JP5446087B2 - Friction material - Google Patents
Friction material Download PDFInfo
- Publication number
- JP5446087B2 JP5446087B2 JP2007310556A JP2007310556A JP5446087B2 JP 5446087 B2 JP5446087 B2 JP 5446087B2 JP 2007310556 A JP2007310556 A JP 2007310556A JP 2007310556 A JP2007310556 A JP 2007310556A JP 5446087 B2 JP5446087 B2 JP 5446087B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- cast iron
- friction material
- amount
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Braking Arrangements (AREA)
Description
本発明は、車両のディスクロータやドラムに接触させて用いるブレーキパッドやブレーキライニング、およびクラッチフェーシング等の摩擦材に関し、詳しくは、高温摺動時の摩擦材と相手材との溶着によるメタルキャッチを抑制することで、低周波鳴きを抑制する摩擦材に関する。 The present invention relates to a friction material such as a brake pad, a brake lining, and a clutch facing used in contact with a disk rotor or a drum of a vehicle, and more specifically, a metal catch by welding between a friction material and a counterpart material at high temperature sliding. It is related with the friction material which suppresses a low frequency squeal by suppressing.
車両の制動時に摩擦材がディスクロータ等の相手材と摺接すると、その摩擦熱によって摩擦材の温度が上昇する。そこで、摩擦材には放熱性や耐摩耗性を高めるために、例えばスチール繊維など金属原料を配合している。しかし、相手材との摺動によって摩擦材が高温度域に達すると、摩擦材中の金属原料が溶融し相手材と凝着するメタルキャッチが発生し、鳴きや周波数2kHz以下の異音が発生する。そのため、従来ではメタルキャッチ防止用の潤滑材として一般的に黒鉛を摩擦材に配合していた。しかし、黒鉛は摩擦材中に分散保持されているだけなので、摩擦材が相手材と摺動する際に黒鉛が摺動面から脱落してしまう危険性があった。そこで、黒鉛を使用しながらも、スチール繊維に代えてその組織上に黒鉛を含有する鋳鉄原料を配合した摩擦材が開発されている。 When the friction material slides into contact with a mating material such as a disk rotor during braking of the vehicle, the frictional heat increases the temperature of the friction material. Therefore, in order to improve heat dissipation and wear resistance, the friction material is mixed with a metal raw material such as steel fiber. However, when the friction material reaches a high temperature range due to sliding with the mating material, the metal material in the friction material melts and adheres to the mating material, resulting in a squeal and noise with a frequency of 2 kHz or less. To do. Therefore, conventionally, graphite is generally blended with the friction material as a lubricant for preventing metal catch. However, since graphite is only dispersed and held in the friction material, there is a risk that the graphite will fall off the sliding surface when the friction material slides against the counterpart material. Therefore, while using graphite, a friction material has been developed in which a cast iron raw material containing graphite is blended on the structure in place of steel fibers.
例えば特許文献1では、金属粉末を主体とする焼結摩擦材において、炭素を少なくとも3.3重量%含有する鋳鉄繊維を、摩擦材全量基準で5〜50重量%配合している。これにより、摩擦材摺動時に潤滑材としての黒鉛が摺動面から脱落することを防いでいる。また、スチール繊維に代えて球状黒鉛鋳鉄繊維を配合した摩擦材として、特許文献2や特許文献3がある。特許文献2の摩擦材では、スチール繊維が持つ相手材への攻撃性を低減することを目的として、繊維基材としてフェライト量が15〜20%の球状黒鉛鋳鉄繊維を使用している。特許文献3の摩擦材では、耐摩耗性の向上と摩擦係数や熱伝導が低い特性を有することを目的として、スチール繊維に代えて炭素を2.4〜4.2重量%含有する球状黒鉛鋳鉄繊維を使用している。ここでの球状黒鉛鋳鉄繊維は、摩擦材全体に対して5〜40容量%未満で配合されており、繊維径10〜100μm、長さ1〜10mmとされている。 For example, in Patent Document 1, in a sintered friction material mainly composed of metal powder, cast iron fiber containing at least 3.3% by weight of carbon is blended in an amount of 5 to 50% by weight based on the total amount of the friction material. This prevents graphite as a lubricant from falling off the sliding surface when the friction material slides. Further, there are Patent Document 2 and Patent Document 3 as friction materials in which spheroidal graphite cast iron fibers are blended instead of steel fibers. In the friction material of Patent Document 2, a spheroidal graphite cast iron fiber having a ferrite content of 15 to 20% is used as a fiber base for the purpose of reducing the aggressiveness of the steel fiber against the mating material. In the friction material of Patent Document 3, spheroidal graphite cast iron containing 2.4 to 4.2% by weight of carbon instead of steel fiber for the purpose of improving wear resistance and having a low coefficient of friction and heat conduction. Using fiber. Here, the spheroidal graphite cast iron fiber is blended in an amount of less than 5 to 40% by volume with respect to the entire friction material, and has a fiber diameter of 10 to 100 μm and a length of 1 to 10 mm.
特許文献1では、粉末状の鋳鉄原料を配合しているので、摩擦材製造時に各種原料を混合する際の均一分散性が問題であり、鋳鉄粉末が摩擦材中に偏析して良好な潤滑性を担保できないおそれがある。これに対し特許文献2や特許文献3では、鋳鉄繊維を配合しているので特許文献1と比べて偏析の可能性は低いが、繊維基材として鋳鉄繊維のみを使用しているので均一分散性に限界があり、メタルキャッチにより発生する鳴きの根本的な解決にまでは至らない。 In Patent Document 1, since a powdered cast iron raw material is blended, there is a problem of uniform dispersibility when various raw materials are mixed at the time of manufacturing the friction material, and the cast iron powder segregates in the friction material and has good lubricity. There is a risk that it cannot be secured. On the other hand, in patent document 2 and patent document 3, since the cast iron fiber is mix | blended, possibility of segregation is low compared with patent document 1, but since only cast iron fiber is used as a fiber base material, uniform dispersibility There is a limit to this, and it does not lead to a fundamental solution to the squeal generated by the metal catch.
そこで本発明は、鋳鉄原料が摩擦材中に均一に分散されていることで、メタルキャッチ及びこれによる低周波の異音や鳴きを有意に抑制できる摩擦材を提供することを目的とする。 Accordingly, an object of the present invention is to provide a friction material that can significantly suppress a metal catch and low-frequency noise and noise due to the cast iron material being uniformly dispersed in the friction material.
本発明は、繊維基材として鋳鉄繊維を含有する無石綿摩擦材であって、さらに繊維基材として有機繊維を含有することを特徴とする。鋳鉄繊維の配合量は、有機繊維の配合量に対して体積基準で2.5〜120%としている。ここでの鋳鉄繊維は、繊維径10〜100μm、長さ1〜5mm、かつ炭素含有量が2.5〜4.0重量%の球状黒鉛鋳鉄とすることが好ましい。 The present invention is a non-asbestos friction material containing cast iron fibers as a fiber base material, and further contains organic fibers as the fiber base material. The compounding amount of the cast iron fiber is 2.5 to 120% on a volume basis with respect to the compounding amount of the organic fiber. The cast iron fiber here is preferably spheroidal graphite cast iron having a fiber diameter of 10 to 100 μm, a length of 1 to 5 mm, and a carbon content of 2.5 to 4.0% by weight.
本発明によれば、鋳鉄繊維に加えて有機繊維を繊維基材として配合しているので各種原料の均一分散性が向上し、効率良く摩擦材と相手材との摺動に伴うメタルキャッチを抑制でき、以って鳴きや低周波鳴きの発生も有意に抑制される。 According to the present invention, since organic fibers are blended as a fiber base material in addition to cast iron fibers, the uniform dispersibility of various raw materials is improved, and the metal catch associated with the sliding between the friction material and the counterpart material is efficiently suppressed. Therefore, the occurrence of squealing and low frequency squealing is significantly suppressed.
本発明の摩擦材は、アスベストではない繊維基材と、充填材と、繊維基材と充填材とを結着する結合剤(バインダー樹脂)とを含有する無石綿摩擦材(NAO材)である。本発明の摩擦材は、自動車や電車などの車両や航空機などのディスクロータやドラムに接触させて用いるブレーキパッドやブレーキライニング、およびクラッチフェーシング用の摩擦材として適用できる。 The friction material of the present invention is a non-asbestos friction material (NAO material) containing a fiber base material that is not asbestos, a filler, and a binder (binder resin) that binds the fiber base material and the filler. . The friction material of the present invention can be applied as a friction material for brake pads and brake linings used in contact with disk rotors and drums of vehicles such as automobiles and trains and airplanes, and clutch facing.
[繊維基材]
繊維基材としては、鋳鉄繊維と有機繊維とを併用している。スチール繊維は配合していない。鋳鉄繊維はスチール繊維よりも炭素含有量が高く、そのため繊維自体の潤滑性が向上する。そのため、スチール繊維よりも相手材攻撃性が低く、摩擦材の摺動による相手材の摩耗量が低減される。鋳鉄繊維としては、球状黒鉛鋳鉄(ダクタイル鋳鉄)繊維が好ましい。球状黒鉛鋳鉄は引張り強さや靭性などに優れ、ねずみ鋳鉄(普通鋳鉄)よりも数倍の強度を持つので、良好な摩擦材強度を担保できる。鋳鉄繊維中の炭素含有量は2.5〜4.0重量%が好ましく、3.0〜3.8重量%がより好ましい。鋳鉄繊維中の炭素含有量が2.5重量%未満であると、繊維自体の潤滑性が不十分となり相手攻撃性が高くなってしまう。鋳鉄繊維中の炭素含有量が4.0重量%を超えると、摩擦材の強度や摩擦係数が不十分となることがある。また、摩擦材強度の観点から、鋳鉄繊維の繊維径は10〜100μm、長さ1〜5mmが好ましい。より好ましくは、繊維径30〜80μm、長さ2〜4mmである。
[Fiber base]
As the fiber base material, cast iron fiber and organic fiber are used in combination. Steel fiber is not blended. Cast iron fibers have a higher carbon content than steel fibers, which improves the lubricity of the fibers themselves. Therefore, the counterpart material attack is lower than that of the steel fiber, and the wear amount of the counterpart material due to sliding of the friction material is reduced. As cast iron fiber, spheroidal graphite cast iron (ductile cast iron) fiber is preferable. Spheroidal graphite cast iron is excellent in tensile strength, toughness, etc., and has several times the strength of gray cast iron (ordinary cast iron), thus ensuring good friction material strength. The carbon content in the cast iron fiber is preferably 2.5 to 4.0% by weight, more preferably 3.0 to 3.8% by weight. If the carbon content in the cast iron fiber is less than 2.5% by weight, the lubricity of the fiber itself becomes insufficient, and the opponent attack becomes high. If the carbon content in the cast iron fiber exceeds 4.0% by weight, the strength and friction coefficient of the friction material may be insufficient. Moreover, from a viewpoint of friction material strength, the fiber diameter of the cast iron fiber is preferably 10 to 100 μm and the length 1 to 5 mm. More preferably, the fiber diameter is 30 to 80 μm and the length is 2 to 4 mm.
鋳鉄繊維と併用する有機繊維としては特に限定されず、例えばアラミド繊維,ポリエステル繊維,カオウール繊維等の合成樹脂繊維やパルプ等の天然繊維などがある。これら有機繊維は、1種のみを単独で使用してもよく、2種以上を混合して使用してもよい。有機繊維の繊維径は鋳鉄繊維と同等以上とし、その長さは鋳鉄繊維よりも長くする。有機繊維は、鋳鉄繊維よりも可撓性に優れる。このような有機繊維を摩擦材中に配合することで有機繊維同士が複雑に絡み合い、この複雑に絡み合った有機繊維に鋳鉄繊維が捕捉される。これにより、摩擦材製造のため各種原料を混合するときに、鋳鉄繊維の均一分散性が向上する(偏在することがない)。 The organic fiber used in combination with the cast iron fiber is not particularly limited, and examples thereof include synthetic resin fibers such as aramid fiber, polyester fiber, and kao wool fiber, and natural fibers such as pulp. These organic fibers may be used alone or in combination of two or more. The fiber diameter of the organic fiber is equal to or greater than that of the cast iron fiber, and the length thereof is longer than that of the cast iron fiber. Organic fibers are more flexible than cast iron fibers. By blending such organic fibers in the friction material, the organic fibers are intertwined in a complicated manner, and the cast iron fibers are captured by the intricately intertwined organic fibers. Thereby, when mixing various raw materials for friction material manufacture, the uniform dispersibility of cast iron fiber improves (it is not unevenly distributed).
鋳鉄繊維の摩擦材への配合量は、有機繊維の配合量に対して体積基準で2.5〜120%、すなわち体積基準での有機繊維:鋳鉄繊維を40:1〜1:1.2とする。鋳鉄繊維の配合量が有機繊維の配合量に対して2.5%未満であると、鋳鉄繊維の均一分散性が担保できない。一方、鋳鉄繊維の配合量が有機繊維の配合量に対して120%を超えると、潤滑性が低下する。したがって、鋳鉄繊維と有機繊維との相対割合が上記関係から外れていると、鳴きや異音が発生し易くなる。好ましくは5〜120%(20:1〜1:1.12)であり、より好ましくは20〜100%(5:1〜1:1)、さらに好ましくは40〜60%(5:2〜5:3)である。なお、銅繊維など鋳鉄よりも軟金属である金属繊維であれば、摩擦材に悪影響を及ぼさない範囲で適宜混合することができる。 The blending amount of the cast iron fiber in the friction material is 2.5 to 120% on a volume basis with respect to the blending amount of the organic fiber, that is, the organic fiber: cast iron fiber on the volume basis is 40: 1 to 1: 1.2. To do. When the blending amount of the cast iron fiber is less than 2.5% with respect to the blending amount of the organic fiber, the uniform dispersibility of the cast iron fiber cannot be ensured. On the other hand, when the compounding amount of the cast iron fiber exceeds 120% with respect to the compounding amount of the organic fiber, the lubricity is lowered. Therefore, if the relative ratio between the cast iron fiber and the organic fiber is out of the above relationship, squeal and abnormal noise are likely to occur. Preferably it is 5 to 120% (20: 1 to 1: 1.12), more preferably 20 to 100% (5: 1 to 1: 1), still more preferably 40 to 60% (5: 2 to 5). : 3). In addition, if it is a metal fiber which is a soft metal rather than cast iron, such as copper fiber, it can mix suitably in the range which does not have a bad influence on a friction material.
繊維基材全体の配合量は、摩擦材全体に対して20〜50vol%(体積%)程度とすればよい。繊維基材が20vol%未満であると、摩擦材の機械的強度が低下する。一方、繊維基材が50vol%を超えると、他の充填材等の配合割合が減少して摩擦係数等の各種性能が悪化する。好ましくは25〜50vol%、より好ましくは30〜45vol%である。 What is necessary is just to let the compounding quantity of the whole fiber base material be about 20-50 vol% (volume%) with respect to the whole friction material. When the fiber base material is less than 20 vol%, the mechanical strength of the friction material decreases. On the other hand, if the fiber substrate exceeds 50 vol%, the blending ratio of other fillers and the like is decreased, and various performances such as a friction coefficient are deteriorated. Preferably it is 25-50 vol%, More preferably, it is 30-45 vol%.
[結合剤]
結合剤は、繊維基材と充填材等を結着させるものであって、従来からNAO材の結合剤として使用されている各種熱硬化性の合成樹脂やゴムが使用できる。熱硬化性樹脂としては、例えばフェノール樹脂,イミド樹脂,ゴム変性フェノール樹脂,メラミン樹脂,エポキシ樹脂などが挙げられる。ゴムとしては、NBR,ニトリルゴム,アクリルゴムなどを挙げられる。中でも、耐熱性が良好なフェノール樹脂が好適である。これらの結合剤は、1種を単独で使用することもできるし、2種以上を組み合せて使用することもできる。結合剤の配合量は、摩擦材全体に対して10〜40vol%程度とすればよい。結合剤の配合量が10vol%未満であると、摩擦材の強度が低下する。一方、結合剤の配合量が40vol%を超えると、繊維基材や充填材の配合量が低いので摩擦係数等が低下する。好ましくは20〜35vol%、より好ましくは25〜30vol%である。
[Binder]
The binder binds the fiber base material to the filler, and various thermosetting synthetic resins and rubbers conventionally used as a binder for NAO materials can be used. Examples of the thermosetting resin include phenol resin, imide resin, rubber-modified phenol resin, melamine resin, and epoxy resin. Examples of rubber include NBR, nitrile rubber, and acrylic rubber. Among them, a phenol resin having good heat resistance is preferable. These binders can also be used individually by 1 type, and can also be used in combination of 2 or more type. What is necessary is just to let the compounding quantity of a binder be about 10-40 vol% with respect to the whole friction material. When the blending amount of the binder is less than 10 vol%, the strength of the friction material is lowered. On the other hand, if the blending amount of the binder exceeds 40 vol%, the friction coefficient and the like are lowered because the blending amount of the fiber base material and the filler is low. Preferably it is 20-35 vol%, More preferably, it is 25-30 vol%.
[充填材]
その他充填材としては、例えば、カシューダスト,レジンダスト,ラバーダスト等の有機ダスト、珪酸カルシウム,ドロマイト,硫酸カルシウム,炭酸カルシウム,水酸化カルシウム等のCaO化合物、チタン酸アルカリ金属塩,チタン酸アルカリ金属・第2属元素塩等のチタン酸化物、酸化鉄、青銅,黄銅,銅などの金属粉末、雲母(マイカ)、カオリン、タルク、ゾノトライト、バーミキュライト、アルミナ、酸化ジルコニウム、珪酸ジルコニウム、酸化マグネシウムなどを挙げられる。アルミナ、酸化ジルコニウム、珪酸ジルコニウム、酸化マグネシウムなどは、研削材として機能する。これら充填材は、1種のみを単独で使用してもよく、2種以上を混合して使用してもよい。一般的には2種以上が混合配合される。充填材は、主に摩擦材の各種性能を効果的に発揮できるよう調整するために配合されるものであり、上記繊維基材や結合剤の配合量に応じて全体で100vol%となる範囲で適量配合される。
[Filler]
Other fillers include, for example, organic dust such as cashew dust, resin dust, rubber dust, CaO compounds such as calcium silicate, dolomite, calcium sulfate, calcium carbonate, calcium hydroxide, alkali metal titanate, alkali metal titanate・ Metal powder such as Group 2 element salts such as titanium oxide, iron oxide, bronze, brass, copper, mica, kaolin, talc, zonotrite, vermiculite, alumina, zirconium oxide, zirconium silicate, magnesium oxide, etc. Can be mentioned. Alumina, zirconium oxide, zirconium silicate, magnesium oxide and the like function as an abrasive. These fillers may be used alone or in combination of two or more. Generally, two or more kinds are mixed and blended. The filler is mainly blended to adjust so that various performances of the friction material can be effectively exhibited, and in a range of 100 vol% in total depending on the blending amount of the fiber base material and the binder. Appropriate amount is blended.
[潤滑材]
本発明では、その組織上に黒鉛を有する鋳鉄繊維を配合しているが、これのみでは摩擦材全体の潤滑性が充分ではない場合もあるので、適宜潤滑材を配合することが好ましい。潤滑材としては、代表的には黒鉛が挙げられ、他に二硫化モリブデン、三硫化アンチモン、硫化スズ、二硫化亜鉛、硫化鉄、硫化鉛等の金属硫化物や氷晶石、窒化ホウ素などが挙げられる。これら潤滑材は、1種のみを単独で使用してもよく、2種以上を混合して使用してもよい。潤滑材も配合していれば、当該潤滑材が相手材との間で直接作用するので、良好な潤滑性を担保し易い。潤滑材も配合する場合、潤滑材の配合量の上限は、摩擦材全体に対して5vol%程度とすればよい。潤滑材の配合量が5vol%を超えると、良好な摩擦係数を得られないばかりか摩擦材強度が低下するおそれがある。好ましくは4vol%以下、より好ましくは3vol%以下である。
[Lubricant]
In the present invention, cast iron fibers having graphite are blended on the structure. However, since the lubricity of the entire friction material may not be sufficient only by this, it is preferable to blend a lubricant appropriately. Typical examples of the lubricant include graphite, and other metal sulfides such as molybdenum disulfide, antimony trisulfide, tin sulfide, zinc disulfide, iron sulfide, lead sulfide, cryolite, and boron nitride. Can be mentioned. These lubricants may be used alone or in combination of two or more. If a lubricant is also blended, the lubricant acts directly with the counterpart material, so that it is easy to ensure good lubricity. When the lubricant is also blended, the upper limit of the blending amount of the lubricant may be about 5 vol% with respect to the entire friction material. When the blending amount of the lubricant exceeds 5 vol%, not only a good friction coefficient can be obtained but also the friction material strength may be lowered. Preferably it is 4 vol% or less, More preferably, it is 3 vol% or less.
[製造方法]
摩擦材は、例えば周知のモールド法などによって製造できる。具体的には、繊維基材、結合剤、必要に応じて潤滑材含む充填材をミキサー等で十分に混合し、加圧型中に入れて常温で予備成形する。次いで、予備成形体をホットプレスし、その後熱処理することで得られる。予備成形やホットプレス時の圧力は10〜100MPa程度とすればよい。ホットプレス温度は130〜200℃程度である。また、熱処理は、150〜400℃程度で2〜48時間程度である。ミキサーとしては、アイリッヒミキサー,ユニバーサルミキサー,レーディゲミキサーなどを利用することができる。なお、予備成形体を作製せず、各種原料の混合物を直接ホットプレスしてもよい。
[Production method]
The friction material can be manufactured by, for example, a known molding method. Specifically, a fiber base material, a binder, and, if necessary, a filler containing a lubricant are sufficiently mixed with a mixer or the like, placed in a pressure mold, and preformed at room temperature. Next, the preform is obtained by hot pressing, followed by heat treatment. The pressure at the time of preforming or hot pressing may be about 10 to 100 MPa. Hot press temperature is about 130-200 degreeC. The heat treatment is performed at about 150 to 400 ° C. for about 2 to 48 hours. As the mixer, an Eirich mixer, a universal mixer, a Ladige mixer, or the like can be used. Note that a mixture of various raw materials may be directly hot pressed without preparing a preform.
(実施例)
表1及び表2に示す組成の実施例1及び比較例を作製し、それぞれの平均摩擦係数(μ)、温度別摩耗量、メタルキャッチの発生有無、及び異音や鳴きの発生の有無を対比評価した。なお、表1及び表2の数値はvol%である。
(Example)
Example 1 and Comparative Example having the compositions shown in Tables 1 and 2 were prepared, and the average friction coefficient (μ), the amount of wear at each temperature, the occurrence of metal catch, and the presence or absence of abnormal noise or squeal were compared. evaluated. In addition, the numerical value of Table 1 and Table 2 is vol%.
各摩擦材は次のようにして製造した。各種配合物をアイリッヒミキサーによって5分間乾式にて混合することで原料混合物を得た。この原料混合物を成形温度160℃、成形圧力20MPa、成形時間10分の条件において加熱加圧し成形した。最後に、この成形物を230℃、3時間の条件において硬化させた。各実施例及び比較例で使用した鋳鉄繊維は、繊維径60μm、長さ2mm、炭素含有量3.5重量%の球状黒鉛鋳鉄とした。 Each friction material was manufactured as follows. Various blends were mixed in a dry process for 5 minutes by an Eirich mixer to obtain a raw material mixture. This raw material mixture was heated and pressed under the conditions of a molding temperature of 160 ° C., a molding pressure of 20 MPa, and a molding time of 10 minutes. Finally, the molded product was cured at 230 ° C. for 3 hours. The cast iron fiber used in each example and comparative example was spheroidal graphite cast iron having a fiber diameter of 60 μm, a length of 2 mm, and a carbon content of 3.5% by weight.
各試験の条件は以下の通りであり、各試験結果を表3及び表4に示す。
<平均摩擦係数>
JASO C406(一般性能)に規定される第2効力試験の、初速度50km/hから液圧4MPaにて制動した試験を5回行い、そのときの平均値を求めた。
<摩擦材摩耗量>
JASO C427(温度別摩耗)の規定に基づき、初速度50km/hから減速度0.3Gで制動したときの摩擦材の摩耗量を測定した。
<メタルキャッチの発生>
摩擦材摩耗量試験での各温度終了後、摩擦材表面を目視にて確認した。その時の判定基準は次の通りである。
◎:全く無し ○:無し △:若干発生 ×:発生していた
<異音・鳴き>
制動前速度60km/hから、それぞれ制動前温度100℃、200℃、300℃、400℃において、0.1G、0.2G、0.3G、0.4Gの各減速度条件で制動させる計16通りの実車試験を行い、乗員の聴覚による官能評価を行った。その時の判定基準は次の通りである。
◎:全ての条件で全く聞こえない ○:全ての条件で殆ど聞こえない △:不快感の無い程度に若干聞こえることがある ×:はっきり聞こえることが多い
The conditions of each test are as follows, and the results of each test are shown in Tables 3 and 4.
<Average friction coefficient>
The second potency test specified in JASO C406 (general performance) was tested five times with braking at an initial speed of 50 km / h and a hydraulic pressure of 4 MPa, and the average value at that time was determined.
<Abrasion amount of friction material>
Based on the provisions of JASO C427 (wear by temperature), the amount of wear of the friction material when braking from an initial speed of 50 km / h with a deceleration of 0.3 G was measured.
<Occurrence of metal catch>
After completion of each temperature in the friction material wear amount test, the surface of the friction material was visually confirmed. The judgment criteria at that time are as follows.
◎: None at all ○: None △: Slightly generated ×: Generated <Abnormal noise / squeal>
A total of 16 brakes are applied under the deceleration conditions of 0.1G, 0.2G, 0.3G, and 0.4G from the pre-braking speed of 60 km / h at pre-braking temperatures of 100 ° C., 200 ° C., 300 ° C., and 400 ° C., respectively. An actual car test on the street was conducted, and sensory evaluation was performed based on the auditory sense. The judgment criteria at that time are as follows.
◎: Cannot be heard at all conditions ○: Cannot be heard at all conditions △: May be heard to the extent that there is no discomfort ×: Often heard clearly
表3及び表4の結果より、鋳鉄繊維に加えて適量の有機繊維を配合した実施例1〜6は、平均摩擦係数、耐摩耗性、メタルキャッチの発生、及び異音や鳴きの全ての面において良好な結果が得られている。詳しく見ると、有機繊維の配合量が同じ実施例1〜5の結果より、鋳鉄繊維の配合量に比例して平均摩擦係数が大きくなる傾向にある。また、黒鉛の配合量がほぼ同等の実施例1〜3の結果から、鋳鉄繊維の配合量の増大に伴って、摩擦材の摩耗量が減少する傾向にある。これにより、鋳鉄繊維は摩擦係数が良好であると同時に、有意な潤滑性も発揮できることがわかる。一方、他の実施例に比べて黒鉛の配合量の少ない実施例4、5では、摩擦材の摩耗量が多かった。したがって、鋳鉄繊維は有意な潤滑性を有するが、より潤滑性を向上させたい場合は、潤滑材としての黒鉛も配合することが好ましいことがわかる。有機繊維に対する鋳鉄繊維の配合量が少ない実施例1では、メタルキャッチ及び異音の発生において少々難がある。また、有機繊維よりも鋳鉄繊維の配合量が多い実施例5では、鳴きの発生において少々難がある。これにより、有機繊維:鋳鉄繊維の配合割合は40:1〜1:1.2、すなわち鋳鉄繊維の配合量が有機繊維の配合量に対して体積基準で2.5〜120%の範囲が好ましいことがわかった。また、実施例6の結果より、有機繊維と鋳鉄繊維とを合わせた配合量を変えても、有機繊維と鋳鉄繊維との相対割合が適度な範囲にあれば、摩耗量が少なくかつ異音や鳴きの発生を有意に抑えられている。これは、摩擦材に有機繊維を適量配合することで、鋳鉄繊維の均一分散性が良好であることに起因していると考えられる。また、有機繊維:鋳鉄繊維が2:1の実施例3、6は、他の実施例に比べて全体的にバランスよく良好な結果を示している。これにより、鋳鉄繊維の配合量が有機繊維の配合量に対して体積基準で40〜60%程度の範囲が、最も好ましいことがわかった。 From the results of Tables 3 and 4, Examples 1 to 6, in which an appropriate amount of organic fiber is blended in addition to cast iron fiber, all average friction coefficient, wear resistance, occurrence of metal catch, and all surfaces of abnormal noise and squeal Good results have been obtained. When it sees in detail, it exists in the tendency for an average friction coefficient to become large in proportion to the compounding quantity of cast iron fiber from the result of Examples 1-5 with the same compounding quantity of organic fiber. In addition, from the results of Examples 1 to 3 in which the blending amount of graphite is substantially the same, the wear amount of the friction material tends to decrease as the blending amount of the cast iron fiber increases. Thereby, it can be seen that the cast iron fiber has a good coefficient of friction and at the same time can exhibit significant lubricity. On the other hand, in Examples 4 and 5 in which the blending amount of graphite was small compared to the other examples, the wear amount of the friction material was large. Therefore, it can be seen that the cast iron fiber has significant lubricity, but if it is desired to further improve the lubricity, it is preferable to also add graphite as a lubricant. In Example 1 in which the blending amount of the cast iron fiber with respect to the organic fiber is small, there is a little difficulty in the occurrence of metal catch and abnormal noise. Further, in Example 5 in which the amount of cast iron fiber is larger than that of organic fiber, there is a little difficulty in the generation of squeal. Thereby, the blending ratio of organic fiber: cast iron fiber is preferably 40: 1 to 1: 1.2, that is, the blending amount of cast iron fiber is preferably 2.5 to 120% on a volume basis with respect to the blending amount of organic fiber. I understood it. Further, from the result of Example 6, even if the blending amount of the organic fiber and the cast iron fiber is changed, if the relative ratio of the organic fiber and the cast iron fiber is in an appropriate range, the wear amount is small and abnormal noise or The occurrence of squeal is significantly suppressed. This is considered due to the fact that the uniform dispersibility of the cast iron fiber is good by blending an appropriate amount of organic fiber into the friction material. In addition, Examples 3 and 6 in which the ratio of organic fiber: cast iron fiber was 2: 1 showed good results with a good overall balance as compared with the other examples. Thereby, it turned out that the range which is about 40 to 60% of the compounding quantity of cast iron fiber on the volume basis with respect to the compounding quantity of organic fiber is most preferable.
一方、鋳鉄繊維を配合していない比較例1は、メタルキャッチ及びこれに基づく異音が発生している。これは、鋳鉄繊維による潤滑性が得られていないことに起因する。しかし、有機繊維を配合していない比較例2でも、メタルキャッチ及びこれに基づく異音や鳴きが発生した。これは、有機繊維を配合していないので、鋳鉄繊維が均一に分散していないことに起因する。また、有機繊維に対して鋳鉄繊維の配合量が多すぎる比較例3でも、メタルキャッチ及びこれに基づく異音や鳴きが発生している。これは、鋳鉄繊維の配合量が有機繊維で捕捉できる量を超えていることによって、部分的に鋳鉄繊維の偏在が発生したからと推測される。比較例4の結果より、有機繊維を配合していても、スチール繊維を使用しただけでは良好な潤滑性が得られないことがわかる。潤滑材である黒鉛を増量した比較例5、6の結果より、潤滑材を増量することで摩耗量やメタルキャッチ特性が顕著に向上するが、その反面、摩擦係数が悪化していると共に、異音の発生も抑制できていない。したがって、単に潤滑材を増量しても、鋳鉄繊維を使用していなければ良好な摩擦材は得られないことがわかる。 On the other hand, the comparative example 1 which has not mix | blended cast iron fiber has generated the metal catch and the abnormal noise based on this. This is because the lubricity by cast iron fiber is not obtained. However, even in Comparative Example 2 in which no organic fiber was blended, metal catches and abnormal noises and noises based on the metal catches occurred. This is because the cast iron fibers are not uniformly dispersed because no organic fibers are blended. Moreover, even in Comparative Example 3 in which the amount of cast iron fiber is too large relative to the organic fiber, metal catches and abnormal noise and squeal based on this are generated. This is presumably because the cast iron fibers are partially unevenly distributed due to the amount of cast iron fibers exceeding the amount that can be captured by the organic fibers. From the results of Comparative Example 4, it can be seen that even if organic fibers are blended, good lubricity cannot be obtained only by using steel fibers. From the results of Comparative Examples 5 and 6 in which the amount of graphite, which is a lubricant, was increased, the amount of wear and metal catch characteristics were significantly improved by increasing the amount of lubricant, but on the other hand, the friction coefficient deteriorated and Sound generation has not been suppressed. Therefore, it can be seen that even if the amount of the lubricant is simply increased, a good friction material cannot be obtained unless cast iron fibers are used.
Claims (2)
さらに繊維基材として有機繊維を含有し、
前記鋳鉄繊維は、炭素含有量が2.5重量%以上であり、
前記鋳鉄繊維の配合量が、前記有機繊維の配合量に対して体積基準で2.5〜120%であり、
前記繊維基材全体の配合量は、摩擦材全体に対して20〜50体積%であり、
結合剤を摩擦材全体に対して10〜40体積%含有することを特徴とする摩擦材。 A non-asbestos friction material containing cast iron fiber as a fiber base material,
Furthermore, it contains organic fibers as a fiber base material ,
The cast iron fiber has a carbon content of 2.5% by weight or more,
The compounding amount of the cast iron fiber is 2.5 to 120% on a volume basis with respect to the compounding amount of the organic fiber,
The total amount of the fiber base material is 20 to 50% by volume with respect to the entire friction material,
A friction material comprising 10 to 40% by volume of a binder with respect to the entire friction material.
炭素含有量が2.5〜4.0重量%の球状黒鉛鋳鉄であることを特徴とする、請求項1に記載の摩擦材。
The cast iron fiber has a fiber diameter of 10 to 100 μm and a length of 1 to 5 mm.
2. The friction material according to claim 1, wherein the friction material is spheroidal graphite cast iron having a carbon content of 2.5 to 4.0% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007310556A JP5446087B2 (en) | 2007-11-30 | 2007-11-30 | Friction material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007310556A JP5446087B2 (en) | 2007-11-30 | 2007-11-30 | Friction material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009132817A JP2009132817A (en) | 2009-06-18 |
JP5446087B2 true JP5446087B2 (en) | 2014-03-19 |
Family
ID=40865019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007310556A Expired - Fee Related JP5446087B2 (en) | 2007-11-30 | 2007-11-30 | Friction material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5446087B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016098362A (en) * | 2014-11-26 | 2016-05-30 | 日本ブレーキ工業株式会社 | Friction material composition, friction material using friction material composition and friction member |
JP6553355B2 (en) * | 2014-12-24 | 2019-07-31 | 日本ブレーキ工業株式会社 | Friction material composition, friction material using friction material composition and friction member |
JP6512817B2 (en) * | 2014-12-24 | 2019-05-15 | 日本ブレーキ工業株式会社 | Friction material composition, friction material using friction material composition and friction member |
JP2016121245A (en) * | 2014-12-24 | 2016-07-07 | 日本ブレーキ工業株式会社 | Friction material composition, and friction material and friction member using the same |
JP2019214731A (en) * | 2019-08-08 | 2019-12-19 | 日本ブレーキ工業株式会社 | Friction material composition, friction material using friction material composition and friction member |
JP2019214732A (en) * | 2019-08-08 | 2019-12-19 | 日本ブレーキ工業株式会社 | Friction material composition, and friction material and friction member each using the friction material composition |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5877936A (en) * | 1981-10-30 | 1983-05-11 | Aisin Chem Co Ltd | Manufacture of friction material for vehicle |
JPH01203728A (en) * | 1988-02-04 | 1989-08-16 | Hitachi Chem Co Ltd | Friction material composition |
-
2007
- 2007-11-30 JP JP2007310556A patent/JP5446087B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009132817A (en) | 2009-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6558465B2 (en) | Non-asbestos friction material composition, friction material and friction member using the same | |
JP5979003B2 (en) | Non-asbestos friction material composition, friction material and friction member using the same | |
JP5051330B2 (en) | Non-asbestos friction material composition, friction material and friction member using the same | |
JP5071604B2 (en) | Non-asbestos friction material composition, friction material and friction member using the same | |
JP6281755B1 (en) | Friction material composition, and friction material and friction member using the same | |
JP6226042B2 (en) | Non-asbestos friction material composition, friction material and friction member using the same | |
JP5057000B2 (en) | Non-asbestos friction material composition, friction material and friction member using the same | |
JP5790175B2 (en) | Non-asbestos friction material composition | |
JP5200508B2 (en) | Friction material | |
JP5263454B2 (en) | Non-asbestos friction material composition, friction material and friction member using the same | |
JP5446087B2 (en) | Friction material | |
JP5987539B2 (en) | Friction material composition, friction material and friction member using the same | |
JP2009155439A (en) | Friction material | |
JP5958624B2 (en) | Non-asbestos friction material composition | |
JP2012111892A (en) | Friction material for brake pad | |
JP6531807B2 (en) | Non-asbestos friction material composition | |
WO2020183664A1 (en) | Friction member, friction material composition, friction material, and vehicle | |
JP2012111893A (en) | Friction material for brake pad |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131216 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5446087 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |