[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5444051B2 - Vehicle lighting - Google Patents

Vehicle lighting Download PDF

Info

Publication number
JP5444051B2
JP5444051B2 JP2010056570A JP2010056570A JP5444051B2 JP 5444051 B2 JP5444051 B2 JP 5444051B2 JP 2010056570 A JP2010056570 A JP 2010056570A JP 2010056570 A JP2010056570 A JP 2010056570A JP 5444051 B2 JP5444051 B2 JP 5444051B2
Authority
JP
Japan
Prior art keywords
light
standing wall
reflecting surface
light source
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010056570A
Other languages
Japanese (ja)
Other versions
JP2011192486A (en
Inventor
隆志 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010056570A priority Critical patent/JP5444051B2/en
Publication of JP2011192486A publication Critical patent/JP2011192486A/en
Application granted granted Critical
Publication of JP5444051B2 publication Critical patent/JP5444051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、車両用灯具に関するものであり、詳しくは、グレア光の発生を抑制した車両用灯具に関する。   The present invention relates to a vehicular lamp, and more particularly to a vehicular lamp that suppresses the generation of glare light.

光源と、光源を包囲するよう配置されて光源からの出射光を(灯具の)光照射方向前方へ向けて反射するリフレクタと、このリフレクタの下部から立ち上がって光照射方向前方に向って延設された立壁を備えた車両用灯具において、光源からの出射光が立壁により反射されてその反射光が配光パターンの形成に寄与しないグレア光となって対向車や先行車の運転者を眩惑することがないように、立壁にグレア光発生の防止手段を施した車両用灯具の提案がなされている。   A light source, a reflector arranged so as to surround the light source and reflecting light emitted from the light source toward the front of the light irradiation direction (of the lamp), and stands up from the lower part of the reflector and extends forward in the light irradiation direction In a vehicular lamp equipped with a standing wall, the light emitted from the light source is reflected by the standing wall, and the reflected light becomes glare light that does not contribute to the formation of the light distribution pattern, and dazzles the driver of the oncoming vehicle or the preceding vehicle In order to prevent this, there has been proposed a vehicular lamp in which a standing wall is provided with means for preventing glare light generation.

その具体的な例としては、立壁の一部を光源の光軸に対して側方に向って下向きに傾斜させて形成し、光源から立壁に向かって出射された出射光を光照射方向前方に対して左右方向の外側に向けて反射させることにより、立壁による反射光がグレア光となるのを抑制する、というものである(例えば、特許文献1参照。)。   As a specific example, a part of the standing wall is formed to be inclined downward toward the side with respect to the optical axis of the light source, and the emitted light emitted from the light source toward the standing wall is forward in the light irradiation direction. On the other hand, by reflecting toward the outer side in the left-right direction, the reflected light from the standing wall is prevented from becoming glare light (see, for example, Patent Document 1).

また、他の例として、リフレクタの位置を前側にずらして立壁の立ち上がり位置を前側に移動させ、光源から立壁に向かって出射されていた出射光を立壁の立ち上がり位置の前側への移動によりリフレクタに向かうようにし、立壁の反射によってグレア光となっていた光源からの出射光をリフレクタで反射させることによりグレア光となるのを回避すると共に配光パターンの形成に有効に寄与させる、というものである(例えば、特許文献2参照。)。   Further, as another example, the position of the reflector is shifted to the front side to move the rising position of the standing wall to the front side, and the emitted light emitted from the light source toward the standing wall is moved to the front side by the movement of the standing wall to the standing position. The light emitted from the light source that has become glare light due to the reflection of the standing wall is reflected by the reflector to avoid the glare light and to contribute effectively to the formation of the light distribution pattern. (For example, refer to Patent Document 2).

特開2009−123689号公報JP 2009-123689 A 特開2009−104815号公報JP 2009-104815 A

ところで、上記提案された車両用灯具を含めて、光源と、光源を包囲するよう配置されて光源からの出射光を光照射方向前方へ向けて反射するリフレクタと、このリフレクタの下部から立ち上がって光照射方向前方に向って延設された立壁を備えた車両用灯具においては、光源からの出射光のうち立壁による反射光がグレア光の発生要因となるのは避けられない問題である。   By the way, including the proposed vehicle lamp, a light source, a reflector that is arranged so as to surround the light source and reflects light emitted from the light source forward in the light irradiation direction, and light rising from the lower part of the reflector. In a vehicular lamp provided with a standing wall extending forward in the irradiation direction, it is an unavoidable problem that light reflected from the standing wall among the emitted light from the light source becomes a cause of glare light.

特に、フォグランプにおいては、近年、欧州法規ECE、北米規格SAE等による要件が厳しくなっており、従来構成のフォグランプでは規格を満足できないものとなっている。   In particular, in fog lamps, requirements in accordance with European legislation ECE, North American standard SAE, etc. have become strict in recent years, and fog lamps having a conventional configuration cannot satisfy the standards.

立壁による反射光がグレア光となるのには様々な要因が考えられるが、主に2つの要因が挙げられる。1つは、図15のように、光源50からの出射光がリフレクタ51で反射され、その反射光がさらに立壁52で反射されてその反射光が灯具外に照射されてグレア光となるものである。   Various factors can be considered for the reflected light from the standing wall to become glare light, but there are mainly two factors. As shown in FIG. 15, the light emitted from the light source 50 is reflected by the reflector 51, the reflected light is further reflected by the standing wall 52, and the reflected light is irradiated outside the lamp to become glare light. is there.

この場合、リフレクタ51は光源(フィラメント)近傍に焦点を有する回転放物面系の反射面51aを備えており、光源50からリフレクタ51の反射面51aに向けて出射された出射光は反射面51aで反射されてその反射光のほとんどが光源50の光軸Xに沿ってほぼ平行(配光制御により完全な平行光線ではない)に灯具外に照射される。   In this case, the reflector 51 includes a rotating paraboloidal reflecting surface 51a having a focal point in the vicinity of the light source (filament), and outgoing light emitted from the light source 50 toward the reflecting surface 51a of the reflector 51 is reflected on the reflecting surface 51a. Most of the reflected light is irradiated outside the lamp substantially parallel (not completely parallel light rays by light distribution control) along the optical axis X of the light source 50.

ただし、立壁52が立ち上がる部分の近傍に位置する反射面51aでは、光源50からの出射光はその一部又は全部が立壁52の方向に反射され、立壁52の反射面52aによる反射光が灯具外に照射されてグレア光となる。   However, at the reflecting surface 51a located near the portion where the standing wall 52 rises, part or all of the light emitted from the light source 50 is reflected toward the standing wall 52, and the reflected light from the reflecting surface 52a of the standing wall 52 is outside the lamp. Is irradiated with glare light.

また、1つは、図16のように、光源50から立壁52の立ち上がり部分の近傍の反射面52aに向けて出射された出射光は、その反射面52aがローレット状に形成されているためその一部がリフレクタ51の反射面51a方向に反射され、反射面51aによる反射光が灯具外に照射されてグレア光となる。   Further, as shown in FIG. 16, the light emitted from the light source 50 toward the reflecting surface 52a near the rising portion of the standing wall 52 is formed in a knurled shape because the reflecting surface 52a is formed in a knurled shape. A part of the light is reflected in the direction of the reflecting surface 51a of the reflector 51, and the light reflected by the reflecting surface 51a is irradiated outside the lamp to become glare light.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、光源と、光源を包囲するよう配置されて光源からの出射光を光照射方向前方へ向けて反射するリフレクタと、このリフレクタの下部から立ち上がって灯具の光照射方向前方に向って延設された立壁を備えた車両用灯具において、光源からの出射光のうち立壁による反射光がグレア光の発生要因となるのを抑制する構造を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and the object of the present invention is to provide a light source and a reflector that is disposed so as to surround the light source and reflects light emitted from the light source forward in the light irradiation direction. In addition, in a vehicular lamp having a standing wall that rises from the lower part of the reflector and extends forward in the light irradiation direction of the lamp, the reflected light from the standing wall among the emitted light from the light source becomes a cause of the generation of glare light. It is in providing the structure which suppresses this.

上記課題を解決するために、本発明の請求項1に記載された発明は、光源と、光源を覆うように配置されて光源と対向する面を反射面とするリフレクタと、前記反射面を前記光源の光軸よりも下部の任意の位置を水平面で切断し、その切断線をそのまま下方に移動したときにできる前記切断線の軌跡を反射面とする段差部と、前記段差部の下部を略水平面あるいは略湾曲面で切断し、その切断線をそのまま前方に移動したときにできる前記切断線の軌跡を反射面とする立壁部を備えていることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention includes a light source, a reflector disposed so as to cover the light source and having a surface facing the light source as a reflection surface, and the reflection surface including the reflection surface. A step portion having a reflection surface that is a locus of the cutting line formed by cutting an arbitrary position below the optical axis of the light source by a horizontal plane and moving the cutting line as it is, and a lower portion of the step portion are substantially It is characterized by comprising a standing wall portion having a reflecting surface that is a locus of the cutting line that is formed when the cutting line is cut forward on a horizontal plane or a substantially curved surface and the cutting line is moved forward as it is.

また、本発明の請求項2に記載された発明は、請求項1において、前記段差部の反射面は、前記光軸に垂直な直線に対する傾斜が、前方側に約5°傾斜する位置から後方側に傾斜する範囲にあることを特徴とするものである。   Further, according to a second aspect of the present invention, in the first aspect, the reflecting surface of the stepped portion is rearward from a position where the inclination with respect to the straight line perpendicular to the optical axis is inclined by about 5 ° toward the front side. It is in the range which inclines to the side.

また、本発明の請求項3に記載された発明は、請求項1又は請求項2において、前記立壁部の反射面は、前方に向かって延びる凹部と凸部が交互に連続して形成されてなるローレット面であることを特徴とするものである。   Further, in the invention described in claim 3 of the present invention, in claim 1 or claim 2, the reflecting surface of the standing wall portion is formed such that concave portions and convex portions extending forward are alternately and continuously formed. A knurled surface.

本発明の車両用灯具は、リフレクタと立壁部を繋ぐ段差部を設け、光源から下方に出射された出射光が段差部の段差反射面で反射されるようにした。   The vehicular lamp of the present invention is provided with a stepped portion connecting the reflector and the standing wall portion so that the emitted light emitted downward from the light source is reflected by the step reflecting surface of the stepped portion.

その結果、段差反射面で反射された反射光は灯具前方上方に向けて照射され、グレア光の発生が抑制される。   As a result, the reflected light reflected by the step reflection surface is irradiated toward the front upper direction of the lamp, and the generation of glare light is suppressed.

実施形態の斜視図である。It is a perspective view of an embodiment. 実施形態の縦断面図である。It is a longitudinal cross-sectional view of embodiment. 実施形態の部分拡大図である。It is the elements on larger scale of embodiment. 実施形態と従来例の光線図である。It is a light ray figure of embodiment and a prior art example. 図4の実施例に係わる光線シミュレーション結果の光度分布である。FIG. 5 is a light intensity distribution of a light beam simulation result according to the embodiment of FIG. 図4の従来例に係わる光線シミュレーション結果の光度分布である。It is a luminous intensity distribution of the light ray simulation result concerning the prior art example of FIG. 実施形態の光線図である。It is a light ray diagram of an embodiment. 図7に係わる光線シミュレーション結果の光度分布である。It is a luminous intensity distribution of the light ray simulation result concerning FIG. 図10に係わる光線シミュレーション結果の光度分布である。It is a luminous intensity distribution of the light ray simulation result concerning FIG. 実施形態の光線図である。It is a light ray diagram of an embodiment. 図12に係わる光線シミュレーション結果の光度分布である。It is a luminous intensity distribution of the light ray simulation result concerning FIG. 従来例の光線図である。It is a light ray figure of a prior art example. 段差部の傾斜角度の説明図である。It is explanatory drawing of the inclination-angle of a level | step-difference part. 図13に係わる光線シミュレーション結果のグラフである。It is a graph of the light ray simulation result concerning FIG. 従来例の説明図である。It is explanatory drawing of a prior art example. 同じく、従来例の説明図である。Similarly, it is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図14を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 14 (the same reference numerals are given to the same portions). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1は、本発明の車両用灯具を光照射方向から見た斜視図であり、図2は図1の縦断面図である。なお、以下の説明において使用する、「左右方向」、「Y軸方向あるいは上下方向」、「前後方向」等の方向を示す用語は夫々、車両用灯具を車両に搭載した状態における「車幅方向」、「車高方向」、「車長方向」を意味する。   FIG. 1 is a perspective view of a vehicular lamp according to the present invention as seen from the direction of light irradiation, and FIG. 2 is a longitudinal sectional view of FIG. In addition, terms used in the following description to indicate directions such as “left-right direction”, “Y-axis direction or up-down direction”, “front-rear direction” are “vehicle width direction” when the vehicle lamp is mounted on the vehicle. ”,“ Vehicle height direction ”, and“ vehicle length direction ”.

本発明の車両用灯具1はその基本構成を、光源2と、光源2を覆うように配置されて光源2と対向する面を複数の反射面で構成した複合反射面3aとするマルチリフレクタ(以下、リフレクタと略称する)3と、リフレクタ3の下端部に連接されて下方に向かって延びる段差部4と、段差部4の下端部に連接されて灯具の光照射方向前方(灯具前方)に向って延びる立壁部5と、リフレクタ3と立壁部5とで形成された開口の前方に位置する前面カバーレンズ(図示せず)とし、光源2からリフレクタ3の複合反射面3aを構成する各反射面に向けて出射された出射光をそれぞれの反射面で適宜方向に向けて反射し、その反射光による照射光で所望の配光パターンを形成するものである。   The vehicular lamp 1 according to the present invention has a basic configuration in which a multi-reflector (hereinafter referred to as a composite reflecting surface 3a in which a surface facing the light source 2 and a surface facing the light source 2 is configured by a plurality of reflecting surfaces is provided. , Abbreviated as a reflector) 3, a stepped portion 4 connected to the lower end of the reflector 3 and extending downward, and connected to the lower end of the stepped portion 4 toward the front of the light irradiation direction of the lamp (front of the lamp). And a front cover lens (not shown) positioned in front of an opening formed by the reflector 3 and the standing wall 5, and each reflecting surface constituting the composite reflecting surface 3 a of the reflector 3 from the light source 2. The outgoing light emitted toward is reflected in the appropriate direction by the respective reflecting surfaces, and a desired light distribution pattern is formed by the irradiation light by the reflected light.

以下に、上述した基本構成の詳細を具体的に説明する。まず、光源2はハロゲン電球等の車両用灯具の光源として一般的に用いられる電球が使用され、その光軸Aを灯具の光照射方向に向けた状態で配置されている。   Details of the basic configuration described above will be specifically described below. First, the light source 2 is a light bulb that is generally used as a light source for a vehicle lamp such as a halogen light bulb, and is arranged with its optical axis A facing the light irradiation direction of the lamp.

そして、光源2を側方及び斜め前方から覆うように光源2と対向する面を複数の反射面で構成した複合反射面3aとするリフレクタ3が配置されている。   And the reflector 3 which makes the surface which opposes the light source 2 by the some reflective surface 3a comprised so that it may cover the light source 2 from the side and diagonally forward is arrange | positioned.

複合反射面3aは、本実施形態においては、光源2の光軸Xに垂直な断面の形状を、長軸の方向を横方向とし略楕円形状とする楕円放物面系の反射面となっている。但し、断面を略長方形、略平行四辺形、略台形等の横長の形状とする放物面系の反射面とすることも可能である。   In this embodiment, the composite reflective surface 3a is an elliptical paraboloidal reflective surface in which the shape of the cross section perpendicular to the optical axis X of the light source 2 is a substantially elliptical shape with the long axis direction being the horizontal direction. Yes. However, it is also possible to use a parabolic reflecting surface whose cross section is a horizontally long shape such as a substantially rectangular shape, a substantially parallelogram shape, or a substantially trapezoidal shape.

複合反射面3aは、さらに光軸Xよりも下部の任意の位置を略水平面で切断した形状を呈しており、切断線の下方には該切断線をそのまま下方に移動したときにできる切断線の軌跡を反射面(段差反射面4a)とする段差部4が形成されている。   The composite reflecting surface 3a has a shape obtained by cutting an arbitrary position below the optical axis X with a substantially horizontal plane, and a cutting line formed when the cutting line is moved downward is directly below the cutting line. A step portion 4 having a locus as a reflection surface (step reflection surface 4a) is formed.

段差部4の段差反射面4aは、下部の任意の位置を連続する凹凸を有する略水平面あるいは略曲面で切断した形状を呈しており、切断線の前方には該切断線をそのまま前方に移動したときにできる切断線の軌跡を反射面(立壁反射面5a)とする立壁部5が形成されている。   The step reflection surface 4a of the step portion 4 has a shape obtained by cutting an arbitrary lower position at a substantially horizontal or curved surface having continuous irregularities, and the cutting line is moved forward in front of the cutting line. The standing wall portion 5 is formed with the trajectory of the cutting line that is sometimes formed as a reflecting surface (standing wall reflecting surface 5a).

立壁部5の立壁反射面5aは、図3のように、前方方向に向かって延びる凹部5bと凸部5cが交互に連続して形成されてなるローレットを有する略平面状あるいは略曲面状を呈している。   As shown in FIG. 3, the standing wall reflecting surface 5 a of the standing wall portion 5 has a substantially planar shape or a substantially curved surface shape having a knurling formed by alternately and continuously forming concave portions 5 b and convex portions 5 c extending in the forward direction. ing.

そこで、段差部の段差反射面の光学的な作用、効果について図4を参照して説明する。なお、図中には段差部を設けない状態も併記しており、段差部を設けた場合と段差部を設けない場合の夫々の光路形成に基づいて両者を対比して説明する。   Therefore, the optical action and effect of the step reflecting surface of the step portion will be described with reference to FIG. In the drawing, a state where no stepped portion is provided is also shown, and the description will be made by comparing the optical path formation when the stepped portion is provided and when the stepped portion is not provided.

まず、段差部を設けない場合、光源2から下方のリフレクタ3の複合反射面3aに向かって出射された出射光L1は、点線により記載された複合反射面3aで反射されて反射光が入射角αで立壁部5の立壁反射面5aに入射し、同じ角度の反射角αで反射して反射光L2が灯具の前方に向けて照射される。 First, when the step portion is not provided, the outgoing light L1 emitted from the light source 2 toward the composite reflective surface 3a of the lower reflector 3 is reflected by the composite reflective surface 3a indicated by the dotted line, and the reflected light is incident on the incident angle. enters the vertical wall reflecting surface 5a of upright wall 5 by alpha 1, the reflected light L2 is irradiated toward the front of the lamp is reflected at a reflection angle alpha 1 of the same angle.

一方、段差部4を設けた場合は、光源2から出射されて上記同様の光路を経て段差部4の段差反射面4aに至った出射光L1は、段差反射面4aで反射されて反射光が入射角αで立壁部5の立壁反射面5aに入射し、同じ角度の反射角αで反射して反射光L3が灯具の前方上方に向けて照射される。 On the other hand, when the step portion 4 is provided, the outgoing light L1 emitted from the light source 2 and passing through the same optical path to the step reflection surface 4a of the step portion 4 is reflected by the step reflection surface 4a and the reflected light is reflected. enters the vertical wall reflecting surface 5a of upright wall 5 at an incident angle alpha 2, the reflected light L3 is illuminated toward the front on the lamp is reflected at a reflection angle alpha 2 of the same angle.

立壁反射面5aにおける反射角αと反射角αを比較すると、αよりもαの方が角度が小さい。つまり、段差部4を設けた場合の方が段差部を設けない場合よりも、立壁反射面5aで反射された反射光L3が上方に拡散されることになる。その結果、段差部4を設けた方が立壁反射面5aによる反射光L3が配光パターンの水平基準線Hからより離れる方向に向かい、グレア光を生じ難いものとなる。 Comparing the reflection angle alpha 1 and the reflection angle alpha 2 in the standing wall reflecting surface 5a, towards the alpha 2 than alpha 1 is a small angle. That is, when the step portion 4 is provided, the reflected light L3 reflected by the standing wall reflecting surface 5a is diffused upward as compared with the case where the step portion is not provided. As a result, when the stepped portion 4 is provided, the reflected light L3 from the standing wall reflecting surface 5a is further away from the horizontal reference line H of the light distribution pattern, and the glare light is less likely to occur.

なお、立壁部5の、前方方向に向かって延びる凹部と凸部が交互に連続して形成されてなるローレットを有する立壁反射面5aは、そのローレットが、段差部を、連続する凹凸を有する略水平面あるいは略曲面で切断した切断線をそのまま前方に移動したときにできる切断線の軌跡をその形状としている。そのため、立壁反射面5aの前方部分はローレット形状による光拡散効果が少ないが、立壁反射部5aの段差部4に近い部分では段差部4による反射光が立壁反射面5aに垂直に近い角度で入射するため、ローレットの連続する凹凸形状の拡散効果を強く受ける。その結果、立壁反射面5aによる反射光L3を灯具上方に拡散することができ、グレア光を抑制することができる。   In addition, the standing wall reflecting surface 5a having the knurls in which the concave portions and the convex portions extending in the forward direction of the standing wall portion 5 are alternately and continuously formed is substantially the same as the knurls having the stepped portions and the uneven portions. The shape of the trajectory of the cutting line formed when the cutting line cut along the horizontal plane or the substantially curved surface is moved forward as it is. Therefore, although the front part of the standing wall reflecting surface 5a has little light diffusion effect due to the knurled shape, the reflected light from the stepped part 4 is incident at an angle close to the standing wall reflecting surface 5a at the part near the stepped part 4 of the standing wall reflecting part 5a. Therefore, the diffusion effect of the continuous uneven shape of the knurls is strongly received. As a result, the reflected light L3 from the standing wall reflecting surface 5a can be diffused upward and the glare light can be suppressed.

図5及び図6は、段差部を設けたことによるグレア光発生の抑制効果を光線シミュレーションにより検証した結果を表している。図5は、段差部を有する車両用灯具に関するものであり、図4に示すような、光源2から段差部4の段差反射面4aに向けて出射された出射光L1が、順次段差反射面4a及び立壁部5の立壁反射面5aで反射されてその反射光L3が前方のスクリーン上に投影する投影図を示している。   FIG. 5 and FIG. 6 show the result of verifying the effect of suppressing the generation of glare light by providing the stepped portion by the light ray simulation. FIG. 5 relates to a vehicular lamp having a stepped portion. As shown in FIG. 4, the emitted light L1 emitted from the light source 2 toward the stepped reflecting surface 4a of the stepped portion 4 is sequentially stepped reflecting surface 4a. And the projection figure which is reflected on the standing wall reflective surface 5a of the standing wall part 5, and the reflected light L3 projects on the front screen is shown.

一方、図6は、段差部を有しない車両用灯具に関するものであり、図4に示すような、光源2から出射されて上記同様の光路を経てリフレクタ3の複合反射面3aに向けて出射された出射光L1が、点線により記載された複合反射面3a及び立壁部5の立壁反射面5aで反射されてその反射光L2が前方のスクリーン上に投影する投影図を示している。   On the other hand, FIG. 6 relates to a vehicular lamp that does not have a stepped portion, and is emitted from the light source 2 and emitted toward the composite reflecting surface 3a of the reflector 3 through the same optical path as shown in FIG. The projected light L1 reflected by the composite reflecting surface 3a indicated by the dotted line and the standing wall reflecting surface 5a of the standing wall portion 5 is projected onto the front screen.

図5と図6を比較すると、図6は、スクリーン上の光度分布が水平基準線Hと垂直基準線Vとの交点付近に集中して形成されており、グレア光となることが表わされている。それに対し、図5は、スクリーン上の光度分布が水平基準線Hと垂直基準線Vとの交点付近から離れた位置に分散しており、グレア光の発生が少ないことを表わしている。この光線シミュレーションにより、リフレクタ3の下部に段差部4を設けることにより、グレア光の発生を抑制できることが検証された。   Comparing FIG. 5 and FIG. 6, FIG. 6 shows that the luminous intensity distribution on the screen is formed in a concentrated manner near the intersection of the horizontal reference line H and the vertical reference line V, resulting in glare light. ing. On the other hand, FIG. 5 shows that the luminous intensity distribution on the screen is dispersed at a position away from the vicinity of the intersection of the horizontal reference line H and the vertical reference line V, and the generation of glare light is small. It was verified from this light ray simulation that the generation of glare light can be suppressed by providing the stepped portion 4 below the reflector 3.

また、リフレクタの下部に段差部を設けた場合、図7のように、光源2から立壁部5の段差部4近傍の立壁反射面5aに向けて出射された出射光が立壁反射面5aで反射されて反射光が段差反射面4aに向かい、段差反射面4aで反射された反射光が灯具前方上方に照射される。図8は、この照射光がスクリーン上に投影する投影図を光線シミュレーションにより求めたものであり、この場合もスクリーン上の光度分布が水平基準線Hと垂直基準線Vとの交点付近の上方に位置し、グレア光の発生を抑制できることを示している。   When a step is provided at the lower part of the reflector, the emitted light emitted from the light source 2 toward the standing wall reflecting surface 5a near the step 4 of the standing wall 5 is reflected by the standing wall reflecting surface 5a as shown in FIG. Then, the reflected light is directed to the step reflecting surface 4a, and the reflected light reflected by the step reflecting surface 4a is applied to the front upper part of the lamp. FIG. 8 is a projection diagram obtained by projecting the irradiation light onto the screen by light ray simulation. In this case, the luminous intensity distribution on the screen is also above the intersection between the horizontal reference line H and the vertical reference line V. It indicates that the generation of glare light can be suppressed.

図9の、スクリーン上に投影された光度分布は、図10に示すように段差部4を有する灯具において、光源2から段差部4の段差反射面4aに向かって出射された出射光が段差反射面4aで反射されて立壁部5の立壁反射面5aに向かい立壁反射面5aで反射された反射光L4と、光源2から立壁部5の立壁反射面5aに向かって出射された出射光が立壁反射面5aで反射されて段差部4の段差反射面4aに向かい、段差反射面4aで反射された反射光L5との合成された反射光で形成される光度分布を光線シミュレーションで求めたものである。   The luminous intensity distribution projected on the screen of FIG. 9 shows that the emitted light emitted from the light source 2 toward the step reflecting surface 4a of the step portion 4 is step-reflected in the lamp having the step portion 4 as shown in FIG. Reflected light L4 reflected by the surface 4a and reflected by the standing wall reflecting surface 5a toward the standing wall reflecting surface 5a of the standing wall 5 and outgoing light emitted from the light source 2 toward the standing wall reflecting surface 5a of the standing wall 5 The luminous intensity distribution formed by the reflected light synthesized by the reflected light L5 reflected by the reflecting surface 5a, directed to the step reflecting surface 4a of the stepped portion 4 and reflected by the step reflecting surface 4a is obtained by ray simulation. is there.

また、図11の、スクリーン上に投影された光度分布は、図12に示すように段差部を有しない灯具において、光源2からリクレクタ3の複合反射面3aに向かって出射された出射光が複合反射面3aで反射されて立壁部5の立壁反射面5aに向かい立壁反射面5aで反射された反射光L6と、光源2から立壁部5の立壁反射面5aに向かって出射された出射光が立壁反射面5aで反射されてリフレクタ3の複合反射面3aに向かい、複合反射面3aで反射された反射光L7の合成された反射光で形成される光度分布を光線シミュレーションで求めたものである。   Further, the luminous intensity distribution projected on the screen in FIG. 11 is obtained by combining the emitted light emitted from the light source 2 toward the composite reflecting surface 3a of the reflector 3 in a lamp having no stepped portion as shown in FIG. Reflected light L6 reflected by the reflecting surface 3a and reflected by the standing wall reflecting surface 5a toward the standing wall reflecting surface 5a of the standing wall 5 and outgoing light emitted from the light source 2 toward the standing wall reflecting surface 5a of the standing wall 5 The luminous intensity distribution formed by the combined reflected light of the reflected light L7 reflected by the standing wall reflecting surface 5a and directed to the composite reflecting surface 3a of the reflector 3 and reflected by the composite reflecting surface 3a is obtained by light ray simulation. .

図9と図11の光度分布を比較すると、図9の光度分布が水平基準線Hと垂直基準線Vとの交点付近の上方に位置し、グレア光の発生を抑制できることを示している。それに対し、図11の光度分布は水平基準線H上にも位置しており、多くのグレア光が発生していることがわかる。この、光線シミュレーションによっても、段差部4がグレア光の発生を抑制していることが示されている。   Comparison of the luminous intensity distributions of FIGS. 9 and 11 shows that the luminous intensity distribution of FIG. 9 is located near the intersection of the horizontal reference line H and the vertical reference line V, and the generation of glare light can be suppressed. On the other hand, the light intensity distribution in FIG. 11 is also located on the horizontal reference line H, and it can be seen that a lot of glare light is generated. This light ray simulation also shows that the stepped portion 4 suppresses the generation of glare light.

なお、段差部4は上下方向(Y軸)に対する角度θが前方5°から後方側の範囲で傾いていることが好ましく、この傾斜角度も光線シミュレーションにより検証されている。   Note that the stepped portion 4 is preferably inclined at an angle θ with respect to the vertical direction (Y-axis) in the range from 5 ° forward to the rear side, and this inclination angle is also verified by light ray simulation.

具体的には、図13のように、段差部4の段差反射面4aの上下方向(Y軸)に対する角度θ(前方に傾斜した場合を+とし、後方に傾斜した場合を−とする)を、+19°(段差部を有せず、段差反射面に対応する位置の複合反射面の角度)、+10°、+5°、+2°、0°、−2°、−5°、−10°、−20°、に設定し、夫々による照射光の水平基準線Hと垂直基準線Vとの交点付近の最高光度と光束を検証した。   Specifically, as shown in FIG. 13, an angle θ with respect to the vertical direction (Y-axis) of the step reflection surface 4a of the step portion 4 (+ when tilted forward and − when tilted backward) is defined. , + 19 ° (the angle of the composite reflecting surface at a position corresponding to the step reflecting surface without having a step portion), + 10 °, + 5 °, + 2 °, 0 °, −2 °, −5 °, −10 °, The maximum luminous intensity and luminous flux in the vicinity of the intersection of the horizontal reference line H and the vertical reference line V of the irradiated light by each were verified.

そのシミュレーション結果を図14に示している。このグラフからわかるように、段差反射面4aの上下方向(Y軸)に対する傾斜角は、前方19°〜前方約5°の範囲は水平基準線Hと垂直基準線Vとの交点付近の最高光度と光束の値が高く、強いグレア光が照射されていることがわかる。それに対し、傾斜角度が前方約5°で最高光度と光束の値が急激に低下し、前方約5°の傾斜から後方の傾斜に対してはほとんど同一の最高光度と光束を示している。但し、この傾斜角度は灯具の開口の大きさ、複合反射面のF値、複合反射面の凹凸形状等の条件により決まるものであり、条件が変われば好ましいθ値も変わる。   The simulation result is shown in FIG. As can be seen from this graph, the inclination angle with respect to the vertical direction (Y-axis) of the step reflecting surface 4a ranges from 19 ° forward to about 5 ° forward, and the maximum luminous intensity near the intersection of the horizontal reference line H and the vertical reference line V. It can be seen that the value of the luminous flux is high and strong glare light is irradiated. On the other hand, when the inclination angle is about 5 ° in the front, the maximum luminous intensity and the luminous flux values are drastically decreased, and the same maximum luminous intensity and luminous flux are shown for the inclination from the inclination of about 5 ° to the rear. However, this inclination angle is determined by conditions such as the size of the opening of the lamp, the F value of the composite reflecting surface, and the uneven shape of the composite reflecting surface. If the conditions change, the preferred θ value also changes.

このことより、段差部4の段差反射面4aの上下方向(Y軸)に対する角度θを、前方約5°から後方側に傾けることにより、グレア光の確実な抑制を実現できることが検証された。   From this, it was verified that the glare light can be surely suppressed by inclining the angle θ of the stepped portion 4 with respect to the vertical direction (Y axis) of the stepped reflection surface 4a from about 5 ° to the rear side.

1… 車両用灯具
2… 光源
3… マルチリフレクタ
3a… 複合反射面
4… 段差部
4a… 段差反射面
5… 立壁部
5a… 立壁反射面
5b… 凹部
5c… 凸部
DESCRIPTION OF SYMBOLS 1 ... Vehicle lamp 2 ... Light source 3 ... Multi reflector 3a ... Composite reflective surface 4 ... Step part 4a ... Step reflective surface 5 ... Standing wall part 5a ... Standing wall reflecting surface 5b ... Concave part 5c ... Convex part

Claims (3)

光源と、
光源を覆うように配置されて光源と対向する面を反射面とするリフレクタと、
前記反射面を前記光源の光軸よりも下部の任意の位置を水平面で切断し、その切断線をそのまま下方に移動したときにできる前記切断線の軌跡を反射面とする段差部と、
前記段差部の下部を略水平面あるいは略湾曲面で切断し、その切断線をそのまま前方に移動したときにできる前記切断線の軌跡を反射面とする立壁部を備えていることを特徴とする車両用灯具。
A light source;
A reflector that is disposed so as to cover the light source and has a reflective surface as a surface facing the light source;
A step portion having a reflection surface as a locus of the cutting line formed by cutting the reflection surface at an arbitrary position below the optical axis of the light source with a horizontal plane and moving the cutting line as it is,
A vehicle comprising: a standing wall portion having a reflection surface that is a locus of the cutting line formed by cutting a lower portion of the stepped portion with a substantially horizontal plane or a substantially curved surface and moving the cutting line as it is. Lamps.
前記段差部の反射面は、前記光軸に垂直な直線に対する傾斜が、前方側に約5°傾斜する位置から後方側に傾斜する範囲にあることを特徴とする請求項1に記載の車両用灯具。   2. The vehicle according to claim 1, wherein the reflecting surface of the stepped portion has an inclination with respect to a straight line perpendicular to the optical axis in a range inclined from a position inclined about 5 ° to the front side to the rear side. Light fixture. 前記立壁部の反射面は、前方に向かって延びる凹部と凸部が交互に連続して形成されてなるローレット面であることを特徴とする請求項1又は請求項2に記載の車両用灯具。   The vehicular lamp according to claim 1, wherein the reflecting surface of the standing wall portion is a knurled surface formed by alternately and continuously forming concave portions and convex portions extending forward.
JP2010056570A 2010-03-12 2010-03-12 Vehicle lighting Expired - Fee Related JP5444051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056570A JP5444051B2 (en) 2010-03-12 2010-03-12 Vehicle lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056570A JP5444051B2 (en) 2010-03-12 2010-03-12 Vehicle lighting

Publications (2)

Publication Number Publication Date
JP2011192486A JP2011192486A (en) 2011-09-29
JP5444051B2 true JP5444051B2 (en) 2014-03-19

Family

ID=44797184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056570A Expired - Fee Related JP5444051B2 (en) 2010-03-12 2010-03-12 Vehicle lighting

Country Status (1)

Country Link
JP (1) JP5444051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535155B2 (en) 2011-09-05 2014-07-02 株式会社コガネイ Flow path switching valve and fluid material discharge control device using the same
JP6131611B2 (en) * 2013-01-29 2017-05-24 市光工業株式会社 Vehicle headlamp

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243118A (en) * 1999-02-22 2000-09-08 Stanley Electric Co Ltd Lighting fixture for vehicle
JP2006294506A (en) * 2005-04-13 2006-10-26 Koito Mfg Co Ltd Vehicle headlight
JP5086029B2 (en) * 2007-10-19 2012-11-28 スタンレー電気株式会社 Vehicle headlamp
JP5149764B2 (en) * 2007-10-25 2013-02-20 スタンレー電気株式会社 Vehicle headlamp

Also Published As

Publication number Publication date
JP2011192486A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US7748880B2 (en) Vehicle lamp with overhead sign illumination
JP5544676B2 (en) Vehicle headlamp
JP5881887B2 (en) Projection module for automobile
US9273844B2 (en) Vehicular lamp
JP5848920B2 (en) Vehicle headlamp
JP2011165600A (en) Vehicular illumination lamp
JP2015035337A (en) Vehicle lighting appliance
JP2011040247A (en) Lamp unit of headlight for vehicle
US20110038171A1 (en) Vehicle light
US20070047248A1 (en) Vehicular lamp and projection lens for decreasing an amount of blocked light
JP2007194166A (en) Vehicular lamp
US20030185017A1 (en) Projection-type vehicular headlamp
US8956029B2 (en) Vehicle lighting unit
JP2006156045A (en) Vehicular headlight
US7784985B2 (en) Dual function headlamp for a motor vehicle
JP5444051B2 (en) Vehicle lighting
JP5425129B2 (en) Vehicle headlamp
US8534889B2 (en) Vehicle headlight
JP5797099B2 (en) Lighting fixtures for vehicles
JP2011040168A (en) Headlight for vehicle
JP2008091262A (en) Headlight for vehicle
JP5149764B2 (en) Vehicle headlamp
JP7459481B2 (en) Light guide for vehicle and vehicle headlamp
JP2001176310A (en) Head light or car
JP4587047B2 (en) Vehicle lighting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Ref document number: 5444051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees