JP5334299B2 - Sample test tube cooling / cooling device, system having the device, and method of using the device - Google Patents
Sample test tube cooling / cooling device, system having the device, and method of using the device Download PDFInfo
- Publication number
- JP5334299B2 JP5334299B2 JP2009019128A JP2009019128A JP5334299B2 JP 5334299 B2 JP5334299 B2 JP 5334299B2 JP 2009019128 A JP2009019128 A JP 2009019128A JP 2009019128 A JP2009019128 A JP 2009019128A JP 5334299 B2 JP5334299 B2 JP 5334299B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- test tube
- inner box
- holding member
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 301
- 238000012360 testing method Methods 0.000 title claims abstract description 166
- 238000000034 method Methods 0.000 title claims description 11
- 239000011232 storage material Substances 0.000 claims abstract description 82
- 238000003860 storage Methods 0.000 claims abstract description 16
- 210000004369 blood Anatomy 0.000 claims description 110
- 239000008280 blood Substances 0.000 claims description 110
- 238000007710 freezing Methods 0.000 claims description 38
- 230000008014 freezing Effects 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 33
- 238000012546 transfer Methods 0.000 claims description 23
- 239000004020 conductor Substances 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 239000003507 refrigerant Substances 0.000 claims 2
- 238000005057 refrigeration Methods 0.000 abstract 2
- 238000009413 insulation Methods 0.000 description 38
- 229910052782 aluminium Inorganic materials 0.000 description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 26
- 239000000463 material Substances 0.000 description 23
- 229920003023 plastic Polymers 0.000 description 13
- 239000004033 plastic Substances 0.000 description 13
- 230000008859 change Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 239000005457 ice water Substances 0.000 description 9
- 239000004475 Arginine Substances 0.000 description 8
- 229910001369 Brass Inorganic materials 0.000 description 8
- 206010018910 Haemolysis Diseases 0.000 description 8
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 8
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 8
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 8
- 150000001413 amino acids Chemical class 0.000 description 8
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 8
- 239000010951 brass Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000008588 hemolysis Effects 0.000 description 8
- 229960003104 ornithine Drugs 0.000 description 8
- 238000007689 inspection Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- -1 for example Polymers 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 229920006327 polystyrene foam Polymers 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 238000004321 preservation Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920006328 Styrofoam Polymers 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 239000008261 styrofoam Substances 0.000 description 3
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229920006248 expandable polystyrene Polymers 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 102000004452 Arginase Human genes 0.000 description 1
- 108700024123 Arginases Proteins 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 229920002274 Nalgene Polymers 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920000247 superabsorbent polymer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L9/00—Supporting devices; Holding devices
- B01L9/06—Test-tube stands; Test-tube holders
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/02—Preservation of living parts
- A01N1/0236—Mechanical aspects
- A01N1/0242—Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
- A01N1/0252—Temperature controlling refrigerating apparatus, i.e. devices used to actively control the temperature of a designated internal volume, e.g. refrigerators, freeze-drying apparatus or liquid nitrogen baths
- A01N1/0257—Stationary or portable vessels generating cryogenic temperatures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/02—Water baths; Sand baths; Air baths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/50—Cryostats
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/02—Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
- F25D3/06—Movable containers
- F25D3/08—Movable containers portable, i.e. adapted to be carried personally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1838—Means for temperature control using fluid heat transfer medium
- B01L2300/185—Means for temperature control using fluid heat transfer medium using a liquid as fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1894—Cooling means; Cryo cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/082—Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2303/00—Details of devices using other cold materials; Details of devices using cold-storage bodies
- F25D2303/08—Devices using cold storage material, i.e. ice or other freezable liquid
- F25D2303/084—Position of the cold storage material in relationship to a product to be cooled
- F25D2303/0843—Position of the cold storage material in relationship to a product to be cooled on the side of the product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D31/00—Other cooling or freezing apparatus
- F25D31/006—Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
本発明は、血液等の採取検体を検体試験管内で短時間に冷却し、かつ、所定温度範囲において所定時間保冷する機能を有する冷却・保冷装置に関し、さらに当該試験管冷却・保冷装置の蓄冷剤を所定の時間サイクルで凝固点温度に凍結し、使用時に蓄冷剤の凝固点温度に調整することのできる専用冷凍機を含む検体試験管冷却保冷システムに関する。 The present invention relates to a cooling / cooling device having a function of cooling a collected specimen such as blood in a specimen test tube in a short time and keeping it cool in a predetermined temperature range for a predetermined time, and further, a cold storage agent for the test tube cooling / cooling device The present invention relates to a specimen test tube cooling and cooling system including a dedicated refrigerator that can be frozen at a freezing point temperature in a predetermined time cycle and adjusted to the freezing point temperature of the cold storage agent during use.
たとえば、病院や診療所で患者あるいは受診者から採取した血液などの検体は、検査対象となる成分の変性を防止するため、速やかに冷却され、検査に供されるまで低温で保存することが必要である。しかし、医療機関の検査部門あるいは検査会社が、検体を受領した後は厳格な温度管理がなされているものの、採血などの検体採取時から検査部門あるいは検査会社が受領するまでの間は、医療機関等により検体の保管状況は異なり、室温で放置されることも多い。個人医院や地方の診療所等、外部機関へ検査依頼しなければいけない医療機関、また、自己の医療機関で検査はできるが、例えば、大人数から採血し、採血時から検査時まで時間を要するような場合は、特に血液検体の適正温度管理が必要となる。 For example, specimens such as blood collected from patients or doctors in hospitals and clinics need to be quickly cooled and stored at low temperatures until they are used for testing in order to prevent denaturation of the components to be tested. It is. However, although the strict temperature control is performed after the sample is received by the inspection department or inspection company of the medical institution, the medical institution between the time of collecting the sample such as blood collection and the reception of the inspection department or inspection company. The storage conditions of specimens vary depending on the situation, and are often left at room temperature. Although it is possible to test at a medical institution that requires an external organization such as a private clinic or a local clinic, or at your own medical institution, for example, blood is collected from a large number of people, and it takes time from the time of blood collection to the time of inspection. In such a case, it is particularly necessary to manage the appropriate temperature of the blood sample.
一般に、採血後の温度管理手段としては、氷水による冷却・保冷が挙げられる。氷水は採血管の冷却速度が速い点が優れているが、氷の準備に手間が掛かること、長時間の保冷の間に氷が融けて温度が上昇すること、検体の輸送には不便である等の課題があり、必ずしも行われていない。 In general, as a temperature management means after blood collection, cooling / cooling with ice water can be mentioned. Ice water is superior in that the cooling speed of the blood collection tube is fast, but it takes time to prepare the ice, the ice melts during long-term cooling, and the temperature rises, and it is inconvenient for transporting the specimen However, it is not always done.
図14に示す、市販の採血管冷却・保冷装置30では、容器本体31および蓋32がいずれもプラスチック製(ポリカーボネート製)であって、熱伝導性の部材を有していない。つまり、冷却性能と保冷性能を兼備していないので、採血管の冷却速度が遅く、しかも所定温度域まで到達しても保冷時間が短く、さらに穴状の採血管保持部の位置による冷却速度、保冷時間のばらつきがある。その結果、血液検査までの過程で血液の温度が上昇し、検体対象の成分が変性してしまい、正しい検査結果が得られないことがある。 In the commercially available blood collection tube cooling / cooling device 30 shown in FIG. 14, the container body 31 and the lid 32 are both made of plastic (made of polycarbonate) and do not have a heat conductive member. In other words, since the cooling performance and the cooling performance are not combined, the cooling rate of the blood collection tube is slow, and even if it reaches the predetermined temperature range, the cooling time is short, and the cooling rate due to the position of the hole-shaped blood collection tube holding part, There are variations in the cooling time. As a result, the blood temperature rises in the process up to the blood test, the sample target component is denatured, and a correct test result may not be obtained.
先行技術として、液体状の検体を冷却保冷装置の保持部に挿入して冷却し、保冷する装置が提案されている。 As a prior art, an apparatus has been proposed in which a liquid specimen is inserted into a holding unit of a cooling and cooling apparatus to cool and cool the specimen.
特許文献1、2、3及び4記載の発明は、蓄冷剤を容器に格納し、容器上面に検体試験管を挿入する保持部を設け、検体試験管を冷却・保冷するというものである。特許文献5及び6記載の発明は、直線上に配置されている複数の保持部を有し、当該保持部の中心部分で垂直方向に分割した形状の蓄冷剤格納容器にかかわり、凹部面を組み合わせることによって検体試験管の保持部を構成するようユニット化したものである。これにより、必要な保持部の数に応じた採血管冷却・保冷装置として機能させるというものである。 The inventions described in Patent Documents 1, 2, 3, and 4 store a cold storage agent in a container, provide a holding portion for inserting a specimen test tube on the upper surface of the container, and cool and cool the specimen test tube. The inventions described in Patent Documents 5 and 6 have a plurality of holding portions arranged on a straight line, relate to a regenerator storage container having a shape divided in the vertical direction at the center portion of the holding portion, and combine concave portions. Thus, the unit is formed so as to constitute the holding portion of the specimen test tube. Thereby, it is made to function as a blood-collecting-tube cooling / cooling apparatus according to the required number of holding | maintenance parts.
特許文献1〜4記載の発明については、検体試験管の保持部を熱伝導性の材料で構成することについて記載しておらず、熱伝導性の天板および断熱構造のいずれも開示していない。したがって、保冷性能が不十分であること、また、蓄冷剤を用いる場合には、保持部の位置による温度差が生じ、冷却速度および保冷時間にばらつきが生じるという課題がある。 The inventions described in Patent Documents 1 to 4 do not describe that the holding portion of the specimen test tube is made of a heat conductive material, and neither the heat conductive top plate nor the heat insulating structure is disclosed. . Therefore, there is a problem that the cold insulation performance is insufficient, and when a cold storage agent is used, a temperature difference occurs depending on the position of the holding unit, and the cooling rate and the cold insulation time vary.
特許文献5および6記載の発明については、検体試験管の保持部および容器がプラスチック製であるので、熱伝導性が低く、また、熱伝導性の天板を備えていないため、採血管の冷却速度が遅く、保持部の位置による温度差が生じ、冷却速度および保冷時間にばらつきが生じるという課題がある。また、特許文献5に記載の発明は、断熱構造を備えていないため、保冷性能が不十分である。 In the inventions described in Patent Documents 5 and 6, since the holding part and the container of the specimen test tube are made of plastic, the heat conductivity is low and the heat conducting top plate is not provided. There is a problem that the speed is low, a temperature difference is generated depending on the position of the holding unit, and the cooling speed and the cooling time are varied. Moreover, since the invention described in Patent Document 5 does not include a heat insulating structure, the cold insulation performance is insufficient.
特許文献1〜6記載の発明については、いずれもそれ自体が冷却装置を有していないため、容器に格納する蓄冷剤などの保冷媒体を予め冷却しておくことが必要となる。市販の冷凍庫は−20℃付近に温度が制御されているので、冷凍庫から取り出したばかりの冷却装置の温度は−20℃付近と低いため、血液など水を主成分とする0℃付近に凝固温度を持つ検体を直ぐに冷却すると凍結してしまう。そのため、冷凍庫から取り出した冷却装置は、0℃付近まで温度が上昇するのを待たないと使用することができない。ここに示した特許文献1〜6記載の発明では、装置を冷凍庫から取り出した後、0℃付近まで加温する仕組みが備わっておらず、臨床現場で使用する上で使い勝手が悪い。 As for the inventions described in Patent Documents 1 to 6, since none of them has a cooling device, it is necessary to cool in advance a cooling medium such as a cold storage agent stored in a container. Since the temperature of a commercial freezer is controlled at around -20 ° C, the temperature of the cooling device just taken out from the freezer is as low as around -20 ° C. If the specimen is immediately cooled, it will freeze. Therefore, the cooling device taken out from the freezer cannot be used unless waiting for the temperature to rise to around 0 ° C. In the inventions described in Patent Documents 1 to 6 shown here, there is no mechanism for heating up to around 0 ° C. after taking out the device from the freezer, so that it is inconvenient for use in clinical settings.
以上のように、従来技術には、装置を冷凍庫から取り出し後、0℃までの急速加温する仕組みを備え、採血管の急速冷却性能と長時間保冷性能という、相反する二つの性能を同時に満たしうる装置の開示はないため、臨床現場で使用できる、簡便で、優れた検体試験管冷却・保冷装置および冷却・保冷方法の実現が望まれていた。
さらに、最近、血液中のアミノ酸量を測定し、これを統計的に解析することで、疾病の有無や病態の進行度を診断するシステムの開発が進んでいる。血液中のアミノ酸の中には、温度変化に敏感で、温度上昇による酵素反応の活性化により、分解あるいは新たに生成することで血液中濃度が変化するものがある。例えば、アルギニンは、血液中に存在するアルギナーゼの働きにより、直ぐにオルニチンに変換されてしまう。そのため、血液中のアルギニンやオルニチンの精確な分析のためには、採血後、直ぐに冷却を開始し、10分以内に5℃以下まで内部温度を低下させる必要がある。更に0℃付近まで低下させれば、6時間後まで血液中濃度をほとんど変化させずに血液を保管することが可能である。このように、温度感受性の高いアミノ酸の血液中濃度を精確に測定するために、採取された血液を、採血直後に急速に冷却し、かつ、長時間、安定した温度で保冷できる装置が望まれていた。
As described above, the conventional technology is equipped with a mechanism to quickly warm up to 0 ° C after removing the device from the freezer, and simultaneously satisfies two contradictory performances: rapid cooling performance of the blood collection tube and long-term cooling performance. Therefore, there has been a demand for a simple and excellent specimen test tube cooling / cooling device and cooling / cooling method that can be used in clinical settings.
Furthermore, recently, the development of a system for diagnosing the presence or absence of a disease and the degree of progression of a disease state by measuring the amount of amino acids in blood and statistically analyzing the amino acid amount is progressing. Some amino acids in blood are sensitive to changes in temperature, and the concentration in the blood changes when decomposed or newly generated by the activation of an enzyme reaction due to temperature rise. For example, arginine is immediately converted to ornithine by the action of arginase present in blood. Therefore, for accurate analysis of arginine and ornithine in blood, it is necessary to start cooling immediately after blood collection and to reduce the internal temperature to 5 ° C. or less within 10 minutes. If the temperature is further lowered to around 0 ° C., it is possible to store blood with almost no change in blood concentration until 6 hours later. Thus, in order to accurately measure the blood concentration of temperature-sensitive amino acids, a device that can cool the collected blood immediately after blood collection and keep it at a stable temperature for a long time is desired. It was.
本発明は、上記の従来の課題を解決し、臨床現場などで使用できる、簡便かつ優れた検体試験管冷却・保冷装置を提供するものである。 The present invention solves the above-described conventional problems and provides a simple and excellent specimen test tube cooling / cooling device that can be used in clinical settings.
すなわち、本発明は、採取した血液などの検体を急速に0℃付近まで冷却できる装置を提供するものである。 That is, the present invention provides an apparatus capable of rapidly cooling a sample such as collected blood to near 0 ° C.
また、本発明は、冷却した検体が臨床検査等に供されるまでの間、0℃付近で長時間保冷できる装置を提供するものである。 In addition, the present invention provides an apparatus that can be kept cool at around 0 ° C. for a long time until the cooled specimen is subjected to a clinical test or the like.
また、本発明は、血液などの検体を冷却または保冷する際に、採血管等の試験管の保持位置の違い、すなわち挿入位置の違いにより保冷状態にばらつきが生じない装置を提供するものである。 The present invention also provides an apparatus that does not vary in the cold state due to a difference in holding position of a test tube such as a blood collection tube, that is, a difference in insertion position when a specimen such as blood is cooled or kept cold. .
また、本発明は、冷凍庫から取り出した後、直ぐに使用可能な試験管冷却・保冷装置を提供するものである。 The present invention also provides a test tube cooling / cooling device that can be used immediately after removal from the freezer.
また、本発明は、検体として血液を冷却または保冷する際に、採血管に収容された血液などが凍結又は溶血しない装置を提供するものである。 The present invention also provides an apparatus in which blood stored in a blood collection tube is not frozen or hemolyzed when blood is cooled or kept as a specimen.
また、本発明は、上述の課題を解決するための試験管冷却・保冷装置を冷凍庫に投入し、短時間で内部の蓄冷剤を凍結させるシステムを提供するものである。 In addition, the present invention provides a system in which a test tube cooling / cooling device for solving the above-described problems is put into a freezer and an internal regenerator is frozen in a short time.
また、本発明は、蓄冷剤が凍結した試験管冷却保冷装置を冷凍庫から取り出すと直ぐに使用できるシステムを提供するものである。 In addition, the present invention provides a system that can be used as soon as a test tube cooling and cold-reserving device in which a regenerator is frozen is taken out of a freezer.
また、本発明は、試験管・冷却保冷装置中の蓄冷剤を凍結させる際、蓄冷剤が膨張し本装置の容器が変形するのを防止する装置を提供するものである。 The present invention also provides an apparatus that prevents the cool storage agent from expanding and deforming the container of the present apparatus when freezing the cool storage agent in the test tube / cooling and cooling apparatus.
また、本発明は、精密な保冷条件が必須とされる血液中のアミノ酸量の精密分析に有用な装置を提供するものである。 The present invention also provides an apparatus useful for precise analysis of the amount of amino acids in blood, which requires precise cold preservation conditions.
すなわち、本発明は以下の通りである。
(1)天面が開口した断熱構造の容器と、容器の開口を覆う、複数の開口部が形成された熱伝導性の天板と、複数の開口部から容器の内部方向に突出し、検体試験管を保持する熱伝導性の保持部材と、容器の内部に充填される蓄冷剤を有する検体試験管冷却・保冷装置。
(2)天板を覆う着脱可能な断熱蓋をさらに備え、断熱蓋は複数の開口部の位置に開口が形成されており、蓄冷剤の凍結時には取り外すことができ、天板を直接冷却することで、蓄冷剤を冷凍することができる上記(1)記載の冷却・保冷装置。
(3)断熱構造の容器が、断熱外箱と、断熱外箱に収容される内箱を備え、天板と保持部材が内箱に装着され、内箱が蓄冷剤を収容する、上記(1)または(2)記載の冷却・保冷装置。
(4)内箱が熱伝導性である上記(3)記載の冷却・保冷装置。
(5)外箱と内箱とが着脱可能であり、内箱のみを冷凍庫に入れることができる、上記(3)または(4)記載の冷却・保冷装置。
(6)容器内に、蓄冷剤と接触して設置される弾性体をさらに備え、弾性体は凍結時における蓄冷剤の体積膨張による容器内の内圧上昇を抑制することができる上記(1)〜(5)のいずれかに記載の冷却・保冷装置。
(7)内箱内に、蓄冷剤と接触して設置される弾性体をさらに備え、弾性体は凍結時における蓄冷剤の体積膨張による内箱内の内圧上昇を抑制することができる上記(3)〜(5)のいずれかに記載の冷却・保冷装置。
(8)弾性体が多孔質弾性体である上記(6)または(7)記載の冷却・保冷装置。
(9)容器内の内箱に隣接する位置に設けられた加熱プレートをさらに備え、加熱プレートが冷凍された内箱と接触することにより、速やかに内箱温度を0℃付近まで上昇させることが可能な上記(3)〜(8)のいずれかに記載の冷却・保冷装置。
(10)加熱プレートが、熱伝導性材料からなるケースと、ケース内に封入された蓄冷剤とを有する上記(9)記載の冷却・保冷装置。
(11)天板に接合された伝熱板をさらに有し、伝熱板が複数の前記保持部材に対向して設けられた上記(1)〜(10)のいずれかに記載の冷却・保冷装置。
(12)保持部材の内面が、検体試験管の外周部と密接する上記(1)〜(11)のいずれかに記載の冷却・保冷装置。
(13)保持部材の内面が、検体試験管の外周部の傾斜角と同一の傾斜角を有するテーパ形状、または段差形状を有し、テーパ形状部または段差形状部で保持部材と検体試験管が線状に密接する上記(1)〜(12)のいずれかに記載の冷却・保冷装置。
(14)容器を傾けて保持することのできる機構を有する上記(1)〜(12)のいずれかに記載の冷却・保冷装置。
(15)保持部材の先端が内箱底部と接触している上記(3)〜(14)のいずれかに記載の冷却・保冷装置。
(16)蓄冷剤が、検体の冷却下限温度と同一の凝固温度を持つ蓄冷剤である上記(1)〜(15)のいずれかに記載の冷却・保冷装置。
(17)蓄冷剤の凝固温度が−2℃以上4℃以下である上記(1)〜(16)のいずれかに記載の冷却・保冷装置。
(18)上記(1)〜(17)のいずれかに記載の検体試験管冷却・保冷装置と、該冷却・保冷装置の熱伝導性の天板を直接冷却することで、蓄冷剤を冷凍することができる専用の冷凍庫を有する検体試験管冷却・保冷システム。
(19)検体試験管保冷・冷却装置を1台または複数台備え、保冷・冷却装置を使用する時間サイクルに合わせて冷凍庫の温度制御を行う制御部をさらに有する上記(18)記載の冷却・保冷システム。
(20)前記蓄冷剤の温度と、検体試験管を保持する保持部材の内表面の温度を検出することができる温度センサーを備え、温度センサーは、血液保管時の温度と蓄冷剤の凍結速度をモニターし、制御部は温度センサーから受信した信号に基づいて冷凍庫を制御する上記(19)記載の冷却・保冷システム。
That is, the present invention is as follows.
(1) A container having a heat insulating structure with an open top surface, a thermally conductive top plate that covers the opening of the container and in which a plurality of openings are formed, and protrudes from the plurality of openings toward the inside of the container to perform a specimen test. A specimen test tube cooling / cooling device having a heat conductive holding member for holding a tube and a cold storage agent filled in the container.
(2) It is further provided with a removable heat insulating cover that covers the top plate, and the heat insulating cover is formed with openings at a plurality of openings, and can be removed when the regenerator is frozen, and the top plate is directly cooled. The cooling / cooling device according to (1), wherein the regenerator can be frozen.
(3) A container having a heat insulating structure includes a heat insulating outer box and an inner box accommodated in the heat insulating outer box, the top plate and the holding member are mounted on the inner box, and the inner box accommodates the regenerator (1) ) Or (2).
(4) The cooling / cooling device according to (3), wherein the inner box is thermally conductive.
(5) The cooling / cooling device according to (3) or (4) above, wherein the outer box and the inner box are detachable, and only the inner box can be put in the freezer.
(6) The container further includes an elastic body installed in contact with the cold storage agent, and the elastic body can suppress an increase in internal pressure due to volume expansion of the cold storage agent during freezing. (5) The cooling / cooling device according to any one of (5).
(7) The inner box further includes an elastic body installed in contact with the cold storage agent, and the elastic body can suppress an increase in internal pressure in the inner box due to volume expansion of the cold storage agent during freezing (3 ) To (5).
(8) The cooling / cooling device according to the above (6) or (7), wherein the elastic body is a porous elastic body.
(9) A heating plate provided at a position adjacent to the inner box in the container is further provided, and when the heating plate comes into contact with the frozen inner box, the inner box temperature can be quickly raised to around 0 ° C. The cooling / cooling device according to any one of the above (3) to (8).
(10) The cooling / cooling device according to (9), wherein the heating plate includes a case made of a heat conductive material and a cold storage agent enclosed in the case.
(11) The cooling / cold holding according to any one of (1) to (10), further including a heat transfer plate joined to the top plate, wherein the heat transfer plate is provided to face the plurality of holding members. apparatus.
(12) The cooling / cooling device according to any one of (1) to (11), wherein the inner surface of the holding member is in close contact with the outer periphery of the specimen test tube.
(13) The inner surface of the holding member has a taper shape or step shape having the same inclination angle as that of the outer peripheral portion of the sample test tube, and the holding member and the sample test tube are formed at the taper shape portion or the step shape portion. The cooling / cooling device according to any one of (1) to (12), which is in close contact with a linear shape.
(14) The cooling / cooling device according to any one of (1) to (12), wherein the cooling / cooling device has a mechanism that can hold the container at an angle.
(15) The cooling / cooling device according to any one of (3) to (14), wherein the tip of the holding member is in contact with the bottom of the inner box.
(16) The cooling / cooling device according to any one of (1) to (15), wherein the cold storage agent is a cold storage agent having the same solidification temperature as the cooling lower limit temperature of the specimen.
(17) The cooling / cooling device according to any one of (1) to (16) above, wherein a solidification temperature of the regenerator is −2 ° C. or higher and 4 ° C. or lower.
(18) Freezing the regenerator by directly cooling the specimen test tube cooling / cooling device according to any one of (1) to (17) and the heat conductive top plate of the cooling / cooling device. Specimen test tube cooling / cooling system with dedicated freezer.
(19) The cooling / cold holding according to (18) above, further comprising a control unit that includes one or a plurality of specimen test tube cooling / cooling devices, and that controls a temperature of the freezer in accordance with a time cycle in which the cold holding / cooling devices are used. system.
(20) A temperature sensor capable of detecting the temperature of the cold storage agent and the temperature of the inner surface of the holding member that holds the specimen test tube is provided, and the temperature sensor determines the temperature during blood storage and the freezing rate of the cold storage agent. The cooling / cooling system according to (19), wherein the monitoring and control unit controls the freezer based on a signal received from the temperature sensor.
本発明は、熱伝導性能と断熱性能という、相反する性質を1つの装置で兼備するものである。また、冷凍庫から取り出した後、直ぐに使用でき、採取した血液などの検体を収容する試験管を急速に冷却し、かつ所定時間保冷することができる試験管冷却・保冷装置と専用冷凍機から構成される検体試験管冷却保冷システムを提供することができるため、正確な血液成分の検査などが可能となる。 The present invention combines the conflicting properties of heat conduction performance and heat insulation performance in a single device. In addition, it consists of a test tube cooling / cooling device and a dedicated refrigerator that can be used immediately after removal from the freezer, rapidly cools the test tube containing the collected sample such as blood, and keeps it cool for a predetermined time. Therefore, it is possible to accurately test blood components.
本発明の検体試験管保冷・冷却装置は、水、高吸水性ポリマーのゲルなどの蓄冷剤を容器に充填し、採血管などの検体試験管と直接接触する保持部材を熱伝導性の材料で作製することで、血液などの検体を急速に冷却することを可能とした装置である。さらに、容器を断熱構造とし、開口した上面(または天面)を断熱蓋で覆うことで、蓄冷剤を低温に保つとともに、複数ある保持部材間の温度差を軽減することができる。このように、本発明は熱伝導性と断熱性という二つの相反する性質を兼備する装置を提供できるものであり、該装置を用いることにより採取血液の急速冷却と長時間保冷を実現することができる。 The specimen test tube cooling / cooling device of the present invention fills a container with a cold storage agent such as water or a gel of a superabsorbent polymer, and the holding member that directly contacts the specimen test tube such as a blood collection tube is made of a heat conductive material. It is an apparatus that can rapidly cool a specimen such as blood by being manufactured. Furthermore, by making the container into a heat insulating structure and covering the opened upper surface (or top surface) with a heat insulating lid, the cold storage agent can be kept at a low temperature and the temperature difference between the plurality of holding members can be reduced. As described above, the present invention can provide a device having two contradictory properties of thermal conductivity and heat insulation. By using the device, rapid cooling of collected blood and long-term cooling can be realized. it can.
容器の全面を断熱構造にした場合、保冷能力が向上することが期待されるが、反面、蓄冷剤が凍結するまでの時間が非常に長くなる。本発明の一実施態様に示す着脱可能な断熱蓋は、この問題を解決することができる。すなわち、検体試験管の保冷時には断熱蓋を装着することで保冷能力が向上し、蓄冷剤冷却時には断熱蓋を外して熱伝導性の天板を直接冷却することで、短時間に蓄冷剤を凍結させることができる。また、別の実施態様に示すように、内箱を着脱可能とすることで、内箱のみを冷凍庫で凍結させることが可能となり、内部の蓄冷剤はより短時間で凍結させることができる。 When the entire surface of the container has a heat insulating structure, it is expected that the cold insulation capacity is improved, but on the other hand, the time until the cold storage agent freezes becomes very long. The removable heat insulating lid shown in one embodiment of the present invention can solve this problem. In other words, the insulation capacity is improved by attaching a thermal insulation lid when the specimen test tube is kept cool, and the thermal storage top plate is directly cooled by removing the thermal insulation lid when the cold storage agent is cooled, thereby freezing the cold storage agent in a short time. Can be made. Moreover, as shown in another embodiment, by making the inner box detachable, only the inner box can be frozen in a freezer, and the internal regenerator can be frozen in a shorter time.
蓄冷剤を急速冷却するには、例えば、当該装置を上下反転し直接熱伝導性の天板を冷凍庫内に設置した熱伝導率の高いアルミニウム板に接触させることが効果的である。反転により、蓄冷剤は天板側に集積し、筒状保持部材を覆うようにして凍結するため、より短時間で蓄冷剤を凍結させることができる。 In order to rapidly cool the regenerator, for example, it is effective to turn the device upside down and directly contact the heat conductive top plate with the aluminum plate having high thermal conductivity installed in the freezer. By reversing, the cool storage agent accumulates on the top plate side and freezes so as to cover the cylindrical holding member, so that the cool storage agent can be frozen in a shorter time.
たとえば、採血管上部が熱伝導性の保持部材に直接接触している場合、採血管の蓋付近に付着している微量血液が過冷却され、凍結あるいは溶血を起こすことがある。保持部材の位置に開口部を持つ断熱構造の断熱蓋を使用した場合、過冷却を防ぐことができて、血液の凍結あるいは溶血を起しにくい。 For example, when the upper part of the blood collection tube is in direct contact with the heat conductive holding member, a minute amount of blood adhering to the vicinity of the lid of the blood collection tube may be supercooled, causing freezing or hemolysis. When a heat insulating cover having a heat insulating structure having an opening at the position of the holding member is used, overcooling can be prevented and it is difficult for blood to freeze or hemolyze.
断熱構造としては、容器全体が断熱材(発泡スチロール、ポリウレタンなど)や断熱二重構造体で形成される場合に加えて、金属、ガラス、プラスチックなどで作製された内箱の底部および側部を断熱材や断熱二重構造体で覆う構造を含む。断熱二重構造体は、真空断熱構造、もしくは断熱材をサンドイッチした構造を有するものが望ましい。サンドイッチされる断熱材として、無機繊維(ガラス繊維、ロックウールなど)、発泡プラスチック(ポリスチレンフォーム、ポリウレタンフォームなど)、天然素材系素材(セルロースなど)、ミクロバルーンなどを用いることができる。いずれの断熱材も乾燥空気に匹敵する熱伝導率(0.024W/m/K)を有しているので、どの材料を用いてもよい。 In addition to the case where the entire container is formed of a heat insulating material (such as polystyrene foam or polyurethane) or a heat insulating double structure, the bottom and sides of the inner box made of metal, glass, plastic, etc. are insulated. Includes a structure covered with a material or a heat insulating double structure. The heat insulating double structure is preferably a vacuum heat insulating structure or a structure in which a heat insulating material is sandwiched. As a heat insulating material to be sandwiched, inorganic fiber (glass fiber, rock wool, etc.), foamed plastic (polystyrene foam, polyurethane foam, etc.), natural material (cellulose, etc.), microballoon, etc. can be used. Any heat insulating material has a thermal conductivity (0.024 W / m / K) comparable to dry air, and any material may be used.
蓄冷剤は凍結時に膨張し、容器を変形させる可能性がある。容器の膨張を防止するために、封入する蓄冷剤を減量する手法も考えられるが、一般に蓄冷剤は常温で粘性の高いゲル状であるため、沈降静置しにくく、減量させる方法では十分な変形防止効果は得られない。そこで、本発明の一実施態様は、体積膨張を吸収する素材、例えば、弾性体を容器の中に蓄冷剤とともに装着している。弾性体が蓄冷剤の膨張・収縮にあわせて変形することにより、凍結時の蓄冷剤の膨張により容器の内圧が上昇して容器自体が膨張することを防ぐとともに、蓄冷剤の融解時には収縮による空隙形成を防止し、冷却効率の低下を防止することができる。なお、弾性体としては、天然ゴムや各種の合成ゴムなどを用いることができるが、大きな弾性変形を許容できる多孔質弾性体(発泡スチロール、発泡ポリウレタンなど)が特に好ましい。 The cold storage agent expands when frozen and can deform the container. In order to prevent the expansion of the container, a method of reducing the amount of the cool storage agent to be enclosed may be considered, but since the cool storage agent is generally a viscous gel at normal temperature, it is difficult to settle and the method of reducing the amount is sufficient. The prevention effect cannot be obtained. Therefore, in one embodiment of the present invention, a material that absorbs volume expansion, for example, an elastic body is mounted in a container together with a cold storage agent. The elastic body deforms in accordance with the expansion / contraction of the cool storage agent, so that the internal pressure of the container rises due to the expansion of the cool storage agent during freezing and prevents the container itself from expanding. Formation can be prevented and a reduction in cooling efficiency can be prevented. As the elastic body, natural rubber or various synthetic rubbers can be used, but porous elastic bodies (such as foamed polystyrene and foamed polyurethane) that can tolerate large elastic deformation are particularly preferable.
本発明の一実施態様は、断熱容器内部に熱伝導性の加熱プレートを備えたものである。加熱プレートを設置していない断熱性容器の場合、家庭用冷凍庫で凍結させた内箱を当該容器に挿入後、0℃付近になるまで断熱蓋を開けるか取り外す等して、温度が上昇するのを待つ必要がある。一方、断熱容器内部に加熱プレートを設置することで、凍結した内箱を挿入した後、速やかに加熱プレートから内箱に熱を伝え、短時間で0℃付近まで内箱温度を上昇させることができる。加熱プレートは、内箱に隣接する面が熱伝導性材料からなる平板状の部材であれば好ましく、熱伝導性材料に隣接して熱容量の大きな素材をさらに備えても良い。加熱プレートとして、例えば、ケースを熱伝導性の良い金属で作成し、ケース内部に蓄冷剤を封入したものが挙げられる。また、該金属ケース内に上記の弾性体をさらに有しても良い。熱伝導性材料として、例えば、銅、アルミニウム、真鍮、鉄、銀およびそれらの合金などが挙げられる。なお、プラスチック等の薄い外皮内に蓄冷剤を封入したものを加熱プレートとして用いることもできる。外皮が薄ければ、プラスチック程度の熱伝導性でも加温効果を発揮させることができる。 One embodiment of the present invention includes a heat conductive heating plate inside a heat insulating container. In the case of a heat-insulating container that does not have a heating plate, the temperature rises after the inner box frozen in a home freezer is inserted into the container and then the heat-insulating lid is opened or removed until it reaches around 0 ° C. Need to wait. On the other hand, by installing a heating plate inside the heat insulating container, after inserting the frozen inner box, heat can be quickly transferred from the heating plate to the inner box, and the inner box temperature can be raised to around 0 ° C in a short time. it can. The heating plate is preferably a flat member whose surface adjacent to the inner box is made of a heat conductive material, and may further include a material having a large heat capacity adjacent to the heat conductive material. As a heating plate, for example, a case in which a case is made of a metal having good thermal conductivity and a cool storage agent is enclosed inside the case can be used. Moreover, you may further have said elastic body in this metal case. Examples of the heat conductive material include copper, aluminum, brass, iron, silver, and alloys thereof. In addition, what enclosed the cool storage agent in thin skins, such as a plastics, can also be used as a heating plate. If the outer skin is thin, the heating effect can be exhibited even with thermal conductivity as high as plastic.
本発明の一実施態様は、熱伝導性の天板に、保持部材と平行方向に、伝熱板を装着したものである。蓄冷剤の凍結に際して、熱伝導性の天板から当該伝熱板に冷熱を伝導することで、蓄冷剤を速やかに、かつ、均一に凍結することができる。また、蓄冷剤の融解は外部からの熱の進入によるもので、当然、外面に近い保持部材から蓄冷剤の温度は上昇する。そこで、保持部材周辺の蓄冷剤の温度を均一にし、試験管の冷却・保冷温度を均一に保つためには、保持部材を囲むように伝熱板を配置することが望ましい。また、伝熱板を格子状に配置した場合、蓄冷剤が容器内で偏ることを防止し、冷却効率の向上に寄与することが期待される。以上のように、伝熱板は、蓄冷剤の凍結及び試験管の均一冷却・保冷に重要な機能を発揮する。 In one embodiment of the present invention, a heat transfer plate is mounted on a heat conductive top plate in a direction parallel to the holding member. When the cold storage agent is frozen, the cold storage agent can be quickly and uniformly frozen by conducting cold heat from the heat conductive top plate to the heat transfer plate. Further, the melting of the cool storage agent is due to the entry of heat from the outside, and naturally the temperature of the cool storage agent increases from the holding member close to the outer surface. Therefore, in order to make the temperature of the cool storage agent around the holding member uniform and keep the cooling / cooling temperature of the test tube uniform, it is desirable to arrange a heat transfer plate so as to surround the holding member. Moreover, when arrange | positioning a heat exchanger plate in a grid | lattice form, it is anticipated that a cool storage agent will prevent in a container and contribute to the improvement of cooling efficiency. As described above, the heat transfer plate exhibits an important function for freezing the regenerator and for uniform cooling / cooling of the test tube.
本発明の一実施様態は、熱伝導性材料からなる保持部材と内箱の底部が接触しているものである。それにより、熱伝導性の伝熱板を装着していなくても、保持部材の温度を均一に保つことが出来る。 In one embodiment of the present invention, the holding member made of a heat conductive material is in contact with the bottom of the inner box. Thereby, the temperature of the holding member can be kept uniform even if a heat conductive heat transfer plate is not mounted.
本発明の一実施態様では、熱伝導性材料からなる保持部材の内面が、傾斜した外周の検体試験管と密接する形状をしている。一般に採血管の外径は管の上部と下部は均一径でなく、管の長手方向に傾斜角が付いている。また、採血管の外径は製造メーカー毎に若干異なる、さらに、ラベル貼付によっても外径が変わるので、通常、採血管と保持部材の内面を密接させることは難しい。そこで、採血管を急速冷却することを考えた場合、保持部材内面に、下方に向かって直径が小さくなる形状のテーパをつけるか、または段差形状を作ることなどにより、傾斜した外周の採血管などであっても保持部材内面と効果的に面状に密接させるか、または線状に密接させることができる。 In one embodiment of the present invention, the inner surface of the holding member made of a heat conductive material is in close contact with the inclined outer peripheral specimen test tube. In general, the outer diameter of the blood collection tube is not uniform at the upper and lower portions of the tube, but is inclined in the longitudinal direction of the tube. In addition, the outer diameter of the blood collection tube varies slightly depending on the manufacturer, and the outer diameter changes depending on the labeling, so it is usually difficult to bring the blood collection tube and the inner surface of the holding member into close contact. Therefore, when considering rapid cooling of the blood collection tube, the inner surface of the holding member is tapered with a diameter that decreases downward, or a stepped shape is created, etc. Even so, it can be brought into close contact with the inner surface of the holding member effectively in the form of a plane or in the form of a line.
本発明の一実施態様は、試験管保冷・冷却装置本体を傾斜させる構造を有するものである。熱伝導性材料からなる保持部材の内面と採血管との間の空隙が大きくなると、冷熱は保持部材から熱伝導性の低い空気を介して試験管に伝わることになるため、試験管に収容された血液などの検体の冷却速度が低下する。この問題に対処するため、試験管保冷・冷却装置自体を傾斜状態で保持させることで保持部材内面と試験管の接触面積を多くし、冷却効率が低下することを防止できる。 One embodiment of the present invention has a structure in which a test tube cooling / cooling device main body is inclined. When the gap between the inner surface of the holding member made of a heat conductive material and the blood collection tube becomes large, cold heat is transferred from the holding member to the test tube via air with low heat conductivity. The cooling rate of specimens such as blood is reduced. In order to cope with this problem, the contact area between the inner surface of the holding member and the test tube can be increased by holding the test tube cooling / cooling device itself in an inclined state, thereby preventing the cooling efficiency from being lowered.
血液検体を過冷却した場合、赤血球および血小板が破壊され溶血するので、その後の分析に著しい悪影響を与える。従って、蓄冷剤の凝固温度は、血液検体の冷却下限温度に近いことが必要であり、両者が同一温度であることが最も望ましい。具体的な凝固温度としては、血液凝固温度に近い−2℃と血液中の酵素反応が著しく低下する4℃の間であることが望ましい。蓄冷剤の量は、保冷時間を考えると多いほうが望ましいが、装置の重量と蓄冷剤の冷却速度を勘案して決定する必要がある。 When a blood sample is supercooled, red blood cells and platelets are destroyed and hemolyzed, which significantly affects subsequent analysis. Therefore, the coagulation temperature of the cold storage agent needs to be close to the cooling lower limit temperature of the blood sample, and it is most desirable that both are the same temperature. The specific clotting temperature is desirably between −2 ° C. close to the blood clotting temperature and 4 ° C. at which the enzyme reaction in the blood is remarkably reduced. Although it is desirable that the amount of the cool storage agent is large in consideration of the cool keeping time, it is necessary to determine the cool storage agent in consideration of the weight of the apparatus and the cooling rate of the cool storage agent.
本発明の試験管冷却・保冷装置の冷却に当たっては、家庭用冷凍冷蔵庫の冷凍室に装置を収容して蓄冷剤を凍結させ、採取検体の冷却・保冷に供することができる。しかし、熱伝導性の天板、熱伝導性材料からなる保持部材の形状にあわせた専用の冷凍機を用いて、急速冷却することにより、蓄冷剤をより急速に冷凍することが可能となる。 In cooling the test tube cooling / cooling device of the present invention, the cold storage agent can be frozen by storing the device in the freezer compartment of a domestic refrigerator-freezer and used for cooling / cooling the collected specimen. However, it is possible to freeze the regenerator more rapidly by rapid cooling using a dedicated refrigerator adapted to the shape of the heat conductive top plate and the holding member made of the heat conductive material.
家庭用冷蔵庫の冷凍室や家庭用冷凍庫の温度は、ほぼ−20℃近辺であり、蓄冷剤は所定の凝固点で凍結した後、冷凍庫内の温度に近づく。このため、採血管の冷却の用に供するために取り出した直後は、蓄冷剤の温度が低すぎて、採血管中の血液検体の凍結をもたらす危険性がある。そこで、蓄冷剤を凍結させる段階では、冷凍庫内の温度を下げて蓄冷剤を急速冷凍し、蓄冷剤の凍結後は庫内温度を0℃付近に保持するような、温度制御システムが効果的である。このようにすることで、蓄冷剤が0℃付近の温度より低温にならないため、血液検体の凍結の危険性をさらに少なくすることができる。 The temperature of the freezer compartment and the domestic freezer of the home refrigerator is approximately around −20 ° C., and the cold storage agent is frozen at a predetermined freezing point and then approaches the temperature in the freezer. For this reason, immediately after taking out for cooling of a blood collection tube, the temperature of a cool storage agent is too low and there exists a danger of causing the freezing of the blood sample in a blood collection tube. Therefore, in the stage of freezing the regenerator, a temperature control system that lowers the temperature in the freezer and rapidly freezes the regenerator and keeps the internal temperature near 0 ° C. after freezing of the regenerator is effective. is there. By doing in this way, since a cool storage agent does not become temperature lower than the temperature of 0 degreeC vicinity, the risk of the freezing of a blood sample can further be reduced.
さらに、蓄冷剤、保持部材内面の温度を検出することができる温度センサーを装備することで、蓄冷剤の温度管理がより精密となり、検体の温度管理、蓄冷剤の凍結の管理等がより厳密にできるようになる。 Furthermore, by installing a temperature sensor that can detect the temperature of the cool storage agent and the inner surface of the holding member, the temperature control of the cool storage agent becomes more precise, and the temperature control of the specimen, the management of the freezing of the cool storage agent, etc. are more strict. become able to.
以下、本発明の実施態様を具体的に説明する。なお、本発明は下記の実施態様によって限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described. In addition, this invention is not limited by the following embodiment.
[実施の形態1]
本発明の実施の形態1を、図面を参照して説明する。図1は試験管冷却・保冷装置を模式的に示した縦断面透視図である。図2、図3は、それぞれ試験管冷却・保冷装置の構成要素の概略の縦断面透視図および上面平面図である。図1〜3に図示したように、試験管冷却・保冷装置6は、内箱1、断熱外箱2、断熱蓋3および蓋4を備える。本実施の形態では内箱1と断熱外箱2の組み合わせによって容器7が構成される。
なお、実施の形態1で、内箱1および外箱2を方形で図示したが、本発明の試験管冷却・保冷装置は方形に限られるものではなく、例えば、円筒形等であってもよい。なお、図3は、図3A〜図3Dまでを包括する図番であり、以下、他の図でも同様な包括図番を用いることがある。
[Embodiment 1]
Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional perspective view schematically showing a test tube cooling / cooling device. 2 and 3 are a schematic longitudinal sectional perspective view and a top plan view, respectively, of the components of the test tube cooling / cooling device. As illustrated in FIGS. 1 to 3, the test tube cooling / cooling device 6 includes an inner box 1, a heat insulating outer box 2, a heat insulating lid 3 and a lid 4. In the present embodiment, the container 7 is configured by a combination of the inner box 1 and the heat insulating outer box 2.
In the first embodiment, the inner box 1 and the outer box 2 are shown in a square shape, but the test tube cooling / cooling device of the present invention is not limited to a square shape, and may be a cylindrical shape, for example. . Note that FIG. 3 is a drawing number that includes FIGS. 3A to 3D, and the same drawing number is also used in other drawings.
内箱1は、複数個の検体試験管20を立位に収納する複数個の熱伝導性材料からなる保持部材11と、保持部材11の開口と同等の位置に開口部をもつ熱伝導性の天板15を有し、保持部材11の周囲に蓄冷剤13を封入可能な構造である。内箱1の側面及び底面の素材は、蓄冷剤を保持するものであれば特に限定されない。例えば、プラスチック、ガラスなどで構成することができる。また、冷却速度の向上の観点からは、熱伝導性をもち、耐久性が高く、腐食しにくく、加工しやすく、軽量な金属を用いることが好ましい。具体的には、ステレンススチール、アルミニウムなどを用いることができる。中でも、アルミニウムまたはアルミニウム合金が特に好ましい。
また、実施の形態1では、内箱1の側面及び底面のコーナー部及び折り曲げ部は、直角形状で示されているが、本発明の試験管冷却・保冷装置はこの形状に限定されない。強度、製造のしやすさ、及び封入した液状物質の漏出などの点からは、上記のコーナー部及び折り曲げ部はテーパ形状あるいはアール形状に加工されていることが好ましい。
The inner box 1 includes a holding member 11 made of a plurality of thermally conductive materials for accommodating a plurality of specimen test tubes 20 in an upright position, and a thermally conductive material having an opening at a position equivalent to the opening of the holding member 11. The structure has a top plate 15 and can enclose the regenerator 13 around the holding member 11. The material of the side surface and the bottom surface of the inner box 1 is not particularly limited as long as it holds a cold storage agent. For example, it can be made of plastic, glass or the like. Also, from the viewpoint of improving the cooling rate, it is preferable to use a metal that has thermal conductivity, high durability, is resistant to corrosion, is easy to process, and is lightweight. Specifically, stainless steel, aluminum, or the like can be used. Among these, aluminum or an aluminum alloy is particularly preferable.
Moreover, in Embodiment 1, although the corner | angular part and bending part of the side surface and bottom face of the inner box 1 are shown by the right-angled shape, the test tube cooling and cooling device of this invention is not limited to this shape. From the viewpoints of strength, ease of manufacture, and leakage of the encapsulated liquid substance, it is preferable that the corner portion and the bent portion are processed into a taper shape or a round shape.
保持部材11は、検体試験管20を速やかに冷却する必要があるので、熱伝導率の高い素材で作製されることが望ましい。具体的には、銅、アルミニウム、真鍮、鉄などの金属およびそれらの合金が挙げられる。なお、これらの金属と同等の熱伝導率を有するものであれば、金属以外でも用いることができる。 Since the holding member 11 needs to cool the specimen test tube 20 quickly, it is desirable that the holding member 11 be made of a material having high thermal conductivity. Specific examples include metals such as copper, aluminum, brass, and iron, and alloys thereof. In addition, as long as it has the thermal conductivity equivalent to these metals, it can use other than a metal.
天板15は、本冷却・保冷装置を凍結・融解させる際の熱交換部位になるため熱伝導率の高い素材を用いることが望ましく、具体的には、銅、アルミニウム、真鍮、鉄などの金属およびそれらの合金が挙げられる。なお、これらの金属と同等の熱伝導率を有するものであれば、金属以外でも用いることができる。
保持部材11を天板15に取り付ける方法としては、溶接、嵌合、接着などの方法が挙げられる。また、保持部材11と天板15を一体で成形してもよい。例えば、保持部材11と天板15をアルミダイカストで一体成形してもよい。
The top plate 15 is preferably made of a material having high thermal conductivity because it becomes a heat exchange part when freezing and thawing the cooling / cooling apparatus, and specifically, a metal such as copper, aluminum, brass, iron, etc. And their alloys. In addition, as long as it has the thermal conductivity equivalent to these metals, it can use other than a metal.
Examples of a method for attaching the holding member 11 to the top plate 15 include methods such as welding, fitting, and adhesion. Moreover, you may shape | mold the holding member 11 and the top plate 15 integrally. For example, the holding member 11 and the top plate 15 may be integrally formed by aluminum die casting.
蓄冷剤13としては、検体試験管20内の血液などの検体を凍結させないために0℃付近に凝固点温度をもち、かつ長時間保冷するために高い潜熱をもつ素材を用いることができる。具体的には、水を主成分とし、アクリル酸ナトリウム重合体などの高吸水性ポリマーを含有する蓄冷剤が好ましいが、これには限定されない。 As the regenerator 13, a material having a freezing point temperature near 0 ° C. so as not to freeze a specimen such as blood in the specimen test tube 20 and having a high latent heat for keeping it cool for a long time can be used. Specifically, although the cool storage agent which has water as a main component and contains high water absorption polymers, such as a sodium acrylate polymer, is preferable, it is not limited to this.
断熱外箱2および断熱蓋3は、内箱1を格納して外気から断熱するための断熱構造体からなる。断熱外箱2の断熱構造体は、優れた断熱能を有するものが望ましく、具体的には発泡プラスチック、真空断熱構造、もしくは断熱材をサンドイッチした構造を有するものが望ましい。なお、実施の形態1では、断熱外箱2および断熱蓋3を発泡プラスチックで作製した。 The heat insulating outer box 2 and the heat insulating lid 3 are made of a heat insulating structure for storing the inner box 1 and insulating it from the outside air. The heat insulation structure of the heat insulation outer box 2 is preferably one having excellent heat insulation ability, and specifically, one having a structure in which foamed plastic, a vacuum heat insulation structure, or a heat insulating material is sandwiched is desirable. In the first embodiment, the heat insulating outer box 2 and the heat insulating lid 3 are made of foamed plastic.
蓋4は、検体試験管20の冷却時に、外気が検体試験管20および保持部材11と触れることで温度上昇及び結露が生じることを防止する役割を持つ。なお、蓋4の装着時に検体試験管20の収納状態を確認するため透明であることが望ましく、軽量で、落下時に破損しにくいプラスチック製が望ましい。プラスチックとしては、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアクリル酸エステル、ポリカーボネートなどの樹脂を用いることができる。 The lid 4 has a role of preventing a rise in temperature and dew condensation due to outside air coming into contact with the sample test tube 20 and the holding member 11 when the sample test tube 20 is cooled. In addition, it is desirable to be transparent in order to confirm the stored state of the specimen test tube 20 when the lid 4 is attached, and it is desirable to use a plastic that is lightweight and is not easily damaged when dropped. As the plastic, for example, resins such as polystyrene, polyethylene, polypropylene, polyacrylic acid ester, and polycarbonate can be used.
弾性体14を、例えば、内箱1の底面に埋設することで、蓄冷剤13を天板15まで隙間なく封入することができる。弾性体14を封入することで、保持部材11を効率良く冷却できるだけでなく、凍結時の蓄冷剤13の体積膨張によって、内箱1の内圧が上昇し、容器7が変形するという問題を防ぐことができる(図4)。弾性体14としては、天然ゴムや各種の合成ゴムなどを用いることができるが、大きな弾性変形を許容できるプラスチック多孔質弾性体(発泡スチロール、発泡ポリウレタンなど)が特に好ましい。また、実施の形態1では、1つの直方体状の弾性体14を内箱1の底面に配置する例を示したが、これには限定されない。弾性体14の形状は、方形には限定されず、球形や異形であってもよいし、複数の弾性体14を内箱1内に分散して配置してもよい。ただし、保持部材11、伝熱板12または天板15による蓄冷剤13の均一な冷却の妨げにならないように、偏った配置は避けるように留意すべきである。 By embedding the elastic body 14 on the bottom surface of the inner box 1, for example, the cold storage agent 13 can be sealed up to the top plate 15 without a gap. By encapsulating the elastic body 14, not only can the holding member 11 be efficiently cooled, but also the problem that the internal pressure of the inner box 1 rises and the container 7 is deformed due to the volume expansion of the regenerator 13 during freezing. (Fig. 4). As the elastic body 14, natural rubber or various synthetic rubbers can be used, but plastic porous elastic bodies (such as foamed polystyrene and foamed polyurethane) that can tolerate large elastic deformation are particularly preferable. In the first embodiment, an example in which one rectangular parallelepiped elastic body 14 is arranged on the bottom surface of the inner box 1 is shown, but the present invention is not limited to this. The shape of the elastic body 14 is not limited to a square, and may be spherical or irregular, or a plurality of elastic bodies 14 may be dispersed in the inner box 1. However, it should be noted that an uneven arrangement should be avoided so as not to prevent uniform cooling of the regenerator 13 by the holding member 11, the heat transfer plate 12, or the top plate 15.
また、図示はしていないが、本発明の冷却・保冷装置6は、断熱外箱2を収容するケーシングをさらに有していてもよい。ケーシングは、断熱外箱2の周囲および、断熱蓋3の側面を覆い、蓋4を装着できる形状に加工される。断熱外箱2を該ケーシングで覆うことにより、移動時に断熱外箱が破損する危険性を軽減することができる。ケーシングの材料は特に限定されないが、コスト、軽量性、加工性の点から、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアクリル酸エステル、ポリカーボネートなどの汎用プラスチックが用いられる。 Although not shown, the cooling / cooling device 6 of the present invention may further include a casing for housing the heat insulating outer box 2. The casing is processed into a shape that covers the periphery of the heat insulating outer box 2 and the side surface of the heat insulating lid 3 and can be fitted with the lid 4. By covering the heat insulating outer box 2 with the casing, it is possible to reduce the risk of the heat insulating outer box being damaged during movement. Although the material of a casing is not specifically limited, General-purpose plastics, such as a polystyrene, polyethylene, a polypropylene, polyacrylic acid ester, a polycarbonate, are used from a point of cost, lightness, and workability, for example.
伝熱板12は、内箱1内の蓄冷剤13を均一温度にする作用を果たす。その目的のためには、図5、6に示すように、各保持部材11に対して伝熱板12をできるだけ等距離に配置することが望ましく、例えば、井桁状に配置することができる。この伝熱板12は、熱伝導率の高い素材で作製されることが望ましく、具体的には、銅、アルミニウム、真鍮、鉄などの素材が挙げられる。また、熱伝導性の高い素材からなる内箱1の場合には、保持部材11の先端(下端)を内箱1の底部に接触させることで、伝熱板12を用いなくても、蓄冷剤13を均一の温度にすることができる。 The heat transfer plate 12 serves to bring the cold storage agent 13 in the inner box 1 to a uniform temperature. For that purpose, as shown in FIGS. 5 and 6, it is desirable to arrange the heat transfer plates 12 at the same distance as possible with respect to the holding members 11, for example, in a grid pattern. The heat transfer plate 12 is preferably made of a material having high thermal conductivity, and specifically, materials such as copper, aluminum, brass, and iron can be used. Further, in the case of the inner box 1 made of a material having high heat conductivity, the cold storage agent can be obtained without using the heat transfer plate 12 by bringing the tip (lower end) of the holding member 11 into contact with the bottom of the inner box 1. 13 can be a uniform temperature.
図7に示すように、保持部材11の内面形状は、効率良く検体試験管20を冷却するために検体試験管20の外周部との密接度が高いことが望ましい。一般に採血管は、開口部から底面の方向へ外径が直線的に小さくなる傾斜管形状である。そのため、並行直管形状の保持部材11Aの場合、保持部材の開口部以外の位置では、採血管などの傾斜管状の試験管20の外周部が保持部材の内面と線状に密接しない(図7A)。そこで、検体試験管20の外周部に密接する段差形状の保持部材11Bに加工するか(図7B)、または検体試験管20の傾斜角と同一の傾斜角を持つテーパ形状の保持部材11Cにする(図7C)ことがより好ましい。また、上部のみテーパ形状の保持部材11Dにしてもよい(図7D)。ここで、保持部材11Bの段差形状とは、保持部材11Bの長手方向の下方に向かって直径が段階的に小さくなる形状をいう。また、検体試験管20の傾斜角と同一の傾斜角を持つテーパ形状とは、保持部材11Cの長手方向の下方に向かって直径が連続的に小さくなる形状をいう。 As shown in FIG. 7, it is desirable that the inner surface shape of the holding member 11 has a high degree of closeness with the outer periphery of the sample test tube 20 in order to cool the sample test tube 20 efficiently. In general, the blood collection tube has an inclined tube shape in which the outer diameter decreases linearly from the opening toward the bottom surface. Therefore, in the case of the parallel straight tube-shaped holding member 11A, the outer peripheral portion of the inclined tubular test tube 20 such as a blood collection tube is not in close contact with the inner surface of the holding member in a position other than the opening of the holding member (FIG. 7A). ). Therefore, it is processed into a step-shaped holding member 11B that is in close contact with the outer periphery of the specimen test tube 20 (FIG. 7B), or a tapered holding member 11C having the same inclination angle as the inclination angle of the specimen test tube 20 is obtained. More preferably (FIG. 7C). Alternatively, only the upper portion may be a tapered holding member 11D (FIG. 7D). Here, the stepped shape of the holding member 11B refers to a shape whose diameter decreases stepwise downward in the longitudinal direction of the holding member 11B. Further, the taper shape having the same inclination angle as that of the specimen test tube 20 refers to a shape in which the diameter continuously decreases downward in the longitudinal direction of the holding member 11C.
このように、その内面形状を保持部材11Bまたは11Cの形状にして、保持部材11の内面と採血管20Aの外周部との密接度を高くするほど、検体の冷却速度が速くなる。ここで、線状に密接するというのは、検体試験管20の外周部と保持部材11の内面とが連続的な線状に接触することをいう。また、密接度が高いということは、検体試験管20と保持部材11との接触面積が高いことであり、線状に密接している場合には、接触長の合計値が大きいことをいう。 As described above, the cooling rate of the specimen increases as the inner surface shape of the holding member 11B or 11C is increased and the closeness between the inner surface of the holding member 11 and the outer peripheral portion of the blood collection tube 20A is increased. Here, being in close contact with the line means that the outer peripheral portion of the specimen test tube 20 and the inner surface of the holding member 11 are in continuous line contact. Further, the high degree of closeness means that the contact area between the specimen test tube 20 and the holding member 11 is high, and when the contact is linear, the total value of the contact length is large.
本明細書中、「容器を傾けて保持することのできる機構」とは、断熱外箱2の底部や側部に収納した脚(図示せず)を必要なときに立てることができる機構でもよく、あるいは、図8に示すように、冷却・保冷装置6のハンドル5を回転させ、適当な傾き角度(すなわち、5度〜30度)に固定させることで、容器7を傾ける機構であっても良い。すなわち、脚またはハンドル5を用いて、冷却・保冷装置6全体を傾けた状態で保持することにより、検体試験管20を保持部材11の一方の壁に接触させることができる機構である。 In the present specification, the “mechanism that can hold the container at an angle” may be a mechanism that can stand a leg (not shown) stored in the bottom or side of the heat insulating outer box 2 when necessary. Alternatively, as shown in FIG. 8, even if the mechanism tilts the container 7 by rotating the handle 5 of the cooling / cooling device 6 and fixing it at an appropriate tilt angle (ie, 5 to 30 degrees). good. In other words, the specimen test tube 20 can be brought into contact with one wall of the holding member 11 by holding the entire cooling / cooling device 6 in an inclined state using the legs or the handle 5.
本明細書中、蓄冷剤を凍結させる「冷凍庫」として、家庭用冷蔵庫の冷凍室や家庭用冷凍庫を用いることもできる。ただし、家庭用冷蔵庫の冷凍室や家庭用冷凍庫の庫内温度は−20℃近辺であり、蓄冷剤の温度が低くなりすぎて、血液の凍結をもたらす危険性がある。そこで、蓄冷剤を凍結させる段階では、冷凍庫内の温度を下げて蓄冷剤を急速冷凍し、蓄冷剤の凍結後は庫内温度が0℃付近になるように、温度制御ができる専用冷凍庫がより好ましい。この専用冷凍庫により、血液検体の凍結の危険性を軽減することができる。また、専用冷凍庫は、内部にアルミトレーを備えていることが好ましい。熱伝導性の天板15をアルミニウム製トレーに接触させる態様で、試験管冷却・保冷装置6をアルミニウム製トレーに載置することで蓄冷剤を急速冷凍させることができる。 In the present specification, as a “freezer” for freezing a regenerator, a freezer room of a household refrigerator or a household freezer can also be used. However, the temperature in the freezer compartment of a household refrigerator or a domestic freezer is around −20 ° C., and the temperature of the cold storage agent becomes too low, and there is a risk of causing freezing of blood. Therefore, at the stage of freezing the regenerator, there is a dedicated freezer that can control the temperature so that the temperature in the freezer can be quickly frozen by lowering the temperature in the freezer and the temperature inside the cooler is close to 0 ° C. preferable. This dedicated freezer can reduce the risk of freezing blood samples. The dedicated freezer is preferably provided with an aluminum tray inside. The cold storage agent can be rapidly frozen by placing the test tube cooling / cooling device 6 on the aluminum tray in a mode in which the heat conductive top plate 15 is brought into contact with the aluminum tray.
本明細書中、血液などの検体の「速やかな冷却」または「急速冷却」とは、血液を10分以内に10℃以下、好ましくは5℃以下にすることをいう。また、「血液などの検体を長時間保冷する」とは、5℃以下の状態を5時間以上、好ましくは10時間以上持続することをいう。また、「冷凍庫から本冷却・保冷装置を取り出すと直ぐに使える」とは、本冷却・保冷装置を−20℃の冷凍庫から取り出した際に、容器7内の蓄冷剤13の温度が1時間以内に−5℃、好ましくは30分以内に−5℃、より好ましくは約15分以内に−5℃になることをいう。 In the present specification, “rapid cooling” or “rapid cooling” of a specimen such as blood means that blood is brought to 10 ° C. or less, preferably 5 ° C. or less within 10 minutes. Further, “cooling a specimen such as blood for a long time” means that a state of 5 ° C. or lower is maintained for 5 hours or longer, preferably 10 hours or longer. In addition, “When the main cooling / cold storage device is taken out from the freezer, it can be used immediately” means that when the main cooling / cold storage device is taken out from the −20 ° C. freezer, the temperature of the regenerator 13 in the container 7 is within one hour. It means −5 ° C., preferably −5 ° C. within 30 minutes, more preferably −5 ° C. within about 15 minutes.
以下、本発明の実施の形態1を実施例により詳細に説明する。実施例では、検体として血液を用い、検体試験管20として採血管20Aを用いたが、本発明は実施例に限定されるものではない。 Hereinafter, the first embodiment of the present invention will be described in detail by way of examples. In the embodiment, blood is used as the sample, and the blood collection tube 20A is used as the sample test tube 20. However, the present invention is not limited to the embodiment.
(実施例1)
本発明の実施の形態1の試験管冷却・保冷装置6を図9に示す。内箱1は、厚さ0.3mmのステンレススチール製の箱と、厚さ1.5mmのアルミニウム製の天板15を有する。内箱1は、寸法が(タテ)100mm×(ヨコ)100mm×(高さ)85mmの箱型容器を有する。内箱1の天面の天板15には、4行/4列の保持部材11Dを等間隔に設置した。また、外周列(または行)に配置された保持部材11Dの中心点と内箱1の側面との距離を12.5mmとした。
筒状の保持部材11Dは内径13mm、外径15mm、長さ75mmのアルミニウム製パイプからなり、保持部材11Dの上部には、金属ヤスリにより採血管20Aの傾斜角に合わせるよう加工されたテーパ形状を設けた。以下の試験では、特に断らない場合には、保持部材11として保持部材11Dを用いた。なお、天板15と保持部材11は、差込密着法により接合した。内箱1の底部に、厚さ8mmのポリエチレンフォーム製の弾性体14を埋設し、内箱1の内部には厚さ1.5mmのアルミニウム製伝熱板12および蓄冷剤13を封入した。また、保持部材11の底部を市販のアルミニウムテープで密封するとともに、内箱1を構成する箱型容器と天板15とを市販のアルミニウムテープにより密封した。断熱外箱2および断熱蓋3は、厚さ9mmのポリスチレンフォーム保温板(商品名:スタイロフォーム、ダウ化工(株)製)を用いて作製した。なお、蓄冷剤としては、ファインパック(鳥繁産業(株)製、商品名)に用いられている蓄冷剤であって、アクリル系ポリマーからなる吸水性ポリマーに吸水させてなるゲル状蓄冷剤を用いた。
Example 1
FIG. 9 shows a test tube cooling / cooling device 6 according to Embodiment 1 of the present invention. The inner box 1 includes a stainless steel box having a thickness of 0.3 mm and an aluminum top plate 15 having a thickness of 1.5 mm. The inner box 1 has a box-shaped container whose dimensions are (vertical) 100 mm × (horizontal) 100 mm × (height) 85 mm. On the top plate 15 on the top surface of the inner box 1, holding members 11 </ b> D of 4 rows / 4 columns were installed at equal intervals. In addition, the distance between the center point of the holding member 11D arranged in the outer circumferential row (or row) and the side surface of the inner box 1 was set to 12.5 mm.
The cylindrical holding member 11D is made of an aluminum pipe having an inner diameter of 13 mm, an outer diameter of 15 mm, and a length of 75 mm. The upper part of the holding member 11D has a tapered shape that is processed to match the inclination angle of the blood collection tube 20A with a metal file. Provided. In the following tests, the holding member 11D was used as the holding member 11 unless otherwise specified. In addition, the top plate 15 and the holding member 11 were joined by the insertion close contact method. An elastic body 14 made of polyethylene foam having a thickness of 8 mm was embedded at the bottom of the inner box 1, and an aluminum heat transfer plate 12 and a cold storage agent 13 having a thickness of 1.5 mm were sealed inside the inner box 1. Further, the bottom of the holding member 11 was sealed with a commercially available aluminum tape, and the box-shaped container constituting the inner box 1 and the top plate 15 were sealed with a commercially available aluminum tape. The heat insulation outer box 2 and the heat insulation lid 3 were produced using a polystyrene foam heat insulating plate (trade name: Styrofoam, manufactured by Dow Chemical Co., Ltd.) having a thickness of 9 mm. In addition, as a cool storage agent, it is a cool storage agent used for fine packs (trade name, manufactured by Toritsu Sangyo Co., Ltd.), and a gel-type cool storage agent formed by absorbing water into a water-absorbing polymer made of an acrylic polymer. Using.
(試験例1)保持部材11の材質および形状の違いによる試験管冷却速度の違いの評価(図10)
テルモ(株)製のベノジェクトII真空採血管20Aに5mLの水を入れ、採血管20Aの内部にK熱電対を設置し、40℃に加温した。採血管20Aを氷水中で冷却された種々の形状及び材質からなる保持部材11に挿入するか、あるいは氷水中、氷中、冷蔵庫内で直接冷却するか、あるいは室温放置した際の温度変化をデータ解析システムNR−1000(キーエンス(株)製)を用いて測定した。図10Aに試験管冷却の模式図を、図10Bに各種冷却時の温度変化データをそれぞれ示す。図10A中には、採血管20Aを、銅製でテーパ形状の保持部材11C中に保持した試験例(S1)、真鍮製でテーパ形状の保持部材11C中に保持した試験例(S2)、真鍮製で直管状の保持部材11A中に保持した試験例(S3)、真鍮製で段差形状保持部材11B中に保持した試験例(S4)をそれぞれ説明している。保持部材11の上部は、天板15と同一高さであってもよいし、天板15から上方に少し突出していてもよい。また、図10B中には、上記S1〜S4のデータに加えて、冷水中で保持した試験例(S5)、破砕した氷中で保持した試験例(S6)、室温下で保持した試験例(S7)、および冷蔵庫中に保持した試験例(S8)についてのデータも併せて示した。
図10Bに示すように、冷却速度は、速いほうからS5、S1、S2、S4、S3、S6、S8、S7の順であった。この結果より、保持部材11の形状、材質により冷却速度に違いがあることが判明した。すなわち、S1とS2の比較からわかるように、同じ構造の保持部材11であっても熱伝導率のより高い銅製の方が、真鍮製よりも採血管20Aを冷却する速度が速いことが確認された。また、S2、S4、S3の比較からわかるように、保持部材11内面の採血管20Aに対する密接度が高い方が採血管20Aを冷却する速度が速いことが確認された。
(Test Example 1) Evaluation of difference in test tube cooling rate due to difference in material and shape of holding member 11 (FIG. 10)
5 mL of water was placed in a Benoject II vacuum blood collection tube 20A manufactured by Terumo Corporation, a K thermocouple was installed inside the blood collection tube 20A, and the mixture was heated to 40 ° C. Data on temperature changes when the blood collection tube 20A is inserted into the holding member 11 made of various shapes and materials cooled in ice water, or cooled directly in ice water, ice, or in a refrigerator, or left at room temperature. The measurement was performed using an analysis system NR-1000 (manufactured by Keyence Corporation). FIG. 10A shows a schematic diagram of test tube cooling, and FIG. 10B shows temperature change data during various types of cooling. In FIG. 10A, a test example (S1) in which the blood collection tube 20A is held in a taper-shaped holding member 11C made of copper, a test example (S2) made of brass and held in a taper-shaped holding member 11C, and made of brass The test example (S3) held in the straight tubular holding member 11A and the test example (S4) made of brass and held in the step-shaped holding member 11B are described. The upper portion of the holding member 11 may be the same height as the top plate 15 or may slightly protrude upward from the top plate 15. Further, in FIG. 10B, in addition to the data of S1 to S4, a test example (S5) held in cold water, a test example held in crushed ice (S6), a test example held at room temperature ( The data about S7) and the test example (S8) held in the refrigerator are also shown.
As shown in FIG. 10B, the cooling rate was in the order of S5, S1, S2, S4, S3, S6, S8, and S7 from the fastest. From this result, it was found that the cooling rate varies depending on the shape and material of the holding member 11. That is, as can be seen from the comparison between S1 and S2, it is confirmed that even with the holding member 11 having the same structure, copper having a higher thermal conductivity is faster in cooling the blood collection tube 20A than brass. It was. Further, as can be seen from the comparison of S2, S4, and S3, it was confirmed that the higher the closeness of the inner surface of the holding member 11 to the blood collection tube 20A, the faster the cooling speed of the blood collection tube 20A.
(試験例2)実施例1の冷却・保冷装置を用いた試験管冷却速度の評価(図11)
予め−20℃の冷凍庫にて内箱1内の蓄冷剤を凍結させた実施例1の装置6および、図14に示す市販の試験管冷却・保冷装置(ナルジェ ヌンク インターナショナル社製)30を室温に放置し、内部の蓄冷剤温度が−5℃以上になった時点で実験に使用した。なお、図14の市販の装置はポリカーボネート製の容器本体31と蓋32からなる。
前述のように、熱電対を設置し、5mLの水を入れた採血管20Aを40℃に加温し、図9Aまたは図14に示すように角位置(c1、c2)、外側位置(o1、o2)、内側位置(i1、i2)に2本ずつ採血管20Aを挿入した際の温度変化をデータ解析システムNR−1000にて測定した。
図11Aに示すように、実施例1の装置6では、いずれの位置の保持部材11Dにおいても採血管20A内の水は速やかに冷却され、採血管20Aの挿入後6分で5℃に到達し、保持部材の部位による冷却速度のばらつきは認められなかった。一方、図14の市販の装置30を用いた参考例の場合には、図11Bに示すように、保持部材11Dの保持位置により採血管20Aの冷却速度が異なり、角位置(c1、c2)に挿入した採血管20Aは、挿入15分後でも約10℃であった。また、角位置(c1、c2)と内側位置(i1、i2)との間で、挿入15分後の温度差が約6℃もあった。
(Test Example 2) Evaluation of test tube cooling rate using the cooling / cooling apparatus of Example 1 (FIG. 11)
The apparatus 6 of Example 1 in which the regenerator in the inner box 1 was previously frozen in a freezer at −20 ° C. and a commercially available test tube cooling / cooling apparatus (manufactured by Nalgene Nunk International) 30 shown in FIG. It was allowed to stand and used for the experiment when the internal regenerator temperature reached -5 ° C or higher. 14 includes a container body 31 and a lid 32 made of polycarbonate.
As described above, a thermocouple is installed, and the blood collection tube 20A containing 5 mL of water is heated to 40 ° C., and as shown in FIG. 9A or FIG. 14, the angular position (c1, c2), the outer position (o1, o2) The temperature change was measured with the data analysis system NR-1000 when two blood collection tubes 20A were inserted into the inner positions (i1, i2).
As shown in FIG. 11A, in the apparatus 6 of the first embodiment, the water in the blood collection tube 20A is quickly cooled in the holding member 11D at any position, and reaches 5 ° C. 6 minutes after the insertion of the blood collection tube 20A. No variation in cooling rate was observed depending on the location of the holding member. On the other hand, in the case of the reference example using the commercially available apparatus 30 of FIG. 14, as shown in FIG. 11B, the cooling rate of the blood collection tube 20A differs depending on the holding position of the holding member 11D, and the angular position (c1, c2). The inserted blood collection tube 20A was at about 10 ° C. even 15 minutes after insertion. Further, there was a temperature difference of about 6 ° C. 15 minutes after insertion between the corner position (c1, c2) and the inner position (i1, i2).
(試験例3)実施例1の冷却・保冷装置を用いた採血管保冷時間の評価(図12)
実施例1の装置6で、断熱外箱2が有る場合と、断熱外箱2が無い場合とにおける採血管保冷時間の違いを評価した。また、実施例1の装置6と市販の装置30における採血管保冷時間の比較も併せて測定した。5mLの水を入れた採血管20Aをあらかじめ40℃に加温し、図9Aに示すように角位置(c1、c2)、外側位置(o1、o2)、内側位置(i1、i2)に2本ずつ採血管20Aを挿入した際の温度変化をデータ解析システムにて測定した。断熱外箱2を装備した実施例1の装置では、約9時間後までほぼ0℃を維持した後、徐々に温度が上昇したものの、5℃に到達したのは約12時間後であり(図12A)、優れた保冷性能を示した。実施例1の装置で、断熱外箱2および断熱蓋3を装備していない場合には、約3時間後から温度が上昇し始め、約5時間後に5℃に到達した(図12B)。ただし、5時間後であっても保持部材11Dの位置による採血管20Aの温度差は3℃以内と小さかった。一方、市販の装置30を用いた場合には、角位置(c1、c2)に挿入した採血管20Aは約4時間後に5℃以上まで温度が上昇し、実施例1の装置よりも保冷時間が極端に短いという結果が得られた(図12C)。また、実施例1の装置6では、保持部材11Dの位置による保冷能力の違いがほとんどなかったが(図12A、B)、市販の装置30では、保持部材11Dの位置により保冷能力が顕著に異なり、角位置(c1、c2)と内側位置(i1、i2)との間で、挿入6時間後の温度差が5℃以上もあった(図12C)。
(Test Example 3) Evaluation of the blood collection tube cooling time using the cooling / cooling device of Example 1 (FIG. 12)
In the apparatus 6 of Example 1, the difference in the blood collection tube cooling time between the case with the heat insulation outer box 2 and the case without the heat insulation outer box 2 was evaluated. Moreover, the comparison of the blood-collecting-tube cold storage time in the apparatus 6 of Example 1 and the commercially available apparatus 30 was also measured. The blood collection tube 20A containing 5 mL of water is preheated to 40 ° C., and as shown in FIG. 9A, two tubes are provided at the angular position (c1, c2), the outer position (o1, o2), and the inner position (i1, i2). The temperature change at the time of inserting the blood collection tube 20A was measured by the data analysis system. In the apparatus of Example 1 equipped with the heat insulating outer box 2, the temperature gradually increased after maintaining at about 0 ° C. until about 9 hours, but reached 5 ° C. after about 12 hours (FIG. 12A), which showed excellent cold insulation performance. In the apparatus of Example 1, when the heat insulation outer box 2 and the heat insulation lid 3 were not equipped, the temperature started to increase after about 3 hours and reached 5 ° C. after about 5 hours (FIG. 12B). However, even after 5 hours, the temperature difference of the blood collection tube 20A depending on the position of the holding member 11D was as small as 3 ° C. or less. On the other hand, when the commercially available apparatus 30 is used, the temperature of the blood collection tube 20A inserted in the corner position (c1, c2) rises to 5 ° C. or more after about 4 hours, and the cold insulation time is longer than that of the apparatus of Example 1. The result was extremely short (FIG. 12C). Moreover, in the apparatus 6 of Example 1, there was almost no difference in the cooling capacity depending on the position of the holding member 11D (FIGS. 12A and 12B), but in the commercially available apparatus 30, the cooling capacity is significantly different depending on the position of the holding member 11D. There was a temperature difference of not less than 5 ° C. 6 hours after insertion between the corner position (c1, c2) and the inner position (i1, i2) (FIG. 12C).
(試験例4)実施例1の冷却・保冷装置の−20℃における凍結時間の評価(図13)
実施例1の装置6を−20℃の冷凍庫で天地を逆さまにして、天板15を冷凍庫内であらかじめ−20℃に冷却しておいたアルミニウム板に接触させた状態で冷却した際の蓄冷剤の温度変化を評価した。図13A中、曲線e1は蓄例剤13の温度変化を示し、r1は冷凍庫の庫内温度を示す。図13B中、曲線e2は、採血管保持部の内壁の温度変化を示し、r2は冷凍庫の庫内温度を示す。図13Aに示すように、本装置6の場合、断熱外箱2および断熱蓋3を備えた断熱構造を有するにも係わらず、アルミニウム板からの熱伝達により約12時間で内部の蓄冷剤が完全に凍結した。このような急速冷凍試験でも、実施例1の容器7の変形、膨張は観察されなかった。これは、凍結時の蓄冷剤の膨張が弾性体14の変形により補償されたことにより、内箱1の内圧上昇が防止されたためである。なお、図13Bに示すように、市販の装置についても、約12時間で内部が凍結した。
(Test Example 4) Evaluation of freezing time at −20 ° C. of the cooling / cooling apparatus of Example 1 (FIG. 13)
Cold storage agent when the apparatus 6 of Example 1 is cooled in a state where the top and bottom are turned upside down in a freezer at −20 ° C. and the top plate 15 is brought into contact with an aluminum plate that has been cooled to −20 ° C. in the freezer in advance. The temperature change of was evaluated. In FIG. 13A, the curve e1 shows the temperature change of the storage agent 13, and r1 shows the internal temperature of the freezer. In FIG. 13B, the curve e2 shows the temperature change of the inner wall of the blood collection tube holding part, and r2 shows the internal temperature of the freezer. As shown in FIG. 13A, in the case of the present apparatus 6, although the heat insulating structure having the heat insulating outer box 2 and the heat insulating lid 3 is provided, the internal regenerator is completely transferred in about 12 hours by heat transfer from the aluminum plate. Frozen. Even in such a quick freezing test, deformation and expansion of the container 7 of Example 1 were not observed. This is because an increase in the internal pressure of the inner box 1 is prevented by the expansion of the cold storage agent during freezing being compensated by the deformation of the elastic body 14. As shown in FIG. 13B, the inside of the commercially available apparatus was frozen in about 12 hours.
(試験例5)実施例1の冷却・保冷装置を用いた血中アミノ酸濃度安定性評価
予め−20℃の冷凍庫にて内箱1内の蓄冷剤を凍結させた実施例1の装置6および、図14に示す市販の試験管冷却・保冷装置30を室温に放置し実験に使用した。テルモ(株)製のベノジェクトII真空採血管(EDTA−2Na入り)を用いて健常人ボランティア3人より5mLを4本採血し、採血後直ちに氷水、あるいは図9Aまたは図14に示す角位置(c1、c2)に採血管20Aを挿入した。一定時間後に血漿分離を行い、分析誤差が少ない高速アミノ酸分析計L-8800((株)日立ハイテクノロジーズ製)を用いて血漿のアミノ酸濃度を測定した。
図15に、コントロール(採血直後)のオルニチン濃度(●)、アルギニン濃度(△)を1とし、氷水冷却6時間後、実施例1の装置6および市販の装置30で6時間保冷した後のオルニチンおよびアルギニンの相対濃度±標準偏差(N=3)をプロットした。氷水、実施例1の装置6のいずれも6時間後では、オルニチンが約2%増加し、アルギニンが約3%低下したものの、両者にほとんど違いが認められず、本発明の実施態様の冷却・保冷装置の優れた保冷効果が確認された。これに対し、市販の装置30では、オルニチンが約10%も増加し、アルギニンが約6%も低下しており、十分に保冷されなかったことにより、アルギニンからオルニチンへの変換が著しく進行したことが明らかである。
(Test Example 5) Blood amino acid concentration stability evaluation using the cooling / cooling apparatus of Example 1 The apparatus 6 of Example 1 in which the regenerator in the inner box 1 was frozen in a freezer at -20 ° C in advance, A commercially available test tube cooling / cooling device 30 shown in FIG. 14 was left at room temperature and used in the experiment. Four 5 mL blood samples were collected from three healthy volunteers using a Benoject II vacuum blood collection tube (with EDTA-2Na) manufactured by Terumo Corporation, and immediately after blood collection, ice water or the corner position (c1) shown in FIG. 9A or FIG. C2), the blood collection tube 20A was inserted. Plasma separation was performed after a certain period of time, and the amino acid concentration of plasma was measured using a high-speed amino acid analyzer L-8800 (manufactured by Hitachi High-Technologies Corporation) with little analysis error.
FIG. 15 shows that the ornithine concentration (●) and arginine concentration (Δ) of the control (immediately after blood collection) are 1, and after 6 hours of cooling with ice water, the ornithine after 6 hours of cooling in the apparatus 6 of Example 1 and the commercially available apparatus 30 The relative concentrations of arginine ± standard deviation (N = 3) were plotted. In both ice water and the apparatus 6 of Example 1, ornithine increased by about 2% and arginine decreased by about 3% after 6 hours, but there was almost no difference between them. The excellent cooling effect of the cooling device was confirmed. On the other hand, in the commercially available apparatus 30, ornithine increased by about 10% and arginine decreased by about 6%, and the conversion from arginine to ornithine progressed remarkably because it was not sufficiently kept cold. Is clear.
(試験例6)断熱蓋による血液溶血防止効果
テルモ(株)製のベノジェクトII真空採血管(EDTA−2Na入り)に、健常人ボランティア3人より、2本の採血管に各5mLの血液を採血し、実験に供するまで氷水中で保管した。このとき用いた採血管を各人ごとにS1、S2、S3(各2本)とした。予め−20℃の冷凍庫にて内箱1内の蓄冷剤を凍結させた実施例1の装置6を室温に放置し、内部の蓄冷剤温度が−10℃になった時点で、氷水中で保冷してあった採血管の各1本(S1A、S2A、S3A)は断熱蓋3をせずに直接実施例1の装置6に挿入し、一方、他の各1本(S1B、S2B、S3B)は断熱蓋3の上から実施例1の装置6に挿入した。5時間の保冷の後、遠心分離を行い、溶血の程度を観察した。図16に示すように、断熱蓋3を用いて保冷したS1B、S2B、S3Bの採血管は、いずれも断熱蓋3を用いずに保冷したS1A、S2A、S3Aに比較して、遠心分離後に、上澄み部36の溶血による着色が少なかった。本試験例6により、保冷に際して断熱蓋3を使用することで血液の溶血をさらに緩和できることが明らかである。
(Test Example 6) Blood hemolysis prevention effect by heat insulating lid Blood was collected from 3 healthy volunteers into 2 blood collection tubes from Terumo Corporation's Venoject II vacuum blood collection tubes (with EDTA-2Na). And stored in ice water until the experiment. The blood collection tubes used at this time were S1, S2, and S3 (each two) for each person. The apparatus 6 of Example 1 in which the regenerator in the inner box 1 was previously frozen in a freezer at −20 ° C. was left at room temperature, and when the internal regenerator temperature became −10 ° C., it was kept cold in ice water. Each one of the collected blood collection tubes (S1A, S2A, S3A) was directly inserted into the apparatus 6 of Example 1 without the heat insulating lid 3, while the other one (S1B, S2B, S3B) Was inserted into the apparatus 6 of Example 1 from above the heat insulating lid 3. After 5 hours of cooling, centrifugation was performed and the degree of hemolysis was observed. As shown in FIG. 16, the blood collection tubes of S1B, S2B, and S3B that were kept cold using the heat insulating lid 3 were compared with S1A, S2A, and S3A that were kept cold without using the heat insulating lid 3, and after centrifugation, There was little coloring by hemolysis of the supernatant part 36. It is clear from Test Example 6 that hemolysis of blood can be further alleviated by using the heat insulating lid 3 at the time of cooling.
(試験例7)天板および伝熱板の種類と保冷効果
天板15および保持部材11Dの材質および厚さが異なる以外は、実施例1と同様の方法で比較例1の試験管冷却・保冷装置を作製した。作製した試験管冷却・保冷装置6を用いて、断熱蓋3がない状態で、上記の試験例3の方法に従って保冷持続時間を測定した。また、実施例1の試験管冷却・保冷装置については、断熱蓋3の有無についても測定した。なお、保冷持続時間(t)は、角位置に保持された採血管20A中に入れた水の温度が5℃に到達する時間で評価した。同時に、その時間での角位置と内側位置とでの温度差(△T)についても測定した。各実施例の構成と、測定結果を表1に示す。また、参考例として、市販装置30での結果を併記した。
(Test Example 7) Types of top plate and heat transfer plate and cooling effect The test tube cooling / cooling of Comparative Example 1 was performed in the same manner as in Example 1 except that the material and thickness of the top plate 15 and the holding member 11D were different. A device was made. Using the produced test tube cooling / cooling device 6, the cooling duration was measured according to the method of Test Example 3 described above without the heat insulating lid 3. Further, the test tube cooling / cooling apparatus of Example 1 was also measured for the presence or absence of the heat insulating lid 3. In addition, cold preservation duration (t) evaluated by the time when the temperature of the water put into 20 A of blood collection tubes hold | maintained at the corner position reaches 5 degreeC. At the same time, the temperature difference (ΔT) between the angular position and the inner position at that time was also measured. Table 1 shows the configuration of each example and the measurement results. Moreover, the result in the commercial apparatus 30 was written together as a reference example.
表1に示すようにステンレススチール(ST)製の天板および伝熱板を用いた比較例1の場合に、温度の均一性が保てない。そのため、ポリカーボネート(PC)の外箱のみからなる市販の保冷装置に比べると優れてはいるものの、角位置(c1、c2)の保冷持続時間(t)が短く、したがって温度差(△T)が大きかった。これに対して、本発明の実施形態の装置のように天板および伝熱板にアルミニウム(Al)を用いた場合には、断熱蓋を用いない場合であっても、保冷持続時間は8.5時間であり、かつ、角位置と内側位置とでの温度差(△T)が1℃以内と極めて均一な保冷が確保できていた。さらに断熱蓋を用いることにより、12時間もの保冷時間を実現できた。 As shown in Table 1, in the case of Comparative Example 1 using a stainless steel (ST) top plate and heat transfer plate, temperature uniformity cannot be maintained. Therefore, although it is superior to a commercially available cold insulation device consisting only of a polycarbonate (PC) outer box, the cold insulation duration (t) at the corner positions (c1, c2) is short, and therefore the temperature difference (ΔT) is small. It was big. On the other hand, when aluminum (Al) is used for the top plate and the heat transfer plate as in the apparatus according to the embodiment of the present invention, the cold keeping duration is 8. It was 5 hours, and the temperature difference (ΔT) between the corner position and the inner position was within 1 ° C., and extremely uniform cooling could be secured. Furthermore, by using a heat insulating lid, a cooling time of 12 hours could be realized.
表1から、本発明の試験管冷却・保冷装置において、天板および伝熱板はステンレススチール(熱伝導率15−25W/m・K)よりも高い熱伝導率の材料で作製されることが望ましい。好ましくは、鉄(熱伝導率84W/m・K)と同等以上の熱伝導率の材料で天板および伝熱板を作製することで、均一かつ長時間の保冷が実現できる。 From Table 1, in the test tube cooling / cooling device of the present invention, the top plate and the heat transfer plate are made of a material having a higher thermal conductivity than stainless steel (thermal conductivity 15-25 W / m · K). desirable. Preferably, the top plate and the heat transfer plate are made of a material having a thermal conductivity equal to or higher than that of iron (thermal conductivity 84 W / m · K), so that uniform and long-time cooling can be realized.
[実施の形態2]
以下、本発明の実施の形態2を実施例2により詳細に説明する。
実施の形態2の冷却・保冷装置は、断熱外箱2内に加熱プレート8を備えている。加熱プレート8が内箱1と接触する面は、内箱1の温度を速やかに0℃付近まで上昇させるため熱伝導率の高い素材を用いて作製することが望ましい。また、加熱プレート8の内部の蓄冷剤13Aとしては、0℃に対してあまり低温にならないため、具体的には、血液の凍結や溶血が生じない温度である−5℃以下にならないために、0℃付近に凝固点温度を持ち、高い潜熱を有する素材(例えば、アクリル系吸水ポリマーと水からなる吸水ゲル)などを用いて作製することが望ましい。
[Embodiment 2]
The second embodiment of the present invention will be described below in detail with reference to the second embodiment.
The cooling / cooling device of the second embodiment includes a heating plate 8 in the heat insulating outer box 2. The surface on which the heating plate 8 is in contact with the inner box 1 is desirably made of a material having high thermal conductivity in order to quickly raise the temperature of the inner box 1 to near 0 ° C. In addition, the regenerator 13A inside the heating plate 8 does not become so low with respect to 0 ° C., specifically, it does not fall below −5 ° C., which is a temperature at which freezing or hemolysis does not occur. It is desirable to produce using a material having a freezing point temperature near 0 ° C. and a high latent heat (for example, a water-absorbing gel composed of an acrylic water-absorbing polymer and water).
(実施例2)
本発明の実施の形態2の試験管冷却・保冷装置6を図17に示す。内箱1の側面と底面、および天板15は厚さ1.0mmのアルミニウム製である。筒状の保持部材11は、内径13mm、外径15mmのアルミニウムパイプ製であり、一端が閉じた底面を構成する。保持部材11の全長は75mmで、底面は半径6mmのアール形状に加工されている。なお、天板15と保持部材11はかしめ加工により接合した。内箱1は、実施例1と同じく100mm×100mm×85mmの箱型容器である。内箱1の天面を構成する天板15には、4行×4列の保持部材11を等間隔に設置し、外周列(行)に配置された保持部材11の中心点と内箱1の側面との距離は12.5mmとした。内箱1の内部には、発泡スチロール製の直径3〜4mmの球状の弾性体14を分散させた蓄冷剤13を充填し、さらに、厚さ1.0mmのアルミニウム製伝熱板12を図5Aの態様で挿入した。また、断熱外箱2の内底部には、厚さ0.1mmのアルミニウムを用いて作製された94mm×94mm×5mmの平板状の加熱プレート8を配置した。加熱プレート8の内部には弾性体14Aを分散させた蓄冷剤13Aを封入した。断熱外箱2および断熱蓋3は、厚さ9mmのポリスチレンフォーム保温板(商品名:スタイロフォーム、ダウ化工(株)製)を用いて作製した。本実施例では、蓄冷剤13および13Aとして、いずれも、ファインパック(鳥繁産業(株)製、商品名)に用いられている蓄冷剤を用い、弾性体14および14Aとして、直径3〜4mmの球形発泡スチロールを用いたが、これらはそれぞれ異なる材料を用いても良い。なお、本実施例では、図17に示すように、内箱1の底面の縁にそって突起を設け、突起の内側に加熱プレート8を収容できるようにした。また、加熱プレート8は内箱1の底面に密接して配置した。
(Example 2)
FIG. 17 shows a test tube cooling / cooling device 6 according to Embodiment 2 of the present invention. The side and bottom surfaces of the inner box 1 and the top plate 15 are made of aluminum having a thickness of 1.0 mm. The cylindrical holding member 11 is made of an aluminum pipe having an inner diameter of 13 mm and an outer diameter of 15 mm, and constitutes a bottom surface with one end closed. The entire length of the holding member 11 is 75 mm, and the bottom surface is processed into a round shape having a radius of 6 mm. The top plate 15 and the holding member 11 were joined by caulking. The inner box 1 is a box-shaped container of 100 mm × 100 mm × 85 mm as in the first embodiment. The top plate 15 constituting the top surface of the inner box 1 is provided with 4 rows × 4 columns of holding members 11 at equal intervals, and the center point of the holding members 11 arranged in the outer circumferential row (row) and the inner box 1. The distance from the side surface was 12.5 mm. The inner box 1 is filled with a cold storage agent 13 in which a spherical elastic body 14 made of styrene foam having a diameter of 3 to 4 mm is dispersed, and an aluminum heat transfer plate 12 having a thickness of 1.0 mm is formed as shown in FIG. 5A. Inserted in the manner. Further, a 94 mm × 94 mm × 5 mm flat plate-shaped heating plate 8 made of aluminum having a thickness of 0.1 mm was disposed on the inner bottom of the heat insulating outer box 2. Inside the heating plate 8, a cold storage agent 13A in which an elastic body 14A is dispersed was sealed. The heat insulation outer box 2 and the heat insulation lid 3 were produced using a polystyrene foam heat insulating plate (trade name: Styrofoam, manufactured by Dow Chemical Co., Ltd.) having a thickness of 9 mm. In the present embodiment, as the cold storage agents 13 and 13A, the cold storage agents used in Fine Pack (trade name, manufactured by Torisu Industry Co., Ltd.) are used, and the elastic bodies 14 and 14A have a diameter of 3 to 4 mm. However, different materials may be used for each of these. In this embodiment, as shown in FIG. 17, a protrusion is provided along the edge of the bottom surface of the inner box 1 so that the heating plate 8 can be accommodated inside the protrusion. The heating plate 8 was placed in close contact with the bottom surface of the inner box 1.
(試験例8)
加熱プレート8の使用による、冷凍庫から冷却した内箱を取り出した後、試験管冷却・保冷装置6の使用が可能になるまでの時間の短縮効果を検証した。
実施例2の内箱1を−20℃の冷凍庫で予め凍結させた。内箱1を冷凍庫から取り出し、室温で保管された実施例2の断熱外箱2に収納し、断熱蓋3を嵌めた際の保持部材11内壁の温度変化を記録した。
図18は、図9Aで説明した角位置(c)、外側位置(o)および内側位置(i)の各保持部材11の温度上昇プロファイルを示す。図18に示すように、実施例2の本装置6の場合、断熱外箱2および断熱蓋3を備えた断熱構造を有するにも係わらず、いずれの位置(c、o、i)の保持部材11も、約12分で採血管を挿入しても差し支えない温度(すなわち、血液の凍結や溶血が生じない温度)である−5℃まで到達した。これは、断熱外箱2の底面に設置した加熱プレート8が、室温状態で保管されていたことにより、加熱プレート8からの急速な加温により、内箱1の温度が速やかに上昇したことによると考えられる。
(Test Example 8)
After taking out the cooled inner box from the freezer by using the heating plate 8, the effect of shortening the time until the test tube cooling / cooling device 6 can be used was verified.
The inner box 1 of Example 2 was previously frozen in a -20 ° C freezer. The inner box 1 was taken out from the freezer, stored in the heat insulating outer box 2 of Example 2 stored at room temperature, and the temperature change of the inner wall of the holding member 11 when the heat insulating lid 3 was fitted was recorded.
FIG. 18 shows the temperature rise profiles of the holding members 11 at the angular position (c), the outer position (o), and the inner position (i) described in FIG. 9A. As shown in FIG. 18, in the case of the apparatus 6 of the second embodiment, the holding member at any position (c, o, i) despite having a heat insulating structure including the heat insulating outer box 2 and the heat insulating lid 3. 11 also reached −5 ° C., which is a temperature at which the blood collection tube can be inserted in about 12 minutes (that is, a temperature at which freezing or hemolysis does not occur). This is because the temperature of the inner box 1 rapidly rose due to rapid heating from the heating plate 8 because the heating plate 8 installed on the bottom surface of the heat insulating outer box 2 was stored at room temperature. it is conceivable that.
[実施の形態3]
以下、本発明の実施の形態3を実施例3により詳細に説明する。
実施の形態3の冷却・保冷装置は、保持部材の先端を内箱底板に接触させたものである。実施例3の装置6が実施例2の装置6と異なる点は、伝熱板12を用いていないこと、及び、内箱1の高さを変えたことである。
[Embodiment 3]
Hereinafter, the third embodiment of the present invention will be described in detail with reference to the third embodiment.
The cooling / cooling device of the third embodiment is such that the tip of the holding member is brought into contact with the inner box bottom plate. The difference between the device 6 of the third embodiment and the device 6 of the second embodiment is that the heat transfer plate 12 is not used and the height of the inner box 1 is changed.
(実施例3)
本発明の実施の形態3の試験管冷却・保冷装置6を図19に示す。内箱1の側面と底面、および天板15は厚さ1.0mmのアルミニウム製である。筒状の保持部材11は実施例2と同一の寸法・形状で、一端が閉じたアルミニウム製のパイプからなる。なお、天板15と保持部材11はかしめ加工により接合した。実施例3の装置6の特徴は、内箱1の高さを、保持部材11の長さと同一にし、保持部材11の底部と内箱底板16を接触させたことである。また、内箱1の内部には、発泡スチロール製の直径3〜4mmの球状の弾性体14を分散させた蓄冷剤13を充填した。断熱外箱2の内底部に、厚さ0.1mmのアルミニウムを用いて作製された94mm×94mm×5mmの加熱プレート8を配置した。また、加熱プレート8の内部には弾性体14Aを分散させた蓄冷剤13Aを封入した。断熱外箱2および断熱蓋3は、厚さ9mmのポリスチレンフォーム保温板(商品名:スタイロフォーム、ダウ化工(株)製)を用いて作製した。本実施例では、蓄冷剤13および13Aとして、いずれも、ファインパック(鳥繁産業(株)製、商品名)に用いられている蓄冷剤を用い、弾性体14および14Aとして、直径3〜4mmの球形発泡スチロールを用いたが、これらはそれぞれ異なる材料を用いても良い。
(Example 3)
FIG. 19 shows a test tube cooling / cooling device 6 according to Embodiment 3 of the present invention. The side and bottom surfaces of the inner box 1 and the top plate 15 are made of aluminum having a thickness of 1.0 mm. The cylindrical holding member 11 is made of an aluminum pipe having the same dimensions and shape as those of the second embodiment and having one end closed. The top plate 15 and the holding member 11 were joined by caulking. The feature of the device 6 of the third embodiment is that the height of the inner box 1 is made equal to the length of the holding member 11 and the bottom of the holding member 11 and the inner box bottom plate 16 are brought into contact with each other. The inner box 1 was filled with a cold storage agent 13 in which a spherical elastic body 14 having a diameter of 3 to 4 mm made of polystyrene foam was dispersed. A 94 mm × 94 mm × 5 mm heating plate 8 made of aluminum having a thickness of 0.1 mm was disposed on the inner bottom of the heat insulating outer box 2. Further, inside the heating plate 8, a cold storage agent 13A in which an elastic body 14A is dispersed is sealed. The heat insulation outer box 2 and the heat insulation lid 3 were produced using a polystyrene foam heat insulating plate (trade name: Styrofoam, manufactured by Dow Chemical Co., Ltd.) having a thickness of 9 mm. In the present embodiment, as the cold storage agents 13 and 13A, the cold storage agents used in Fine Pack (trade name, manufactured by Torisu Industry Co., Ltd.) are used, and the elastic bodies 14 and 14A have a diameter of 3 to 4 mm. However, different materials may be used for each of these.
(試験例9)
保持部材11をと底板16に接触させたことによる、冷凍庫から冷却した内箱を取り出した後、試験管冷却・保冷装置6の使用が可能になるまでの時間の短縮効果を検証した。
実施例3の内箱1を−20℃の冷凍庫で予め凍結させた。内箱1を冷凍庫から取り出し、室温で保管された実施例2の断熱外箱2に収納し、断熱蓋3を嵌めた際の保持部材11内壁の温度変化を記録した。
図20は、図9Aで説明した角位置(c)、外側位置(o)および内側位置(i)の各保持部材11の温度上昇プロファイルを示す。図20に示すように、実施の形態3の本装置6の場合、いずれの位置(c、o、i)の保持部材11でも、実施例2よりも内箱1の昇温速度は速くなり、約9分で採血管を挿入しても差し支えない温度−5℃まで到達した。これは、室温状態で保管されていた加熱プレート8からの熱が、内箱底板16を介して保持部材11に伝達されたことにより、内箱1内の蓄冷剤13が急速に加温されたことによるものと考えられる。
(Test Example 9)
After taking out the cooled inner box from the freezer by bringing the holding member 11 into contact with the bottom plate 16, the effect of shortening the time until the test tube cooling / cooling device 6 can be used was verified.
The inner box 1 of Example 3 was previously frozen in a -20 ° C freezer. The inner box 1 was taken out from the freezer, stored in the heat insulating outer box 2 of Example 2 stored at room temperature, and the temperature change of the inner wall of the holding member 11 when the heat insulating lid 3 was fitted was recorded.
FIG. 20 shows a temperature rise profile of each holding member 11 at the corner position (c), the outer position (o), and the inner position (i) described in FIG. 9A. As shown in FIG. 20, in the case of the present apparatus 6 of the third embodiment, the heating rate of the inner box 1 is faster than that of the second embodiment in the holding member 11 at any position (c, o, i). The temperature reached −5 ° C. at which the blood collection tube could be inserted in about 9 minutes. This is because the heat from the heating plate 8 stored at room temperature is transferred to the holding member 11 via the inner box bottom plate 16 so that the cool storage agent 13 in the inner box 1 is rapidly heated. This is probably due to this.
以上、本発明の試験管冷却・保冷装置について、実施例および試験例を用いて説明した。本発明の試験管冷却・保冷装置は、優れた試験管冷却性能と保冷性能を有し、かつ保持部材の部位による、冷却性能および保冷性能のばらつきが抑制されることが確認できた。なお、実施例では、人間の血液を収容する採血管を例に説明したが、血液以外にも、人体から排出される尿、便、人体を流れている髄液、人体を作っている細胞、臓器などの検体検査の用途にも本発明の試験管冷却・保冷装置を用いることができる。また、動物の検体検査にも利用することができる。さらには、缶飲料、ビン飲料などの冷却・保冷に応用することができる。また、保持部材の形状は、検体試験管の形状やサイズに合わせて調整することが好ましい。 As described above, the test tube cooling / cooling device of the present invention has been described using the examples and the test examples. It was confirmed that the test tube cooling / cooling device of the present invention has excellent test tube cooling performance and cooling performance, and that variation in cooling performance and cooling performance depending on the holding member portion is suppressed. In the embodiment, a blood collection tube that contains human blood has been described as an example, but besides blood, urine discharged from the human body, feces, cerebrospinal fluid flowing through the human body, cells forming the human body, The test tube cooling / cooling device of the present invention can also be used for testing specimens such as organs. It can also be used for animal specimen testing. Furthermore, it can be applied to cooling / cooling of canned beverages, bottled beverages and the like. The shape of the holding member is preferably adjusted according to the shape and size of the specimen test tube.
[実施の形態4]
次に本発明の実施の形態4の試験管冷却・保冷システム40について図21を用いて説明する。試験管冷却・保冷システム40は、3台の実施の形態1記載の試験管冷却・保冷装置43、44、45を収容できる冷凍庫41と、冷凍庫41の温度を制御できる制御部42を備えている。試験管冷却・保冷装置43、44、45は、各装置の蓄冷剤の温度と保持部材の内表面の温度を検出することのできる温度センサー46、47、48を装備している。温度センサー46、47、48が検知した温度データは、受信経路49を経由して制御部42に送信され、制御部42は、受信した温度データに基づき、送信経路50を介して、冷凍庫41の温度を制御することができる。制御部42として、パソコンを用いることもできるが、専用マイコンを用いることが好ましい。なお、実施の形態4では、1台の冷凍庫41に3台の試験管冷却・保冷装置43、44、45を収容しているが、冷凍庫1台ごとに試験管冷却・保冷装置を1台に搭載してもよいし、2台以上を搭載してもよい。また、制御部42が、複数の冷凍庫41を制御する構成にしてもよい。
[Embodiment 4]
Next, a test tube cooling / cooling system 40 according to Embodiment 4 of the present invention will be described with reference to FIG. The test tube cooling / cooling system 40 includes a freezer 41 that can accommodate the three test tube cooling / cooling devices 43, 44, and 45 described in the first embodiment, and a control unit 42 that can control the temperature of the freezer 41. . The test tube cooling / cooling devices 43, 44, 45 are equipped with temperature sensors 46, 47, 48 capable of detecting the temperature of the regenerator and the temperature of the inner surface of the holding member of each device. The temperature data detected by the temperature sensors 46, 47, and 48 is transmitted to the control unit 42 via the reception path 49, and the control unit 42 receives the temperature data of the freezer 41 via the transmission path 50 based on the received temperature data. The temperature can be controlled. A personal computer may be used as the control unit 42, but a dedicated microcomputer is preferably used. In the fourth embodiment, three test tube cooling / cooling devices 43, 44, 45 are accommodated in one freezer 41, but one test tube cooling / cooling device is provided for each freezer. It may be mounted, or two or more units may be mounted. Moreover, you may make it the structure which the control part 42 controls the several freezer 41. FIG.
実施の形態4記載の試験管冷却・保冷システム40は、蓄冷剤を凍結させる段階では、冷凍庫内の温度を下げて蓄冷剤を急速冷凍し、蓄冷剤の凍結後は庫内温度が0℃付近になるように温度を制御することができる。このような温度制御により、蓄冷剤の温度が低すぎることによる、血液などの検体の凍結などの弊害発生の危険性を大幅に軽減することができる。 In the test tube cooling / cooling system 40 described in the fourth embodiment, in the stage of freezing the cool storage agent, the temperature in the freezer is lowered to rapidly freeze the cool storage agent, and after the freezing of the cool storage agent, the internal temperature is around 0 ° C. The temperature can be controlled to be Such temperature control can greatly reduce the risk of adverse effects such as freezing of a specimen such as blood due to the temperature of the regenerator being too low.
本発明の試験管冷却・保冷装置およびシステムは、ヒトからの採血などを行う医療機関及び検査機関、さらに、家畜等の血液などを扱う獣医機関や畜検査機関でも利用される。 The test tube cooling / cooling apparatus and system of the present invention are also used in medical institutions and inspection institutions that collect blood from humans, and also in veterinary institutions and animal inspection institutions that handle blood such as livestock.
1・・・内箱
2・・・断熱外箱
3・・・断熱蓋
4・・・蓋
5・・・ハンドル
6・・・試験管冷却・保冷装置
7・・・容器
8・・・加熱プレート
10・・・空気
11・・・保持部材
11A・・・並行直管状保持部材
11B・・・段差形状保持部材
11C・・・テーパ形状保持部材
11D・・・上部テーパ形状保持部材
12・・・伝熱板
13、13A・・・蓄冷剤
14、14A・・・弾性体
15・・・天板
16・・・内箱底板
20・・・検体試験管
20A・・・採血管
30・・・市販試験管冷却・保冷装置
31・・・容器本体
35・・・沈殿部
36・・・上澄み部
40・・・試験管冷却・保冷システム
41・・・冷凍庫
42・・・制御部
43、44、45・・・試験管冷却・保冷装置
46、47、48・・・温度センサー
49・・・センサーからの受信経路
50・・・制御部から冷凍庫への送信経路
c1、c2・・・角位置
o1、o2・・・外側位置
i1、i2・・・内側位置
DESCRIPTION OF SYMBOLS 1 ... Inner box 2 ... Thermal insulation outer box 3 ... Thermal insulation lid 4 ... Lid 5 ... Handle 6 ... Test tube cooling and cooling device 7 ... Container 8 ... Heating plate DESCRIPTION OF SYMBOLS 10 ... Air 11 ... Holding member 11A ... Parallel straight tubular holding member 11B ... Step shape holding member 11C ... Tapered shape holding member 11D ... Upper taper shape holding member 12 ... Transmission Hot plate 13, 13A ... Cold storage agent 14, 14A ... Elastic body 15 ... Top plate 16 ... Inner box bottom plate 20 ... Sample test tube 20A ... Blood collection tube 30 ... Commercial test Tube cooling / cold insulation device 31 ... Container body 35 ... Precipitation part 36 ... Supernatant part 40 ... Test tube cooling / cold insulation system 41 ... Freezer 42 ... Control part 43, 44, 45 ..Test tube cooling / cold insulation device 46, 47, 48 ... temperature sensor 4 Transmission path c1, c2 ... angular position of ... from the receive path 50 ... control unit from the sensor to the freezer o1, o2, ... outside position i1, i2, ... inside position
Claims (14)
前記内箱は、熱伝導性材料を有し、内部には蓄冷剤が密封されており、かつ、複数の開口部が形成された天板を有し、
該複数の開口部からは、検体試験管を保持する熱伝導性の保持部材が、該内箱の内部方向に突出しており、該保持部材は、先端部が閉鎖されて前記蓄冷剤の密封が保たれるようになっており、
前記外箱内には、前記内箱の外面に接する位置に加熱プレートがさらに設けられ、該加熱プレートは、ケース内に蓄冷剤が封入された構成を有するものであり、
冷凍された内箱が外箱内に収容された場合に、加熱プレート内の蓄冷剤と内箱内の蓄冷剤との間での熱交換によって、内箱の温度が上昇し得る構成となっている、
検体試験管冷却・保冷装置。 Has an outer box having an adiabatic structure, the inner box to be out can accommodated in said outer box,
The inner box has a heat conductive material, a regenerator is sealed inside, and a top plate in which a plurality of openings are formed ,
From the plurality of openings, the heat conductivity of the holding member for holding a sample test tubes protrudes inwardly of the inner box, the retaining member, the seal of the refrigerant 13A tip is closed To be kept,
In the outer box, a heating plate is further provided at a position in contact with the outer surface of the inner box, and the heating plate has a configuration in which a regenerator is enclosed in a case,
When the frozen inner box is accommodated in the outer box, the temperature of the inner box can be increased by heat exchange between the cool storage agent in the heating plate and the cool storage agent in the inner box. Yes,
Sample test tube cooling / cooling device.
該検体試験管冷却・保冷装置の内箱を直接冷却することで、蓄冷剤を冷凍することができる専用の冷凍庫を有する検体試験管冷却・保冷システム。 The specimen test tube cooling / cooling device according to any one of claims 1 to 12 , and
A sample test tube cooling / cooling system having a dedicated freezer capable of freezing the regenerator by directly cooling the inner box of the sample test tube cooling / cooling device.
該検体試験管冷却・保冷装置の外箱を加熱プレートと共に室温に保持し、かつ、該検体試験管冷却・保冷装置の内箱を冷凍し、Holding the outer box of the specimen test tube cooling / cooling apparatus together with a heating plate at room temperature, and freezing the inner box of the specimen test tube cooling / cooling apparatus,
用に臨んで、冷凍された前記内箱を室温に保持された外箱内に収容することによって、加熱プレート内の蓄冷剤と内箱内の蓄冷剤との間で熱交換を行わせ、内箱の温度を上昇させる、For this purpose, by storing the frozen inner box in an outer box kept at room temperature, heat exchange is performed between the cool storage agent in the heating plate and the cool storage agent in the inner box. Increase the temperature of the box,
前記検体試験管冷却・保冷装置の使用方法。A method of using the specimen test tube cooling / cooling device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009019128A JP5334299B2 (en) | 2008-07-18 | 2009-01-30 | Sample test tube cooling / cooling device, system having the device, and method of using the device |
PCT/JP2009/063007 WO2010008083A1 (en) | 2008-07-18 | 2009-07-17 | Specimen test tube refrigeration and cold-storage system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008187225 | 2008-07-18 | ||
JP2008187225 | 2008-07-18 | ||
JP2009019128A JP5334299B2 (en) | 2008-07-18 | 2009-01-30 | Sample test tube cooling / cooling device, system having the device, and method of using the device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010043835A JP2010043835A (en) | 2010-02-25 |
JP5334299B2 true JP5334299B2 (en) | 2013-11-06 |
Family
ID=41550483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009019128A Active JP5334299B2 (en) | 2008-07-18 | 2009-01-30 | Sample test tube cooling / cooling device, system having the device, and method of using the device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5334299B2 (en) |
WO (1) | WO2010008083A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200476348Y1 (en) * | 2014-07-30 | 2015-03-02 | 양영록 | Apparatus for local anesthesia |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9315612B2 (en) * | 2005-07-27 | 2016-04-19 | Certainteed Corporation | Composite material including rigid foam with inorganic fillers |
JP5564288B2 (en) | 2010-03-01 | 2014-07-30 | 株式会社フジクラ | Connector assembly |
WO2011118665A1 (en) * | 2010-03-25 | 2011-09-29 | 株式会社典雅 | Ejaculation-facilitating device |
JP5720057B2 (en) * | 2011-02-23 | 2015-05-20 | 秀司 大林 | Blood collection and cooling system |
US10295268B2 (en) * | 2011-03-23 | 2019-05-21 | Cool Lab, Llc | Phase change thermal-sink apparatus |
CN102673894A (en) * | 2012-05-15 | 2012-09-19 | 苏州国环环境检测有限公司 | Portable refrigeration sample box |
DE102012213542A1 (en) | 2012-08-01 | 2014-02-06 | Goselig UG | Cold storage device and cooling system arrangement |
US9518898B2 (en) | 2012-12-06 | 2016-12-13 | Cook Medical Technologies Llc | Cryogenic storage container with sealing closure and methods of using the same |
US9297499B2 (en) * | 2012-12-06 | 2016-03-29 | Cook Medical Technologies Llc | Cryogenic storage container, storage device, and methods of using the same |
CN104458793A (en) * | 2014-12-19 | 2015-03-25 | 苏州市东华试验仪器有限公司 | Micro cooling capacity exchange type fast freezing-thawing testing machine |
CN104787482B (en) * | 2015-01-31 | 2017-12-01 | 张宝凯 | The interim storage device of clinical laboratory's sample |
JP6445367B2 (en) * | 2015-03-27 | 2018-12-26 | 大陽日酸株式会社 | Biological sample transport container and transport method |
JP5943121B2 (en) * | 2015-04-28 | 2016-06-29 | 株式会社島津製作所 | Tube holding plate and tube rack using the same |
CN105387643A (en) * | 2015-12-22 | 2016-03-09 | 重庆泰思特试验仪器有限公司 | Constant-temperature control system for high- and low-temperature and low-air-pressure test box |
CN107617379B (en) * | 2017-11-10 | 2023-11-28 | 华亚芳 | Integrated insulin constant-temperature shaking device |
CN108405021B (en) * | 2018-04-26 | 2020-05-12 | 董兴辉 | Medical test tube case |
US11732964B2 (en) * | 2020-04-15 | 2023-08-22 | Navinta Iii Inc | Lyophilization promoting element |
CN113399012B (en) * | 2021-06-30 | 2024-07-12 | 东莞现代产品整理服务有限公司 | Food microorganism detection sampling method and sampling box thereof |
CN118829487A (en) * | 2021-12-28 | 2024-10-22 | 帝肯贸易股份公司 | Cooling module |
CN114751058B (en) * | 2022-05-23 | 2024-04-02 | 姜启宁 | Medicine transportation incubator based on medicine |
CN114985033B (en) * | 2022-06-27 | 2024-05-17 | 深圳市商海龙实业有限公司 | Portable safe test tube rack |
CN115138415B (en) * | 2022-08-04 | 2023-07-21 | 青岛海墨生物医疗科技有限公司 | Independent cold-stored equipment of depositing of test tube for clinical laboratory |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5997375U (en) * | 1982-12-17 | 1984-07-02 | 三菱電機株式会社 | heat storage device |
JPS6046128U (en) * | 1983-09-05 | 1985-04-01 | 日石三菱株式会社 | Cooling and fixed support for collection sample containers |
JPS6049929U (en) * | 1983-09-13 | 1985-04-08 | 日石三菱株式会社 | Test tube cold storage/holding equipment |
JPH068557Y2 (en) * | 1987-03-20 | 1994-03-02 | 征俊 相徳 | Sample cold storage container |
JPH01200169A (en) * | 1988-02-03 | 1989-08-11 | Matsushita Refrig Co Ltd | Cold heat accumulative refrigerator with freezer |
JPH01266860A (en) * | 1988-04-19 | 1989-10-24 | Yukitaka Furukawa | Test tube holding tool permitting cooling of the test tube |
JP2585516Y2 (en) * | 1991-08-05 | 1998-11-18 | 株式会社三菱化学ビーシーエル | Sample cooling rack |
JPH06135468A (en) * | 1991-12-04 | 1994-05-17 | Hiromichi Manome | Double-wall cooler box |
JPH11188273A (en) * | 1997-12-26 | 1999-07-13 | Taitec Kk | Simple cooler of physicochemical sample |
JP2006030144A (en) * | 2004-07-21 | 2006-02-02 | Kajikkusu Trading:Kk | Sample tube heat-insulating tray and heat insulating box for multi-well plate |
-
2009
- 2009-01-30 JP JP2009019128A patent/JP5334299B2/en active Active
- 2009-07-17 WO PCT/JP2009/063007 patent/WO2010008083A1/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200476348Y1 (en) * | 2014-07-30 | 2015-03-02 | 양영록 | Apparatus for local anesthesia |
Also Published As
Publication number | Publication date |
---|---|
JP2010043835A (en) | 2010-02-25 |
WO2010008083A1 (en) | 2010-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5334299B2 (en) | Sample test tube cooling / cooling device, system having the device, and method of using the device | |
EP3074704B1 (en) | Temperature-controlled container systems for use within a refrigeration device | |
US8151599B2 (en) | Transport container for maintaining the temperature of frozen goods | |
US10702870B2 (en) | Thermal energy transfer device | |
EP2689200B1 (en) | Phase change thermal-sink apparatus | |
CN106455862A (en) | Systems, devices, and methods for automated sample thawing | |
US11243020B2 (en) | Cooling system with temperature rise indication capability | |
WO2016162451A1 (en) | A multi-layer cold specimen transport container without active cooling. | |
CN109642861A (en) | Device and method for freezing sample | |
US20180008061A1 (en) | Heat transfer apparatus | |
JP2018112354A (en) | Freezing cold insulation container | |
CN207502267U (en) | The in-vitro diagnosis equipment of reagent refrigerating device and the application reagent refrigerating device | |
CN214307739U (en) | Medicine storage and refrigeration cup, touch screen temperature display cup cover, heat preservation cup body and cold accumulation releaser | |
CN209302811U (en) | A kind of packaged type medical treatment pathology hypothermia operation table | |
CN208439702U (en) | Sample incubator | |
CN220250410U (en) | Refrigerating device and cell culture equipment | |
CN215514742U (en) | Metabonomics biological sample collection and storage device | |
CN213713653U (en) | Cold storage bottle | |
CN204944987U (en) | A kind of non-freezing solution box assembly of freezing point osmotic pressure analyzer | |
CN205366566U (en) | Case is preserved to food hygiene inspection sample | |
CN202973649U (en) | Inclined reagent cold storage tank for full-automatic blood coagulation tester | |
CN213621089U (en) | Interstitial and interstitial epithelial transformation type circulating tumor cell accompanying diagnostic kit | |
CN216547444U (en) | Insect-holding fixing box for detecting insects | |
CN218344074U (en) | Blood sample storage box | |
CN219162881U (en) | Experimental device for solidifying water and melting ice |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5334299 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |