて、図2、図3のオゾンガス発生器を用いて説明したが、電極の放電現象によりオゾンガスを発生する構成であれば他の一般的なオゾンガス発生器を用いても構わない。 Here, one embodiment of the ozone gas generator 101 has been described using the ozone gas generator of FIGS. 2 and 3, but other general ozone gas generation is possible as long as the ozone gas is generated by the discharge phenomenon of the electrodes. A vessel may be used.
混合部102は、オゾン液生成器の外部から水などの液体を導入する導入口106と、配管aに接続されオゾンガスや空気などの気体を導入する導入口107と、配管bと接続され気体と液体を混合した気液混合体を導出する導出口108とを備えている。導入口106から導入された水などの液体は、導入口107から導入された空気やオゾンガスなどの気体と混合され、導出口108からオゾン液などの気液混合体として導出される。ここで、オゾン液とは、液体にオゾンガスが溶け込んだオゾン溶液または、液体にオゾンガスが気泡として混合されるオゾンバブル液が含まれる状態を示す。また、液体とは、水や農耕用の溶媒として利用される栽培養液や医療用の溶媒として利用される溶液など、オゾンガスを混合させる溶液が含まれる。 The mixing unit 102 includes an inlet 106 for introducing a liquid such as water from the outside of the ozone liquid generator, an inlet 107 for introducing a gas such as ozone gas or air connected to the pipe a, and a gas connected to the pipe b. And a lead-out port 108 through which a gas-liquid mixture in which liquid is mixed is led out. A liquid such as water introduced from the introduction port 106 is mixed with a gas such as air or ozone gas introduced from the introduction port 107, and is led out from the outlet 108 as a gas-liquid mixture such as ozone liquid. Here, the ozone liquid indicates a state in which an ozone solution in which ozone gas is dissolved in a liquid or an ozone bubble liquid in which ozone gas is mixed as bubbles in the liquid is included. In addition, the liquid includes a solution in which ozone gas is mixed, such as water or a cultivation nutrient solution used as an agricultural solvent or a solution used as a medical solvent.
ここで、混合部の一実施形態の詳細について、図4を用いて説明する。図4はベンチュリー型の混合部の断面図である。ベンチュリー型の混合部102は、液体が導入される導入口106と連通した導入経路41と、導入経路41に連通し、導入経路41に比べて小さな径を有する連通経路42と、連通経路と連通し、連通経路42に比べて大きな径を有する導出経路43とを備え、導出経路43は導出口108と連通され、液体が導出される。また、連通経路42は、経路の途中に開設して設けられた導入口107を備え、配管aを介してオゾンガス発生器101と接続されている。ここで、開設とは、配管の側面に穴などを設けることを示し、穴として配管に開設された開設口は、他の配管と連通させて接続させることが可能である。なお、穴の形状は、丸、楕円、多角形など適宜、自由に設計して構わない。 Here, the detail of one Embodiment of a mixing part is demonstrated using FIG. FIG. 4 is a cross-sectional view of a Venturi type mixing section. The venturi-type mixing unit 102 communicates with the introduction path 41 through which the liquid is introduced, the communication path 42 that communicates with the introduction path 41, has a smaller diameter than the introduction path 41, and communicates with the communication path. In addition, a lead-out path 43 having a larger diameter than the communication path 42 is provided, and the lead-out path 43 communicates with the lead-out port 108 and the liquid is led out. The communication path 42 includes an introduction port 107 that is opened and provided in the middle of the path, and is connected to the ozone gas generator 101 via a pipe a. Here, the term “opening” means that a hole or the like is provided on the side surface of the pipe, and the opening port opened in the pipe as a hole can be connected to and connected to another pipe. The shape of the hole may be freely designed such as a circle, an ellipse, or a polygon.
導入口106から液体を導入すると、導入経路41を通り連通経路42に到達した液体は、導入経路41に比べ細い管に導入されるため、ベルヌーイの定理に知られるように、流速が増加し静圧が減少する。この結果、流動する液体の静圧は負圧になり、配管aを介して連通経路42へ向かい気体が自然吸引される。その後、導入された気体と液体が混合され、気液混合体として導出経路43と連通された導出口108から導出される。ここで、オゾンガス発生器101により、オゾンガスが発生している場合、導入される液体とオゾンガスが混合され、オゾン液が生成される。ここで、混合部の一実施形態として、図4のベンチュリー型の混合部を用いて説明したが、気体の自然吸引が可能な混合部であれば、他の構成をした混合部を用いても構わない。 When liquid is introduced from the introduction port 106, the liquid that has reached the communication path 42 through the introduction path 41 is introduced into a narrower tube than the introduction path 41. Therefore, as known from Bernoulli's theorem, the flow rate increases and static Pressure decreases. As a result, the static pressure of the flowing liquid becomes negative, and the gas is naturally sucked toward the communication path 42 via the pipe a. Thereafter, the introduced gas and liquid are mixed and led out from the outlet 108 connected to the outlet path 43 as a gas-liquid mixture. Here, when ozone gas is generated by the ozone gas generator 101, the introduced liquid and the ozone gas are mixed to generate an ozone liquid. Here, as one embodiment of the mixing unit, the Venturi-type mixing unit of FIG. 4 has been described. However, as long as the mixing unit is capable of natural gas suction, a mixing unit having another configuration may be used. I do not care.
次に、他の混合部の一実施形態について、図5のように、配管aまたは配管cに圧送部を備え、気体の自然吸引が不可能な混合部102と接続した概略図を用いて説明する。図5(a)は圧送部118を備えた配管aと接続された混合部の一実施形態である。図5(b)は圧送部118を備えた配管cと接続された混合部の一実施形態である。 Next, another embodiment of the mixing unit will be described with reference to a schematic diagram in which a pipe a or pipe c is provided with a pressure feeding unit and connected to a mixing unit 102 that cannot spontaneously suck gas as shown in FIG. To do. FIG. 5A shows an embodiment of a mixing unit connected to a pipe a including a pressure feeding unit 118. FIG. 5B shows an embodiment of the mixing unit connected to the pipe c provided with the pressure feeding unit 118.
圧送部118はポンプなどにより形成され、配管を介して液体または気体を流動させることができる。 また、配管に設けられる圧送部118の能力は、混合部102に対して気体や液体を圧送する必要があるため、混合部102から圧送部118へかかる水圧よりも高い圧送能力を備えたものを配置する。このため、図5(a)、(b)のいずれの構成も自然吸引力がないタイプの混合部を配置する場合にも、自然吸引力がある混合部と同様に、循環経路Aを介して混合部102に気体を導入し、導入口106から導入される液体と混合することが可能となる。 The pressure feeding unit 118 is formed by a pump or the like, and can flow a liquid or gas through a pipe. Moreover, since the capability of the pressure feeding part 118 provided in piping needs to pump gas and a liquid with respect to the mixing part 102, what was equipped with the pumping ability higher than the water pressure applied from the mixing part 102 to the pressure feeding part 118 is used. Deploy. For this reason, in the case where both types of configurations shown in FIGS. 5 (a) and 5 (b) are provided with a mixing unit that does not have a natural suction force, similarly to the mixing unit having a natural suction force, the circulation path A is used. Gas can be introduced into the mixing unit 102 and mixed with the liquid introduced from the inlet 106.
貯液槽103は液体や気体が貯蔵できる容器などからなり、液体の貯液が可能な貯液手段としての役割を担う。配管bに接続され液体を導入する導入口109と、オゾン液生成器の外部へ水やオゾン液などの液体を導出する導出口110と、配管cに接続され空気やオゾンガスなどの気体または水やオゾン液などの液体を導出する導出口111とを備え、貯液槽103の下層に導入された液体が貯液され、上層に空気やオゾンガスなどの気体が貯蔵される構成となっている。 The liquid storage tank 103 is composed of a container or the like that can store liquid or gas, and plays a role as liquid storage means capable of storing liquid. An inlet 109 connected to the pipe b for introducing liquid, an outlet 110 for leading liquid such as water or ozone liquid to the outside of the ozone liquid generator, a gas such as air or ozone gas connected to the pipe c, water, It has an outlet 111 for deriving a liquid such as ozone liquid, the liquid introduced into the lower layer of the liquid storage tank 103 is stored, and a gas such as air or ozone gas is stored in the upper layer.
例えば、貯液槽の導入口109から導入されたオゾン液は、オゾン液に気泡として含まれていたオゾンガスや空気などの気体が分離され、貯液槽103の上層に貯蔵され、貯液槽103の下層に液体にオゾンガスが溶解したオゾン溶液が貯液される。 For example, ozone liquid introduced from the inlet 109 of the liquid storage tank is separated from gases such as ozone gas and air contained in the ozone liquid as bubbles and stored in the upper layer of the liquid storage tank 103. An ozone solution in which ozone gas is dissolved in a liquid is stored in the lower layer of the layer.
また、導出口111は、貯液槽103に設けられた導出口110の位置より、重力方向に対して高い位置に設けられている。また、導出口111は、生成したオゾン液をオゾン液生成器の外部に導出するオゾン液生成モード時に、貯液槽に貯液されるオゾン液の水位より高い位置に設けられているため、貯液された液体に浸らないように設計されている。このため、オゾン液生成モード時に導出口110から液体を導出し、導出口111から気体を導出することが可能となる。 In addition, the outlet 111 is provided at a position higher than the position of the outlet 110 provided in the liquid storage tank 103 with respect to the direction of gravity. In addition, the outlet 111 is provided at a position higher than the water level of the ozone liquid stored in the storage tank in the ozone liquid generation mode in which the generated ozone liquid is led out of the ozone liquid generator. Designed not to immerse in liquid. For this reason, it becomes possible to lead out the liquid from the outlet 110 and lead out the gas from the outlet 111 in the ozone liquid generation mode.
次に、貯液槽103の一実施形態の詳細について、図6の概略説明図を用いて説明する。図6(a)は貯液槽103(a)の斜視図である。図6(b)は貯液槽103(b)の断面図である。 Next, the detail of one Embodiment of the liquid storage tank 103 is demonstrated using the schematic explanatory drawing of FIG. FIG. 6A is a perspective view of the liquid storage tank 103 (a). FIG. 6B is a cross-sectional view of the liquid storage tank 103 (b).
貯液槽103(a)は容器部61に囲まれた液体や気体を貯蔵する貯蔵部62を有し、貯蔵部62に液体を導入する導入口109と、オゾン液などの液体を導出する導出口110と、気体または液体を導出する導出口111を備えている。ここで、導出口111は導出口110より重力方向に対して高い位置に設けられ、導出口111は効率的に気体を導出させるため貯蔵部62の天井近傍に設けることがよい。 The liquid storage tank 103 (a) has a storage unit 62 that stores liquid or gas surrounded by the container unit 61, an introduction port 109 that introduces the liquid into the storage unit 62, and a lead that extracts liquid such as ozone liquid. An outlet 110 and a lead-out port 111 through which gas or liquid is led out are provided. Here, the outlet 111 is provided at a position higher than the outlet 110 in the direction of gravity, and the outlet 111 is preferably provided near the ceiling of the storage unit 62 in order to efficiently lead out the gas.
導入口109から導入された液体は貯蔵部62に貯液され、貯蔵部62に貯液された液体の水位が導出口110の高さを超えたときに、導出口110から液体が導出される。導出口111は導出口110が設けられた位置より高い位置に設けられ、オゾン液生成器により生成したオゾン液をオゾン液生成器の外部に導出するオゾン液生成モード時に、貯蔵部62に貯液される液体の水位より高い位置に設けられているため、貯液された液体に浸らない位置に配置されるように設計されている。このため、オゾン液生成モード時に貯蔵部62は下層に液体が貯液され、上層に気体が貯蔵されることとなる。 The liquid introduced from the introduction port 109 is stored in the storage unit 62, and when the water level of the liquid stored in the storage unit 62 exceeds the height of the output port 110, the liquid is extracted from the output port 110. . The outlet 111 is provided at a position higher than the position where the outlet 110 is provided, and is stored in the storage unit 62 during the ozone liquid generation mode in which the ozone liquid generated by the ozone liquid generator is discharged outside the ozone liquid generator. Since it is provided at a position higher than the water level of the liquid to be stored, it is designed to be disposed at a position not immersed in the stored liquid. For this reason, in the ozone liquid generation mode, the storage unit 62 stores liquid in the lower layer and stores gas in the upper layer.
なお、貯液槽103は図6の形態に限られず、貯蔵部62は円筒形状である必要はなく、直方体などの多角形や円錐形状などの貯蔵部62を形成させてもよく、液体と気体を貯蔵することが可能な容器であれば、他の構成の貯液槽を配置しても構わない。 The liquid storage tank 103 is not limited to the configuration shown in FIG. 6, and the storage unit 62 does not have to be cylindrical, and a storage unit 62 having a polygonal shape such as a rectangular parallelepiped or a conical shape may be formed. As long as the container can store the liquid, a liquid storage tank having another configuration may be disposed.
また、貯液槽103の大きさは設計に応じて、適宜、変えることが可能であり、配管の一部を広げ、貯蔵部を形成させることで、貯液槽を形成させても構わない。 Further, the size of the liquid storage tank 103 can be appropriately changed according to the design, and the liquid storage tank may be formed by expanding a part of the piping and forming a storage section.
次に、貯液槽103の他の一実施形態について、図7の概略説明図を用いて説明する。図7(a)は貯液槽103(b)の斜視図である。図7(b)は貯液槽103(b)の断面図である。 Next, another embodiment of the liquid storage tank 103 will be described with reference to a schematic explanatory diagram of FIG. FIG. 7A is a perspective view of the liquid storage tank 103 (b). FIG. 7B is a cross-sectional view of the liquid storage tank 103 (b).
図7の貯液槽103(b)は外壁71に囲まれた液体や気体を貯蔵する貯蔵部72を有し、貯蔵部72に液体を導入する導入口109と、オゾン液などの液体を導出する導出口110と、気体または液体を導出する導出口111を備えている。また、貯蔵部72は、導入口109と連通し、内壁73により形成された内水筒74と外壁71と内壁73との間に形成され、液体を貯液可能な外水筒75を備えた2重管構造として形成されている。導出口111は、内壁73により形成される壁の高さより重力方向に対して高い位置に設けられ、導出口110は内壁73により形成される壁の高さより重力方向に対して低い位置に設けられている。ここで、導出口111は効率的に気体を導出させるため貯蔵部72の天井近傍に設け、導出口110は効率的に液体を導出させるため貯蔵部72の底面近傍に設けることがよい。 The liquid storage tank 103 (b) in FIG. 7 has a storage part 72 that stores liquid or gas surrounded by an outer wall 71, and introduces an inlet 109 for introducing the liquid into the storage part 72 and a liquid such as ozone liquid. And a lead-out port 111 through which gas or liquid is led out. The storage unit 72 communicates with the introduction port 109 and is formed between the inner water tube 74 formed by the inner wall 73, the outer wall 71, and the inner wall 73, and is provided with a double water tube 75 having an outer water tube 75 capable of storing liquid. It is formed as a tube structure. The outlet 111 is provided at a position higher than the height of the wall formed by the inner wall 73 in the direction of gravity, and the outlet 110 is provided at a position lower than the height of the wall formed by the inner wall 73 in the direction of gravity. ing. Here, the outlet 111 may be provided in the vicinity of the ceiling of the storage unit 72 in order to efficiently lead out the gas, and the outlet 110 may be provided in the vicinity of the bottom of the storage unit 72 in order to efficiently lead out the liquid.
導入口109から導入された液体は、貯蔵部72の内水筒74に貯液され、やがて貯液された液体の水位が内壁73の壁の高さを超えて溢れると、外水筒75に貯液されることとなる。その後、外水筒75に貯液された液体は、導出口110から導出される。このため、貯液槽103(b)はオゾン液生成モード時に貯蔵部72の下層に液体が貯液され、貯蔵部72の上層に気体が貯蔵されることとなる。この結果、貯液槽103(b)は導入口109から液体を導入し、導出口111から気体を導出させることが可能となる。なお、貯液槽103(b)は、導入口109から導入させた液体の流れを内壁73に衝突させることでさえぎり、内水筒74に貯液させた後に、導出口110から導出させるため、オゾン液に含まれるオゾンガスなどの気体の気液分離をより効果的に行うことが可能となる。 The liquid introduced from the inlet 109 is stored in the inner water tube 74 of the storage unit 72, and when the liquid level of the stored liquid overflows beyond the height of the inner wall 73, the liquid is stored in the outer water tube 75. Will be. Thereafter, the liquid stored in the outer water cylinder 75 is led out from the outlet 110. For this reason, in the liquid storage tank 103 (b), the liquid is stored in the lower layer of the storage unit 72 and the gas is stored in the upper layer of the storage unit 72 in the ozone liquid generation mode. As a result, the liquid storage tank 103 (b) can introduce the liquid from the introduction port 109 and can derive the gas from the discharge port 111. The liquid storage tank 103 (b) is blocked by causing the liquid flow introduced from the inlet 109 to collide with the inner wall 73, and is stored in the inner water cylinder 74 and then discharged from the outlet 110. Gas-liquid separation of gas such as ozone gas contained in the liquid can be performed more effectively.
なお、図7では導出口110を貯液槽103(b)の底面に設けているが、オゾン液を外水筒75に貯液できるように、外水筒75の底面と内壁73の上部との間に位置する外壁71に導出口110を設けても構わない。 In FIG. 7, the outlet 110 is provided on the bottom surface of the liquid storage tank 103 (b), but between the bottom surface of the outer water tube 75 and the upper portion of the inner wall 73 so that the ozone liquid can be stored in the outer water tube 75. The outlet 110 may be provided in the outer wall 71 located at the position.
また、図7では、二重管構造により形成された貯液槽103(b)について説明をしたが、円筒形状として構成する必要はなく、多角形等の二重構造にしてもよく、気体と液体を分離することが可能な構成であれば、他の構成を用いても構わない。 In addition, in FIG. 7, the liquid storage tank 103 (b) formed with a double tube structure has been described. However, it is not necessary to form a cylindrical shape, and a double structure such as a polygon may be used. Other configurations may be used as long as they can separate the liquid.
循環経路Aはホースやパイプなどからなる配管系から形成され、オゾンガス発生器101の導出口105と混合部102の導入口107との間を接続する配管aと、混合部102の導出口108と貯液槽103の導入口109との間を接続する配管bと、貯液槽103の導出口111とオゾンガス発生器101の導入口104との間を接続する配管cから構成されている。循環経路Aは気体または液体をオゾン液生成器内100に循環させ、オゾンガス発生器101や混合部102や貯液槽103に気体または液体を導出入させることができる。このため、オゾン液生成器内100に液体を循環させることで、オゾンガス発生器101や貯液槽103や循環経路Aなどのオゾン液生成器100の洗浄を行うことが可能となる。また、貯液槽103に長期間、貯液されて淀んだ水を一定時間、循環経路Aを介して循環させることで、細菌の発生を防ぐことも可能である。
The circulation path A is formed by a piping system composed of hoses, pipes, and the like. The piping a connecting the outlet 105 of the ozone gas generator 101 and the inlet 107 of the mixing unit 102, and the outlet 108 of the mixing unit 102 The pipe b is connected between the inlet 109 of the liquid storage tank 103 and the pipe c is connected between the outlet 111 of the liquid tank 103 and the inlet 104 of the ozone gas generator 101. The circulation path A can circulate gas or liquid in the ozone liquid generator 100 and lead the gas or liquid into the ozone gas generator 101, the mixing unit 102, or the liquid storage tank 103. For this reason, by circulating the liquid in the ozone liquid generator 100, the ozone liquid generator 100 such as the ozone gas generator 101, the liquid storage tank 103, the circulation path A, and the like can be cleaned. Further, it is possible to prevent the generation of bacteria by circulating the water stored in the liquid storage tank 103 for a long time through the circulation path A for a certain period of time.
配管cは、経路の途中に開設して設けられた開設口112を備え、前記オゾン液生成器の内部と外部との間の、気体または液体の流動を制御する流動制御手段と接続されている。流動制御手段は、配管を流動する気体や液体の流動量を制御可能な第1の制御部113が設けられた配管dにより構成され、配管dの一方は、配管cの経路の途中に開設して設けられた開設口112と連通して接続され、もう一方は大気と連通している外部口114が形成されている。このため、第1の制御部113を用いて配管dを流動する気体または液体の流動量を制御することによって、外部口114と大気との間で気体または液体の流動を制御することが可能である。 The pipe c includes an opening 112 provided in the middle of the path, and is connected to a flow control unit that controls the flow of gas or liquid between the inside and the outside of the ozone liquid generator. . The flow control means is constituted by a pipe d provided with a first control unit 113 capable of controlling the flow amount of gas or liquid flowing through the pipe, and one of the pipes d is opened in the middle of the path of the pipe c. An external port 114 is formed which is connected to and communicates with an opening 112 provided to the outside, and the other is connected to the atmosphere. For this reason, it is possible to control the flow of gas or liquid between the external port 114 and the atmosphere by controlling the flow amount of the gas or liquid flowing through the pipe d using the first control unit 113. is there.
また、配管dはオゾンガスを還元する機能を有するオゾンフィルタ115を設けてもよい。配管dに設けられたオゾンフィルタ115は、オゾンガスを還元した後に外部口114から大気へ導出するため、外部口114から気体を安全に大気中に開放することが可能となる。ここで、オゾンフィルタ115はオゾン分解触媒を格子状に構成した紙やアルミニウム付着させたものなど一般的なオゾンフィルタを配置する。 Further, the piping d may be provided with an ozone filter 115 having a function of reducing ozone gas. Since the ozone filter 115 provided in the pipe d leads the ozone gas to the atmosphere from the external port 114 after reducing ozone gas, the gas can be safely released from the external port 114 to the atmosphere. Here, as the ozone filter 115, a general ozone filter such as a paper in which an ozone decomposition catalyst is configured in a lattice shape or an aluminum deposit is attached.
なお、流動制御部は、オゾン液生成器100の内部と外部との間の、気体または液体の流動を制御可能な手段であればよく、開設口112に配管dを介さず、直接、第1の制御部113を設けた構成など、他の構成を用いても構わない。また、外部口114は気体の導入及び導出が可能な構成であればよく、酸素や空気を貯蔵したボンベなどと接続させた構成としてもよい。 The flow control unit may be any means that can control the flow of gas or liquid between the inside and the outside of the ozone liquid generator 100, and the first directly without the pipe d being connected to the opening 112. Other configurations such as a configuration provided with the control unit 113 may be used. The external port 114 may be configured to be capable of introducing and discharging gas, and may be configured to be connected to a cylinder storing oxygen or air.
配管cは貯液槽103の導出口111と開設口112との間に第2の制御部116が設けられており、貯液槽103の導出口111と開設口112との間の配管cを流動する気体や液体の流動量を制御することができる。ここで、第1の制御部113及び第2の制御部116はバルブなどから形成され、配管を流動する気体または液体の流動量を制御することが可能である。なお、第1の制御部113及び第2の制御部116を電子的な制御が可能な電子バルブとして、開閉制御のタイミングをコントロールすることが可能なコントロール部117と接続させ、電子的な制御を可能とした構成としてもよい。 The pipe c is provided with a second controller 116 between the outlet 111 and the opening 112 of the liquid storage tank 103, and the pipe c between the outlet 111 and the opening 112 of the liquid storage tank 103 is provided. The amount of flowing gas or liquid can be controlled. Here, the 1st control part 113 and the 2nd control part 116 are formed from a valve | bulb etc., and can control the flow amount of the gas or liquid which flows through piping. The first control unit 113 and the second control unit 116 are electronic valves that can be electronically controlled, and are connected to a control unit 117 that can control the timing of the opening and closing control. A possible configuration may be adopted.
≪動作説明≫
実施例1に係るオゾン液生成器の動作説明について図1から図8に基づいて説明する。図8は本発明に係るオゾン液生成器の各モードにおけるタイミングチャートを模式的に示したものである。ここで、各制御部の制御状態は、各制御部の開閉状態を示しており、開状態は制御部を流動する流体の流動量が高い状態を示し、閉状態は制御部を流動する流体の流動量を停止させた状態を示している。オゾンガス発生器の生成状態は、オゾンガス発生器によるオゾンガスの生成状態を示しており、ON状態はオゾンガスが発生している状態であり、OFF状態はオゾンガスの発生が停止している状態を示している。
≪Operation explanation≫
The operation of the ozone liquid generator according to the first embodiment will be described with reference to FIGS. FIG. 8 schematically shows a timing chart in each mode of the ozone liquid generator according to the present invention. Here, the control state of each control unit indicates the open / closed state of each control unit, the open state indicates a state in which the amount of fluid flowing through the control unit is high, and the closed state indicates that the fluid flowing through the control unit. The flow amount is stopped. The generation state of the ozone gas generator indicates the generation state of ozone gas by the ozone gas generator, the ON state indicates a state where ozone gas is generated, and the OFF state indicates a state where generation of ozone gas is stopped. .
時間t0〜t1はオゾン液生成モード、時間t1〜t4はオゾンガス発生器洗浄モード、時間t4〜t5はオゾンガス発生器乾燥モードのタイミングチャートを示しているが、各モードの切り替えは図8に示されたモードの順番に限られず、また、全てのモードを含む必要はない。また、各モードの切り替えはコントロール部により、あらかじめプログラムされたタイミングや、センサを用いることで制御部を制御してもよく、または、制御部を手動において切りかえても構わない。 Times t0 to t1 are ozone liquid generation modes, times t1 to t4 are ozone gas generator cleaning modes, and times t4 to t5 are timing charts of the ozone gas generator drying mode. Switching between the modes is shown in FIG. The order of the modes is not limited, and it is not necessary to include all the modes. In addition, each mode can be switched by controlling the control unit by using a timing programmed in advance by the control unit or using a sensor, or by manually switching the control unit.
はじめにオゾン液生成モードについて説明する。オゾン液生成モードとは、オゾン液生成器により生成したオゾン液をオゾン液生成器の外部に導出させるモードである。図8のタイミングチャートのt0〜t1の期間のように、オゾンガス発生器101をON状態にして、第1の制御部113を閉状態にし、第2の制御部116を開状態にし、混合部の導入口106に水などの液体を導入する。 First, the ozone liquid generation mode will be described. The ozone liquid generation mode is a mode in which the ozone liquid generated by the ozone liquid generator is led out of the ozone liquid generator. 8, the ozone gas generator 101 is turned on, the first control unit 113 is closed, the second control unit 116 is opened, and the mixing unit is turned on. A liquid such as water is introduced into the inlet 106.
混合部102の導入口106から導入された水などの液体は、配管bを介して、貯液槽103に導入され貯液される。このため、貯液槽103に貯蔵されていた空気などの気体の一部は、導入された液体に押し出されように貯液槽103の導出口110から導出される。やがて、貯液槽103に貯液された液体の水位が高くなり、貯液槽103の導出口110が位置する高さを超えると、導出口110は液体により塞がれる。また、第1の制御部113が閉状態であるため、オゾン液生成器100内の気体は貯液槽103と配管aと配管cの空間に閉じ込められた密封状態となる。ここで、密封状態とは物理的に密封された状態ではなく、気体が液体により閉じ込められた状態を示す。 A liquid such as water introduced from the inlet 106 of the mixing unit 102 is introduced into the liquid storage tank 103 via the pipe b and stored therein. For this reason, a part of gas such as air stored in the liquid storage tank 103 is led out from the outlet 110 of the liquid storage tank 103 so as to be pushed out by the introduced liquid. Eventually, when the water level of the liquid stored in the liquid storage tank 103 increases and exceeds the height at which the outlet 110 of the liquid storage tank 103 is located, the outlet 110 is blocked by the liquid. Moreover, since the 1st control part 113 is a closed state, the gas in the ozone liquid generator 100 will be in the sealed state confine | sealed in the space of the liquid storage tank 103, the piping a, and the piping c. Here, the sealed state is not a physically sealed state but a state where a gas is confined by a liquid.
閉じ込められた空気などの気体は水流により流動され、オゾンガス発生器101に導入され、オゾンガス発生器101によりオゾンガスが生成される。その後、オゾンガスは、配管aを介して、混合部102の導入口107から導入され、もう一方の導入口106から導入された水などの液体と混合されることでオゾン液が生成される。生成したオゾン液は、配管bを介して、貯液槽103に導出され気体と液体に分離される。 A gas such as trapped air is flowed by a water flow and introduced into the ozone gas generator 101, and ozone gas is generated by the ozone gas generator 101. Thereafter, the ozone gas is introduced from the introduction port 107 of the mixing unit 102 via the pipe a, and is mixed with a liquid such as water introduced from the other introduction port 106 to generate an ozone liquid. The generated ozone liquid is led out to the liquid storage tank 103 via the pipe b and separated into gas and liquid.
ここで、オゾン液には、液体にオゾンガスが溶け込んだオゾン溶液や液体にオゾンガスが気泡として混合されるオゾンバブル液が含まれているため、貯液槽103にてオゾンガスや空気などを含む気体とオゾン溶液を含む液体に分離される。分離されたオゾンガスや空気を含む気体は、もとの閉じ込められた空間に戻り、再び循環することになる。このため、貯液槽103の気体は次のような経路にて循環することになる。貯液槽103→配管c→オゾンガス発生器101→配管a→混合部102→配管b→貯液槽103→配管c→オゾンガス発生器101→混合部102→・・・。この結果、オゾンガス発生器101は、水に溶けきれず、気液分離されたオゾンガスを含む気体をもとにオゾンガスを生成するため、より高濃度なオゾン液が生成されることとなる。
Here, the ozone liquid includes an ozone solution in which ozone gas is dissolved in the liquid and an ozone bubble liquid in which the ozone gas is mixed as bubbles in the liquid. Separated into liquid containing ozone solution. The separated gas containing ozone gas and air returns to the original confined space and circulates again. For this reason, the gas in the liquid storage tank 103 circulates through the following route. Storage tank 103 → Pipe c → Ozone gas generator 101 → Pipe a → Mixing section 102 → Pipe b → Storage tank 103 → Pipe c → Ozone gas generator 101 → Mixing section 102 →. As a result, the ozone gas generator 101 is not completely soluble in water, to generate ozone gas based on the gas containing the vapor-liquid separated ozone gas, so that the higher concentration ozone solution is produced.
ここで、本発明に係るオゾン液生成器の高濃度オゾン水の生成メカニズムについて、2L/minの空気をもとに濃度500ppm程度のオゾンガスを生成するオゾンガス発生器と水とオゾンガスを混合させる混合部を用いて、0.4mg/L程度のオゾンガスが溶け込んだオゾン水を生成するモデルを用いて説明する。 Here, regarding the generation mechanism of the high-concentration ozone water of the ozone liquid generator according to the present invention, an ozone gas generator that generates ozone gas with a concentration of about 500 ppm based on 2 L / min air, and a mixing unit that mixes water and ozone gas Will be described using a model for generating ozone water in which ozone gas of about 0.4 mg / L is dissolved.
オゾン水濃度0.4mg/Lとは、水1L中、0.4mgのオゾンガスが溶け込んでいる状態であり、1Lの水に0.18ml程度の体積のオゾンガスが溶け込むことになる。このため、2Lの空気に90ppmのオゾンガスが溶け込んだことになる。 The ozone water concentration of 0.4 mg / L is a state in which 0.4 mg of ozone gas is dissolved in 1 L of water, and ozone gas having a volume of about 0.18 ml is dissolved in 1 L of water. For this reason, 90 ppm of ozone gas is dissolved in 2 L of air.
計算式は以下の通りである。オゾン水濃度0.4mg/Lの単位をmol/Lに変換すると、
8.33×10−6mol/Lとなる。(0.4mg/L÷48g/mol=8.33×10−6mol/L)1molの体積は22.4Lであるため、0.18mlのオゾンガスが水1L中に溶け込むことになる。(8.33×10−6mol/L×22.4L/mol=0.18ml/L)水に溶け込む0.18mlのオゾンガスの濃度を、2L/minの体積として計算すると、90ppmとなる。(0.18ml÷2000ml=90×10−6=90ppm)
つまり、オゾンガス発生器にて空気をもとに生成するオゾンガスのオゾンガス濃度500ppmは、水に溶解して減少するオゾンガス濃度90ppmより大きいため、気体を循環する度にオゾンガス濃度は増加することになる。このため、オゾンガス発生器で発生するオゾンガスのオゾン濃度は、循環開始から時間が経過するとオゾンガス発生器に導入される気体のオゾン濃度が上昇し、オゾンガス発生器の発生能力限界値まで増加することとなる。
The calculation formula is as follows. When the unit of ozone water concentration 0.4mg / L is converted to mol / L,
It becomes 8.33 × 10 −6 mol / L. ( 0.4 mg / L ÷ 48 g / mol = 8.33 × 10 −6 mol / L) Since the volume of 1 mol is 22.4 L, 0.18 ml of ozone gas dissolves in 1 L of water. (8.33 × 10 −6 mol / L × 22.4 L / mol = 0.18 ml / L ) When the concentration of 0.18 ml of ozone gas dissolved in water is calculated as a volume of 2 L / min, it becomes 90 ppm. (0.18 ml / 2000 ml = 90 × 10 −6 = 90 ppm)
That is, the ozone gas concentration 500 ppm of the ozone gas generated based on the air by the ozone gas generator is larger than the ozone gas concentration 90 ppm that decreases by dissolving in water, so that the ozone gas concentration increases every time the gas is circulated. For this reason, the ozone concentration of the ozone gas generated by the ozone gas generator increases as the ozone concentration of the gas introduced into the ozone gas generator increases as time elapses from the start of circulation, and increases to the generation capacity limit value of the ozone gas generator. Become.
この原理を利用することで、高濃度なオゾンガスを混合部に導入し、結果として高濃度なオゾン液の生成が可能となる。また、循環経路Aは、水圧の影響を受け閉じ込められた空間の空気が圧縮されて加圧状態となる。このため、混合部に高密度な気体の導入を可能となり飛躍的に高い濃度のオゾン液を生成することが可能となる。 By utilizing this principle, high-concentration ozone gas is introduced into the mixing section, and as a result, high-concentration ozone liquid can be generated. Further, the circulation path A is pressurized by compressing the air in the confined space under the influence of water pressure. For this reason, it is possible to introduce a high-density gas into the mixing portion, and it is possible to generate an ozone liquid having a drastically high concentration.
なお、上記のモデルの計算によれば、水に溶解するオゾンガス溶解量は、100Lの水を流して18ml程度の溶解量となり、オゾン水生成器内を循環する気体の増減に大きな影響を与えない。 According to the calculation of the above model, the dissolved amount of ozone gas dissolved in water becomes about 18 ml by flowing 100 L of water, and does not greatly affect the increase or decrease of the gas circulating in the ozone water generator. .
また、オゾン液生成モードのみを使用する際は、第2の制御部116を使用しないため、オゾン液生成器100に第2の制御部116を設ける必要はない。 In addition, when only the ozone liquid generation mode is used, the second control unit 116 is not used, and therefore it is not necessary to provide the second control unit 116 in the ozone liquid generator 100.
次にオゾンガス発生器洗浄モードについて説明する。オゾンガス発生器洗浄モードとは、循環経路Aを介してオゾンガス発生器に水などの液体を導入させ、オゾンガス発生器を洗浄するモードである。図8のタイミングチャートのように、オゾン液生成モードと同一の第1の制御状態(t1〜t2)と、第2の制御状態(t2〜t3)と、第3の制御状態(t3〜t4)が含まれる。なお、オゾン液生成モード中に第2の制御状態に切り替え、その後に第3の制御状態へ切り換えることで、オゾンガス発生器の洗浄を行うことも可能である。 Next, the ozone gas generator cleaning mode will be described. The ozone gas generator cleaning mode is a mode in which a liquid such as water is introduced into the ozone gas generator via the circulation path A to clean the ozone gas generator. As in the timing chart of FIG. 8, the same first control state (t1 to t2), second control state (t2 to t3), and third control state (t3 to t4) as in the ozone liquid generation mode. Is included. The ozone gas generator can be cleaned by switching to the second control state during the ozone liquid generation mode and then switching to the third control state.
第1の制御状態(t1〜t2)は、オゾン液生成モードと同様にオゾンガス発生器101をON状態にして、第1の制御部113を閉状態にし、第2の制御部116を開状態にし、混合部の導入口106に水などの液体を導入する。一定時間経過したオゾン液生成器100は、オゾンガスや空気などの気体が循環経路Aを循環し、オゾン液が貯液槽の導出口110から導出する状態に安定する。詳細な過程は、オゾン液生成モードの説明と同一であるため省略する。
In the first control state (t1 to t2), as in the ozone liquid generation mode, the ozone gas generator 101 is turned on, the first control unit 113 is closed, and the second control unit 116 is opened. Then, a liquid such as water is introduced into the inlet 106 of the mixing unit. After a certain period of time, the ozone liquid generator 100 is stabilized in a state where a gas such as ozone gas or air circulates in the circulation path A and the ozone liquid is led out from the outlet 110 of the liquid storage tank. The detailed process is the same as that in the description of the ozone liquid generation mode, and will be omitted.
オゾン液生成器100の液体または気体の流れが第1の制御状態に安定した後に、第2の制御状態に切り替える。このとき、切り替えのタイミングは、オゾン液生成器の液体または気体の流れが安定する時間をあらかじめプログラムしておき、制御時間が経過したときにコントロールしてもよい。また、貯液槽103に貯液量をセンシング可能なセンサを設け、貯液量が一定の水位に安定したときや、貯液槽103から導出する液体の水量をセンシング可能な流量センサを設け、導出する流量が一定値に安定したときに切り替えるようにコントロールしてもよい。また、貯液槽103または循環経路Aである配管などに圧力計を備え、測定する圧力が安定した時に切り替えるようにコントロールしてもよい。 After the flow of the liquid or gas in the ozone liquid generator 100 is stabilized in the first control state, the ozone liquid generator 100 is switched to the second control state. At this time, the switching timing may be controlled when the time for the liquid or gas flow in the ozone liquid generator to stabilize is programmed in advance and the control time has elapsed. In addition, a sensor capable of sensing the amount of liquid stored in the liquid storage tank 103 is provided, and a flow rate sensor capable of sensing the amount of liquid discharged from the liquid storage tank 103 when the liquid storage amount is stabilized at a constant water level, It may be controlled to switch when the flow rate to be derived is stabilized at a constant value. Further, a pressure gauge may be provided in the liquid storage tank 103 or the piping that is the circulation path A, and control may be performed so as to switch when the pressure to be measured is stabilized.
第2の制御状態(t2〜t3)は、オゾンガス発生器をOFF状態にして、第1の制御部113を開状態にし、第2の制御部116を開状態にし、混合部102の導入口106に水などの液体の導入を継続する。
In the second control state ( t2 to t3 ), the ozone gas generator is turned off, the first control unit 113 is opened, the second control unit 116 is opened, and the inlet 106 of the mixing unit 102 is opened. Continue to introduce liquids such as water.
混合部102に導入された液体は、配管bを介して貯液槽103に導入され、貯液槽103の導出口110から導出される。一方、第1の制御部113が開状態に切り替わり、大気に連通した外部口114が大気解放圧となるため、循環経路Aを循環している気体は、気圧の低い外部口114から導出する。このため、貯液槽103内に貯蔵された気体の体積が減少し、貯液槽103内の気圧が低くなるため、貯液槽103に貯液される液体の水位が徐々に高くなる。やがて、貯液槽103の液体の水位が高くなり、一定の貯液量を超えた際に、第3の制御状態へと切り替える。 The liquid introduced into the mixing unit 102 is introduced into the liquid storage tank 103 via the pipe b and is led out from the outlet 110 of the liquid storage tank 103. On the other hand, since the first control unit 113 is switched to the open state and the external port 114 communicated with the atmosphere becomes the atmospheric release pressure, the gas circulating in the circulation path A is led out from the external port 114 having a low atmospheric pressure. For this reason, since the volume of the gas stored in the liquid storage tank 103 decreases and the atmospheric pressure in the liquid storage tank 103 decreases, the water level of the liquid stored in the liquid storage tank 103 gradually increases. Eventually, when the liquid level in the liquid storage tank 103 increases and exceeds a certain amount of liquid storage, the state is switched to the third control state.
ここで貯液槽103の一定の貯液量とは、貯液槽103の液体の水位が、貯液槽103に設けられた導出口111の高さと同程度、あるいはそれ以上の高さとなる貯液量をさし、例えば、貯液槽103の導出口111が貯液された液体により塞がれるときや、配管cを液体が流動するときや、配管dの外部口114から液体が導出するときに、第3の制御状態に切り替えることとしてもよい。 Here, the certain amount of liquid stored in the liquid storage tank 103 means that the liquid level in the liquid storage tank 103 is the same as or higher than the height of the outlet 111 provided in the liquid storage tank 103. For example, when the outlet 111 of the liquid storage tank 103 is blocked by the stored liquid, when the liquid flows through the pipe c, or when the liquid flows out from the external port 114 of the pipe d. Sometimes, it may be switched to the third control state.
このとき、切り替えのタイミングは、あらかじめ貯液槽103に貯液された液体が一定の貯液量を超える時間をプログラムしておき、制御時間が経過したときにコントロールしてもよい。また、貯液槽103に貯液される液体の水位をセンシング可能なセンサを設け、貯液量が一定の水位を超えたときや、循環経路Aである配管に液体の流動を感知するセンサを設け、液体を感知したときにコントロールしても構わない。また、貯液槽103または循環経路Aである配管などに圧力計を備え、測定する圧力に応じて切り替えるようにコントロールしてもよい。
At this time, the switching timing may be controlled when a time in which the liquid stored in the liquid storage tank 103 exceeds a certain amount of liquid is programmed in advance and the control time has elapsed. In addition, a sensor capable of sensing the water level of the liquid stored in the liquid storage tank 103 is provided, and a sensor that senses the flow of the liquid in the pipe that is the circulation path A when the amount of stored liquid exceeds a certain water level. It may be provided and controlled when liquid is detected. In addition, a pressure gauge may be provided in the liquid storage tank 103 or the piping that is the circulation path A, and control may be performed so as to switch according to the pressure to be measured.
図8のタイミングチャートの第3の制御状態(t3〜t4)では、オゾンガス発生器をOFF状態にして、第1の制御部113を閉状態にし、第2の制御部116を開状態にし、混合部102に水などの液体の導入を継続する。 In the third control state (t3 to t4) in the timing chart of FIG. 8, the ozone gas generator is turned off, the first control unit 113 is closed, the second control unit 116 is opened, and mixing is performed. The introduction of a liquid such as water into the unit 102 is continued.
混合部102に導入された液体は、引き続き貯液槽103の導出口110から導出される。一方、第1の制御部113が閉状態に切り替わり、配管aと配管cは再び密封された状態となるため、配管cや貯液槽103などの気体または液体は混合部102に吸引される。 The liquid introduced into the mixing unit 102 is continuously led out from the outlet 110 of the liquid storage tank 103. On the other hand, since the first control unit 113 is switched to the closed state and the pipes a and c are sealed again, the gas or liquid in the pipe c and the liquid storage tank 103 is sucked into the mixing unit 102.
このため、オゾン液生成器100内の気体または液体は循環経路Aを介して循環することになる。この結果、オゾン液生成器100の内部を循環する液体は、循環経路Aに設けられたオゾンガス発生器101の電極表面に付着した窒素酸化物などの堆積物または循環経路Aに付着した汚れを洗浄することが可能である。なお、オゾンガス発生器洗浄モードのみを使用する際は、第2の制御部116を使用しないため、オゾン液生成器100に第2の制御部116を設けない構成としてもよい。 For this reason, the gas or liquid in the ozone liquid generator 100 circulates through the circulation path A. As a result, the liquid circulating inside the ozone liquid generator 100 cleans deposits such as nitrogen oxides attached to the electrode surface of the ozone gas generator 101 provided in the circulation path A or dirt attached to the circulation path A. Is possible. Note that when only the ozone gas generator cleaning mode is used, the second control unit 116 is not used, and thus the ozone liquid generator 100 may not be provided with the second control unit 116.
次にオゾンガス発生器乾燥モードについて説明する。オゾンガス発生器乾燥モードとは、オゾン液生成器に付着した水分や水蒸気を乾燥させるモードであり、特にオゾンガス発生器の電極に付着した液体を乾燥させるモードである。
It will now be described ozone gas generator drying mode. The ozone gas generator drying mode is a mode for drying the moisture or water vapor adhering to the ozone solution generator is a mode for particularly dry liquid adhering to the electrodes of the ozone gas generator.
図8のタイミングチャートのt4〜t5の期間のように、オゾンガス発生機をOFF状態にして、第1の制御部113を開状態にし、第2の制御部116を閉状態にし、混合部102の導入口106に水などの液体を導入する。 As in the period from t4 to t5 in the timing chart of FIG. 8, the ozone gas generator is turned off, the first control unit 113 is opened, the second control unit 116 is closed, and the mixing unit 102 A liquid such as water is introduced into the inlet 106.
混合部102に導入された液体は、配管bを介して貯液槽103に導入され、貯液槽103の導出口110から導出される。一方、第1の制御部113が開状態になっているため、空気などの気体が、配管dの外部口114から混合部102の導入口107に吸引される。このとき、気体が配管を介して、オゾンガス発生器101を流動することになるため、オゾンガス発生器及び配管が乾燥することとなる。特にオゾンガス発生器101の電極表面に付着した水蒸気を乾燥させることが可能である。また、混合部102の導入口107に導入された気体は、混合部102の導入口106に導入された水などの液体と混合された後、貯液槽103の導出口110より導出されることとなる。 The liquid introduced into the mixing unit 102 is introduced into the liquid storage tank 103 via the pipe b and is led out from the outlet 110 of the liquid storage tank 103. On the other hand, since the first control unit 113 is in the open state, a gas such as air is sucked into the introduction port 107 of the mixing unit 102 from the external port 114 of the pipe d. At this time, since the gas flows through the ozone gas generator 101 via the pipe, the ozone gas generator and the pipe are dried. In particular, water vapor adhering to the electrode surface of the ozone gas generator 101 can be dried. Further, the gas introduced into the introduction port 107 of the mixing unit 102 is mixed with a liquid such as water introduced into the introduction port 106 of the mixing unit 102 and then led out from the outlet 110 of the liquid storage tank 103. It becomes.
なお、オゾンガス発生器乾燥モードは、オゾンガス発生器洗浄モードの後だけでなく、オゾン液生成モードの後に行ってもよい。一般的にオゾンガス発生器は、湿度の高い空気を材料にオゾンガスを生成するより、湿度の低い空気を材料にオゾンガスを生成させる方が、オゾンガス濃度の高いオゾンガスが生成されることが知られている。これは、電極表面に水蒸気が付着し、電極表面に接触する酸素量が減少することや、空気に含まれる水蒸気のため、相対的な酸素量が低下することなどにより、オゾンガスの発生効率を低下させることに起因している。このため、オゾンガス発生器乾燥モードは、オゾン液生成器内部の気体の湿度を抑え、オゾンガス発生効率を高めるために有効である。
Incidentally, the ozone gas generator drying mode, not only after the ozone generator cleaning mode may be performed after the ozone solution-generation mode. It is generally known that ozone gas generators generate ozone gas with a high ozone gas concentration by generating ozone gas using air with low humidity rather than generating ozone gas using air with high humidity. . This is because the water vapor adheres to the electrode surface and the amount of oxygen in contact with the electrode surface decreases, or the relative oxygen amount decreases due to the water vapor contained in the air. It is due to letting. Therefore, the ozone gas generator drying mode, suppressing the humidity of the ozone liquid generator internal gas, it is effective to increase the ozone generation efficiency.
上述の説明により、オゾン液生成器、特にオゾンガス発生器の電極部に堆積された窒素酸化物の洗浄及び乾燥が可能であり、オゾンガス発生器の自己再生が可能となる。 According to the above description, it is possible to clean and dry the nitrogen oxide deposited on the electrode part of the ozone liquid generator, particularly the ozone gas generator, and the ozone gas generator can self-regenerate.
≪実験結果≫
次に本発明に係るオゾン液生成器の洗浄動作に関する洗浄実験について図9の実験結果の説明図を用いて説明する。実験は図1の構成にて、100mg/hのオゾンガスを発生するオゾンガス発生器101を使用し、混合部102に対して2.5L/minの水を導入させて、オゾン液の生成を20時間経過させた後に行った。
≪Experimental results≫
Next, a cleaning experiment relating to the cleaning operation of the ozone liquid generator according to the present invention will be described with reference to the explanatory diagram of the experimental results in FIG. In the experiment, the ozone gas generator 101 that generates 100 mg / h of ozone gas is used in the configuration of FIG. 1, and 2.5 L / min of water is introduced into the mixing unit 102 to generate ozone liquid for 20 hours. It went after passing.
オゾンガス濃度はオゾンガス発生器により発生するオゾンガスの濃度を示し、オゾン液濃度は混合部から導出される液体のオゾン濃度を測定したものである。「洗浄なし」は、上述の実験条件にてオゾン液生成モードを20時間経過させた後のオゾンガス濃度、オゾン液濃度の推移を示している。「洗浄あり」は、上述の実験条件にて、オゾン液生成モードを20時間経過させ、オゾンガス発生器洗浄モードにて水を2分間循環させて洗浄し、オゾンガス発生器乾燥モードにて、5分間乾燥させた後のオゾンガス濃度、オゾン液濃度の推移を示している。
The ozone gas concentration indicates the concentration of ozone gas generated by the ozone gas generator, and the ozone liquid concentration is obtained by measuring the ozone concentration of the liquid derived from the mixing unit. “No cleaning” indicates the transition of the ozone gas concentration and the ozone liquid concentration after the ozone liquid generation mode has passed for 20 hours under the above-described experimental conditions. “With cleaning” means that the ozone liquid generation mode is allowed to elapse for 20 hours under the above-described experimental conditions, water is circulated for 2 minutes in the ozone gas generator cleaning mode, and cleaning is performed for 5 minutes in the ozone gas generator drying mode. Changes in ozone gas concentration and ozone liquid concentration after drying are shown.
実験の結果、図9の全ての実験条件において、「洗浄あり」に示された結果は「洗浄なし」に示された結果に比べて、オゾンガス濃度及びオゾン液濃度はともに高い結果を得られた。これは、オゾンガス発生器の電極表面に堆積していた窒素酸化物や水蒸気を水によって除去した結果、オゾンガス発生器のオゾンガス発生能力を回復させたことに起因している。このため、本発明に係るオゾン液生成器を利用することで、オゾンガス発生能力を回復することができ、長期間安定した濃度のオゾン液の生成が可能である。 As a result of the experiment, in all the experimental conditions of FIG. 9, the results shown in “with cleaning” were higher in both ozone gas concentration and ozone liquid concentration than the results shown in “without cleaning”. . This is due to the recovery of the ozone gas generation capability of the ozone gas generator as a result of removing nitrogen oxides and water vapor deposited on the electrode surface of the ozone gas generator with water. For this reason, by using the ozone liquid generator according to the present invention, the ozone gas generation ability can be recovered, and the ozone liquid having a stable concentration for a long period of time can be generated.
図10は本発明に係るオゾン液生成器を備えた浄水器ユニットの概略図である。浄水ユニット200はオゾン液を生成するオゾン液生成器100と水などの液体を濾過する濾過部201(と水などの液体を流動させる経路を形成する配管)を備え、水道水などの液体をオゾン液生成器100に導入してオゾン液を生成するオゾン液生成経路Bと、水道水などの液体を濾過部201に導入し浄水を生成する浄水経路Cとを有している。 FIG. 10 is a schematic view of a water purifier unit equipped with an ozone liquid generator according to the present invention. The water purification unit 200 includes an ozone liquid generator 100 that generates an ozone liquid and a filtration unit 201 that filters a liquid such as water (and a pipe that forms a path through which the liquid such as water flows). It has the ozone liquid production | generation path | route B which introduce | transduces into the liquid generator 100 and produces | generates an ozone liquid, and the water purification path | route C which introduce | transduces liquids, such as a tap water, into the filtration part 201, and produces | generates purified water.
オゾン液生成器100は、配管を介して導入された水などの液体をもとにオゾン液を導出することが可能である。なお、オゾン液生成器100は実施例1の構成と同一であるため、同一部分は同一符号を付し、詳細な説明は省略する。 The ozone liquid generator 100 can derive an ozone liquid based on a liquid such as water introduced through a pipe. In addition, since the ozone liquid generator 100 is the same as the structure of Example 1, the same part attaches | subjects the same code | symbol and abbreviate | omits detailed description.
濾過部201はUF膜(Ultrafiltration Membrane)フィルタなど粒子を除去できるフィルタにより形成され、配管を介して導入される水などの液体を濾過して導出することが可能である。 The filtration unit 201 is formed of a filter capable of removing particles, such as a UF membrane (Ultrafiltration Membrane) filter, and is capable of filtering out a liquid such as water introduced through a pipe.
オゾン液生成経路Bは液体を導入する配管eとオゾン液生成器100を備えた配管fから形成され、浄水経路Cは配管eと配管gから形成されている。配管eは配管fと配管gとに分岐する分岐点202を備え、オゾン液生成経路Bと浄水経路Cの2つの経路に共有されている。配管fは制御部203を備え、配管gは制御部204を備え、それぞれの配管を流動する液体の流動量を制御することが可能である。このため、浄水ユニット200は、オゾン液を生成するオゾン液生成経路Bと、浄水を生成する浄水経路Cに切り替えることが可能である。 The ozone liquid generation path B is formed from a pipe e for introducing a liquid and a pipe f including the ozone liquid generator 100, and the water purification path C is formed from a pipe e and a pipe g. The pipe e includes a branch point 202 that branches into a pipe f and a pipe g, and is shared by two paths of the ozone liquid generation path B and the water purification path C. The pipe f includes a control unit 203, and the pipe g includes a control unit 204. The flow amount of the liquid flowing through each pipe can be controlled. For this reason, the water purification unit 200 can be switched to an ozone liquid generation path B that generates ozone liquid and a water purification path C that generates purified water.
なお、制御部203、204を電子バルブにより形成し、コントロール部205と接続させ、電子的な制御を行ってもよい。また、コントロール部205はオゾン液生成器100のコントロール部117と共有させ、1つのコントロール部にて制御部のそれぞれを制御する構成としても構わない。 The control units 203 and 204 may be formed by electronic valves and connected to the control unit 205 to perform electronic control. Further, the control unit 205 may be shared with the control unit 117 of the ozone liquid generator 100 and each control unit may be controlled by one control unit.
また、配管eは、分岐点202の前にプレフィルタや活性炭フィルタなどの濾過部206を設けても構わない。上述の構成にすることで、2つの経路にフィルタを設ける必要がなく、効率的に浄水することが可能である。 Further, the piping e may be provided with a filtration unit 206 such as a prefilter or an activated carbon filter before the branch point 202. By adopting the above-described configuration, it is not necessary to provide filters in the two paths, and it is possible to efficiently purify the water.
≪動作説明≫
実施例2に係る浄水ユニット200の動作説明について図10に基づいて説明する。浄水ユニット200は、オゾン液生成器モードと、浄水モードを備えている。
≪Operation explanation≫
Operation | movement description of the water purification unit 200 which concerns on Example 2 is demonstrated based on FIG. The water purification unit 200 includes an ozone liquid generator mode and a water purification mode.
オゾン液生成器モードはオゾン液生成器100に水などの液体を導入させ、オゾン液の生成、オゾンガス発生器の洗浄、またはオゾンガス発生器の乾燥を行うことが可能であり、制御部203を開状態にし、制御部204を閉状態にして、配管eに液体を導入する。 In the ozone liquid generator mode, a liquid such as water can be introduced into the ozone liquid generator 100 to generate the ozone liquid, clean the ozone gas generator, or dry the ozone gas generator. Then, the controller 204 is closed, and the liquid is introduced into the pipe e.
導入された液体は、オゾン液生成経路Bである配管e及び配管fを介してオゾン液生成器100に導入され、再び配管fを介して液体が導出される。オゾン液生成器の動作説明は、実施例1のオゾン液生成器100の動作説明と同一であるため、省略する。 The introduced liquid is introduced into the ozone liquid generator 100 through the piping e and the piping f which are the ozone liquid generation path B, and the liquid is led out again through the piping f. Since the description of the operation of the ozone liquid generator is the same as the description of the operation of the ozone liquid generator 100 of the first embodiment, a description thereof will be omitted.
次に浄水モードについて説明する。浄水モードは、濾過部に水などの液体を導入させ、浄水させて導出することが可能であり、制御部203を閉状態にし、制御部204を開状態にして、配管eに液体を導入する。導入された液体は、浄水経路Cである配管e及び配管gを介して濾過部201に導入され、濾過部201により濾過後に、再び配管gを介して導出される。 Next, the water purification mode will be described. In the water purification mode, it is possible to introduce a liquid such as water into the filtering unit, purify the water, and to introduce the liquid into the pipe e by closing the control unit 203 and opening the control unit 204. . The introduced liquid is introduced into the filtering unit 201 through the piping e and the piping g which are the water purification path C, and after being filtered by the filtering unit 201, is again led out through the piping g.
本発明は上述した各実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施例についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
100 オゾン液生成器
101 オゾンガス発生器
102 混合部
103、103(a)、103(b) 貯液槽
104 オゾンガス発生器の導入口
105 オゾンガス発生器の導出口
106 混合部の導入口
107 混合部の導入口
108 混合部の導出口
109 貯液槽の導入口
110 貯液槽の導出口
111 貯液槽の導出口
112 開設口
113 第1の制御部
114 外部口
115 オゾンフィルタ
116 第2の制御部
117 コントロール部
21、31 オゾンガス発生素子
22、32 放電電極
23、33 対向電極
24、34 電源
41 導入経路
42 連通経路
43 導出経路
118 圧送部
61 容器部
62 貯蔵部
71 外壁
72 貯蔵部
73 内壁
74 内水筒
75 外水筒
200 浄水ユニット
201、206 濾過部
203、204 制御部
205 コントロール部
DESCRIPTION OF SYMBOLS 100 Ozone liquid generator 101 Ozone gas generator 102 Mixing parts 103, 103 (a), 103 (b) Storage tank 104 Ozone gas generator inlet 105 Ozone gas generator outlet 106 Mixer inlet 107 Inlet port 108 Outlet of mixing unit 109 Inlet port of storage tank 110 Outlet port of storage tank 111 Outlet port of storage tank 112 Opening port 113 First control unit 114 External port 115 Ozone filter 116 Second control unit 117 Control part 21, 31 Ozone gas generation element 22, 32 Discharge electrode 23, 33 Counter electrode 24, 34 Power supply 41 Introduction path 42 Communication path 43 Derivation path 118 Pressure feeding part 61 Container part 62 Storage part 71 Outer wall 72 Storage part 73 Inner wall 74 Inside Water bottle 75 Outer water bottle 200 Water purification unit 201, 206 Filtration part 203, 204 Control part 205 Control Part
Claims (10)
前記オゾンガス発生器に液体を循環させる循環経路とを備え、
前記オゾンガス発生器は、放電電極と前記放電電極に対向して配置された対向電極と前記放電電極および前記対向電極の間に電圧を印加する電源とを有し、前記放電電極と前記対向電極との間に気体を通過させることによりオゾンガスを発生し、
前記循環経路は、前記オゾンガス発生器の前記放電電極と前記対向電極との間を液体が流れるように構成されている、オゾン液生成器。 In an ozone liquid generator comprising an ozone gas generator that generates ozone gas, a mixing unit that mixes the ozone gas and a liquid, and a liquid storage tank that stores the liquid,
A circulation path for circulating a liquid in the ozone gas generator ,
The ozone gas generator includes a discharge electrode, a counter electrode disposed to face the discharge electrode, a power source for applying a voltage between the discharge electrode and the counter electrode, and the discharge electrode, the counter electrode, Ozone gas is generated by passing gas between
The said circulation path | route is an ozone liquid generator comprised so that a liquid may flow between the said discharge electrode and the said counter electrode of the said ozone gas generator.
液体を導出する第1の導出口と
第1の導出口より重力方向に対して高い位置に設けられた第2の導出口を有しており、
前記第2の導出口は前記循環経路と接続されていることを特徴とする請求項2に記載のオゾン液生成器。 The liquid storage tank includes an inlet for introducing liquid;
A first outlet for leading the liquid and a second outlet provided at a position higher than the first outlet in the direction of gravity;
The ozone liquid generator according to claim 2, wherein the second outlet is connected to the circulation path.
液体が導入する導入経路と、
導入経路に連通し、導入経路に比べて小さな径を有する連通経路と、
連通経路と連通し、連通経路に比べて大きな径を有する導出経路とを備え、
連通経路へ気体を導入することが可能な配管を介して前記オゾンガス発生器と接続されていることを特徴とする請求項1から4のいずれか1つに記載のオゾン液生成器。 The mixing unit includes:
An introduction path through which the liquid is introduced;
A communication path that communicates with the introduction path and has a smaller diameter than the introduction path;
A communication path and a lead-out path having a larger diameter than the communication path;
The ozone liquid generator according to any one of claims 1 to 4, wherein the ozone liquid generator is connected to the ozone gas generator through a pipe capable of introducing gas into the communication path.
液体を前記オゾン液生成器に導入してオゾン液を生成するオゾン液生成経路と、
液体を濾過手段に導入し濾過後に導出する浄水経路とを切り替えることを特徴とする浄水器。 A water purifier comprising the ozone liquid generator according to claim 1 and a filtering means for filtering a liquid,
An ozone liquid generation path for introducing the liquid into the ozone liquid generator to generate the ozone liquid;
A water purifier characterized by switching a water purification path that introduces a liquid into a filtering means and leads out after filtration.
前記循環経路は、前記オゾンガス発生器の前記放電電極と前記対向電極との間を液体が流れるように構成されており、前記放電電極および前記対向電極の間に前記循環経路を介して液体を循環させ、前記オゾンガス発生器を洗浄することを特徴とするオゾン液生成器の洗浄方法。 An ozone gas generator that generates ozone gas, a mixing unit that mixes the ozone gas and liquid, an ozone liquid generator that includes a liquid storage tank that stores liquid, and a circulation path that is connected to the ozone gas generator. The ozone gas generator has a discharge electrode, a counter electrode disposed opposite to the discharge electrode, and a power source for applying a voltage between the discharge electrode and the counter electrode. A method for cleaning an ozone liquid generator that generates ozone gas by passing a gas between
The circulation path is configured such that liquid flows between the discharge electrode and the counter electrode of the ozone gas generator, and the liquid is circulated between the discharge electrode and the counter electrode via the circulation path. And cleaning the ozone gas generator.
前記循環経路は、前記オゾンガス発生器の前記放電電極と前記対向電極との間を液体が流れるように構成されており、
前記オゾン液生成器の洗浄方法は、前記混合部に液体を導入し、前記循環経路を液体により密封状態にさせる第1の工程と、
第1の工程の後に前記循環経路から前記オゾン液生成器の外部へ気体を導出させる第2の工程と、
第2の工程の後に前記循環経路を密封状態にさせ、前記オゾンガス発生器の前記放電電極と前記対向電極との間に前記循環経路を介して液体を循環させる第3の工程とを含むオゾン液生成器の洗浄方法。 An ozone gas generator that generates ozone gas, a mixing unit that mixes the ozone gas and liquid, a liquid storage tank that stores liquid, and a circulation path that is connected to the ozone gas generator, the ozone gas generator, A discharge electrode, a counter electrode disposed opposite the discharge electrode, and a power source for applying a voltage between the discharge electrode and the counter electrode, and allowing gas to pass between the discharge electrode and the counter electrode A method of cleaning an ozone liquid generator that generates ozone gas by
The circulation path is configured such that liquid flows between the discharge electrode and the counter electrode of the ozone gas generator,
The ozone liquid generator cleaning method includes a first step of introducing a liquid into the mixing unit and sealing the circulation path with the liquid;
A second step of deriving gas from the circulation path to the outside of the ozone liquid generator after the first step;
And a third step of sealing the circulation path after the second step and circulating the liquid through the circulation path between the discharge electrode and the counter electrode of the ozone gas generator. How to clean the generator.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011010464A JP5455942B2 (en) | 2011-01-21 | 2011-01-21 | Ozone liquid generator, water purifier and cleaning method thereof |
CN 201110261032 CN102600742A (en) | 2011-01-21 | 2011-09-05 | Ozone liquid generator, water purifier and cleaning method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011010464A JP5455942B2 (en) | 2011-01-21 | 2011-01-21 | Ozone liquid generator, water purifier and cleaning method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012148943A JP2012148943A (en) | 2012-08-09 |
JP5455942B2 true JP5455942B2 (en) | 2014-03-26 |
Family
ID=46518734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011010464A Active JP5455942B2 (en) | 2011-01-21 | 2011-01-21 | Ozone liquid generator, water purifier and cleaning method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5455942B2 (en) |
CN (1) | CN102600742A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5948708B2 (en) * | 2012-11-05 | 2016-07-06 | パナソニックIpマネジメント株式会社 | Ozone water generator |
CN106136982A (en) * | 2015-03-23 | 2016-11-23 | 广州健之杰洁具有限公司 | There is the bathtub of Ozone recycling system |
CN114680710A (en) * | 2020-12-25 | 2022-07-01 | 宁波方太厨具有限公司 | Dust collector |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0724483A (en) * | 1993-07-15 | 1995-01-27 | Matsushita Electric Ind Co Ltd | Circulation treating device for bath |
JPH1111909A (en) * | 1997-06-23 | 1999-01-19 | Yuushin Eng Kk | Ozone generator |
JP3846978B2 (en) * | 1997-08-05 | 2006-11-15 | 株式会社タクマ | Deodorizing discharge device |
JPH1147774A (en) * | 1997-08-07 | 1999-02-23 | Mitsubishi Heavy Ind Ltd | Ozone water making apparatus |
JP2001137862A (en) * | 1999-11-11 | 2001-05-22 | Teeiku Wan Sogo Jimusho:Kk | Ozonized water generator |
JP2001180916A (en) * | 1999-12-27 | 2001-07-03 | Toshiba Corp | Ozonizer |
JP3381705B2 (en) * | 2000-03-22 | 2003-03-04 | トヨタ車体株式会社 | Ozone water generation system |
CA2343670C (en) * | 2001-04-11 | 2008-11-25 | Air Liquide Canada Inc. | Method of cleaning an ozone generator |
-
2011
- 2011-01-21 JP JP2011010464A patent/JP5455942B2/en active Active
- 2011-09-05 CN CN 201110261032 patent/CN102600742A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2012148943A (en) | 2012-08-09 |
CN102600742A (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4833353B2 (en) | Membrane module with pulsed airlift pump | |
JP6150897B2 (en) | Hydrogen water production equipment | |
JP5108682B2 (en) | Air purification device | |
JP6266954B2 (en) | Water treatment equipment using liquid level plasma discharge | |
JP6130452B2 (en) | Water filter air purification device | |
KR20150044357A (en) | Scrubber for removal of white plume and pollution material using flushing water purificatin unit not having waste water | |
US20150336651A1 (en) | Ballast water treatment apparatus and reverse cleaning method for ballast water treatment apparatus | |
US20170028095A1 (en) | Air purifier for bringing gas into contact with plasma-treated liquid | |
JP5455942B2 (en) | Ozone liquid generator, water purifier and cleaning method thereof | |
JP5020369B2 (en) | Acid mist removal treatment method and removal treatment apparatus therefor | |
KR102122198B1 (en) | Wet type air purifier | |
WO2014010304A1 (en) | Ozone-containing liquid generating device and cleaning apparatus provided with same | |
KR101741454B1 (en) | Filter element cleaning apparatus | |
WO2013136467A1 (en) | Ozone liquid generator, water purifier and method for cleaning ozone liquid generator | |
JP2005249256A (en) | Hollow fiber membrane type humidifier | |
WO2013065355A1 (en) | Ozone liquid generator and ozone liquid generation method | |
JP2022113450A (en) | air purifier | |
JP4952945B2 (en) | Method and apparatus for regenerating activated carbon with microbubbles | |
JP6741991B2 (en) | Liquid processing device | |
JP5202208B2 (en) | Deodorizing system, deodorizing apparatus and deodorizing method | |
JP6234215B2 (en) | Air cleaner | |
CN211141786U (en) | Industrial sewage purification and deodorization device | |
WO2012157668A1 (en) | Filtration apparatus and method for washing filtration apparatus | |
KR101595372B1 (en) | A water cleaning and sterilizing device for aquarium | |
JP7067678B1 (en) | Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5455942 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |