[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5444650B2 - Plated steel sheet for hot press and method for producing the same - Google Patents

Plated steel sheet for hot press and method for producing the same Download PDF

Info

Publication number
JP5444650B2
JP5444650B2 JP2008181513A JP2008181513A JP5444650B2 JP 5444650 B2 JP5444650 B2 JP 5444650B2 JP 2008181513 A JP2008181513 A JP 2008181513A JP 2008181513 A JP2008181513 A JP 2008181513A JP 5444650 B2 JP5444650 B2 JP 5444650B2
Authority
JP
Japan
Prior art keywords
plating
layer
steel sheet
heating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008181513A
Other languages
Japanese (ja)
Other versions
JP2010018860A (en
Inventor
純 真木
阿部  雅之
和久 楠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008181513A priority Critical patent/JP5444650B2/en
Publication of JP2010018860A publication Critical patent/JP2010018860A/en
Application granted granted Critical
Publication of JP5444650B2 publication Critical patent/JP5444650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、ホットプレス用めっき鋼板及びその製造方法に関し、特に、塗装後耐食性及び生産性に優れるホットプレス用めっき鋼板及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a hot-pressed plated steel sheet and a method for producing the same, and more particularly to a hot-pressed plated steel sheet having excellent post-painting corrosion resistance and productivity and a method for producing the same.

近年、自動車用鋼板の用途(例えば、自動車のピラー、ドアインパクトビーム、バンパービーム等)などにおいて、高強度と高成形性を両立する鋼板が望まれており、これに対応するものの1つとして、残留オーステナイトのマルテンサイト変態を利用したTRIP(Transformation Induced Plasticity)鋼がある。このTRIP鋼により、成形性の優れた1000MPa級程度の強度を有する高強度鋼板を製造することは可能であるが、さらに高強度、例えば1500MPa以上といった超高強度鋼で成形性を確保することは困難である。   In recent years, in steel plate applications for automobiles (for example, automobile pillars, door impact beams, bumper beams, etc.) and the like, steel plates that have both high strength and high formability have been desired. There is TRIP (Transformation Induced Plasticity) steel using martensitic transformation of retained austenite. With this TRIP steel, it is possible to produce a high-strength steel sheet having excellent formability and a strength of about 1000 MPa, but it is possible to secure formability with ultra-high-strength steel having higher strength, for example, 1500 MPa or more. Have difficulty.

このような状況で、高強度及び高成形性を両立するものとして最近注目を浴びているのが、ホットプレス(熱間プレス、ホットスタンプ、ダイクエンチ、プレスクエンチ等とも呼称される。)である。このホットプレスは、鋼板を800℃以上のオーステナイト域で加熱した後に熱間で成形することにより高強度鋼板の成形性を向上させ、成形後の冷却により焼きを入れて所望の材質を得るというものである。   Under such circumstances, hot press (also referred to as hot pressing, hot stamping, die quenching, press quenching, etc.) has recently been attracting attention as having both high strength and high formability. This hot press improves the formability of a high-strength steel sheet by heating it in an austenite region at 800 ° C. or higher and then forming it hot, and after it is formed, it is baked to obtain a desired material. It is.

ホットプレスは、超高強度の部材を成形する方法として有望であるが、通常は大気中で鋼板を加熱する工程を有しており、この際、鋼板表面に酸化物(スケール)が生成するため、スケールを除去する工程が必要であった。ところが、このような後工程には、スケールの除去能や環境負荷等の観点からの対応策の必要性等の問題があった。   Hot press is promising as a method of forming ultra-high strength members, but usually has a step of heating the steel plate in the atmosphere, and at this time, oxide (scale) is generated on the steel plate surface. The process of removing the scale was necessary. However, such post-processes have problems such as the necessity of countermeasures from the viewpoints of scale removal ability and environmental load.

これを改善する技術として、ホットプレス用の鋼板としてAlめっき鋼板を使用することにより、加熱時のスケールの生成を抑制する技術が提案されている(例えば、特許文献1〜4を参照)。   As a technique for improving this, there has been proposed a technique for suppressing the generation of scale during heating by using an Al-plated steel sheet as a steel sheet for hot pressing (see, for example, Patent Documents 1 to 4).

特開平9−202953号公報JP-A-9-202953 特開2003−181549号公報JP 2003-181549 A 特開2003−49256号公報JP 2003-49256 A 特開2003−27203号公報JP 2003-27203 A

しかしながら、上記特許文献1〜3に記載された技術は、炉加熱のような昇温速度が緩やかな加熱条件を前提としている。このような加熱条件の場合、塗装後耐食性を確保するためには、高めっき付着量とすることが必要であった。ただし、付着量が多過ぎると熱間での成形時にめっきが剥離する懸念があり、また、金型にAl−Fe粉が付着する場合もあり、これらによりホットプレス工程自体の生産性が低下する、という問題があった。   However, the techniques described in Patent Documents 1 to 3 presuppose heating conditions such as furnace heating with a slow temperature increase rate. In the case of such heating conditions, in order to ensure the corrosion resistance after coating, it was necessary to make the coating amount high. However, if the adhesion amount is too large, there is a concern that the plating may be peeled off during hot molding, and Al-Fe powder may adhere to the mold, which reduces the productivity of the hot press process itself. There was a problem.

また、炉加熱の場合には、通常、鋼板の昇温速度3〜5℃/秒程度であり、ホットプレスにより成形できる鋼板は2〜4個/分程度と非常に生産性が低い。   Further, in the case of furnace heating, the temperature rise rate of the steel sheet is usually about 3 to 5 ° C./second, and the productivity of the steel sheet that can be formed by hot pressing is about 2 to 4 pieces / minute, which is very low in productivity.

特許文献4は、約20℃/秒という、比較的早い昇温であり、このようなときには溶融したメタルが垂れるという課題が示されている。これを解決するために融点以下の温度で緩やかに昇温させてこの間に合金化(めっきと鋼板が反応して金属間化合物へと変化する現象をこう呼ぶ)を進行させることでめっきの融点を上昇させることが示されている。しかし、この場合も例えば、30μm厚みのめっき層では60秒の緩やかな加熱が必要とされており、合計加熱時間は100秒必要となっている。従って、生産性向上という観点からはまだ改善の余地があった。   Patent Document 4 shows a relatively fast temperature increase of about 20 ° C./second. In such a case, a problem that molten metal hangs down is shown. In order to solve this problem, the temperature of the plating is lowered at a temperature lower than the melting point, and alloying (the phenomenon in which the plating and the steel plate react to change to an intermetallic compound) is advanced during this time, thereby reducing the melting point of the plating. It has been shown to rise. However, also in this case, for example, a 30 μm-thick plating layer requires gentle heating for 60 seconds, and the total heating time is 100 seconds. Therefore, there is still room for improvement from the viewpoint of improving productivity.

ホットプレスの生産性を向上させるためには通電加熱や誘導加熱等のような電気を使用する加熱方式で急速加熱を行うことが有効である。しかし急速に加熱すると特許文献4にも記載されている垂れが発生して局部的にめっき厚みが厚くなるなど、めっき厚みが不均一になる、という問題があった。垂れの本質的な原因は、加熱過程でめっきが合金化する前に溶融することにある。すなわち合金化すると、融点が上昇するためこのような現象は起こらないが、急速に昇温するとAlの融点である660℃以上でめっきが溶解し、重力や電磁力で移動する現象が観察される。このようなめっき厚みが不均一なめっき鋼板は、プレス時に型に噛みこんだり、凝着したりするため、生産性を大きく阻害する。すなわちこの垂れ現象を克服することで生産性向上を達成することが可能となる。   In order to improve the productivity of the hot press, it is effective to perform rapid heating by a heating method using electricity such as electric heating or induction heating. However, when heated rapidly, there is a problem that the plating thickness becomes non-uniform, for example, the sagging described in Patent Document 4 occurs and the plating thickness locally increases. The essential cause of sagging is that the plating melts before alloying during the heating process. That is, when the alloy is formed, such a phenomenon does not occur because the melting point rises. However, when the temperature is rapidly raised, the plating dissolves at a melting point of Al of 660 ° C. or higher, and a phenomenon of moving by gravity or electromagnetic force is observed. . Such a plated steel sheet with a non-uniform plating thickness bites into or adheres to the mold at the time of pressing, which greatly impedes productivity. That is, productivity can be improved by overcoming this sagging phenomenon.

そこで、本発明は、このような問題に鑑みてなされたもので、ホットプレス用めっき鋼板及びその製造方法において、低めっき付着量でも優れた耐食性を確保するとともに、生産性を向上させることを目的とする。   Therefore, the present invention has been made in view of such problems, and in the plated steel sheet for hot press and the manufacturing method thereof, the object is to ensure excellent corrosion resistance even with a low plating adhesion amount and to improve productivity. And

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ホットプレス工程直前の加熱工程前における、Alめっき層、及び、当該めっき層と鋼板との間に存在するFe−Al合金層の厚みを適切に制御することにより、低めっき付着量でも優れた耐食性を確保するとともに、ホットプレスの生産性を向上させることができることを見出し、このような知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the Al plating layer before the heating step immediately before the hot pressing step, and the Fe—Al existing between the plating layer and the steel plate. By appropriately controlling the thickness of the alloy layer, it has been found that excellent corrosion resistance can be secured even with a low plating adhesion amount, and productivity of hot press can be improved, and the present invention has been completed based on such knowledge. It came to do.

すなわち、本発明の要旨とするところは、以下の通りである。
(1)鋼板表面に被覆された、Siを3〜15質量%含有するAlめっき層と、前記Alめっき層と前記鋼板との間に位置するFe−Al合金層と、を有し、前記Alめっき層の厚みは3μm以上10μm以下であり、前記Fe−Al合金層の厚みは6μm以上であり、前記Alめっき層の厚みと前記Fe−Al合金層の厚みとの和は10μm以上30μm以下であり、前記Alめっき層と前記Fe−Al合金層との界面の中心線平均粗さRaが0.6μm以上3μm以下であることを特徴とする、ホットプレス用めっき鋼板。
(2)鋼成分として質量%でC:0.1〜0.4%、Si:0.01〜0.6%、Mn:0.5〜3%、P:0.005〜0.05%、S:0.002〜0.02%、Al:0.005〜0.1%、Ti:0.01〜0.1%、B:0.0001〜0.01%およびCr:0.01〜1%を含有し、付着量が片面当たり30〜100g/mとなるようにAlめっきが施されたAlめっき鋼板を、ボックス焼鈍炉内で、酸素:3体積%以上を含有する雰囲気下で温度:450〜600℃、保定時間:1〜50時間、温度積分値450〜20000℃・時間の条件での条件で加熱し、前記Alめっきの組成として、Siを3〜15質量%含有することを特徴とする、ホットプレス用めっき鋼板の製造方法。
(3)鋼成分として質量%でC:0.1〜0.4%、Si:0.01〜0.6%、Mn:0.5〜3%、P:0.005〜0.05%、S:0.002〜0.02%、Al:0.005〜0.1%、Ti:0.01〜0.1%、B:0.0001〜0.01%およびCr:0.01〜1%を含有し、付着量が片面当たり30〜100g/mとなるようにAlめっきが施されたAlめっき鋼板を、溶融亜鉛めっきライン(CGL)内で750〜950℃に加熱することで連続的に合金化処理を行い、前記Alめっきの組成として、Siを3〜15質量%含有することを特徴とする、ホットプレス用めっき鋼板の製造方法。
That is, the gist of the present invention is as follows.
(1) An Al plating layer containing 3 to 15% by mass of Si coated on the surface of the steel plate, and an Fe—Al alloy layer positioned between the Al plating layer and the steel plate, the Al The thickness of the plating layer is 3 μm or more and 10 μm or less, the thickness of the Fe—Al alloy layer is 6 μm or more, and the sum of the thickness of the Al plating layer and the thickness of the Fe—Al alloy layer is 10 μm or more and 30 μm or less. A hot-pressed plated steel sheet, wherein the center line average roughness Ra of the interface between the Al plating layer and the Fe—Al alloy layer is 0.6 μm or more and 3 μm or less.
(2) C: 0.1 to 0.4%, Si: 0.01 to 0.6%, Mn: 0.5 to 3%, P: 0.005 to 0.05% in mass% as steel components , S: 0.002-0.02%, Al: 0.005-0.1%, Ti: 0.01-0.1%, B: 0.0001-0.01% and Cr: 0.01 In an atmosphere containing oxygen: 3% by volume or more in a box annealing furnace containing an Al-plated steel sheet containing 1% and having an Al-plated amount of 30 to 100 g / m 2 per side. The temperature is 450 to 600 ° C., the holding time is 1 to 50 hours, and the temperature integration value is 450 to 20000 ° C. · hour. The composition of the Al plating contains 3 to 15% by mass of Si. A method for producing a hot-pressed plated steel sheet.
(3) C: 0.1 to 0.4%, Si: 0.01 to 0.6%, Mn: 0.5 to 3%, P: 0.005 to 0.05% in mass% as steel components , S: 0.002-0.02%, Al: 0.005-0.1%, Ti: 0.01-0.1%, B: 0.0001-0.01% and Cr: 0.01 Heating an Al-plated steel sheet containing -1% and coated with Al so that the adhesion amount is 30 to 100 g / m 2 per side in a hot-dip galvanizing line (CGL) to 750-950 ° C. in continuously have line alloying treatment, the the composition of the Al coating, characterized in that it contains Si 3 to 15 wt%, the manufacturing method of the hot press-plated steel sheet.

本発明によれば、ホットプレス用めっき鋼板及びその製造方法において、ホットプレス工程直前の加熱工程前における、Alめっき層の厚みを所定の厚み以下にするとともに、Alめっき層とFe−Al合金層の厚みの和を所定の厚み以上とすることにより、低めっき付着量でも優れた耐食性を確保するとともに、生産性を向上させることが可能となる。   According to the present invention, in the plated steel sheet for hot pressing and the manufacturing method thereof, the thickness of the Al plating layer before the heating step immediately before the hot pressing step is set to a predetermined thickness or less, and the Al plating layer and the Fe—Al alloy layer By making the sum of the thicknesses equal to or greater than a predetermined thickness, it is possible to ensure excellent corrosion resistance even with a low plating adhesion amount and improve productivity.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

[本発明に係るホットプレス用めっき鋼板の概要]
上述したように、上記特許文献1〜3に記載された技術では、加熱に約200秒以上を掛けるような低生産性プロセスであった。ホットプレスの生産性を向上させるために、通電加熱等により急速加熱を行うと、特許文献4に記載されているように、鋼板表面に溶融しためっきの垂れが発生するという問題もあった。ここで電気を用いた加熱方法における垂れについて述べる。高周波加熱、通電加熱のいずれも、鋼板を電流が流れることで鋼板の抵抗発熱を利用した加熱方法である。ところが、鋼板に電流が流れると、磁界が生じ、電流と磁界との相互作用で力が生じる。この力のために溶融した金属が移動する。加熱方法により電流の方向は様々に変わるため一概には言えず、鋼板の中央部が厚くなる場合や、逆に鋼板の端部が厚くなる場合がありうる。また、ブランク材を縦置きにした場合、重力に引かれてブランク材下部のめっきが厚くなる場合もある。
[Outline of Plated Steel Sheet for Hot Press According to the Present Invention]
As described above, the techniques described in Patent Documents 1 to 3 described above are low productivity processes in which heating takes about 200 seconds or more. When rapid heating is performed by energization heating or the like in order to improve hot press productivity, there is also a problem that molten plating sag occurs on the steel sheet surface as described in Patent Document 4. Here, sagging in a heating method using electricity will be described. Both high-frequency heating and energization heating are heating methods that utilize the resistance heat generation of a steel sheet by passing a current through the steel sheet. However, when a current flows through the steel sheet, a magnetic field is generated, and a force is generated by the interaction between the current and the magnetic field. This force moves the molten metal. Since the direction of the current varies depending on the heating method, it cannot be said unconditionally, and the central portion of the steel plate may be thick, or conversely, the end portion of the steel plate may be thick. In addition, when the blank is placed vertically, it may be pulled by gravity and the plating at the lower part of the blank may be thick.

本発明者らの検討の結果によれば、このめっきの垂れを防止するためには、めっき付着量を減らせば良いことがわかっている。例えば、Alめっき鋼板を使用して昇温速度を50℃/秒以上で昇温温度900〜1200℃とした場合には、めっき付着量が片面で30g/mでは、めっきの垂れが発生せずに平滑な表面となるが、めっき付着量が片面で60g/mでは、溶融しためっきの垂れが発生するという実験例が得られている。一方、めっきの垂れを防止するために、めっき付着量を減らすと、十分な塗装後耐食性を確保することができない。すなわち、生産性の向上と耐食性の確保とはトレードオフの関係にあるため、従来は、優れた耐食性と優れた生産性を兼ね備えるホットプレス用めっき鋼板は得られていなかった。 According to the results of the study by the present inventors, it has been found that in order to prevent the plating from sagging, it is sufficient to reduce the amount of plating adhesion. For example, when an Al-plated steel plate is used and the temperature rising rate is 50 ° C./sec or higher and the temperature rising temperature is 900 to 1200 ° C., if the plating adhesion amount is 30 g / m 2 on one side, plating sag occurs. However, when the amount of plating is 60 g / m 2 on one side, a molten plating sag occurs. On the other hand, if the plating adhesion amount is reduced in order to prevent the plating from sagging, sufficient post-coating corrosion resistance cannot be ensured. That is, since there is a trade-off relationship between improving productivity and ensuring corrosion resistance, conventionally, a hot-press plated steel sheet having both excellent corrosion resistance and excellent productivity has not been obtained.

そこで、本発明者らは、優れた耐食性と優れた生産性を兼ね備えるホットプレス用めっき鋼板を得るために鋭意検討を行った結果、加熱工程におけるめっきの垂れは、加熱工程前のAlめっき層とFe−Al合金層のうち、Alめっき層が溶融することにより生じるものである、という知見を得た。すなわち、本発明者らは、Alめっき層はAlを主体としているため融点が低く、通電加熱等を用いた急速加熱により、溶融したAlを主体とする金属が電流の導通電路の収縮位置に引き寄せられる結果、通電方向に沿っためっきの垂れが発生するためである、と考えている。一方、Fe−Al合金層は、Alめっき層とは異なり融点が高いため、ホットプレス前の加熱工程における加熱では溶融せず、その結果、めっきの垂れには寄与しないものと考えられる。   Therefore, as a result of intensive investigations to obtain a hot-pressed plated steel sheet that has both excellent corrosion resistance and excellent productivity, the sag of plating in the heating process is the same as that of the Al plating layer before the heating process. It was found that the Fe-Al alloy layer was produced by melting the Al plating layer. In other words, the inventors of the present invention have a low melting point because the Al plating layer is mainly composed of Al, and the molten Al-based metal is drawn to the contracted position of the current conduction circuit by rapid heating using current heating or the like. As a result, it is considered that the plating droops along the energizing direction. On the other hand, since the Fe—Al alloy layer has a high melting point unlike the Al plating layer, it is not melted by heating in the heating step before hot pressing, and as a result, it is considered that it does not contribute to plating dripping.

以上の検討の結果より、めっきの垂れを防止するために表層のAlめっき層の厚みをできるだけ薄くするとともに、塗装後耐食性を確保するためにFe−Al合金層の厚みを厚くして、全体(Alめっき層とFe−Al合金層の全体)として十分な厚みを確保することにより、優れた耐食性と優れた生産性を兼ね備えるホットプレス用めっき鋼板を得ることができる、という知見が得られ、この知見に基づいて本発明が完成された。   As a result of the above examination, the thickness of the surface Al plating layer is made as thin as possible in order to prevent the plating from sagging, and the thickness of the Fe-Al alloy layer is made thicker in order to ensure the corrosion resistance after coating. By securing a sufficient thickness as the Al plating layer and the Fe-Al alloy layer as a whole), the knowledge that a hot-pressed plated steel sheet having excellent corrosion resistance and excellent productivity can be obtained is obtained. The present invention has been completed based on the findings.

付着量が片面60g/m以上のAlめっき材を部分的に合金化させるためには、温度を750℃以上に昇温させるか、あるいは600℃以下で数十時間加熱する必要がある。750℃以上に昇温する際には特に異常な現象は認められない。しかし、通常の連続AlめっきラインでAlめっき後このような高温まで昇温することは困難で、コイルをボックス焼鈍する方が容易である。ところが、コイルをボックス焼鈍する際に、幾つかの課題がある。1つはAl−10%Siの融点は約600℃のため、融点近傍では軟化したAlが融着する懸念がある。温度を低下させるとこの懸念は無くなる。更に、窒素雰囲気や窒素−水素の混合雰囲気中で加熱すると、途中で合金化が停止してしまうとの現象が観察された。これは合金化が途中まで進行すると、ボイド(空孔)がAlめっき−合金層の界面に集積してしまう現象である。このボイドはいわゆるカーケンドルボイド、つまりAlとFeの拡散速度のギャップにより生成するボイドと考えられる。この現象が起こると、もはやそれ以上合金化は進行せず、ボイドの集積が進行した結果、合金化していないAl部が剥離してしまう。この現象を防止するためには焼鈍雰囲気中に酸素を3体積%以上含有させることが重要で、このような雰囲気では、合金化が表面まで進行する。雰囲気がボイドの集積状況と合金化へ影響する理由は現段階では不明であるが、例えば、拡散速度のギャップに伴い局部的な格子欠陥密度が上昇してボイドを形成する際には、新たな表面が形成される必要があり、この表面エネルギーに雰囲気が影響している可能性がある。 In order to partially alloy an Al plating material having an adhesion amount of 60 g / m 2 or more on one side, it is necessary to raise the temperature to 750 ° C. or higher, or to heat at 600 ° C. or lower for several tens of hours. No unusual phenomenon is observed when the temperature is raised to 750 ° C. or higher. However, it is difficult to raise the temperature to such a high temperature after Al plating on a normal continuous Al plating line, and it is easier to box anneal the coil. However, there are some problems when the coil is subjected to box annealing. One is that Al-10% Si has a melting point of about 600 ° C., so there is a concern that softened Al is fused in the vicinity of the melting point. This concern disappears when the temperature is lowered. Furthermore, a phenomenon was observed that when heating was performed in a nitrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen, alloying stopped halfway. This is a phenomenon in which voids (holes) accumulate at the interface of the Al plating-alloy layer when alloying progresses partway. This void is considered to be a so-called Kirkendle void, that is, a void generated by a gap between the diffusion rates of Al and Fe. When this phenomenon occurs, alloying no longer proceeds, and as a result of the accumulation of voids, the unalloyed Al part is peeled off. In order to prevent this phenomenon, it is important to contain 3% by volume or more of oxygen in the annealing atmosphere. In such an atmosphere, alloying proceeds to the surface. The reason why the atmosphere affects the state of void accumulation and alloying is unknown at this stage.For example, when the void density is increased due to the increase in local lattice defect density due to the diffusion rate gap, a new A surface needs to be formed, and the atmosphere may affect this surface energy.

[本発明に係るホットプレス用めっき鋼板の構成]
すなわち、本発明によれば、鋼板表面に被覆されたAlめっき層と、Alめっき層と鋼板との間に位置するFe−Al合金層と、を有し、Alめっき層の厚みが3μm以上10μm以下であり、Fe−Al合金層の厚みが6μm以上であり、Alめっき層の厚みとFe−Al合金層の厚みの和が10μm以上30μm以下であり、かつ、Alめっき層とFe−Al合金層との界面の中心線平均粗さRaが0.6μm以上3μm以下であるホットプレス用めっき鋼板を得ることができる。
[Configuration of plated steel sheet for hot press according to the present invention]
That is, according to the present invention, it has an Al plating layer coated on the steel plate surface, and an Fe-Al alloy layer positioned between the Al plating layer and the steel plate, and the thickness of the Al plating layer is 3 μm or more and 10 μm. The thickness of the Fe—Al alloy layer is 6 μm or more, the sum of the thickness of the Al plating layer and the thickness of the Fe—Al alloy layer is 10 μm or more and 30 μm or less, and the Al plating layer and the Fe—Al alloy A plated steel sheet for hot press having a center line average roughness Ra of 0.6 μm or more and 3 μm or less at the interface with the layer can be obtained.

(一般的な合金層の構造について)
続いて、本発明に係るホットプレス用めっき鋼板の構成について説明する前に、その前提として、図1を参照しながら、Alめっき鋼板を加熱することにより得られる一般的な合金層の構造について説明する。なお、図1は、Alめっき鋼板を加熱合金化した後の断面組織の構造の一般的な例を示す光学顕微鏡写真である。
(General alloy layer structure)
Subsequently, before explaining the configuration of the hot-pressed plated steel sheet according to the present invention, as a premise, the structure of a general alloy layer obtained by heating the Al-plated steel sheet will be described with reference to FIG. To do. FIG. 1 is an optical micrograph showing a general example of the structure of a cross-sectional structure after heat-alloying an Al-plated steel sheet.

ホットプレス前のAlめっき鋼板のめっき層は、表層よりAl−Si層及びFeAlSi合金層から成る。このめっき層は、ホットプレス工程で900℃程度に加熱されることでAl−Siと鋼板中Feとの相互拡散が起こり、全体がAl−Fe化合物へ変化する。このとき、Al−Fe化合物中に部分的にSiを含有する相も生成する。   The plated layer of the Al-plated steel sheet before hot pressing is composed of an Al—Si layer and a FeAlSi alloy layer from the surface layer. When this plating layer is heated to about 900 ° C. in a hot pressing process, interdiffusion between Al—Si and Fe in the steel sheet occurs, and the whole changes to an Al—Fe compound. At this time, a phase partially containing Si is also generated in the Al—Fe compound.

ここで、図1に示すように、Alめっき鋼板を加熱合金化した後のFe−Al合金層は、一般に5層構造となることが多い。これら5層を図1では、めっき鋼板表面から順に、1層〜5層で表している。第1層、第3層の層中のAl濃度は約50質量%、第2層中のAl濃度は約30質量%、第4層、第5層中のAl濃度はそれぞれ15〜30質量%、1〜15質量%の幅を持つ組成となる。残部はFe及びSiである。第4層と第5層の界面付近にボイドの生成が観察されることもある。このような合金層の耐食性はAl含有量にほぼ依存し、Al含有量が高いほど耐食性に優れる。従って、第1層、第3層が最も耐食性に優れている。なお、第5層の下部の組織は鋼素地であり、マルテンサイトを主体とする焼入組織となっている。   Here, as shown in FIG. 1, the Fe—Al alloy layer after heat-alloying an Al-plated steel sheet generally has a five-layer structure in many cases. In FIG. 1, these five layers are represented by 1 to 5 layers in order from the surface of the plated steel sheet. The Al concentration in the first and third layers is about 50% by mass, the Al concentration in the second layer is about 30% by mass, and the Al concentrations in the fourth and fifth layers are 15 to 30% by mass, respectively. The composition has a width of 1 to 15% by mass. The balance is Fe and Si. Void formation may be observed near the interface between the fourth layer and the fifth layer. The corrosion resistance of such an alloy layer substantially depends on the Al content, and the higher the Al content, the better the corrosion resistance. Therefore, the first layer and the third layer are most excellent in corrosion resistance. In addition, the structure below the fifth layer is a steel base, which is a hardened structure mainly composed of martensite.

図2に、Fe−Alの二元系状態図を示す。この図2を参照すれば、第1層、第3層はFeAl,FeAlを主成分とし、第4層、第5層はそれぞれFeAl、αFeに対応するものと判断できる。また、第2層はFe−Al二元系状態図から説明できないSiを含有する層でその詳細な組成は明らかではないが、本発明者らは、FeAlとFe−Al−Si化合物が微細に混じりあったようなものであると推定している。 FIG. 2 shows a binary phase diagram of Fe—Al. Referring to FIG. 2, it can be determined that the first layer and the third layer are mainly composed of Fe 2 Al 5 and FeAl 2 , and the fourth layer and the fifth layer correspond to FeAl and αFe, respectively. In addition, the second layer is a layer containing Si that cannot be explained from the Fe—Al binary phase diagram, and its detailed composition is not clear, but the present inventors have found that the FeAl 2 and Fe—Al—Si compounds are fine. It is presumed that it was mixed.

(本発明のホットプレス用めっき鋼板を加熱して得られる合金層の構造について)
次に、本発明に係るホットプレス用めっき鋼板を所定の条件で加熱することにより得られる合金層(以下、「被覆層」と称する。)の構造について説明する。この被覆層は、FeAl、FeAl、FeAl、FeAl及びFeAlSi化合物からなる群より選択される少なくとも2種以上の金属間化合物を含有し、Al濃度が所定濃度(例えば、40質量%)超の領域中に、Al濃度が所定濃度(例えば、40質量%)以下の領域が分散された単層構造を有する場合もある。
(About the structure of the alloy layer obtained by heating the hot-pressed plated steel sheet of the present invention)
Next, the structure of an alloy layer (hereinafter referred to as “coating layer”) obtained by heating the plated steel sheet for hot press according to the present invention under predetermined conditions will be described. This coating layer contains at least two types of intermetallic compounds selected from the group consisting of FeAl 2 , Fe 2 Al 5 , FeAl 3 , FeAl, and FeAlSi compounds, and the Al concentration is a predetermined concentration (for example, 40% by mass). ) There may be a single-layer structure in which a region having an Al concentration of a predetermined concentration (for example, 40% by mass) or less is dispersed in a super region.

上記被覆層は、上述した一般的な合金層と同様に、鋼板表面にAlめっきが施されたAlめっき鋼板を加熱することにより生成される(ただし、加熱条件は全く異なる)。すなわち、上記被覆層は、加熱工程前にはAlめっきであるが、加熱工程において表面までFeが拡散して金属間化合物に変化することにより生成される。この場合、鋼板表面の被覆層中には金属Alは存在しないが、このことは、例えば、表面からX線回折でのAlのピークを検出することにより容易に確認することができる。なお、αFeは、Alの固溶したフェライト相であり、厳密な意味では金属間化合物ではないが、他の相との境界が明瞭ではないため、本発明においては、この相も金属間化合物と称する。   The coating layer is generated by heating an Al-plated steel sheet having an Al-plated steel plate surface (however, the heating conditions are completely different), as in the general alloy layer described above. That is, although the said coating layer is Al plating before a heating process, it is produced | generated when Fe diffuses to the surface and changes to an intermetallic compound in a heating process. In this case, metal Al does not exist in the coating layer on the surface of the steel sheet, but this can be easily confirmed, for example, by detecting an Al peak by X-ray diffraction from the surface. ΑFe is a ferrite phase in which Al is dissolved, and is not an intermetallic compound in the strict sense, but since the boundary with other phases is not clear, in the present invention, this phase is also an intermetallic compound. Called.

また、「単層構造」とは、図1に示すような5層構造とは異なるもので、代表的な組織の構造を図3に示す。図1と図3との対比から判るように、図3の組織は、図1の第2層及び第4層の双方が分断され、5つの層が積層された層状構造から単層構造へと変化したものである。ここで、塗装後耐食性を担保するという観点から、上記被覆層は、図1の第2層及び第4層が単に分断されただけの構造ではなく、図1の第2層及び第4層の分断が進み(さらには体積分率も低下し)、図1の第1層、第3層及び第5層に相当するAl濃度が高い海状の領域(以下、「高Al領域」という。)中に、図1の第2層及び第4層に相当するAl濃度が低い島状の領域(以下、「低Al領域」という。)が分散された海島構造を有することが必要である。この高Al領域は、Alの濃度が40質量%超の領域であり、低Al領域は、Al濃度が40質量%以下の領域である。また、高Al領域中の組成としては、Al濃度が45〜55質量%であり、低Al領域中の組成としては、Al濃度が15〜35質量%であることが多い。このような被覆層の組成や結晶構造は、電子線マイクロアナライザ(EPMA)、走査型電子顕微鏡−エネルギー分散型X線分析装置(SEM−EDS)、透過型電子顕微鏡(TEM)等を用いて分析することにより特定することができる。   The “single layer structure” is different from the five layer structure as shown in FIG. 1, and a typical structure of the structure is shown in FIG. As can be seen from the comparison between FIG. 1 and FIG. 3, the structure of FIG. 3 is changed from a layered structure in which both the second layer and the fourth layer in FIG. 1 are divided and five layers are laminated to a single layer structure. It has changed. Here, from the viewpoint of ensuring the corrosion resistance after painting, the coating layer is not a structure in which the second layer and the fourth layer in FIG. 1 are simply divided, but the second layer and the fourth layer in FIG. The division progresses (and the volume fraction also decreases), and a sea-like region having a high Al concentration corresponding to the first layer, the third layer, and the fifth layer in FIG. 1 (hereinafter referred to as “high Al region”). It is necessary to have a sea-island structure in which island-like regions having a low Al concentration (hereinafter referred to as “low Al regions”) corresponding to the second layer and the fourth layer in FIG. 1 are dispersed. The high Al region is a region where the Al concentration exceeds 40% by mass, and the low Al region is a region where the Al concentration is 40% by mass or less. Moreover, as a composition in a high Al area | region, Al concentration is 45-55 mass%, and as a composition in a low Al area | region, Al concentration is 15-35 mass% in many cases. The composition and crystal structure of such a coating layer are analyzed using an electron beam microanalyzer (EPMA), a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDS), a transmission electron microscope (TEM), or the like. Can be specified.

このような被覆層の組織を得るためには、本発明に係るAlめっき鋼板において、合金層の構造を律する600℃から最高到達板温より10℃低い温度(例えば、850℃程度)までの温度域において、所定の速度以上で昇温することにより、海状の高Al領域中に、島状の低Al領域が分散された海島構造を有することができる。加熱方式については特に限定しないが、上記海島構造を有する被覆層を生成するためには、例えば50℃/秒以上の昇温速度で急速加熱を行うことが必要であるため、通電加熱や高周波誘導加熱等の電気を用いる加熱方式を使用することが好ましい。本発明者らは、従来のような炉加熱や輻射熱を利用する近赤外線式の加熱等とは異なり、通電加熱や高周波誘電加熱等では熱が鋼板内部から発生するため、この熱の発生の仕方が影響して上述したような海島構造をとりやすくなるものと推定している。   In order to obtain such a structure of the coating layer, in the Al-plated steel sheet according to the present invention, a temperature from 600 ° C. that regulates the structure of the alloy layer to a temperature that is 10 ° C. lower than the maximum plate temperature (for example, about 850 ° C.). By raising the temperature at a predetermined speed or higher in the region, it is possible to have a sea-island structure in which island-like low Al regions are dispersed in a sea-like high Al region. There is no particular limitation on the heating method, but in order to produce a coating layer having the above-mentioned sea-island structure, it is necessary to perform rapid heating at a temperature rising rate of, for example, 50 ° C./sec. It is preferable to use a heating method using electricity such as heating. Unlike the conventional near-infrared heating that uses radiant heat or furnace heating, the present inventors generate heat from the inside of a steel sheet in current heating or high-frequency dielectric heating. It is presumed that the sea-island structure as described above is likely to be affected.

以下、上述したような被覆層を有するホットプレス用めっき鋼板の製造に用いられる本発明に係るAlめっき鋼板の構成について詳細に説明する。   Hereinafter, the configuration of the Al-plated steel sheet according to the present invention used for the production of the hot-press plated steel sheet having the coating layer as described above will be described in detail.

(鋼板について)
ホットプレスが金型によるプレスと焼入を同時に行うものであることから、本発明に係るホットプレス用めっき鋼板としては、焼入されやすい成分である必要がある。具体的には、鋼板中の鋼成分として、質量%で、C:0.1〜0.4%、Si:0.01〜0.6%、Mn:0.5〜3%、Ti:0.01〜0.1%、B:0.0001〜0.01%、Cr:0.01〜1%、P:0.005〜0.05%、S:0.002〜0.02%、Al:0.005〜0.1%であることが好ましい。C量については、焼入性の向上という観点から0.1%以上であることが好ましく、また、C量が多過ぎると鋼板の靭性の低下が著しくなるため、0.4質量%以下であることが好ましい。また、Siを0.6%超添加するとAlめっき性が低下し、0.01%未満とすると疲労特性が劣るため好ましくない。また、Mnは焼入性に寄与する元素で0.5%以上の添加が有効であるが、焼入後の靭性の低下という観点からは3%を超えることは好ましくない。また、Tiはアルミめっき後の耐熱性を向上させる元素で0.01%以上の添加が有効であるが、過剰に添加するとCやNと反応して鋼板強度を低下させてしまうため、0.1%を超えることは好ましくない。また、Bは焼入性に寄与する元素で0.0001%以上の添加が有効であるが、熱間での割れの懸念があるため、0.01%を超えることは好ましくない。Crは強化元素であるとともに焼入れ性の向上に有効である。しかし、0.01%未満ではこれらの効果が得られ難い。逆に、1%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため好ましくない。Pは過剰に添加すると鋼板の脆性を引き起こすため、0.05%以下が好ましい。SはMnSとして鋼中の介在物になり、MnSが多いと破壊の起点となり、延性、靭性を阻害するため0.05%以下が好ましい。Alはめっき性阻害元素であるため、0.1%以下が好ましい。P、Al共に経済的な精錬限界から下限濃度0.005%とすることが好ましい。また、Sについても経済的な精錬限界から下限濃度0.002%とすることが好ましい。また、鋼板中の成分として、他にN、Mo、Nb、Ni、Cu、V、Sn、Sb等が含有されうる。通常は、質量%で、N:0.01%以下、Ni:0.05%以下、Cu:0.05%以下である。
(About steel plate)
Since hot pressing is performed simultaneously with pressing with a mold and quenching, the plated steel sheet for hot pressing according to the present invention needs to be a component that is easily quenched. Specifically, as steel components in the steel sheet, in mass%, C: 0.1 to 0.4%, Si: 0.01 to 0.6%, Mn: 0.5 to 3%, Ti: 0 .01-0.1%, B: 0.0001-0.01%, Cr: 0.01-1%, P: 0.005-0.05%, S: 0.002-0.02%, Al: 0.005 to 0.1% is preferable. The amount of C is preferably 0.1% or more from the viewpoint of improving hardenability, and if the amount of C is too much, the toughness of the steel sheet is remarkably lowered, so that it is 0.4% by mass or less. It is preferable. Further, if Si is added in excess of 0.6%, the Al plating property is lowered, and if it is less than 0.01%, fatigue characteristics are inferior, which is not preferable. Mn is an element that contributes to hardenability, and it is effective to add 0.5% or more, but it is not preferable to exceed 3% from the viewpoint of lowering toughness after quenching. Ti is an element that improves the heat resistance after aluminum plating, and it is effective to add 0.01% or more. However, if it is added excessively, it reacts with C and N to lower the steel sheet strength. It is not preferable to exceed 1%. B is an element that contributes to hardenability, and it is effective to add 0.0001% or more. However, since there is a concern of hot cracking, it is not preferable to exceed 0.01%. Cr is a strengthening element and is effective in improving hardenability. However, if it is less than 0.01%, it is difficult to obtain these effects. On the other hand, if the content exceeds 1%, the manufacturability during production and hot rolling is adversely affected. If P is added excessively, it causes brittleness of the steel sheet, so 0.05% or less is preferable. S becomes an inclusion in the steel as MnS, and if MnS is large, it becomes a starting point of fracture, and in order to inhibit ductility and toughness, 0.05% or less is preferable. Since Al is a plating-inhibiting element, 0.1% or less is preferable. Both P and Al are preferably made the lower limit concentration 0.005% from the economical refining limit. Moreover, it is preferable that S is also made the lower limit concentration 0.002% from the economical refining limit. In addition, N, Mo, Nb, Ni, Cu, V, Sn, Sb, and the like can be contained as other components in the steel sheet. Usually, the mass percentage is N: 0.01% or less, Ni: 0.05% or less, and Cu: 0.05% or less.

(Alめっきについて)
本発明に係るホットプレス用めっき鋼板は、鋼板表面にAlめっきが施されたAlめっき鋼板において、Alめっき層の一部を合金化処理することにより製造されるが、本発明における鋼板へのAlめっきの方法については特に限定するものでなく、溶融めっき法を初めとして電気めっき法、真空蒸着法、クラッド法等が可能である。現在工業的に最も普及しているのは溶融めっき法であり、通常、めっき浴として、Alに3質量%〜15質量%のSiを含有するものを使用することができ、これに不可避的不純物のFe等が混入している。これ以外の添加元素として、Mn、Cr、Mg、Ti、Zn、Sb、Sn、Cu、Ni、Co、In、Bi、ミッシュメタル等があり得るが、めっき層がAlを主体とする限り、適用可能である。Zn、Mgの添加は赤錆を発生し難くするという意味で有効であるが、蒸気圧の高いこれら元素の過剰な添加はZn、Mgのヒューム発生、表面へのZn、Mg起因の粉体状物質の生成等があり、Zn:60質量%以上、Mg:10質量%以上の添加は好ましくない。
(About Al plating)
The plated steel sheet for hot press according to the present invention is manufactured by alloying a part of the Al plated layer in an Al plated steel sheet having Al plated on the surface of the steel sheet. The plating method is not particularly limited, and electroplating, vacuum deposition, cladding, and the like including hot-dip plating are possible. Currently, the most widely used industrially is the hot dipping method. Usually, a plating bath containing 3% by mass to 15% by mass of Si can be used as an inevitable impurity. Fe and the like are mixed. Other additive elements may be Mn, Cr, Mg, Ti, Zn, Sb, Sn, Cu, Ni, Co, In, Bi, Misch metal, etc., but as long as the plating layer is mainly Al. Is possible. Addition of Zn and Mg is effective in terms of making red rust unlikely to occur, but excessive addition of these elements having a high vapor pressure causes generation of fumes of Zn and Mg, Zn on the surface, and powdery substances derived from Mg The addition of Zn: 60% by mass or more and Mg: 10% by mass or more is not preferable.

また、本発明において、Alめっきの組成として、Siを3〜15質量%含有することが好ましい。SiはAlめっき時の合金層成長を抑制する働きがある。ホットプレス用途に限れば、合金層成長を抑制する必然性は小さいが、溶融めっき法においては、1つの浴で種々の用途の製品を製造するため、Alめっきの加工性を要求される用途においては合金層成長を抑制する必要がある。Si量が3質量%未満においては、合金層が成長するため、Alめっき鋼板としての加工性が低下する。一方、Si量が多すぎるとめっき層中に粗大結晶として晶出し、耐食性やめっきの加工性を阻害する。このため、Si量は15質量%以下であることが好ましい。   Moreover, in this invention, it is preferable to contain 3-15 mass% of Si as a composition of Al plating. Si has a function of suppressing alloy layer growth during Al plating. In hot press applications, the necessity to suppress alloy layer growth is small, but in hot-dip plating, products for various uses are manufactured in one bath, so in applications that require the workability of Al plating. It is necessary to suppress alloy layer growth. When the amount of Si is less than 3% by mass, the alloy layer grows, so that the workability as an Al-plated steel sheet is lowered. On the other hand, if the amount of Si is too large, it will crystallize out as coarse crystals in the plating layer, impairing corrosion resistance and plating workability. For this reason, it is preferable that Si amount is 15 mass% or less.

また、本発明において、Alめっきのめっき前処理、後処理等については特に限定するものではない。めっき前処理としてNi、Cu、Cr、Feプレめっき等もありうるが、これも適用可能である。また、めっき後処理としては一次防錆、潤滑性を目的としてクロメート処理、樹脂被覆処理等を施してもよい。ただし、クロメート処理については、近年の6価クロム規制を考慮すると、電解クロメート等の3価の処理皮膜が好ましい。その他、無機系のクロメート以外の後処理も適用可能である。潤滑性を付与するため、アルミナ、シリカ、MoS等を用いて予め表面処理することも可能である。 Moreover, in this invention, it does not specifically limit about the plating pre-processing and post-processing of Al plating. Ni, Cu, Cr, Fe pre-plating and the like may be used as the plating pretreatment, but this is also applicable. Further, as a post-plating treatment, chromate treatment, resin coating treatment, or the like may be performed for the purpose of primary rust prevention and lubricity. However, with regard to the chromate treatment, a trivalent treatment film such as electrolytic chromate is preferable in consideration of recent hexavalent chromium regulations. In addition, post-treatment other than inorganic chromate is also applicable. In order to impart lubricity, it is also possible to perform surface treatment in advance using alumina, silica, MoS 2 or the like.

本発明に係るAlめっき鋼板は、表層に位置するAlめっき層と、このAlめっき層と鋼板(母材)との間に位置するFe−Al合金層とを有する。このとき、Alめっき層とFe−Al合金層との界面の粗度が、界面の中心線平均粗さRaとして0.6μm以上3μm以下であることが好ましい。Alめっき層とFe−Al合金層との界面の粗度をこの範囲とすることにより、加熱工程において、溶融しためっきの垂れを防止して、合金層(被覆層)の厚みが不均一となることを防止することができる。この理由は、温度が600℃以上でAl−Siは溶融を始めるが、Fe−Al合金層はこの温度では溶融することなく、Fe−Al合金層とAlめっき層との界面粗度が大きいと、溶融したメタルの移動を物理的に阻害するためであると推測される。   The Al-plated steel sheet according to the present invention has an Al plated layer located on the surface layer and an Fe—Al alloy layer located between the Al plated layer and the steel sheet (base material). At this time, it is preferable that the roughness of the interface between the Al plating layer and the Fe—Al alloy layer is 0.6 μm or more and 3 μm or less as the centerline average roughness Ra of the interface. By setting the roughness of the interface between the Al plating layer and the Fe—Al alloy layer within this range, in the heating step, dripping of the molten plating is prevented, and the thickness of the alloy layer (coating layer) becomes non-uniform. This can be prevented. The reason for this is that when the temperature is 600 ° C. or higher, Al—Si begins to melt, but the Fe—Al alloy layer does not melt at this temperature, and the interface roughness between the Fe—Al alloy layer and the Al plating layer is large. This is presumed to be due to physically hindering the movement of the molten metal.

なお、Fe−Al合金層とAlめっき層との界面粗度については、以下の方法で測定することができる。Alめっき鋼板を3%NaOH+1%AlCl・6HO溶液中で、対極をステンレス鋼として電流密度20mA/cm程度で電解剥離することで、Alメッキのみを溶融することができる。Alめっき層を剥離させた後に、通常の粗度計等を使用してFe−Al合金層表面の粗度を測定することができる。 The interface roughness between the Fe—Al alloy layer and the Al plating layer can be measured by the following method. The Al-plated steel sheet with 3% NaOH + 1% AlCl 3 · 6H 2 O solution by electrolytic stripping at a current density of 20 mA / cm 2 about the counter electrode as stainless steel can be melted only Al plating. After peeling off the Al plating layer, the roughness of the Fe—Al alloy layer surface can be measured using a normal roughness meter or the like.

次に、このAlめっき層とFe−Al合金層との界面粗度を調整する方法について説明する。溶融Alめっき法において、Fe−Al合金層が生成するのはAlめっき浴中であるため、めっき条件は当然大きな影響を持つ。具体的には、浴中Si量と浴温によって生成する合金層の種類が異なるため、この条件を調整することで界面粗度を調整可能である。例えば、浴中Si量を10〜12%と高めにし、浴温を640〜650℃程度とすると、界面粗度は大きくなるのに対し、Si量を6〜8%とし、浴温を650〜670℃程度とすることで界面粗度は小さくなる。浴中Si量が高めのときには棒状の合金層が生成しやすくなるためである。   Next, a method for adjusting the interface roughness between the Al plating layer and the Fe—Al alloy layer will be described. In the hot-dip Al plating method, since the Fe—Al alloy layer is generated in the Al plating bath, the plating conditions naturally have a great influence. Specifically, since the kind of the alloy layer generated varies depending on the amount of Si in the bath and the bath temperature, the interface roughness can be adjusted by adjusting this condition. For example, when the Si amount in the bath is increased to 10 to 12% and the bath temperature is set to about 640 to 650 ° C., the interface roughness increases, whereas the Si amount is set to 6 to 8% and the bath temperature is set to 650 to 650 ° C. By setting the temperature to about 670 ° C., the interface roughness becomes small. This is because when the Si content in the bath is high, a rod-like alloy layer is easily formed.

これに加えて、本発明は、Alめっき後にFe−Al合金層を成長させるための加熱を施すもので、この加熱条件によっても界面粗度を調整できる。例えば、400℃程度の低温で20時間程度以上の加熱をすると界面粗度は小さくなるのに対し、500℃以上の温度で1〜10時間の加熱条件では界面粗度は大きくなる。ボックス焼鈍する場合においては、融点近傍になるとコイル同士が融着する懸念があるために上限は600℃である。   In addition to this, the present invention performs heating for growing the Fe—Al alloy layer after Al plating, and the interface roughness can be adjusted also by this heating condition. For example, when the heating is performed for about 20 hours or more at a low temperature of about 400 ° C., the interface roughness becomes small, while the interface roughness increases under the heating condition of 500 ° C. or more for 1 to 10 hours. In the case of box annealing, the upper limit is 600 ° C. because there is a concern that the coils are fused to each other near the melting point.

本発明の一実施形態として、Alめっき後にCGL(溶融亜鉛めっきライン)内で連続的に加熱を加える形態と、一旦コイルに巻き取った後にボックス焼鈍する形態があるが、前者においては、Alめっき条件を調整する必要がある一方で、後者に関してはAlめっき条件に関わらずボックス焼鈍の条件のみで調整可能である。   As one embodiment of the present invention, there are a form in which heating is continuously performed in a CGL (hot dip galvanizing line) after Al plating, and a form in which box annealing is performed after winding the coil once. While the conditions need to be adjusted, the latter can be adjusted only by the conditions of box annealing regardless of the Al plating conditions.

また、上記Alめっき層の厚みとFe−Al合金層の厚みの和は、10μm以上30μm以下であることが好ましい。Alめっき層の厚みとFe−Al合金層の厚みの和が10μm以上であれば、加熱工程後に、ホットプレス部材として十分な塗装後耐食性を確保できるため好ましい。厚みが大きいほど耐食性上は優位に働くが、一方、Alめっき層の厚みとFe−Al合金層の厚みの和が大きいほど、加熱工程により生成された被覆層が加工時に欠落し易くなるため、被覆層の厚みは30μm以下であることが好ましい。   Further, the sum of the thickness of the Al plating layer and the thickness of the Fe—Al alloy layer is preferably 10 μm or more and 30 μm or less. If the sum of the thickness of the Al plating layer and the thickness of the Fe—Al alloy layer is 10 μm or more, it is preferable since sufficient post-coating corrosion resistance can be secured as a hot press member after the heating step. The larger the thickness, the better the corrosion resistance, but on the other hand, the larger the sum of the thickness of the Al plating layer and the thickness of the Fe-Al alloy layer, the easier it is for the coating layer generated by the heating process to be lost during processing. The thickness of the coating layer is preferably 30 μm or less.

また、上記Alめっき層の厚みは、3μm以上10μm以下であることが好ましい。本発明者らの検討結果によれば、上述したように、加熱工程時に溶融しためっきの垂れの原因となるのは、主に、Fe−Al合金層ではなく、表層のAlめっき層が溶融することによるものであると考えている。そのため、表層のAlめっき層の厚みを薄くすれば、その下のFe−Al合金層の厚みが厚くても、めっきの垂れを防止することができるものと考えられる。このような観点から、Alめっき層の厚みを10μm以下とすることが好ましい。しかしAlめっき層が薄すぎると、めっき層中のAl含有量が少なくなり、加熱工程後の被覆層が上述した海島構造を有することができない場合があるため、Alめっき層の厚みを3μm以上とすることが好ましい。   The thickness of the Al plating layer is preferably 3 μm or more and 10 μm or less. According to the examination results of the present inventors, as described above, the main cause of dripping of the molten plating during the heating process is not the Fe—Al alloy layer but mainly the surface Al plating layer. I think that is due to this. Therefore, if the thickness of the surface Al plating layer is reduced, it is considered that the dripping of the plating can be prevented even if the thickness of the Fe—Al alloy layer therebelow is increased. From such a viewpoint, it is preferable that the thickness of the Al plating layer is 10 μm or less. However, if the Al plating layer is too thin, the Al content in the plating layer is reduced, and the coating layer after the heating step may not have the above-described sea-island structure, so the thickness of the Al plating layer is 3 μm or more. It is preferable to do.

更に、Fe−Al合金層厚みは6μm以上が好ましい。先述したようにFe−Al合金層とAlめっき層との界面粗度を制御するが、この界面粗度を大きくするような操業条件はいずれもFe−Al合金層を厚くする条件と一致しており、実際上、界面粗度を0.6〜3μmにすると、Fe−Al合金層は6μm以上となってしまう。従ってこの条件は単独で制御できるものでなく、他の因子を制御した結果としてこうなるものである。   Furthermore, the thickness of the Fe—Al alloy layer is preferably 6 μm or more. As described above, the interface roughness between the Fe—Al alloy layer and the Al plating layer is controlled. The operating conditions for increasing the interface roughness are consistent with the conditions for increasing the thickness of the Fe—Al alloy layer. Actually, when the interface roughness is 0.6 to 3 μm, the Fe—Al alloy layer becomes 6 μm or more. Therefore, this condition cannot be controlled independently, but as a result of controlling other factors.

[本発明に係るホットプレス用めっき鋼板の製造方法]
以上、本発明に係るホットプレス用めっき鋼板の構成について詳細に説明したが、続いて、このような構成を有する本発明に係るホットプレス用めっき鋼板の製造方法について詳細に説明する。
[Method for Producing Plated Steel Sheet for Hot Press According to the Present Invention]
The configuration of the hot-pressed plated steel sheet according to the present invention has been described in detail above. Subsequently, the method for producing a hot-pressed plated steel sheet according to the present invention having such a configuration will be described in detail.

本発明に係るホットプレス用めっき鋼板は、鋼成分として、上述したように、質量%でC:0.1〜0.4%、Si:0.01〜0.6%、Mn:0.5〜3%、Ti:0.01〜0.1%、B:0.0001〜0.01%、Cr:0.01〜1%を含有し、付着量が90g/m以下となるようにAlめっきが施されたAlめっき鋼板を、50℃/時間〜50℃/秒の昇温速度で500℃〜1000℃まで昇温した後に、50℃/時間〜50℃/秒の冷却速度で冷却する加熱処理を行うことにより製造する。この加熱処理により、Alめっきを施した後のAlめっき層の一部が母材中のFeと合金化し、Fe−Al合金層の厚みが厚くなる。 As described above, the plated steel sheet for hot pressing according to the present invention has C: 0.1 to 0.4%, Si: 0.01 to 0.6%, Mn: 0.5 as a steel component, as described above. -3%, Ti: 0.01-0.1%, B: 0.0001-0.01%, Cr: 0.01-1%, so that the adhesion amount is 90 g / m 2 or less An Al-plated steel sheet coated with Al is heated at a temperature increase rate of 50 ° C./hour to 50 ° C./second to 500 ° C. to 1000 ° C. and then cooled at a cooling rate of 50 ° C./hour to 50 ° C./second. It is manufactured by performing heat treatment. By this heat treatment, a part of the Al plating layer after Al plating is alloyed with Fe in the base material, and the thickness of the Fe—Al alloy layer is increased.

50℃/時間〜50℃/秒の昇温速度で450℃〜950℃まで昇温した後に、50℃/時間〜50℃/秒の冷却速度で冷却することにより、Alめっき層へのFeの拡散が進行し、Fe−Al合金層の厚みを厚くするとともに、Alめっき層の厚みを3μm〜10μmまで薄くすることができる。   After raising the temperature from 450 ° C. to 950 ° C. at a temperature raising rate of 50 ° C./hour to 50 ° C./second, cooling at a cooling rate of 50 ° C./hour to 50 ° C./second, Fe of As diffusion proceeds, the thickness of the Fe—Al alloy layer can be increased, and the thickness of the Al plating layer can be reduced to 3 μm to 10 μm.

また、上記加熱処理は、Alめっき後に、Alめっき層の一部を合金化するものであれば特に限定はされないが、例えば、ボックス焼鈍(BAF焼鈍)、あるいはCGL内においてAlめっき後に誘導加熱等により連続的に行うことができる。合金化処理を行う場合には、焼鈍条件、すなわち、昇温速度、最高到達板温、冷却速度等の諸条件を調整することにより、Alめっき層の厚みを制御することができる。   The heat treatment is not particularly limited as long as a part of the Al plating layer is alloyed after Al plating. For example, box annealing (BAF annealing), induction heating after Al plating in CGL, etc. Can be carried out continuously. When the alloying treatment is performed, the thickness of the Al plating layer can be controlled by adjusting the annealing conditions, that is, various conditions such as the temperature increase rate, the maximum plate temperature, and the cooling rate.

先述したように、現状CGLに設備をつけることができれば、CGL内で加熱することも可能であるが、そのような設備がない場合にはBAF焼鈍となる。このときの条件としては、酸素:3体積%以上を含有する雰囲気下で温度:450〜600℃、保定時間:1〜50時間、温度積分値450〜20000℃・時間とすることが好ましい。ここで、温度積分値とは、温度(℃)と保定時間(時間)の積を意味する。この値が20000以上でほぼ表面まで合金化してしまうため、本発明ではこれ以下とすることが好ましい。付着量30g/mよりも付着量が少ないと、良好な塗装後耐食性を得ることが困難で、100g/m超の付着量ではホットプレスした際のAl−Fe合金層の剥離と金型への付着が問題となる。450℃未満の温度で加熱しても合金層の成長が遅く、100時間以上が必要で工業的な実施が困難で、950℃超まで加熱すると、合金化が進行しすぎて海島構造の合金層を得られなくなる。またBAF焼鈍においては、600℃超では溶融したAlが融着するため、好ましくない。保定時間1時間未満はBAF焼鈍では十分な均熱時間が得られず、条件が安定しない。 As described above, if equipment can be attached to the current CGL, it is possible to heat the CGL, but if there is no such equipment, BAF annealing is performed. As conditions at this time, it is preferable to set the temperature: 450 to 600 ° C., the holding time: 1 to 50 hours, and the temperature integrated value 450 to 20000 ° C./hour in an atmosphere containing oxygen: 3% by volume or more. Here, the temperature integrated value means the product of temperature (° C.) and retention time (hour). Since this value is 20000 or more and almost alloyed to the surface, it is preferable to make it less than this in the present invention. When the adhesion amount is less than 30 g / m 2, it is difficult to obtain good post-coating corrosion resistance. When the adhesion amount exceeds 100 g / m 2 , the Al—Fe alloy layer is peeled off and the mold is hot-pressed. Adhesion to the surface becomes a problem. Even when heated at a temperature of less than 450 ° C., the growth of the alloy layer is slow, requiring more than 100 hours and difficult to implement industrially. When heated to over 950 ° C., alloying proceeds too much and the sea-island structure alloy layer You won't get. In BAF annealing, if it exceeds 600 ° C., molten Al is fused, which is not preferable. If the holding time is less than 1 hour, sufficient soaking time cannot be obtained by BAF annealing, and the conditions are not stable.

一方、CGL内での加熱においては、到達板温を750〜850℃とすることが好ましい。合金層の成長を開始化させるには、750℃以上であることが必要で、850℃を越えると合金化が表面まで進行するためである。   On the other hand, in the heating in CGL, it is preferable that the ultimate plate temperature is 750 to 850 ° C. In order to initiate the growth of the alloy layer, it is necessary that the temperature is 750 ° C. or higher, and when the temperature exceeds 850 ° C., alloying proceeds to the surface.

(ホットプレス前の加熱工程について)
なお、上述したようにして得られたAlめっき鋼板は、その後のホットプレス工程において合金層の構造を主に律すると考えられる600℃から最高到達板温より10℃低い温度までの温度域において、50℃/秒以上の昇温速度で急速加熱されることができる。このような加熱を行うことにより、上述したような海島構造を有する被覆層の組織を生成することができる。加熱方式については特に限定せず、通常の炉加熱や輻射熱を用いる近赤外線方式の加熱方式を使用することも可能であるが、昇温速度50℃/秒以上の急速加熱を行うことが可能な、通電加熱や高周波誘導加熱等の電気を用いる加熱方式を使用することがより好ましい。昇温速度の上限は特に規定しないが、上記の通電加熱や高周波誘導加熱等の加熱方式を使用する場合には、その装置の性能上、300℃/秒程度が上限となる。
(About the heating process before hot pressing)
In addition, the Al-plated steel sheet obtained as described above is in a temperature range from 600 ° C. considered to mainly govern the structure of the alloy layer in the subsequent hot press process to a temperature 10 ° C. lower than the maximum achieved plate temperature, It can be rapidly heated at a heating rate of 50 ° C./second or more. By performing such heating, the structure of the coating layer having the sea-island structure as described above can be generated. The heating method is not particularly limited, and it is possible to use a normal infrared heating method using a furnace or radiant heat, but rapid heating at a heating rate of 50 ° C./second or more is possible. It is more preferable to use a heating method using electricity such as energization heating or high frequency induction heating. The upper limit of the rate of temperature rise is not particularly specified, but when using the heating method such as the above-described current heating or high frequency induction heating, the upper limit is about 300 ° C./second due to the performance of the apparatus.

また、この加熱工程において、最高到達板温を850℃以上とすることが好ましい。最高到達板温をこの温度とするのは、鋼板をオーステナイト域まで加熱するとともに、表面まで十分に合金化を進行させるためである。   Moreover, in this heating process, it is preferable that the maximum reached plate temperature is 850 ° C. or higher. The reason why the maximum attainable plate temperature is set to this temperature is that the steel plate is heated to the austenite region and the alloying is sufficiently advanced to the surface.

ホットプレス後の鋼板は、溶接、化成処理、電着塗装等を経て最終製品となる。通常は、カチオン電着塗装が用いられることが多く、その膜厚は1〜30μm程度である。電着塗装の後に中塗り、上塗り等の塗装が施されることもある。   The steel sheet after hot pressing becomes a final product through welding, chemical conversion treatment, electrodeposition coating, and the like. Usually, cationic electrodeposition coating is often used, and the film thickness is about 1 to 30 μm. After electrodeposition coating, coating such as intermediate coating and top coating may be applied.

以下、実施例を用いて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
通常の熱延工程及び冷延工程を経た、表1に示すような鋼成分の冷延鋼板(板厚1.2mm)を材料として、溶融Alめっきを行った。溶融Alめっきは無酸化炉−還元炉タイプのラインを使用し、めっき後ガスワイピング法でめっき付着量を片面30〜100g/mまで調節し、その後冷却した。この際のめっき浴組成としてはAl−9%Si−2%Feであった。浴中のFeは、浴中のめっき機器やストリップから供給される不可避のものである。めっき外観は不めっき等がなく良好であった。
Example 1
Using a cold-rolled steel sheet (thickness: 1.2 mm) having a steel component as shown in Table 1 that has undergone a normal hot-rolling process and cold-rolling process, hot-dip Al plating was performed. For the hot-dip Al plating, a non-oxidation furnace-reduction furnace type line was used. After plating, the amount of plating was adjusted to 30 to 100 g / m 2 on one side by a gas wiping method, followed by cooling. The plating bath composition at this time was Al-9% Si-2% Fe. Fe in the bath is inevitable supplied from plating equipment or strips in the bath. The plating appearance was good with no unplating.

次に、この鋼板をBAF条件、CGL内でそれぞれ加熱した。BAF加熱条件は350〜600℃、1〜30時間とした。CGL内加熱は、800℃まで到達させた後に保定時間はとらずに冷却した。   Next, this steel plate was heated under BAF conditions and CGL, respectively. BAF heating conditions were 350 to 600 ° C. and 1 to 30 hours. The heating in CGL was cooled without taking a holding time after reaching 800 ° C.

次に、この鋼板をホットプレスに相当する条件で処理した。大気中で900℃以上に加熱し、約700℃の温度まで大気中で冷却して、その後、厚さ50mmの金型間で圧着することで急冷した。このときの金型間での冷却速度は約150℃/秒であった。なお、加熱速度の影響を見るために加熱方法としては、通電加熱、近赤外線加熱、電気炉輻射加熱という3種類の方法を使用した。このときの加熱速度は、通電加熱で約60℃/秒、近赤外線加熱で約40℃/秒、電気炉輻射加熱で約5℃/秒であった。   Next, this steel plate was processed under conditions equivalent to hot pressing. It heated to 900 degreeC or more in air | atmosphere, cooled in air | atmosphere to the temperature of about 700 degreeC, and then rapidly cooled by crimping between 50 mm-thick molds. The cooling rate between the molds at this time was about 150 ° C./second. In order to observe the influence of the heating rate, three types of heating methods, namely, electric heating, near infrared heating, and electric furnace radiation heating were used. The heating rate at this time was about 60 ° C./second for electric heating, about 40 ° C./second for near infrared heating, and about 5 ° C./second for electric furnace radiation heating.


これらの試料の塗装後耐食性を評価した。また、加熱した後の鋼板について、垂れによるめっきの厚みの不均一性を評価するため、加熱前後の板厚変化を測定した。   The corrosion resistance after painting of these samples was evaluated. Moreover, in order to evaluate the nonuniformity of the plating thickness by dripping about the steel plate after a heating, the plate | board thickness change before and behind a heating was measured.

塗装後耐食性の評価に当たっては、日本パーカライジング(株)製化成処理液PB−SX35Tで化成処理を施し、その後、日本ペイント(株)製カチオン電着塗料パワーニクス110を約20μm厚みで塗装した。その後、カッターで塗膜にクロスカットを入れ、自動車技術会で定めた複合腐食試験(JASO−M609)を180サイクル(60日)行ない、クロスカットからの膨れ幅(片側最大膨れ幅)を測定した。   In the evaluation of the corrosion resistance after coating, chemical conversion treatment was performed with a chemical conversion treatment solution PB-SX35T manufactured by Nippon Parkerizing Co., Ltd., and then cationic electrodeposition paint Powernics 110 manufactured by Nippon Paint Co., Ltd. was applied with a thickness of about 20 μm. After that, a cross cut was put into the coating film with a cutter, a composite corrosion test (JASO-M609) determined by the automobile engineering association was performed for 180 cycles (60 days), and the swollen width from the cross cut (maximum swollen width on one side) was measured. .

表2に、加熱条件と組織並びに特性評価結果をまとめた。番号1、2は加熱無し、3〜14はBAF焼鈍、15はCGL内加熱である。塗装後耐食性はAl層厚みとFe−Al層厚みの合計との相関が強く、また、加熱前後の板厚変化(垂れの有無)にはAl層厚みの影響が大きいことが伺える。番号2、5、7、13のようなAl層の厚い条件においては通電加熱での垂れ抑制は困難である。しかし、単にAl相の厚みを減少させると、塗装後耐食性の確保が困難である。一方、Alめっき後適度に加熱してFe−Al層を増大させた番号4、6、8、9において、垂れ抑制、塗装後耐食性確保の両立が可能であった。なお、番号10、11は近赤外線加熱、電気炉加熱の例で、電気炉加熱のような加熱速度が小さい加熱方法においては、塗装後耐食性はやや劣位になる傾向が認められた。番号15は温度が低く、温度積分値も小さく、合金層の成長が不十分であった。番号13では加熱後めっき剥離のため評価ができなかった。   Table 2 summarizes the heating conditions, structure, and property evaluation results. Numbers 1 and 2 are no heating, 3 to 14 are BAF annealing, and 15 is heating in CGL. It can be seen that the corrosion resistance after coating has a strong correlation between the Al layer thickness and the total Fe—Al layer thickness, and that the thickness change before and after heating (presence of dripping) has a large influence on the Al layer thickness. Under conditions where the Al layer is thick like Nos. 2, 5, 7, and 13, it is difficult to suppress sagging by energization heating. However, simply reducing the thickness of the Al phase makes it difficult to ensure corrosion resistance after coating. On the other hand, in Nos. 4, 6, 8, and 9 in which the Fe-Al layer was increased by heating moderately after Al plating, it was possible to achieve both suppression of dripping and ensuring corrosion resistance after coating. In addition, numbers 10 and 11 are examples of near-infrared heating and electric furnace heating. In a heating method with a low heating rate such as electric furnace heating, the corrosion resistance after coating tended to be somewhat inferior. No. 15 had a low temperature, a small temperature integrated value, and the growth of the alloy layer was insufficient. No. 13 could not be evaluated due to plating peeling after heating.

また、番号12は、比較的低温で長時間加熱したもので、このような条件で加熱するとAl層とFe−Al層との界面の粗度が低下する。しかし、このような粗度では、溶融したメタルの移動に対する抑止力が弱く、垂れの抑制が十分でない。また、めっき条件によっても界面粗度は影響を受け、番号1と2とでは界面粗度が異なっていた。   No. 12 is heated at a relatively low temperature for a long time. When heated under such conditions, the roughness of the interface between the Al layer and the Fe—Al layer decreases. However, with such roughness, the deterrence against the movement of the molten metal is weak, and the drooping is not sufficiently suppressed. Also, the interface roughness was affected by the plating conditions, and the interface roughness was different between numbers 1 and 2.

(実施例2)
第3表に示した様々な鋼成分を持つ冷延鋼板(板厚1.2mm)に実施例1と同じ要領で溶融Alめっきを施した。めっき付着量は片面40g/mとした。これらのAlめっき鋼板を、500℃で6時間大気雰囲気で加熱した。次に、ホットプレスを模擬するため、通電加熱により600〜890℃間の昇温速度60℃/秒,到達温度900℃で加熱し、その後金型焼入した。焼入後の硬度(ビッカース硬度、荷重10kg)を測定した結果も第3表に示しているが,鋼中C量が低いと焼入後の硬度が低下するため,C量として0.1質量%以上あることが好ましいことがわかる。
(Example 2)
Cold-rolled steel sheets (plate thickness 1.2 mm) having various steel components shown in Table 3 were subjected to hot Al plating in the same manner as in Example 1. The amount of plating was 40 g / m 2 on one side. These Al-plated steel sheets were heated at 500 ° C. for 6 hours in an air atmosphere. Next, in order to simulate a hot press, heating was performed by energization heating at a temperature increase rate of 600 to 890 ° C. at 60 ° C./second and an ultimate temperature of 900 ° C., and then the mold was quenched. The results of measuring the hardness after quenching (Vickers hardness, load 10 kg) are also shown in Table 3. However, if the amount of C in the steel is low, the hardness after quenching decreases, so the amount of C is 0.1 mass. % Is preferable.

参考例3)
第1表に示した鋼成分を有する冷延鋼板(板厚1.4m)に溶融Alめっきを施した。このときの浴組成はAl−18%Si−2%Feで、Feは不可避的不純物であった。これを550℃、3時間BAF焼鈍した。その結果、Al層は8μm、Fe−Al層は8μm、合計16μmであった。この素材をホットプレス相当条件で再度加熱し、通電加熱方式で950℃まで到達させた後、金型内で急冷し、実施例1と同じ条件で評価した。その結果、板厚変化は無かったが、塗膜膨れ幅は9mmとなり塗装後耐食性は不良であった。
( Reference Example 3)
A cold-rolled steel sheet (thickness 1.4 m) having the steel components shown in Table 1 was subjected to hot-dip Al plating. The bath composition at this time was Al-18% Si-2% Fe, and Fe was an inevitable impurity. This was BAF annealed at 550 ° C. for 3 hours. As a result, the Al layer was 8 μm, the Fe—Al layer was 8 μm, and the total was 16 μm. This material was heated again under conditions equivalent to hot pressing, and after reaching to 950 ° C. by an electric heating method, it was quenched in a mold and evaluated under the same conditions as in Example 1. As a result, the plate thickness did not change, but the swollen width of the coating film was 9 mm, and the corrosion resistance after coating was poor.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

Alめっき鋼板を加熱合金化した後の断面組織の構造の一般的な例を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the general example of the structure of a cross-sectional structure | tissue after heat-alloying an Al plating steel plate. Fe−Alの二元系状態図を示す説明図である。It is explanatory drawing which shows the binary system phase diagram of Fe-Al. 本発明に係る被覆層の断面組織の構造の一例を示す光学顕微鏡写真である。It is an optical microscope photograph which shows an example of the structure of the cross-sectional structure | tissue of the coating layer which concerns on this invention.

Claims (3)

鋼板表面に被覆された、Siを3〜15質量%含有するAlめっき層と、
前記Alめっき層と前記鋼板との間に位置するFe−Al合金層と、
を有し、
前記Alめっき層の厚みは3μm以上10μm以下であり、
前記Fe−Al合金層の厚みは6μm以上であり、
前記Alめっき層の厚みと前記Fe−Al合金層の厚みとの和は10μm以上30μm以下であり、
前記Alめっき層と前記Fe−Al合金層との界面の中心線平均粗さRaが0.6μm以上3μm以下であることを特徴とする、ホットプレス用めっき鋼板。
Al plating layer containing 3 to 15% by mass of Si , coated on the steel plate surface;
An Fe-Al alloy layer positioned between the Al plating layer and the steel sheet;
Have
The thickness of the Al plating layer is 3 μm or more and 10 μm or less,
The thickness of the Fe—Al alloy layer is 6 μm or more,
The sum of the thickness of the Al plating layer and the thickness of the Fe—Al alloy layer is 10 μm or more and 30 μm or less,
A plated steel sheet for hot pressing, wherein a center line average roughness Ra of an interface between the Al plating layer and the Fe—Al alloy layer is 0.6 μm or more and 3 μm or less.
鋼成分として質量%でC:0.1〜0.4%、Si:0.01〜0.6%、Mn:0.5〜3%、P:0.005〜0.05%、S:0.002〜0.02%、Al:0.005〜0.1%、Ti:0.01〜0.1%、B:0.0001〜0.01%およびCr:0.01〜1%を含有し、付着量が片面当たり30〜100g/mとなるようにAlめっきが施されたAlめっき鋼板を、ボックス焼鈍炉内で、酸素:3体積%以上を含有する雰囲気下で、温度:450〜600℃、保定時間:1〜50時間、温度積分値:450〜20000℃・時間の条件で加熱し、
前記Alめっきの組成として、Siを3〜15質量%含有することを特徴とする、ホットプレス用めっき鋼板の製造方法。
As steel components, C: 0.1-0.4%, Si: 0.01-0.6%, Mn: 0.5-3%, P: 0.005-0.05%, S: 0.002-0.02%, Al: 0.005-0.1%, Ti: 0.01-0.1%, B: 0.0001-0.01% and Cr: 0.01-1% In an atmosphere containing oxygen: 3% by volume or more in a box annealing furnace, the temperature of an Al-plated steel sheet that is Al-plated so that the adhesion amount is 30 to 100 g / m 2 per side. : 450 to 600 ° C., holding time: 1 to 50 hours, temperature integral value: 450 to 20000 ° C./hour for heating ,
The method for producing a plated steel sheet for hot press, wherein the composition of the Al plating contains 3 to 15% by mass of Si .
鋼成分として質量%でC:0.1〜0.4%、Si:0.01〜0.6%、Mn:0.5〜3%、P:0.005〜0.05%、S:0.002〜0.02%、Al:0.005〜0.1%、Ti:0.01〜0.1%、B:0.0001〜0.01%およびCr:0.01〜1%を含有し、付着量が片面当たり30〜100g/mとなるようにAlめっきが施されたAlめっき鋼板を、溶融亜鉛めっきライン内で750〜850℃に加熱することで連続的に合金化処理を行い、
前記Alめっきの組成として、Siを3〜15質量%含有することを特徴とする、ホットプレス用めっき鋼板の製造方法。
As steel components, C: 0.1-0.4%, Si: 0.01-0.6%, Mn: 0.5-3%, P: 0.005-0.05%, S: 0.002-0.02%, Al: 0.005-0.1%, Ti: 0.01-0.1%, B: 0.0001-0.01% and Cr: 0.01-1% Is continuously alloyed by heating an Al-plated steel sheet that has been plated with Al so that the adhesion amount is 30 to 100 g / m 2 per side in a hot dip galvanizing line. There line processing,
The method for producing a plated steel sheet for hot press, wherein the composition of the Al plating contains 3 to 15% by mass of Si .
JP2008181513A 2008-07-11 2008-07-11 Plated steel sheet for hot press and method for producing the same Active JP5444650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181513A JP5444650B2 (en) 2008-07-11 2008-07-11 Plated steel sheet for hot press and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181513A JP5444650B2 (en) 2008-07-11 2008-07-11 Plated steel sheet for hot press and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010018860A JP2010018860A (en) 2010-01-28
JP5444650B2 true JP5444650B2 (en) 2014-03-19

Family

ID=41704044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181513A Active JP5444650B2 (en) 2008-07-11 2008-07-11 Plated steel sheet for hot press and method for producing the same

Country Status (1)

Country Link
JP (1) JP5444650B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499358A (en) * 2016-01-07 2016-04-20 东风商用车有限公司 Vehicle body floor longitudinal beam reinforcing plate and hot stamping process thereof
WO2022004969A1 (en) * 2020-06-30 2022-01-06 현대제철 주식회사 Steel sheet for hot pressing and manufacturing method thereof
JP7346765B1 (en) 2022-03-30 2023-09-19 株式会社ジーテクト Molding
RU2811928C1 (en) * 2020-06-30 2024-01-18 Хёндай Стил Компани Steel sheet for hot stamping and method for producing steel sheet
US12054844B2 (en) 2019-12-20 2024-08-06 Hyundai Steel Company Blank for hot stamping, method for manufacturing the same, hot stamping component, and method for manufacturing the same

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008042B1 (en) * 2009-01-09 2011-01-13 주식회사 포스코 Aluminum Coated Steel Sheet with Excellent Corrosion Resistance and Hot Press Formed Article Using The Same and Manufacturing Method Thereof
JP5672849B2 (en) * 2010-08-20 2015-02-18 Jfeスチール株式会社 Steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot pressed members using the same
BR112013025401B1 (en) 2011-04-01 2020-05-12 Nippon Steel Corporation HIGH RESISTANCE HOT PRINTED PIECE AND PRODUCTION METHOD OF THE SAME
JP5472531B2 (en) 2011-04-27 2014-04-16 新日鐵住金株式会社 Steel sheet for hot stamp member and manufacturing method thereof
JP5906733B2 (en) * 2011-05-13 2016-04-20 新日鐵住金株式会社 Surface-treated steel sheet with excellent post-painting corrosion resistance and its manufacturing method
EP2944706B1 (en) * 2014-05-12 2019-09-11 ThyssenKrupp Steel Europe AG Method for manufacturing a steel component by means of thermoforming from a steel sheet having a metallic coating
KR101569505B1 (en) * 2014-12-24 2015-11-30 주식회사 포스코 Hot press formed article having good anti-delamination, and method for the same
KR101569509B1 (en) 2014-12-24 2015-11-17 주식회사 포스코 Hot press formed parts having less galling in the coating during press forming, and method for the same
KR101569508B1 (en) 2014-12-24 2015-11-17 주식회사 포스코 Hot press formed parts having excellent bendability, and method for the same
KR101696069B1 (en) 2015-05-26 2017-01-13 주식회사 포스코 Hot press formed article having good anti-delamination, and method for the same
KR101696121B1 (en) 2015-12-23 2017-01-13 주식회사 포스코 Al-Fe coated steel sheet having good hydrogen delayed fracture resistance property, anti-delamination property and spot weldability, and HPF parts obtained therefrom
KR101858863B1 (en) * 2016-12-23 2018-05-17 주식회사 포스코 Hot dip aluminum alloy plated steel material having excellent corrosion resistance and workability
JP6525124B1 (en) * 2017-12-05 2019-06-05 日本製鉄株式会社 Aluminum-based plated steel sheet, method for producing aluminum-based plated steel sheet, and method for producing automobile parts
WO2019111931A1 (en) * 2017-12-05 2019-06-13 日本製鉄株式会社 Aluminum-plated steel sheet, method for producing aluminum-plated steel sheet and method for producing component for automobiles
US11338550B2 (en) * 2018-03-20 2022-05-24 Nippon Steel Corporation Hot-stamped body
JP6439906B1 (en) * 2018-03-20 2018-12-19 新日鐵住金株式会社 Hot stamping body
CN108588612B (en) 2018-04-28 2019-09-20 育材堂(苏州)材料科技有限公司 Hot press-formed component, hot press-formed pre- coating steel plate and hot press-formed technique
WO2019220592A1 (en) * 2018-05-17 2019-11-21 日本製鉄株式会社 Al plated steel sheet and production method therefor
KR102153172B1 (en) * 2018-08-30 2020-09-07 주식회사 포스코 Aluminium-Zinc alloy plated steel sheet having excellent hot workabilities and corrosion resistance, and method for the same
JP7251010B2 (en) * 2018-11-30 2023-04-04 ポスコ カンパニー リミテッド ALUMINUM-IRON ALLOY PLATED STEEL PLATE FOR HOT FORMING WITH EXCELLENT CORROSION RESISTANCE AND HEAT RESISTANCE, HOT PRESS-FORMED MEMBER, AND PRODUCTION METHOD THEREOF
KR102518795B1 (en) * 2018-11-30 2023-04-10 닛폰세이테츠 가부시키가이샤 Aluminized steel sheet, hot-stamped member and manufacturing method of hot-stamped member
KR102227111B1 (en) 2018-11-30 2021-03-12 주식회사 포스코 Hot press formed part, and manufacturing method thereof
US12123094B2 (en) 2018-11-30 2024-10-22 Posco Co., Ltd Aluminum-based plated steel plate for hot press having excellent resistance against hydrogen delayed fracture and spot weldability, and method for manufacturing same
JP6939824B2 (en) * 2019-01-31 2021-09-22 Jfeスチール株式会社 Al-based galvanized steel sheet and its manufacturing method
JP6939825B2 (en) * 2019-01-31 2021-09-22 Jfeスチール株式会社 Al-based galvanized steel sheet and its manufacturing method
KR102311503B1 (en) * 2019-12-20 2021-10-13 주식회사 포스코 Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
CN110965002B (en) * 2019-12-31 2022-04-15 马鞍山钢铁股份有限公司 Mg-Al-Si alloy system coated steel plate with wide hot forming heating process window and preparation and hot stamping forming process thereof
JP7433972B2 (en) * 2020-02-19 2024-02-20 日本製鉄株式会社 Al-plated steel pipes and aluminum-plated steel pipe parts for STAF (registered trademark) construction method, and their manufacturing method
CN112680686A (en) * 2020-11-26 2021-04-20 河钢股份有限公司 Production method of low-cost high-corrosion-resistance aluminum alloy coating hot stamping formed steel
KR20240098902A (en) * 2022-12-21 2024-06-28 주식회사 포스코 Steel member and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199759A (en) * 1986-02-25 1987-09-03 Nippon Steel Corp Aluminum-diffused steel sheet having excellent oxidation resistance high-temperature strength and its production
JPH05287488A (en) * 1992-04-10 1993-11-02 Nippon Steel Corp Hot dip aluminum plated steel sheet excellent in workability and its production
JPH05311379A (en) * 1992-05-11 1993-11-22 Nippon Steel Corp Manufacture of alloyed hot dip aluminum plated steel sheet excellent in corrosion resistance and heat resistance
JPH06248410A (en) * 1993-03-01 1994-09-06 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its production
JP2852718B2 (en) * 1993-12-28 1999-02-03 新日本製鐵株式会社 Hot-dip aluminized steel sheet with excellent corrosion resistance
JP4551034B2 (en) * 2001-08-09 2010-09-22 新日本製鐵株式会社 High-strength aluminum plated steel sheet for automobile parts with excellent weldability and post-painting corrosion resistance, and automobile parts using the same
JP4884606B2 (en) * 2001-07-11 2012-02-29 新日本製鐵株式会社 Heating method of steel sheet for thermoforming
JP5476676B2 (en) * 2008-04-22 2014-04-23 新日鐵住金株式会社 Hot-pressed member and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499358A (en) * 2016-01-07 2016-04-20 东风商用车有限公司 Vehicle body floor longitudinal beam reinforcing plate and hot stamping process thereof
CN105499358B (en) * 2016-01-07 2017-11-17 东风商用车有限公司 Vehicle body floor longitudinal beam reinforcing plate and hot stamping process thereof
US12054844B2 (en) 2019-12-20 2024-08-06 Hyundai Steel Company Blank for hot stamping, method for manufacturing the same, hot stamping component, and method for manufacturing the same
WO2022004969A1 (en) * 2020-06-30 2022-01-06 현대제철 주식회사 Steel sheet for hot pressing and manufacturing method thereof
US11225050B1 (en) 2020-06-30 2022-01-18 Hyundai Steel Company Steel sheet for hot press and manufacturing method thereof
RU2811928C1 (en) * 2020-06-30 2024-01-18 Хёндай Стил Компани Steel sheet for hot stamping and method for producing steel sheet
JP7346765B1 (en) 2022-03-30 2023-09-19 株式会社ジーテクト Molding
JP2023153121A (en) * 2022-03-30 2023-10-17 株式会社ジーテクト Molded article

Also Published As

Publication number Publication date
JP2010018860A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5444650B2 (en) Plated steel sheet for hot press and method for producing the same
JP5463906B2 (en) Steel sheet for hot stamping and manufacturing method thereof
JP5476676B2 (en) Hot-pressed member and manufacturing method thereof
JP5614496B2 (en) Hot stamped high strength parts with excellent post-painting corrosion resistance and manufacturing method thereof
JP4860542B2 (en) High strength automobile parts and hot pressing method thereof
JP4724780B2 (en) Aluminum-plated steel sheet for rapid heating hot press, manufacturing method thereof, and rapid heating hot pressing method using the same
KR102301116B1 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
EP2684985B1 (en) Process for producing hot-pressed member steel sheet
WO2019160106A1 (en) Fe-Al PLATED HOT-STAMPED MEMBER AND METHOD FOR PRODUCING Fe-Al PLATED HOT-STAMPED MEMBER
JP5251272B2 (en) Automotive parts with excellent corrosion resistance after painting and Al-plated steel sheet for hot pressing
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP6056450B2 (en) Hot stamped hot-dip galvanized steel sheet, manufacturing method thereof, and hot stamping product
JP7241283B2 (en) Aluminum-iron plated steel sheet for hot press with excellent corrosion resistance and weldability and its manufacturing method
JP4456581B2 (en) High-strength automotive parts with excellent post-painting corrosion resistance of molded parts and hot pressing methods thereof
KR100917504B1 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5098864B2 (en) High strength automotive parts with excellent post-painting corrosion resistance and plated steel sheets for hot pressing
JP2022133281A (en) Method of producing galvanized steel sheet resistant to liquid metal embrittlement
JP4333940B2 (en) Hot-pressing method for high-strength automotive parts using aluminum-based plated steel
JP5906733B2 (en) Surface-treated steel sheet with excellent post-painting corrosion resistance and its manufacturing method
KR20200066239A (en) STEEL SHEET PLATED WITH Al-Fe FOR HOT PRESS FORMING HAVING EXCELLENT CORROSION RESISTANCE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JPWO2019097729A1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
JP6682661B2 (en) Method for producing TWIP steel sheet having austenite type matrix
JP2007314858A (en) Hot dip galvannealed steel sheet and production method therefor
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R151 Written notification of patent or utility model registration

Ref document number: 5444650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350