JP5440158B2 - Battery charging method and charging system - Google Patents
Battery charging method and charging system Download PDFInfo
- Publication number
- JP5440158B2 JP5440158B2 JP2009294392A JP2009294392A JP5440158B2 JP 5440158 B2 JP5440158 B2 JP 5440158B2 JP 2009294392 A JP2009294392 A JP 2009294392A JP 2009294392 A JP2009294392 A JP 2009294392A JP 5440158 B2 JP5440158 B2 JP 5440158B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- vehicle
- charging
- power
- vehicle battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/12—Recording operating variables ; Monitoring of operating variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/305—Communication interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/53—Batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/63—Monitoring or controlling charging stations in response to network capacity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/14—Preventing excessive discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/16—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/126—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
本発明は、バッテリの充電方法および充電システムに関するものである。 The present invention relates to a battery charging method and a charging system.
近時、個別の住宅、集合住宅、大型店舗、工場等の電力需要家が、個別に充電機器と発電機器とを有して、商用電力を極力利用することなく、電力の需給をまかなうようにすることが増加している。個別の電力需要家のみでの電力需給には限界があるため、特許文献1に記載のように、複数の電力需要家の間で電力網を形成して、ある電力需要家の余剰電力を他の電力需要家の不足電力として供給することが開示されている。発電機と蓄電機器とを有して、電力需給を極力自立運転でまかなうようにしたシステムは、マイクログリッド(あるいはマイクログリッドシステム)と呼ばれており、このマイクログリッドにおいては、商用電力との間での電力授受を極力抑制した自立運転が強く望まれるものである。 Recently, power consumers such as individual houses, apartment houses, large stores, factories, etc. have their own charging equipment and power generation equipment to cover the supply and demand of power without using commercial power as much as possible. To be increased. Since there is a limit to the power supply and demand of only individual power consumers, as described in Patent Document 1, a power network is formed between a plurality of power consumers, and surplus power of a certain power consumer It is disclosed that power is supplied as a shortage of electricity consumers. A system that has a generator and a power storage device and that can supply and receive power as much as possible through self-sustaining operation is called a microgrid (or microgrid system). In this microgrid, Self-sustained operation that minimizes power transfer in the country is strongly desired.
また、最近では、電気自動車やプラグインハイブリッド車等のように、バッテリを動力源として走行用モータを駆動する車両(走行用バッテリ搭載車両)が増加しつつある。特許文献2には、電気自動車相互間で電力の授受を行うことが開示されている。この特許文献2に記載のものでは、放電を要求する車両から、充電を希望する車両へ充電するものであり、充放電は車両の使用者の意思に委ねるようになっている。 Also, recently, vehicles such as electric vehicles and plug-in hybrid vehicles that drive a traveling motor using a battery as a power source (vehicles equipped with a traveling battery) are increasing. Patent Document 2 discloses that power is exchanged between electric vehicles. In the device described in Patent Document 2, charging is performed from a vehicle that requires discharge to a vehicle that desires charging, and charging / discharging is left to the user's intention.
ところで、車両が長時間駐車されて、車載バッテリに充電されない状態が長く続くと、自然放電によって蓄電量が減少してしまうものである。また、車載バッテリに対して充電する場合に、外部電力を供給できない場合や、外部電力に極力依存しないようにすることが望まれることがあり、このような状況においていかに車載バッテリに充電を行うかが問題となる。 By the way, when the vehicle is parked for a long time and the state where the vehicle-mounted battery is not charged continues for a long time, the charged amount is reduced by natural discharge. In addition, when charging an in-vehicle battery, it may be desired that external power cannot be supplied or it is desired to be as independent of external power as possible. Is a problem.
本発明は以上のような事情を勘案してなされたもので、その目的は、複数の車両間での充放電を利用して、車載バッテリの蓄電量が極端に小さくなってしまう事態を未然に防止できるようにしたバッテリの充電方法および充電システムを提供することにある。 The present invention has been made in view of the circumstances as described above, and its purpose is to use a charge / discharge between a plurality of vehicles to prevent a situation in which the amount of power stored in the in-vehicle battery becomes extremely small. It is an object of the present invention to provide a battery charging method and a charging system which can be prevented.
前記目的を達成するため、本発明におけるバッテリの充電方法にあっては次のような解決手法を採択してある。すなわち、特許請求の範囲における請求項1に記載のように、
複数の駐車車両の車載バッテリに対して充電を行うバッテリの充電方法であって、
複数の車載バッテリを駐車場内の電力網および情報通信網に接続する第1ステップと、
前記複数の車載バッテリの蓄電量を前記情報通信網を介して取得する第2ステップと、
前記第2ステップで得られた蓄電量に基づいて、放電可能な車載バッテリと充電すべき車載バッテリとを識別する第3ステップと、
前記第3ステップで識別された放電可能な車載バッテリからの放電可能範囲での放電によって、前記充電すべき車載バッテリへの充電を行わせる第4ステップと、
を備えているようにしてある。
In order to achieve the above object, the following solution is adopted in the battery charging method of the present invention. That is, as described in claim 1 in the claims,
A battery charging method for charging an in-vehicle battery of a plurality of parked vehicles,
A first step of connecting a plurality of in-vehicle batteries to a power network and an information communication network in a parking lot;
A second step of acquiring the storage amount of the plurality of in-vehicle batteries via the information communication network;
A third step for identifying a vehicle battery that can be discharged and a vehicle battery to be charged based on the amount of electricity stored in the second step;
A fourth step of charging the in-vehicle battery to be charged by discharging in a dischargeable range from the dischargeable in-vehicle battery identified in the third step;
It is supposed to be equipped with.
上記解決手法によれば、外部電力が得られない場合や外部電力に極力頼りたくない状況でも、蓄電量の大きいある車両からの車載バッテリの電力を利用して、蓄電量の小さい別の車両の車載バッテリへの充電を行うことができ、一部の車載バッテリの蓄電量が極端に小さくなってしまうことを防止して、全車両について蓄電量を平準化する上で好ましいものとなる。特に、蓄電量の平準化が望まれるあるいは問題とならないような車両の使用形態の場合、例えば、レンタカー、カーシェリング用車両、車両(特に中古車)販売会社での展示車両、空港駐車場の車両、列車や船舶で輸送中の車両、マンション居住者の車両等において好ましいものとなる。 According to the above solution, even when external power cannot be obtained or when it is not desired to rely on external power as much as possible, the power of the in-vehicle battery from a vehicle with a large amount of power storage is used, and another vehicle with a small amount of power storage is used. It is possible to charge the in-vehicle battery, which is preferable in leveling the storage amount for all vehicles by preventing the storage amount of some in-vehicle batteries from becoming extremely small. In particular, in the case of a usage form of a vehicle where leveling of the storage amount is desired or does not cause a problem, for example, a rental car, a car shelling vehicle, a vehicle exhibited in a vehicle (especially used car) sales company, a vehicle in an airport parking lot It is preferable for a vehicle being transported by train or ship, a vehicle of a condominium resident, and the like.
上記解決手法を前提とした好ましい態様は、特許請求の範囲における請求項2〜6に記載のとおりである。すなわち、
前記第3ステップにおいて、放電可能な車載バッテリが蓄電量に応じて順位付けられ、
前記第4ステップにおいて、前記放電可能な車載バッテリのうち蓄電量が大きい順位順に充電のための放電が行われる、
ようにしてある(請求項2対応)。この場合、全ての車両(の車載バッテリ)の蓄電量を平準化する上でより一層好ましいものとなる。
A preferred mode based on the above solution is as described in claims 2 to 6 in the claims. That is,
In the third step, the in-vehicle batteries that can be discharged are ranked according to the amount of stored electricity,
In the fourth step, discharging for charging is performed in order of descending power storage amount of the on-vehicle battery that can be discharged.
(Corresponding to claim 2). In this case, it becomes even more preferable for leveling the amount of electricity stored in all the vehicles (the in-vehicle battery).
前記情報通信網を介して得られる情報から前記複数の車載バッテリの劣化度合を判定する第5ステップをさらに有し、
前記第3ステップでは、前記放電可能な車載バッテリとして、同じ蓄電量であれば劣化度合の小さい車載バッテリを高順位とする、
ようにしてある(請求項3対応)。この場合、劣化度合の大きい車載バッテリを保護する上で好ましいものとなる。
A fifth step of determining a degree of deterioration of the plurality of in-vehicle batteries from information obtained via the information communication network;
In the third step, as the vehicle battery that can be discharged, the vehicle battery with a low degree of deterioration is ranked high as long as the stored amount of electricity is the same.
(Corresponding to claim 3). In this case, it is preferable for protecting a vehicle-mounted battery having a high degree of deterioration.
前記情報通信網を介して得られる情報から前記複数の車載バッテリの劣化度合を判定する第5ステップをさらに有し、
前記第3ステップでは、前記放電可能な車載バッテリとして、劣化度合の大きい車載バッテリを除外する、
ようにしてある(請求項4対応)。この場合、劣化度合の大きい車載バッテリを確実に保護することができる。
A fifth step of determining a degree of deterioration of the plurality of in-vehicle batteries from information obtained via the information communication network;
In the third step, the in-vehicle battery having a high degree of deterioration is excluded as the dischargeable in-vehicle battery.
(Corresponding to claim 4). In this case, an in-vehicle battery having a high degree of deterioration can be reliably protected.
前記電力網が、蓄電機器と発電機器と電力消費負荷とを備えると共に商用電力源に接続されたマイクログリッド内に構成され、
前記第4ステップにおいて、前記放電可能な車載バッテリからの放電電力だけでは前記充電すべき車載バッテリへの充電電力として不足する場合に、不足分の充電電力をまず前記蓄電機器からの放電によってまかなうと共に、それでも充電電力が不足するときは前記商用電力源からの電力調達によってまかなう、
ようにしてある(請求項5対応)。この場合、マイクログリッドの電力網を有効利用して車載バッテリへの充電を行なうことができる。また、マイクログリッドを自立運転するき機会を向上させつつ、商用電力源からの電力をも必要に応じて利用して、蓄電量の小さい車載バッテリを確実に充電することができる。
The power network is configured in a microgrid including a power storage device, a power generation device, and a power consumption load and connected to a commercial power source,
In the fourth step, when only the discharge power from the dischargeable on-vehicle battery is insufficient as the charge power to the on-vehicle battery to be charged, the insufficient charge power is first provided by discharging from the power storage device. If the charging power is still insufficient, it will be covered by power procurement from the commercial power source.
(Corresponding to claim 5). In this case, the in-vehicle battery can be charged by effectively using the power grid of the microgrid. In addition, while improving the opportunity for autonomous operation of the microgrid, it is possible to reliably charge an in-vehicle battery with a small amount of charge by using power from a commercial power source as needed.
前記第3ステップにおいて、前記充電すべき車載バッテリが蓄電量に基づいて順位付けられ、
前記第4ステップにおいて、前記充電すべき車載バッテリとし蓄電量の小さい順位順に充電が行われる、
ようにしてある(請求項6対応)。この場合、全ての車両(の車載バッテリ)の蓄電量を平準化する上でより一層好ましいものとなる。
In the third step, the in-vehicle batteries to be charged are ranked based on the amount of stored electricity,
In the fourth step, charging is performed in the order of decreasing storage amount as the in-vehicle battery to be charged,
(Corresponding to claim 6). In this case, it becomes even more preferable for leveling the amount of electricity stored in all the vehicles (the in-vehicle battery).
前記目的を達成するため、本発明における充電システムにあっては次のような解決手法を採択してある。すなわち、特許請求の範囲における請求項7に記載のように、
複数の駐車車両の車載バッテリに対して充電を行うバッテリの充電システムであって、
駐車場内に設置されると共にそれぞれ複数の車載バッテリが接続される電力網および情報通信網と、
前記複数の車載バッテリの蓄電量を前記情報通信網を介して取得する蓄電量取得手段と、
前記蓄電量取得手段によって得られた蓄電量に基づいて、放電可能な車載バッテリと充電すべき車載バッテリとを識別する識別手段と、
前記識別手段で識別された放電可能な車載バッテリからの放電可能範囲での放電によって、前記充電すべき車載バッテリへの充電を行わせる充電実行手段と、
を備えているようにしてある。上記解決手法によれば、請求項1に対応した効果を得ることのできる充電システムが提供される。
In order to achieve the above object, the following solution is adopted in the charging system according to the present invention. That is, as described in claim 7 in the claims,
A battery charging system for charging an in-vehicle battery of a plurality of parked vehicles,
A power network and an information communication network that are installed in a parking lot and connected to a plurality of in-vehicle batteries,
A storage amount acquisition means for acquiring a storage amount of the plurality of in-vehicle batteries via the information communication network;
Based on the storage amount obtained by the storage amount acquisition means, identification means for identifying a vehicle battery that can be discharged and a vehicle battery to be charged;
Charge execution means for charging the in-vehicle battery to be charged by discharging in a dischargeable range from the dischargeable in-vehicle battery identified by the identification means;
It is supposed to be equipped with. According to the said solution technique, the charging system which can acquire the effect corresponding to Claim 1 is provided.
上記解決手法を前提とした好ましい態様は、特許請求の範囲における請求項8に記載のとおりである。すなわち、
前記識別手段が、放電可能な車載バッテリを蓄電量に応じて順位付けを行い、 前記充電実行手段は、前記放電可能な車載バッテリのうち蓄電量が大きい順位順に充電のための放電を行わせる、
ようにしてある(請求項8対応)。この場合、請求項2に対応した効果を得ることができる。
A preferred mode based on the above solution is as set forth in
The identifying means ranks the in-vehicle batteries that can be discharged according to the storage amount, and the charge execution means causes discharging for charging in descending order of the storage amount among the in-vehicle batteries that can be discharged.
This is done (corresponding to claim 8). In this case, the effect corresponding to claim 2 can be obtained.
本発明によれば、複数の車両間での充放電を利用して、車載バッテリの蓄電量が極端に小さくなってしまう事態を未然に防止できると共に、全ての車載バッテリの蓄電量を平準化する上で好ましいものとなる。 ADVANTAGE OF THE INVENTION According to this invention, while using the charging / discharging between several vehicles, while being able to prevent the situation where the electrical storage amount of a vehicle-mounted battery becomes extremely small, the electrical storage amount of all the vehicle-mounted batteries is equalized. Preferred above.
図1は、マイクログリッドMGの一例を示すものである。図中1は、商用電力源で、電力会社が所有、管理するものであり、通常の交流電源とされる。この商用電力源1に対して、マイクログリッドMGが接続されている。マイクログリッドMGは、一戸建て住宅を多数集合させた形式のもの、多数の個数が入居しているマンション形式のもの、さらには工場や営業所等適宜の施設あるいはその集合体でもってマイクログリッドを構成することもできる。 FIG. 1 shows an example of a microgrid MG. In the figure, reference numeral 1 denotes a commercial power source which is owned and managed by an electric power company and is a normal AC power source. A microgrid MG is connected to the commercial power source 1. The microgrid MG is composed of a large number of detached houses, a condominium type where a large number of houses are occupying, and an appropriate facility such as a factory or a sales office, or an aggregate thereof. You can also.
マイクログリッドMGは、太陽光発電機からなる共通発電機器Gと、共通蓄電機器(共通蓄電池で、例えば大容量のバッテリ)Bと、複数の走行用バッテリ搭載車両EVへ同時に充電可能な充電設備(車両EVからの放電用を兼用)Cと、を有する。共通発電機器Gとしては、太陽光発電機の他に、風力発電、コジェネ等の燃料を用いる発電機器等適宜の種類のものが利用できる。勿論、マイクログリッドMGには、電力消費を行う電気負荷が接続されているものである(例えば空調機器、照明機器、調理器具等)。そして、マイクログリッドMGは、ゲートウエイEを介して商用電力源1に接続されて、この商用電力源との間での電力授受の際に周波数調整、電圧調整、位相調整が行われる。なお、充電設備Cは、数十台の車両EVが同時に充放電できるように、多数の接続コンセントを有している。 The microgrid MG includes a common power generation device G including a solar power generator, a common power storage device (a common storage battery, for example, a large-capacity battery) B, and a charging facility capable of simultaneously charging a plurality of traveling battery-equipped vehicles EV ( C) also used for discharging from the vehicle EV. As the common power generation device G, in addition to the solar power generator, an appropriate type of power generation device using fuel such as wind power generation or cogeneration can be used. Of course, the microgrid MG is connected to an electric load that consumes power (for example, an air conditioner, a lighting device, a cooking utensil, etc.). The microgrid MG is connected to the commercial power source 1 through the gateway E, and frequency adjustment, voltage adjustment, and phase adjustment are performed when power is exchanged with the commercial power source. The charging facility C has a large number of connection outlets so that several tens of vehicles EV can be charged and discharged simultaneously.
マイクログリッドMGには、コンピュータを利用して構成された管理装置Uが設けられている。この管理装置Uによって、後述するように、充電設備Cを制御して、多数の車両EV間での充放電を制御する。 The microgrid MG is provided with a management device U configured using a computer. As will be described later, the management device U controls the charging facility C to control charging / discharging among a large number of vehicles EV.
図2は、マイクログリッドの別の例を示すものである。このマイクログリッドMGは、1つの共通電力網10と複数の個別電力網20とを有する。共通電力網10に対して、共通発電機器Gおよび共通蓄電機器Bとが接続されており、この共通電力網10がゲートウエイEを介して商用電力源1に接続されている。
FIG. 2 shows another example of a microgrid. The microgrid MG has one
個別電力網20は、HEMS(ゲートウエイE対応の機能を有する)を介して共通電力網10に接続されている。個別電力網20には、個別発電機器G2と、個別蓄電機器B2とを有する他、一部の個別電力網20は保有する走行用バッテリ搭載車両EVへの充電設備を備えている。なお、図2では、一部の個別電力網20については、HEMSのみを示して、個別発電機器G2、個別蓄電機器B2は省略してある。
The
個別電力網20の1つとして、走行用バッテリ搭載車両EVへの充放電を行うための車両専用電力網21(充電設備Cに相当)が設けられている。この車両用電力網21も、HEMSを介して共通電力網10に接続され、また個別発電機器G2および個別蓄電機器B2を有する。そして、図1の管理装置Uと同様の管理装置U2が設けられている。なお、車両用電力網21は、多数の車両が同時に充放電できるように、多数の車載バッテリが接続される多数の接続コンセントを有している。
As one of the
図1,図2において、車両EVへ接続される充放電のための電力線に対しては、情報通信網形成のための通信線が付設されて、車両EV(特にその車載バッテリ)と管理装置UあるいはU2との間で情報伝達が行われるようになっている。なお、情報通信網は、無線方式でもって構成することもできる。 1 and 2, a power line for charging / discharging connected to the vehicle EV is provided with a communication line for forming an information communication network, and the vehicle EV (particularly, its in-vehicle battery) and the management device U. Or information transmission is performed between U2. The information communication network can also be configured by a wireless system.
次に、図3に示すフローチャートを参照しつつ、管理装置U(U2)が行う充放電の制御例について説明する。なお、以下の説明でSはステップを示す。まず、S1において、充電設備Cに接続されている複数の車両EVにおける各車載バッテリの状態が読み込まれる(情報通信網を介しての読み込み)。このバッテリ情報としては、蓄電量の他、車載バッテリの劣化度合を示す情報(例えばバッテリ温度、時間あたりの蓄電量の減少量、内部抵抗値等)とされる。次いで、S2において、車載バッテリの使用状態(過去の使用履歴)が上記情報通信網を介して読み込まれるが、この情報は、車載バッテリの劣化度合を示す情報となり、例えば、充放電の回数、充放電量、バッテリ交換後の総走行距離、満充電状態での経過時間とされる。 Next, a charge / discharge control example performed by the management device U (U2) will be described with reference to the flowchart shown in FIG. In the following description, S indicates a step. First, in S1, the state of each in-vehicle battery in the plurality of vehicles EV connected to the charging facility C is read (reading via the information communication network). The battery information is information indicating the degree of deterioration of the in-vehicle battery in addition to the amount of power storage (for example, battery temperature, amount of decrease in power storage amount per hour, internal resistance value, etc.). Next, in S2, the use state (past use history) of the in-vehicle battery is read via the information communication network. This information is information indicating the degree of deterioration of the in-vehicle battery. The amount of discharge, the total distance traveled after battery replacement, and the elapsed time in a fully charged state.
S2の後、S3において、後述するように、複数の車載バッテリのうち放電可能な車載バッテリが抽出されると共に、その総放電可能量が算出される。この後、S4において、放電可能と判断された車載バッテリが、蓄電量の大きい順に順位付けされる。この順位付けの際に、同じ蓄電量であれば、劣化度合の小さい車載バッテリが高順位とされる。 After S2, in S3, as will be described later, a dischargeable vehicle-mounted battery is extracted from the plurality of vehicle-mounted batteries, and the total dischargeable amount is calculated. Thereafter, in S4, the in-vehicle batteries that are determined to be dischargeable are ranked in descending order of the charged amount. At the time of this ranking, if the amount of stored electricity is the same, an in-vehicle battery with a small degree of deterioration is ranked high.
S4の後、S5において、充電を要する要充電車載バッテリが抽出されると共に、総充電量が算出される。この後、S6において、S3で算出された総放電可能量からS5で算出された総充電量を減算した減算値が、0以上であるか否かが判別される。このS6の判別でYESのときは、車載バッテリからの放電でのみ充電可能なときである。このときは、充電用の電力を放電する車載バッテリが、S4で順位付けられた高順位の順に選択される(全ての放電可能な車載バッテリが選択される場合もあれば、一部の車載バッテリのみが選択される場合もある)。この後、S8において、S7で選択された放電可能車載バッテリからの放電が行われると共に、この放電電力でもって、S5で抽出された要充電バッテリへの充電が行われる。 After S4, in S5, the on-vehicle battery that requires charging is extracted, and the total amount of charge is calculated. Thereafter, in S6, it is determined whether or not a subtraction value obtained by subtracting the total charge amount calculated in S5 from the total dischargeable amount calculated in S3 is 0 or more. When the determination in S6 is YES, the battery can be charged only by discharging from the in-vehicle battery. At this time, the in-vehicle batteries that discharge the charging power are selected in the order of the ranks ranked in S4 (some of the in-vehicle batteries that can be discharged may be selected or some in-vehicle batteries may be selected. May be selected only). Thereafter, in S8, the dischargeable in-vehicle battery selected in S7 is discharged, and the charging required battery extracted in S5 is charged with this discharge power.
前記S6の判別でNOのときは、充電電力を、放電可能バッテリからの放電電力のみではまかなえないときである。このときは、S9において、S3で抽出された放電可能な車載バッテリが全て選択される。次いで、S10において、選択された全ての放電可能車載バッテリからの放電を行わせると共に、不足分の充電電力をマイクログリッドMGの他の電力から供給しつつ、要充電バッテリへの充電が行われる。マイクログリッドMGからの不足分の充電電力の補充は、図1の場合は、まず共通蓄電機器Bからの放電によってまかなわれ、それでも不足する場合は商用電力源1からの電力調達でまかなわれる。また、図2の場合は、不足分の充電電力が、まず個別蓄電機器B2からの放電でまかなわれ、それでも不足する場合は共通蓄電機器B2からの放電でまかなわれ、それでも不足する場合は商用電力源1からの電力調達でまかなわれる。 When the determination in S6 is NO, the charging power cannot be provided only by the discharging power from the dischargeable battery. At this time, in S9, all the in-vehicle batteries that can be discharged extracted in S3 are selected. Next, in S10, the battery that is required to be charged is charged while discharging from all the selectable on-vehicle batteries that are selected and supplying the insufficient charging power from other power of the microgrid MG. In the case of FIG. 1, supplementation of the insufficient charging power from the microgrid MG is first performed by discharging from the common power storage device B, and if it is still insufficient, power is procured from the commercial power source 1. In the case of FIG. 2, the charging power for the shortage is first provided by discharging from the individual power storage device B2, and if it is still insufficient, it is provided by discharging from the common power storage device B2, and if it is still insufficient, commercial power is supplied. It is covered by power procurement from Source 1.
図4は、要放電バッテリを含むときの制御例を示すフローチャートである。すなわち、バッテリは、満充電(ほぼ満充電の場合を含み、例えば蓄電量で95%以上)状態のまま長期間経過すると、劣化が早期にすすむ傾向にあるため、満充電状態にある車載バッテリからはバッテリ保護のために積極的に放電させることが好ましいものであり、図4はそのための制御例となる。 FIG. 4 is a flowchart showing an example of control when a discharge required battery is included. In other words, the battery tends to deteriorate early after a long period of time with the battery fully charged (including almost fully charged, for example, 95% or more in the charged amount). Is preferably positively discharged for battery protection, and FIG. 4 shows a control example for that purpose.
図4は、図3に対応しているため、重複する部分の説明は省略あるいは簡単に行い、図4において特有な部分に着目して説明することとする。まず、図4のS21〜S26は、図3のS1〜S6に対応している。このうち、S21とS22は、S1、S2と同じである。S23では、満充電状態の車載バッテリが抽出されると共に、この満充電状態の車載バッテリを除外して放電可能バッテリの抽出が抽出される。また、S24での順位付けとして、満充電状態の車載バッテリがもっとも高順位として順位付けられる(放電順位がもっとも高くなるように位置づけ)。S25は、S5と同じである。S26では、「要放電量(満充電状態の車載バッテリからの放電可能量)+放電可能量(満充電状態の車載バッテリを除外した放電可能バッテリからの放電可能量)」から「要充電量」を差し引いた減算値が、0以上であるか否かが判別される。 Since FIG. 4 corresponds to FIG. 3, description of overlapping parts will be omitted or simplified, and description will be made by paying attention to unique parts in FIG. 4. First, S21 to S26 in FIG. 4 correspond to S1 to S6 in FIG. Of these, S21 and S22 are the same as S1 and S2. In S23, the fully charged in-vehicle battery is extracted, and the extraction of the dischargeable battery is extracted by excluding the fully charged in-vehicle battery. Further, as the ranking in S24, the fully charged vehicle-mounted battery is ranked as the highest ranking (positioned so that the discharging ranking is the highest). S25 is the same as S5. In S26, “required charge amount” from “required discharge amount (dischargeable amount from in-vehicle battery in full charge state) + dischargeable amount (removable amount from dischargeable battery excluding in-vehicle battery in full charge state)”. It is determined whether or not the subtracted value obtained by subtracting 0 is 0 or more.
S26の判別でYESのときは、車載バッテリからの放電電力のみで充電電力を確保できるときである。このときは、S27,S28の処理が行われる(S7,S8対応)。このS27での放電バッテリの選択に際しては、満充電の車載バッテリがまず選択されることになる(最高順位に位置づけられているため)。S28後、S29において、「要放電量」から「要充電量」を差し引いた値が0以上であるか否かが判別される。このS29での判別は、満充電状態の車載バッテリが残っているか否かの判別となる。このS29の判別でYESのときは、S30において、満充電状態の車載バッテリからの放電が実行される。S30で放電される電力は、蓄電量の小さい他の車載バッテリへの充電用として用いることができるが、マイクログリッドMGの蓄電機器等に放電することもできる。具体的には、図1の場合にあっては、まず共通蓄電機器Bに対して放電され、それでも放電不十分な場合は、商用電力源1に対して放電される。また、図2の場合は、まず個別蓄電機器B2に放電され、それもで放電不十分な場合は共通蓄電機器Bに放電され、それでも放電不十分な場合は、商用電力源1に対して放電される。このように、満充電状態の車載バッテリからは強制的な放電が行われて、その保護が図られることになる。 When the determination in S26 is YES, the charging power can be secured only with the discharging power from the in-vehicle battery. At this time, the processes of S27 and S28 are performed (corresponding to S7 and S8). When selecting the discharge battery in S27, a fully charged vehicle-mounted battery is first selected (because it is positioned in the highest order). After S28, in S29, it is determined whether or not the value obtained by subtracting “required charge amount” from “required discharge amount” is 0 or more. The determination in S29 is a determination as to whether or not a fully charged vehicle-mounted battery remains. When the determination in S29 is YES, in S30, discharging from the fully charged vehicle-mounted battery is executed. The electric power discharged in S30 can be used for charging other in-vehicle batteries having a small amount of power storage, but can also be discharged to power storage devices of the microgrid MG. Specifically, in the case of FIG. 1, first, the common power storage device B is discharged, and if the discharge is still insufficient, the commercial power source 1 is discharged. In the case of FIG. 2, the battery is first discharged to the individual power storage device B2, and if it is insufficiently discharged, it is discharged to the common power storage device B. If the discharge is still insufficient, the commercial power source 1 is discharged. Is done. In this way, the in-vehicle battery in the fully charged state is forcibly discharged, and the protection is achieved.
S26の判別でNOのときは、S31において全ての放電可能バッテリの選択に加えて、要放電バッテリが選択される。この後、S31で選択された車載バッテリからの放電に加えて、充電用に不足する電力が、S10の場合と同様にして外部から(車載バッテリ以外から)供給される。 When the determination in S26 is NO, in S31, in addition to selecting all the dischargeable batteries, a discharge required battery is selected. Thereafter, in addition to discharging from the in-vehicle battery selected in S31, electric power that is insufficient for charging is supplied from the outside (from other than the in-vehicle battery) in the same manner as in S10.
次に、放電可能な車載バッテリと要充電となる車載バッテリ等を抽出(識別)するための手法例について、図5以下を参照しつつ説明する。まず、図5において、現在の蓄電量が第1所定値(例えば80%)以上の車載バッテリが、放電可能バッテリであると識別される。そして、蓄電量が大きい車載バッテリほど、放電順位が高順位として位置づけられる。なお、図4の制御例の場合は、まず満充電の車載バッテリが除外されて放電可能バッテリが抽出され、放電順位付けに際して満充電の車載バッテリが最高順位に位置づけられる。総放電可能量は、放電可能バッテリ毎に現在の蓄電量から第1所定値を減算して、この各減算値を合計したものとされる。 Next, an example of a technique for extracting (identifying) an in-vehicle battery that can be discharged and an in-vehicle battery that requires charging will be described with reference to FIG. First, in FIG. 5, an in-vehicle battery whose current charged amount is equal to or greater than a first predetermined value (for example, 80%) is identified as a dischargeable battery. And the in-vehicle battery with a larger amount of stored electricity is ranked higher in discharging order. In the case of the control example of FIG. 4, the fully-charged on-board battery is first excluded and a dischargeable battery is extracted, and the fully-charged on-board battery is positioned at the highest rank when ranking the discharge. The total dischargeable amount is obtained by subtracting the first predetermined value from the current charged amount for each dischargeable battery and adding the subtracted values.
また、現在の蓄電量が、上記第1所定値よりも小さい値として設定された第2所定値(例えば30%)以下の車載バッテリが、要充電バッテリとして抽出される。そして、蓄電量の小さい車載バッテリほど、要充電の順位付けが高い車載バッテリであると位置づけられる。総充電量は、各要充電バッテリ毎に第2所定値から現在の蓄電量を減算して、この減算値を合計したものとなる。 In addition, an in-vehicle battery whose current storage amount is equal to or less than a second predetermined value (for example, 30%) set as a value smaller than the first predetermined value is extracted as a rechargeable battery. And the vehicle-mounted battery with a smaller amount of stored electricity is positioned as a vehicle-mounted battery with higher order of charge required. The total charge amount is obtained by subtracting the current charged amount from the second predetermined value for each battery requiring charging, and adding up the subtracted values.
図5の例では、車載バッテリがA、B、C・・・で識別されるが、車載バッテリAとDとが蓄電量が第1所定値よりも大きくて放電可能バッテリであると抽出される。また、車載バッテリBが、蓄電量が第2所定値以下となる要充電バッテリであると抽出される。そして、車載バッテリCは、その蓄電量が第1所定値と第2所定値との間にあるので、放電もしないし充電もされない車載バッテリとなる。 In the example of FIG. 5, the in-vehicle batteries are identified by A, B, C,..., But the in-vehicle batteries A and D are extracted as the batteries that can be discharged because the charged amount is larger than the first predetermined value. . Further, it is extracted that the in-vehicle battery B is a battery that needs to be charged so that the amount of stored power is equal to or less than the second predetermined value. And since the amount of stored electricity is between the first predetermined value and the second predetermined value, the in-vehicle battery C becomes an in-vehicle battery that is neither discharged nor charged.
図6は、車載バッテリの劣化度合を、新品状態からの内部抵抗値の変化率をみることによって判定するようにした例を示すものである。すなわち、内部抵抗値の変化率が第3所定値よりも大きい車載バッテリは、放電不可のバッテリとされ、内部抵抗値の変化率が第4所定値以下の車載バッテリが放電可能バッテリであると抽出されると共に、内部抵抗値の変化率が小さい車載バッテリほど放電順位の高い車載バッテリであるとされる。図6の場合、車載バッテリAとCとが、放電可能バッテリであると抽出される。また、車載バッテリBが放電可能バッテリであると抽出される。車載バッテリDは、放電も充電も行わないバッテリとされる。 FIG. 6 shows an example in which the degree of deterioration of the in-vehicle battery is determined by looking at the rate of change of the internal resistance value from the new state. That is, an in-vehicle battery whose internal resistance value change rate is larger than the third predetermined value is an undischargeable battery, and an in-vehicle battery whose internal resistance value change rate is the fourth predetermined value or less is extracted as a dischargeable battery. In addition, an in-vehicle battery having a smaller change rate of the internal resistance value is considered to be an in-vehicle battery having a higher discharge order. In the case of FIG. 6, the in-vehicle batteries A and C are extracted as being dischargeable batteries. Moreover, it extracts that the vehicle-mounted battery B is a dischargeable battery. The in-vehicle battery D is a battery that does not discharge or charge.
図7において、満充電状態での経過時間が第5所定値(例えば3時間)以上の車載バッテリについては、放電順位が最高順位となる満充電バッテリであると判断される。図7の場合は、車載バッテリAが満充電状態での経過時間が第5所定値以上なので、放電順位が最高に位置づけられる要充電バッテリとされる。また、車載バッテリB、CおよびDについては、満充電状態での経過時間が第5所定値未満なので、要放電バッテリとはされない(放電可能バッテリとされる可能性はあり)。なお、満充電であれば、満充電状態での経過時間にかかわらず、要放電バッテリとすることもできる。 In FIG. 7, an in-vehicle battery whose elapsed time in the fully charged state is a fifth predetermined value (for example, 3 hours) or more is determined to be a fully charged battery having the highest discharging order. In the case of FIG. 7, since the elapsed time when the in-vehicle battery A is in the fully charged state is equal to or longer than the fifth predetermined value, the battery is required to be charged with the highest discharge order. Moreover, about the vehicle-mounted battery B, C, and D, since the elapsed time in a full charge state is less than the 5th predetermined value, it is not made into a discharge required battery (it may be made into a dischargeable battery). In addition, if it is a full charge, it can also be set as a discharge required battery irrespective of the elapsed time in a full charge state.
図8は、車両EVが次に使用されるまでの時間(予測時間)に基づいて、放電不可バッテリを識別する例を示す。すなわち、次回使用までの時間(予測時間)が第6所定値(例えば3時間)以下の場合は、放電不可の車載バッテリとされる(放電禁止)。また、次回使用までの時間が短い車載バッテリほど、充電優先順位が高いバッテリであるとされる。 FIG. 8 shows an example in which a non-dischargeable battery is identified based on the time until the vehicle EV is next used (predicted time). That is, when the time until the next use (predicted time) is equal to or less than a sixth predetermined value (for example, 3 hours), it is determined that the vehicle battery cannot be discharged (discharge prohibited). In addition, a vehicle-mounted battery having a shorter time until next use is considered to be a battery having a higher charge priority.
ここで、図3のS1、S2で述べたように、車載バッテリの現在の状態とその過去の使用状態とを示す各種情報を総合的に判断して、放電順位を決定する一例について説明する。まず、各バッテリ毎に、次のような式(1)に基づいて、各バッテリの放電順位値Ynを求める。式中、サフィックス「n」は、車載バッテリの区別を示す。また、α1、α2,α3・・・は重み付け係数である。さらに、x1n、x2n、x3n・・・・・・は、上記各種情報毎に順位付けられた放電順位である(例えば図5〜図8に示すような情報毎の順位付け)。 Here, as described in S <b> 1 and S <b> 2 of FIG. 3, an example will be described in which various kinds of information indicating the current state of the in-vehicle battery and its past use state are comprehensively determined to determine the discharge order. First, the discharge order value Y n of each battery is obtained for each battery based on the following equation (1). In the formula, the suffix “n” indicates the distinction between in-vehicle batteries. Α1, α2, α3... Are weighting coefficients. Further, x1 n , x2 n , x3 n ... Are discharge orders ranked for each of the various information (for example, ranking for each information as shown in FIGS. 5 to 8).
Yn=α1・x1n+α2・x2n+α3・x3n+・・・・・ (1) Y n = α 1 · x 1 n + α 2 · x 2 n + α 3 · x 3 n + (1)
そして、このYnが小さい車載バッテリほど、放電順位の高い車載バッテリとされる。勿論、この放電順位の計算に際しては、放電可能バッテリと判断されたもののみが対象とされ、満充電状態での経過時間が長くて要放電バッテリとされた車載バッテリや、放電不可とされた車載バッテリは対象外であり、要放電バッテリと判断された車載バッテリは、上記計算式に基づく放電順位よりも上位順に位置づけられる。充電順位付けも、放電順位の順位付けと同じようにして行うことができる((1)式に対応した充電順位付けの計算式を利用)。 A vehicle battery with a smaller Y n is a vehicle battery with a higher discharge order. Of course, in the calculation of the discharge order, only the battery determined to be a dischargeable battery is considered, and the in-vehicle battery in which the elapsed time in the fully charged state is long and the discharge battery is required, or the in-vehicle battery that is not allowed to be discharged. The battery is not a target, and the in-vehicle battery that is determined to be a discharge battery is positioned in a higher order than the discharge order based on the above calculation formula. The charging ranking can also be performed in the same manner as the discharging ranking (using a charging ranking calculation formula corresponding to formula (1)).
以上実施形態について説明したが、本発明は、実施形態に限定されるものではなく、特許請求の範囲の記載された範囲において適宜の変更が可能であり、例えば次のような場合をも含むものである。マイクログリッドMGとしては適宜の形式のものとすることができ、例えば、図2の例において、個別発電機G2、個別蓄電機器B2を有しないものであってもよい。走行用バッテリ搭載車両EVへの充電設備は、共通電力網に接続した場合、個別電力網に接続した場合、両方の電力網に接続された場合のいずれであってもよい。 Although the embodiment has been described above, the present invention is not limited to the embodiment, and can be appropriately changed within the scope described in the scope of claims. For example, the invention includes the following cases. . The microgrid MG can be of an appropriate type. For example, the microgrid MG may not include the individual generator G2 and the individual power storage device B2 in the example of FIG. The charging equipment for the traveling battery-equipped vehicle EV may be connected to a common power grid, connected to an individual power grid, or connected to both power grids.
走行用バッテリ搭載車両EVとしては、マイクログリッド内に保有されたものに限らず、マイクログリッドとは関係のない他車両であってもよい。充電設備Cが設けられる施設としては、マイクログリッドに限らないものであり、複数の車両が同時に駐車する可能性のある種々の施設とすることができる。
The traveling battery-equipped vehicle EV is not limited to one held in the microgrid, and may be another vehicle unrelated to the microgrid. The facility where the charging facility C is provided is not limited to the microgrid, and may be various facilities where a plurality of vehicles may be parked simultaneously.
本発明は、複数の車載バッテリの蓄電量を平準化できる。 The present invention can level the amount of electricity stored in a plurality of in-vehicle batteries.
MG:マイクログリッド
EV:走行用バッテリ搭載車両
U:管理装置
G:共通発電機器
G2:個別発電機器
B:共通蓄電機器
B2:個別蓄電機器
C:充電設備
1:商用電力源
MG: Microgrid EV: Vehicle with vehicle for running U: Management device G: Common power generator G2: Individual power generator B: Common power storage device B2: Individual power storage device C: Charging equipment 1: Commercial power source
Claims (8)
複数の車載バッテリを駐車場内の電力網および情報通信網に接続する第1ステップと、
前記複数の車載バッテリの蓄電量を前記情報通信網を介して取得する第2ステップと、
前記第2ステップで得られた蓄電量に基づいて、放電可能な車載バッテリと充電すべき車載バッテリとを識別する第3ステップと、
前記第3ステップで識別された放電可能な車載バッテリからの放電可能範囲での放電によって、前記充電すべき車載バッテリへの充電を行わせる第4ステップと、
を備えていることを特徴とするバッテリの充電方法。 A battery charging method for charging an in-vehicle battery of a plurality of parked vehicles,
A first step of connecting a plurality of in-vehicle batteries to a power network and an information communication network in a parking lot;
A second step of acquiring the storage amount of the plurality of in-vehicle batteries via the information communication network;
A third step for identifying a vehicle battery that can be discharged and a vehicle battery to be charged based on the amount of electricity stored in the second step;
A fourth step of charging the in-vehicle battery to be charged by discharging in a dischargeable range from the dischargeable in-vehicle battery identified in the third step;
A battery charging method comprising:
前記第3ステップにおいて、放電可能な車載バッテリが蓄電量に応じて順位付けられ、
前記第4ステップにおいて、前記放電可能な車載バッテリのうち蓄電量が大きい順位順に充電のための放電が行われる、
ことを特徴とするバッテリの充電方法。 In claim 1,
In the third step, the in-vehicle batteries that can be discharged are ranked according to the amount of stored electricity,
In the fourth step, discharging for charging is performed in order of descending power storage amount of the on-vehicle battery that can be discharged.
A method for charging a battery.
前記情報通信網を介して得られる情報から前記複数の車載バッテリの劣化度合を判定する第5ステップをさらに有し、
前記第3ステップでは、前記放電可能な車載バッテリとして、同じ蓄電量であれば劣化度合の小さい車載バッテリを高順位とする、
ことを特徴とするバッテリの充電方法。 In claim 2,
A fifth step of determining a degree of deterioration of the plurality of in-vehicle batteries from information obtained via the information communication network;
In the third step, as the vehicle battery that can be discharged, the vehicle battery with a low degree of deterioration is ranked high as long as the stored amount of electricity is the same.
A method for charging a battery.
前記情報通信網を介して得られる情報から前記複数の車載バッテリの劣化度合を判定する第5ステップをさらに有し、
前記第3ステップでは、前記放電可能な車載バッテリとして、劣化度合の大きい車載バッテリを除外する、
ことを特徴とするバッテリの充電方法。 In claim 1 or claim 2,
A fifth step of determining a degree of deterioration of the plurality of in-vehicle batteries from information obtained via the information communication network;
In the third step, the in-vehicle battery having a high degree of deterioration is excluded as the dischargeable in-vehicle battery.
A method for charging a battery.
前記電力網が、蓄電機器と発電機器と電力消費負荷とを備えると共に商用電力源に接続されたマイクログリッド内に構成され、
前記第4ステップにおいて、前記放電可能な車載バッテリからの放電電力だけでは前記充電すべき車載バッテリへの充電電力として不足する場合に、不足分の充電電力をまず前記蓄電機器からの放電によってまかなうと共に、それでも充電電力が不足するときは前記商用電力源からの電力調達によってまかなう、
ことを特徴とするバッテリの充電方法。 In any one of Claims 1 thru | or 4,
The power network is configured in a microgrid including a power storage device, a power generation device, and a power consumption load and connected to a commercial power source,
In the fourth step, when only the discharge power from the dischargeable on-vehicle battery is insufficient as the charge power to the on-vehicle battery to be charged, the insufficient charge power is first provided by discharging from the power storage device. If the charging power is still insufficient, it will be covered by power procurement from the commercial power source.
A method for charging a battery.
前記第3ステップにおいて、前記充電すべき車載バッテリが蓄電量に基づいて順位付けられ、
前記第4ステップにおいて、前記充電すべき車載バッテリとし蓄電量の小さい順位順に充電が行われる、
ことを特徴とするバッテリの充電方法。 In any one of Claims 1 thru | or 5,
In the third step, the in-vehicle batteries to be charged are ranked based on the amount of stored electricity,
In the fourth step, charging is performed in the order of decreasing storage amount as the in-vehicle battery to be charged,
A method for charging a battery.
駐車場内に設置されると共にそれぞれ複数の車載バッテリが接続される電力網および情報通信網と、
前記複数の車載バッテリの蓄電量を前記情報通信網を介して取得する蓄電量取得手段と、
前記蓄電量取得手段によって得られた蓄電量に基づいて、放電可能な車載バッテリと充電すべき車載バッテリとを識別する識別手段と、
前記識別手段で識別された放電可能な車載バッテリからの放電可能範囲での放電によって、前記充電すべき車載バッテリへの充電を行わせる充電実行手段と、
を備えていることを特徴とするバッテリの充電システム。 A battery charging system for charging an in-vehicle battery of a plurality of parked vehicles,
A power network and an information communication network that are installed in a parking lot and connected to a plurality of in-vehicle batteries,
A storage amount acquisition means for acquiring a storage amount of the plurality of in-vehicle batteries via the information communication network;
Based on the storage amount obtained by the storage amount acquisition means, identification means for identifying a vehicle battery that can be discharged and a vehicle battery to be charged;
Charge execution means for charging the in-vehicle battery to be charged by discharging in a dischargeable range from the dischargeable in-vehicle battery identified by the identification means;
A battery charging system comprising:
前記識別手段が、放電可能な車載バッテリを蓄電量に応じて順位付けを行い、 前記充電実行手段は、前記放電可能な車載バッテリのうち蓄電量が大きい順位順に充電のための放電を行わせる、
ことを特徴とするバッテリの充電システム。 In claim 7,
The identifying means ranks the in-vehicle batteries that can be discharged according to the storage amount, and the charge execution means causes discharging for charging in descending order of the storage amount among the in-vehicle batteries that can be discharged.
A battery charging system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009294392A JP5440158B2 (en) | 2009-12-25 | 2009-12-25 | Battery charging method and charging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009294392A JP5440158B2 (en) | 2009-12-25 | 2009-12-25 | Battery charging method and charging system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011135727A JP2011135727A (en) | 2011-07-07 |
JP5440158B2 true JP5440158B2 (en) | 2014-03-12 |
Family
ID=44347864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009294392A Active JP5440158B2 (en) | 2009-12-25 | 2009-12-25 | Battery charging method and charging system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5440158B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108155656A (en) * | 2016-12-02 | 2018-06-12 | 本田技研工业株式会社 | Power transmission managing device and power transmission method |
US10464434B2 (en) | 2016-12-02 | 2019-11-05 | Honda Motor Co., Ltd. | Energy storage system, transportation unit, and method of controlling energy storage system |
WO2022045039A1 (en) * | 2020-08-25 | 2022-03-03 | 株式会社スリーダム | Information processing device, information processing system, information processing method, program, and recording medium |
EP4151456A1 (en) * | 2021-09-17 | 2023-03-22 | Prime Planet Energy & Solutions, Inc. | Power system apparatus |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5573258B2 (en) * | 2010-03-15 | 2014-08-20 | 日本電気株式会社 | Power control apparatus, power control system, storage battery control method, and program |
JP2012050222A (en) * | 2010-08-26 | 2012-03-08 | Mitsubishi Electric Corp | Charging/discharging system for automobile |
CN103493333B (en) | 2011-02-25 | 2015-11-25 | 松下电器产业株式会社 | Power storage controller, electric power storage control method, management devices, management method and electric power storage control system |
JP5842348B2 (en) * | 2011-03-18 | 2016-01-13 | 富士通株式会社 | EV cloud |
JP5675523B2 (en) * | 2011-07-22 | 2015-02-25 | 三菱電機株式会社 | Charging device, charging system and charging method |
EP2737598A4 (en) | 2011-07-26 | 2015-09-02 | Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines | |
ES2748199T3 (en) | 2011-07-26 | 2020-03-13 | Gogoro Inc | Apparatus, method and article for providing information on the availability of energy storage devices in an energy storage device collection, charging and dispensing machine |
US9129461B2 (en) * | 2011-07-26 | 2015-09-08 | Gogoro Inc. | Apparatus, method and article for collection, charging and distributing power storage devices, such as batteries |
TWI618019B (en) | 2011-07-26 | 2018-03-11 | Gogoro Inc. | Method, system and medium for portable electrical energy storage devices |
CN103857555B (en) | 2011-07-26 | 2016-11-23 | 睿能创意公司 | For providing the device of vehicle diagnostic data, method and article |
US10186094B2 (en) | 2011-07-26 | 2019-01-22 | Gogoro Inc. | Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines |
US20130030583A1 (en) * | 2011-07-29 | 2013-01-31 | Owen James E | Non-binding consumer premises energy forecast sharing in energy management system |
JP5696617B2 (en) * | 2011-08-11 | 2015-04-08 | トヨタ自動車株式会社 | Charge control device and charge control method |
JP5850672B2 (en) * | 2011-08-19 | 2016-02-03 | Ihi運搬機械株式会社 | Parking equipment |
WO2013031394A1 (en) * | 2011-09-02 | 2013-03-07 | 日本電気株式会社 | Cell control system, cell control device, cell control method, and recording medium |
JP5736546B2 (en) * | 2011-09-12 | 2015-06-17 | パナソニックIpマネジメント株式会社 | Car charge control device |
JP5728582B2 (en) | 2011-09-16 | 2015-06-03 | 株式会社日立製作所 | Power distribution device |
JP2013081289A (en) * | 2011-10-03 | 2013-05-02 | Panasonic Corp | Power controller |
JP5741385B2 (en) * | 2011-11-07 | 2015-07-01 | トヨタ自動車株式会社 | Battery charging system |
JP5919525B2 (en) * | 2011-11-22 | 2016-05-18 | パナソニックIpマネジメント株式会社 | Vehicle management system |
JP5442779B2 (en) * | 2012-01-18 | 2014-03-12 | 中国電力株式会社 | Battery charging system and charging method |
WO2013122073A1 (en) * | 2012-02-17 | 2013-08-22 | ニチユ三菱フォークリフト株式会社 | Power charging and supplying device, power charging and supplying management device, energy management system, and power charging and supplying management method |
JP5490834B2 (en) * | 2012-02-17 | 2014-05-14 | ニチユ三菱フォークリフト株式会社 | Charge / feed device, charge / feed management device, energy management system, and charge / feed management method |
CN104024539B (en) * | 2012-03-28 | 2016-10-26 | 住友重机械工业株式会社 | The voltage control method of the electric storage means of excavator and excavator |
EP2973937B1 (en) | 2013-03-15 | 2020-06-03 | Gogoro Inc. | Modular system for collection and distribution of electric storage devices |
WO2016036742A1 (en) | 2014-09-04 | 2016-03-10 | Gogoro Inc. | Apparatus, system, and method for vending, charging, and two-way distribution of electrical energy storage devices |
EP3208910A4 (en) * | 2015-08-31 | 2018-06-27 | Nichicon Corporation | Electric power supply device |
JP6570063B2 (en) * | 2015-09-04 | 2019-09-04 | ニチコン株式会社 | Power supply device |
JP2017085781A (en) * | 2015-10-28 | 2017-05-18 | 三菱電機株式会社 | Power supply system |
JP6456809B2 (en) | 2015-11-30 | 2019-01-23 | 株式会社Subaru | Vehicle power supply |
JP6783607B2 (en) * | 2016-09-29 | 2020-11-11 | 大和ハウス工業株式会社 | Utility cost estimation system |
JP6624114B2 (en) | 2017-02-21 | 2019-12-25 | トヨタ自動車株式会社 | Charge / discharge system server and charge / discharge system |
JP6922710B2 (en) * | 2017-12-11 | 2021-08-18 | トヨタ自動車株式会社 | Solar charge control device and method |
JP6982521B2 (en) * | 2018-03-07 | 2021-12-17 | 本田技研工業株式会社 | Charge management system, parking lot, and program |
JP6913196B1 (en) * | 2020-03-19 | 2021-08-04 | 東京瓦斯株式会社 | Power supply systems, information processing equipment, and programs |
JP7568475B2 (en) | 2020-10-27 | 2024-10-16 | アズビル株式会社 | Electric vehicle charging system, charge/discharge control device, and method |
JP7463338B2 (en) * | 2021-12-14 | 2024-04-08 | プライムプラネットエナジー&ソリューションズ株式会社 | Power Demand Adjustment Device |
CN115122972B (en) * | 2022-03-28 | 2023-03-14 | 北京奇稳新能源科技有限公司 | Charging system and charging and discharging control method based on common direct current bus |
CN115675172A (en) * | 2022-10-28 | 2023-02-03 | 北京胜能能源科技有限公司 | Charge-discharge integrated electric port and control method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001342654A (en) * | 2000-05-31 | 2001-12-14 | Toto Ltd | Automatic feed water device |
JP5100009B2 (en) * | 2003-02-13 | 2012-12-19 | Vpec株式会社 | Power system |
JP2007252118A (en) * | 2006-03-16 | 2007-09-27 | Chugoku Electric Power Co Inc:The | Power supplying facility and power supplying method |
JP4572850B2 (en) * | 2006-03-24 | 2010-11-04 | 株式会社日立製作所 | Power control device |
JP4333798B2 (en) * | 2007-11-30 | 2009-09-16 | トヨタ自動車株式会社 | Charge control device and charge control method |
JP5601770B2 (en) * | 2008-12-09 | 2014-10-08 | 三菱重工業株式会社 | Voltage equalization apparatus, method, program, and power storage system |
-
2009
- 2009-12-25 JP JP2009294392A patent/JP5440158B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108155656A (en) * | 2016-12-02 | 2018-06-12 | 本田技研工业株式会社 | Power transmission managing device and power transmission method |
US10464434B2 (en) | 2016-12-02 | 2019-11-05 | Honda Motor Co., Ltd. | Energy storage system, transportation unit, and method of controlling energy storage system |
US10814741B2 (en) | 2016-12-02 | 2020-10-27 | Honda Motor Co., Ltd. | Power transmission management apparatus and power transmission method |
WO2022045039A1 (en) * | 2020-08-25 | 2022-03-03 | 株式会社スリーダム | Information processing device, information processing system, information processing method, program, and recording medium |
EP4151456A1 (en) * | 2021-09-17 | 2023-03-22 | Prime Planet Energy & Solutions, Inc. | Power system apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2011135727A (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5440158B2 (en) | Battery charging method and charging system | |
US10913371B2 (en) | Electricity management device, electricity management method, and electricity distribution system inside a house with electricity generating device, utility grid connection, and electric vehicle containing a rechargeable battery in a vehicle-to-grid connection with counter device | |
JP7448578B2 (en) | Management device, management method, and program | |
Azadfar et al. | The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour | |
JP6062682B2 (en) | Travel management system with renewable energy | |
JP6160928B2 (en) | In-vehicle device and charge / discharge system | |
JP7111078B2 (en) | electric vehicle | |
US20180345808A1 (en) | Vehicle charging station having degraded energy storage units for charging an incoming vehicle and methods thereof | |
CA2952372C (en) | Electric vehicle charging to reduce utility cost | |
US10483770B2 (en) | Vehicle charging station having degraded energy storage units and methods thereof | |
TW201331066A (en) | Systems and methods for battery life maximization under fixed-route applications | |
JP5446830B2 (en) | Electric power price management system | |
WO2012173194A1 (en) | Charging system, power management server, vehicle management server, and power management program | |
JP5164184B2 (en) | Energy management system | |
JP2013005540A (en) | Power supply system | |
JP5490834B2 (en) | Charge / feed device, charge / feed management device, energy management system, and charge / feed management method | |
JP2011130575A (en) | Method and system for charging battery | |
JP6445908B2 (en) | Power distribution system and power distribution method | |
TW201230599A (en) | Systems and methods for equivalent rapid charging with different energy storage configurations | |
JP2012175791A (en) | Electric power supply system | |
JP2013099140A (en) | Power management system, power management method, and program | |
JPWO2012020756A1 (en) | Power control device | |
JP2012123637A (en) | Charge controller, control method of charge controller, charge/discharge controller, control method of charge/discharge controller, control program, and recording medium | |
JP2015220862A (en) | Power management system | |
JP2011101520A (en) | Power demand and supply control system in microgrid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5440158 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |