[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5332555B2 - Method for manufacturing double tube fluorescent lamp and double tube fluorescent lamp - Google Patents

Method for manufacturing double tube fluorescent lamp and double tube fluorescent lamp Download PDF

Info

Publication number
JP5332555B2
JP5332555B2 JP2008303340A JP2008303340A JP5332555B2 JP 5332555 B2 JP5332555 B2 JP 5332555B2 JP 2008303340 A JP2008303340 A JP 2008303340A JP 2008303340 A JP2008303340 A JP 2008303340A JP 5332555 B2 JP5332555 B2 JP 5332555B2
Authority
JP
Japan
Prior art keywords
tube
discharge vessel
fluorescent lamp
phosphor
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008303340A
Other languages
Japanese (ja)
Other versions
JP2010129400A (en
Inventor
幸治 田川
賢一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2008303340A priority Critical patent/JP5332555B2/en
Priority to TW098130555A priority patent/TWI438821B/en
Priority to KR1020090095538A priority patent/KR101217329B1/en
Publication of JP2010129400A publication Critical patent/JP2010129400A/en
Application granted granted Critical
Publication of JP5332555B2 publication Critical patent/JP5332555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/025Associated optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/10Shields, screens, or guides for influencing the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/16Selection of substances for gas fillings; Specified operating pressure or temperature having helium, argon, neon, krypton, or xenon as the principle constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/70Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr
    • H01J61/72Lamps with low-pressure unconstricted discharge having a cold pressure < 400 Torr having a main light-emitting filling of easily vaporisable metal vapour, e.g. mercury
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

本発明は、一般照明装置の光源、バックライト装置の光源、紫外線照射装置の光源、に利用される二重管型蛍光ランプの製造方法、及び、二重管型蛍光ランプに関する。   The present invention relates to a method of manufacturing a double tube fluorescent lamp used for a light source of a general lighting device, a light source of a backlight device, and a light source of an ultraviolet irradiation device, and a double tube fluorescent lamp.

従来、液晶表示装置などのバックライト装置に使用される光源は、細長いガラス管からなる放電容器内に希ガスが封入され、内面に蛍光体が塗布されたものであり、放電容器の外面に形成された一対の帯状の外部電極に電圧を印加して、放電容器内にエキシマ放電を発生させ、紫外線で蛍光体を励起して可視光を得る外部電極型の蛍光ランプが知られている。   Conventionally, a light source used in a backlight device such as a liquid crystal display device is formed on the outer surface of a discharge vessel, in which a rare gas is enclosed in a discharge vessel made of an elongated glass tube and a phosphor is applied on the inner surface. An external electrode type fluorescent lamp is known in which a voltage is applied to the pair of strip-shaped external electrodes to generate excimer discharge in a discharge vessel, and phosphors are excited with ultraviolet rays to obtain visible light.

近年、一般照明装置、バックライト装置については、光出力の一層の増強が望まれてきており、従来から知られている二重管構造のエキシマランプを用いて、その放電容器の内面全体に蛍光体を塗布した二重管型蛍光ランプが開発されている。
この二重管型蛍光ランプは、外側管の内表面と内側管の外表面に蛍光体を有する構造であるために、従来の筒状の一重管型の外部電極型の蛍光ランプに比べ、蛍光体の形成領域が増え、光出力が増加するものである。
In recent years, with regard to general lighting devices and backlight devices, it has been desired to further increase the light output. Using a conventionally known double-tube structure excimer lamp, the entire inner surface of the discharge vessel is fluorescent. A double-tube fluorescent lamp with a coated body has been developed.
This double tube type fluorescent lamp has a structure having a phosphor on the inner surface of the outer tube and the outer surface of the inner tube, so that it is fluorescent compared with a conventional cylindrical single tube type external electrode type fluorescent lamp. The body formation area increases and the light output increases.

また、紫外線照射装置においても、放電容器の内面全体に蛍光体を塗布した二重管型蛍光ランプが開発されている。この二重管型蛍光ランプは、例えば172nmの紫外線を励起光として、例えば311nmや340nmなどの紫外部に発光する蛍光体を用いて紫外線を発光させるものである。
このような紫外線照射装置についても、光出力の一層の増強が望まれてきている。
In addition, a double tube fluorescent lamp in which a phosphor is applied to the entire inner surface of a discharge vessel has also been developed for an ultraviolet irradiation device. This double-tube fluorescent lamp emits ultraviolet rays using a phosphor that emits ultraviolet light such as 311 nm or 340 nm, for example, using excitation light of 172 nm ultraviolet light, for example.
For such an ultraviolet irradiation device, further enhancement of light output has been desired.

図5は、二重管型蛍光ランプの説明図である。
この二重管型蛍光ランプ10は、各々、シリカガラスよりなる円筒状の外側管12および円筒状の内側管13が同軸上に配置されると共に、両端において溶融して接合されて外側管12と内側管13との間に円筒状の放電空間Sが形成されてなる二重管構造をなす放電容器11を備えており、金網などの導電性材料よりなるメッシュ状の外部電極16が外側管12の外表面に密接して設けられていると共に例えばアルミニウムよりなる内部電極15が内側管13の内表面に密接して設けられており、キセノンガスなどの希ガスが放電空間S内に封入されて、外側管12の内表面と内側管13の外表面に蛍光体17が設けられて構成されている。
図中、18、19は、放電容器11の両端に形成された排気管残部である。
特開2001−023578号公報
FIG. 5 is an explanatory diagram of a double tube fluorescent lamp.
In this double tube fluorescent lamp 10, a cylindrical outer tube 12 and a cylindrical inner tube 13 made of silica glass are coaxially arranged, and melted and joined at both ends to be joined to the outer tube 12. A discharge vessel 11 having a double tube structure in which a cylindrical discharge space S is formed between the inner tube 13 and a mesh-like external electrode 16 made of a conductive material such as a wire mesh is provided on the outer tube 12. An inner electrode 15 made of, for example, aluminum is provided in close contact with the inner surface of the inner tube 13, and a rare gas such as xenon gas is enclosed in the discharge space S. The phosphor 17 is provided on the inner surface of the outer tube 12 and the outer surface of the inner tube 13.
In the figure, reference numerals 18 and 19 denote exhaust pipe remaining portions formed at both ends of the discharge vessel 11.
JP 2001-023578 A

この二重管型蛍光ランプ10の放電容器11内に蛍光体を設ける工程は以下の通りある。
図6(a)に示すように、外側管12と内側管13を、その両端で封着し放電容器11を形成するとともに、外側管12と内側管13の一部からなる放電空間Sに繋がる排気管18a,19aを有する構造体を製造する。
The process of providing the phosphor in the discharge vessel 11 of the double tube fluorescent lamp 10 is as follows.
As shown in FIG. 6A, the outer tube 12 and the inner tube 13 are sealed at both ends to form the discharge vessel 11, and connected to the discharge space S composed of a part of the outer tube 12 and the inner tube 13. A structure having the exhaust pipes 18a and 19a is manufactured.

この構造体を、図6(b)に示すように、排気管18a、19aが鉛直方向に向くように放電容器11を立て、下方の排気管19aを蛍光体となる液体状の蛍光体原料17aの中に沈め、上方の排気管18aから放電容器11内の気体を吸引することにより、蛍光体原料17aを吸い上げ、放電容器11内を蛍光体原料17aで満たす。   As shown in FIG. 6B, the discharge vessel 11 is erected so that the exhaust pipes 18a and 19a face in the vertical direction, and the lower phosphor pipe 19a is used as a phosphor for this structure. The fluorescent material 17a is sucked up by sucking the gas in the discharge vessel 11 from the upper exhaust pipe 18a, and the discharge vessel 11 is filled with the fluorescent material 17a.

その後、放電容器11内の気体の吸引を中止することにより、放電容器11内に吸い上げられた蛍光体原料17aが下方に流れ出し、外側管12の内表面と内側管13の外表面に蛍光体原料が塗布された状態になる。   Thereafter, the suction of the gas in the discharge vessel 11 is stopped, whereby the phosphor material 17a sucked up in the discharge vessel 11 flows downward, and the phosphor material on the inner surface of the outer tube 12 and the outer surface of the inner tube 13. Will be applied.

そして、図6(c)に示すように、排気管18a、19aが鉛直方向に向くように放電容器11を立てた状態で、上方の排気管18aから乾燥した窒素ガスを流し、その窒素ガスを下方の排気管19aから排出し、蛍光体原料17aを乾燥させて外側管12の内表面と内側管13の外表面に蛍光体17を形成するものである。   Then, as shown in FIG. 6 (c), in a state where the discharge vessel 11 is set up so that the exhaust pipes 18a, 19a face the vertical direction, a dry nitrogen gas is flowed from the upper exhaust pipe 18a, The phosphor 17 is discharged from the lower exhaust pipe 19a, and the phosphor raw material 17a is dried to form the phosphor 17 on the inner surface of the outer tube 12 and the outer surface of the inner tube 13.

しかしながら、このような方法では、放電容器11内に流れる窒素ガスは、図6(c)中、矢印で示すように、上方の排気管18aから下方の排気管19aに向けて直線状に流れるものである。
この結果、窒素ガスは、矢印に沿って形成された放電空間S1には良好に流れるものであるが、矢印から離れて形成された放電空間S2には流れ込まないか、流れ込んでも微量のものである。
このように、放電容器11内に窒素ガスが均一に満遍なく流れないものであり、窒素ガスが良好に流れる領域では、蛍光体原料17aは素早く乾燥し所定の厚みの蛍光体を得ることができるが、窒素ガスが流れ難い領域では蛍光体原料17aが乾燥する前に流れ落ちてしまい、所定の厚みより薄い蛍光体となるものである。
However, in such a method, the nitrogen gas flowing into the discharge vessel 11 flows linearly from the upper exhaust pipe 18a toward the lower exhaust pipe 19a as shown by the arrow in FIG. 6 (c). It is.
As a result, the nitrogen gas flows favorably in the discharge space S1 formed along the arrow, but does not flow into the discharge space S2 formed away from the arrow, or is small even if it flows. .
Thus, the nitrogen gas does not flow uniformly and uniformly in the discharge vessel 11, and in the region where the nitrogen gas flows well, the phosphor raw material 17a can be quickly dried to obtain a phosphor having a predetermined thickness. In the region where the nitrogen gas is difficult to flow, the phosphor raw material 17a flows down before drying, resulting in a phosphor thinner than a predetermined thickness.

つまり、外側管12の内表面と内側管13の外表面に形成された蛍光体17は、不均一な厚みとなり、二重管型蛍光ランプ10の管軸方向および管軸に対する周方向で、光出力が不均一になるという問題があった。   That is, the phosphor 17 formed on the inner surface of the outer tube 12 and the outer surface of the inner tube 13 has a non-uniform thickness, and light is emitted in the tube axis direction of the double tube fluorescent lamp 10 and in the circumferential direction with respect to the tube axis. There was a problem that the output became non-uniform.

本発明は、このような問題を解決するためになされたものであって、その目的は、管軸方向および管軸に対する周方向で光出力が均一となる二重管型蛍光ランプの製造方法および二重管型蛍光ランプを提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a method for manufacturing a double-tube fluorescent lamp in which the light output is uniform in the tube axis direction and the circumferential direction with respect to the tube axis, and The object is to provide a double-tube fluorescent lamp.

請求項1に記載の重管型蛍光ランプの製造方法は、外側管と内側管とによる円筒状二重管構造の放電容器を有し、前記外側管の内表面と前記内側管の外表面に蛍光体を有する二重管型蛍光ランプの製造方法において、前記外側管と前記内側管の少なくとも一方に、放電容器の内部空間に向かって突起部を作る工程と、前記外側管と前記内側管とで放電容器を形成するとともに、それぞれ排気管を設ける工程と、前記排気管から蛍光体となる蛍光体原料を前記放電容器内に流し込む工程と、前記一方の排気管から前記他方の排気管に向けて気体を流し、当該気体が前記突起部に衝突して流れる方向を変えて、前記蛍光体原料を乾燥させる工程と、前記それぞれの排気管を封止切る工程と、を備えることを特徴とする。 Method of manufacturing a double tube fluorescent lamp of claim 1 has a discharge vessel of a cylindrical double pipe structure according to the outer tube and the inner tube, the outer surface of the inner tube and the inner surface of said outer tube In the method of manufacturing a double-tube fluorescent lamp having a fluorescent material in the outer tube and the inner tube, a step of forming a protrusion toward the inner space of the discharge vessel in at least one of the outer tube and the inner tube; Forming a discharge vessel and providing an exhaust pipe, a step of pouring a phosphor material as a phosphor from the exhaust pipe into the discharge vessel, and the one exhaust pipe to the other exhaust pipe. Flowing the gas toward the surface, changing the direction in which the gas collides with the protrusion and flowing, and drying the phosphor material, and sealing off each of the exhaust pipes. To do.

請求項2に記載の重管型蛍光ランプは、外側管と内側管とによる円筒状二重管構造の放電容器を有し、前記外側管の内表面と前記内側管の外表面に蛍光体が設けられ、前記外側管と前記内側管との間に形成された円筒状の放電容器内に希ガスが封入され、前記外側管の外表面と前記内側管の内表面にそれぞれ電極が配置されてなる二重管型蛍光ランプであって、前記放電容器の両端にそれぞれ排気管を封止切った排気管残部が形成されており、前記外側管と前記内側管の少なくとも一方に、放電容器の内部空間に向かって突起部が形成され、前記突起は、前記蛍光体を形成する際の蛍光体原料を乾燥させるための気体が衝突する位置に形成され、前記突起部の先端と前記外側管の内表面との間、もしくは、前記突起部の先端と前記内側管の内表面との間に、空隙が形成されていることを特徴とする。
Double tube type fluorescent lamp according to claim 2 has a discharge vessel of a cylindrical double pipe structure according to the outer tube and the inner tube, the phosphor on the inner surface and the outer surface of the inner tube of said outer tube A rare gas is sealed in a cylindrical discharge vessel formed between the outer tube and the inner tube, and electrodes are disposed on the outer surface of the outer tube and the inner surface of the inner tube, respectively. A double-tube fluorescent lamp having a discharge tube remaining portion in which the exhaust tube is cut off at both ends of the discharge vessel, and at least one of the outer tube and the inner tube is provided with a discharge vessel A protrusion is formed toward the internal space, and the protrusion is formed at a position where a gas for drying the phosphor raw material for forming the phosphor collides, and the tip of the protrusion and the outer tube Between the inner surface or between the tip of the protrusion and the inner tube Between the surface, characterized in that the air gap is formed.

請求項3に記載の二重管型蛍光ランプは、請求項2に記載の二重管型蛍光ランプであって、特に、前記突起部は、前記放電容器の長手方向の管軸に沿って、複数形成されていることを特徴とする。   The double-tube fluorescent lamp according to claim 3 is the double-tube fluorescent lamp according to claim 2, and in particular, the protrusion is along the tube axis in the longitudinal direction of the discharge vessel. A plurality is formed.

本発明の二重管型蛍光ランプの製造方法によれば、外側管の内表面と内側管の外表面に蛍光体を均一な厚みで形成するこができるものである。
さらに、本発明の二重管型蛍光ランプによれば、管軸方向および管軸に対する周方向で光出力を均一にすることができるものである。
According to the method for manufacturing a double tube fluorescent lamp of the present invention, the phosphor can be formed with a uniform thickness on the inner surface of the outer tube and the outer surface of the inner tube.
Furthermore, according to the double tube fluorescent lamp of the present invention, the light output can be made uniform in the tube axis direction and the circumferential direction with respect to the tube axis.

以下、本願発明の二重管型蛍光ランプを図面を用いて説明する。
図1は、本願発明の二重管型蛍光ランプの説明図である。
この二重管型蛍光ランプ10は、各々、シリカガラスよりなる円筒状の外側管12および円筒状の内側管13が同軸上に配置されると共に、両端において溶融して接合されて外側管12と内側管13との間に円筒状の放電空間Sが形成されてなる二重管構造をなす放電容器11を備えており、金網などの導電性材料よりなるメッシュ状の外部電極16が外側管12の外表面に密接して設けられていると共に例えばアルミニウムよりなる内部電極15が内側管13の内表面に密接して設けられており、キセノンガスなどの希ガスが放電容器11の放電空間S内に封入されて、外側管12の内表面と内側管13の外表面に蛍光体17が設けられて構成されている。
The double tube fluorescent lamp of the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory diagram of a double tube fluorescent lamp of the present invention.
In this double tube fluorescent lamp 10, a cylindrical outer tube 12 and a cylindrical inner tube 13 made of silica glass are coaxially arranged, and melted and joined at both ends to be joined to the outer tube 12. A discharge vessel 11 having a double tube structure in which a cylindrical discharge space S is formed between the inner tube 13 and a mesh-like external electrode 16 made of a conductive material such as a wire mesh is provided on the outer tube 12. The inner electrode 15 made of, for example, aluminum is provided in close contact with the inner surface of the inner tube 13, and a rare gas such as xenon gas is provided in the discharge space S of the discharge vessel 11. The phosphor 17 is provided on the inner surface of the outer tube 12 and the outer surface of the inner tube 13.

この二重管型蛍光ランプ10は、放電容器11の両端に、それぞれ排気管を封止切った排気管残部18,19が形成されており、内側管13には放電容器11の放電空間Sである内部空間に向かって突起部20が形成されている。
この突起部20の先端は、外側管12の内表面には接しておらず、突起部20の先端と外側管12の内表面との間に空隙が形成されている。
In this double tube fluorescent lamp 10, exhaust pipe remaining portions 18 and 19 are formed at both ends of the discharge vessel 11, respectively, and the exhaust tube is cut off. The inner tube 13 has a discharge space S in the discharge vessel 11. A protrusion 20 is formed toward a certain internal space.
The tip of the projection 20 is not in contact with the inner surface of the outer tube 12, and a gap is formed between the tip of the projection 20 and the inner surface of the outer tube 12.

次に、本願発明の二重管型蛍光ランプの放電容器の製造方法について説明する。
図2(a)に示すように、放電容器11を構成する外側管12と内側管13のうち、内側管13にシリカガラスよりなる柱状体を溶着して突起部20を形成する。この突起部20は放電容器11の内部空間に向かって突出するように内側管13に設けられている。
Next, the manufacturing method of the discharge vessel of the double tube fluorescent lamp of the present invention will be described.
As shown in FIG. 2A, a projection 20 is formed by welding a columnar body made of silica glass to the inner tube 13 among the outer tube 12 and the inner tube 13 constituting the discharge vessel 11. The protrusion 20 is provided on the inner tube 13 so as to protrude toward the internal space of the discharge vessel 11.

次に、図2(b)に示すように、外側管12と内側管12をその両端で封着し放電容器11を形成するとともに、放電容器11の両端に、外側管12と内側管13の一部からなる放電空間Sに繋がる排気管18a,19aを設け放電容器構造体を製造する。   Next, as shown in FIG. 2B, the outer tube 12 and the inner tube 12 are sealed at both ends to form the discharge vessel 11, and the outer tube 12 and the inner tube 13 are formed at both ends of the discharge vessel 11. Exhaust pipes 18a and 19a connected to a part of the discharge space S are provided to manufacture a discharge vessel structure.

この放電容器構造体を、図2(c)に示すように、排気管18a、19aが鉛直方向に向くように放電容器11を立て、下方の排気管19aを蛍光体となる液体状の蛍光体原料17aの中に沈め、上方の排気管18aから放電容器11内の気体を吸引することにより、蛍光体原料17aを吸い上げ、放電容器11内に蛍光体原料17aを流し込み、放電容器11内を蛍光体原料17aで満たす。   As shown in FIG. 2 (c), the discharge vessel structure is constructed such that the discharge vessel 11 is set up so that the exhaust pipes 18a and 19a face in the vertical direction, and the lower exhaust pipe 19a is used as a phosphor. By sinking in the raw material 17a and sucking the gas in the discharge vessel 11 from the upper exhaust pipe 18a, the phosphor raw material 17a is sucked up, the phosphor raw material 17a is poured into the discharge vessel 11, and the inside of the discharge vessel 11 is fluorescent. Fill with body material 17a.

その後、放電容器11内の気体の吸引を中止することにより、放電容器11内に吸い上げられた蛍光体原料17aが下方に流れ出し、外側管12の内表面と内側管13の外表面に蛍光体原料が塗布された状態になる。   Thereafter, the suction of the gas in the discharge vessel 11 is stopped, whereby the phosphor material 17a sucked up in the discharge vessel 11 flows downward, and the phosphor material on the inner surface of the outer tube 12 and the outer surface of the inner tube 13. Will be applied.

さらに、図2(d)に示すように、排気管18a、19aが鉛直方向に向くように放電容器11を立てた状態で、上方の排気管18aから乾燥した気体である窒素ガスを流し、その窒素ガスを下方の排気管19aから排出し、蛍光体原料17aを乾燥させて外側管12の内表面と内側管13の外表面に蛍光体17を形成するものである。   Furthermore, as shown in FIG. 2 (d), in a state where the discharge vessel 11 is set up so that the exhaust pipes 18a and 19a face in the vertical direction, a nitrogen gas, which is a dried gas, is caused to flow from the upper exhaust pipe 18a. Nitrogen gas is discharged from the lower exhaust pipe 19a, and the phosphor raw material 17a is dried to form the phosphor 17 on the inner surface of the outer tube 12 and the outer surface of the inner tube 13.

そして、図2(e)に示すように、一方の排気管18aを封止切り、他方の封止管19aから放電容器11内のガスを排気し、排気工程終了後に希ガスであるキセノンガスを適宜の量放電容器11内に封入し、封止管19aを封止切り放電容器を完成させるものである。   Then, as shown in FIG. 2 (e), one exhaust pipe 18a is cut off, the gas in the discharge vessel 11 is exhausted from the other sealing pipe 19a, and xenon gas, which is a rare gas, is exhausted after the exhaust process is completed. An appropriate amount is sealed in the discharge vessel 11, the sealing tube 19a is sealed, and the discharge vessel is completed.

なお、上記の工程では、外側管12の内表面と内側管13の外表面に直接蛍光体原料17aを塗布する工程を説明したが、蛍光体原料17aを塗布する前に、外側管12の内表面と内側管13の外表面にガラス膜を形成するための液体状のガラス膜構成原料を塗布し、乾燥させる工程を追加してもよい。
また、放電容器11を構成する外側管12と内側管13は、シリカガラスに限らず、用途により、硬質ガラスとしてホウケイ酸ガラスやアルミノケイ酸ガラス、さらに、軟質ガラスとしてソーダ石灰ガラスなどのガラスを使用することも可能である。
この工程は、上記図2(c)(d)の工程と同じ工程であり、蛍光体原料17aに替えてガラス膜構成原料を用いるものである。
In the above process, the step of directly applying the phosphor raw material 17a to the inner surface of the outer tube 12 and the outer surface of the inner tube 13 has been described, but before applying the phosphor raw material 17a, You may add the process of apply | coating and drying the liquid glass film constituent raw material for forming a glass film on the surface and the outer surface of the inner tube 13.
Further, the outer tube 12 and the inner tube 13 constituting the discharge vessel 11 are not limited to silica glass, but use glass such as borosilicate glass or aluminosilicate glass as hard glass, and soda lime glass as soft glass depending on applications. It is also possible to do.
This step is the same as the steps shown in FIGS. 2C and 2D, and uses a glass film constituting material instead of the phosphor material 17a.

図2(d)に示すように、蛍光体原料17aを乾燥させる工程において、放電容器11内に流れる窒素ガスは、矢印で示すように、上方の排気管18aから放電容器11の流れ込み、先ず初めに放電空間S1に流れ込む。そして、放電空間S1を窒素ガスが進行し、突起部20に衝突してガスの一部が放電空間S2側にも流れ込むものである。
つまり、突起部20によって、放電容器11内に窒素ガスが均一に満遍なく流れるようになり、蛍光体原料17aはどの位置においても略同じ速度で乾燥するものであり、蛍光体の厚みを均一にすることができる。
As shown in FIG. 2 (d), in the step of drying the phosphor raw material 17a, the nitrogen gas flowing into the discharge vessel 11 flows into the discharge vessel 11 from the upper exhaust pipe 18a as indicated by an arrow. Flows into the discharge space S1. Then, the nitrogen gas travels through the discharge space S1, collides with the protrusion 20, and part of the gas also flows into the discharge space S2.
In other words, the protrusion 20 allows the nitrogen gas to flow uniformly and evenly in the discharge vessel 11, and the phosphor raw material 17a is dried at substantially the same speed at any position, so that the thickness of the phosphor is uniform. be able to.

このような製造方法によって出来上がった二重管型蛍光ランプによれば、外側管12の内表面と内側管13の外表面に形成された蛍光体17は、全体で均一な厚みとなり、二重管型蛍光ランプ10の管軸方向および管軸に対する周方向で光出力が均一になる。   According to the double tube fluorescent lamp completed by such a manufacturing method, the phosphors 17 formed on the inner surface of the outer tube 12 and the outer surface of the inner tube 13 have a uniform thickness as a whole, and the double tube The light output is uniform in the tube axis direction of the fluorescent lamp 10 and in the circumferential direction with respect to the tube axis.

図3は、本願発明の二重管型蛍光ランプの他の実施例の説明図である。
この実施例では、内側管13に形成された突起部21は内側管13を加熱溶融させて、放電容器11の内部空間に向かって突出するように凹ましたものである。
この突起部21の先端は、外側管12の内表面には接しておらず、突起部21の先端と外側管12の内表面との間に空隙が形成され、ガスが流通するものである。
FIG. 3 is an explanatory view of another embodiment of the double tube fluorescent lamp of the present invention.
In this embodiment, the protruding portion 21 formed on the inner tube 13 is formed by heating and melting the inner tube 13 so as to protrude toward the inner space of the discharge vessel 11.
The tip of the projection 21 is not in contact with the inner surface of the outer tube 12, and a gap is formed between the tip of the projection 21 and the inner surface of the outer tube 12, and gas flows.

この実施例においても、蛍光体原料を乾燥させる工程において、放電容器11内に流れる窒素ガスは、排気管残部18として示されている排気管から放電容器11の流れ込み、先ず初めに放電空間S1に流れ込む。そして、放電空間S1を窒素ガスが進行し、突起部21に衝突してガスの一部が放電空間S2側にも流れ込むものであり、放電容器11内に窒素ガスが均一に満遍なく流れるようになり、蛍光体原料はどの位置においても略同じ速度で乾燥して、蛍光体17の厚みを均一にすることができる。   Also in this embodiment, in the step of drying the phosphor material, the nitrogen gas flowing into the discharge vessel 11 flows into the discharge vessel 11 from the exhaust pipe shown as the exhaust pipe remaining portion 18, and first, into the discharge space S1. Flows in. Then, the nitrogen gas travels through the discharge space S1, collides with the protrusion 21, and part of the gas also flows into the discharge space S2, so that the nitrogen gas flows uniformly and evenly in the discharge vessel 11. The phosphor material can be dried at substantially the same speed at any position to make the thickness of the phosphor 17 uniform.

このような二重管型蛍光ランプによれば、外側管12の内表面と内側管13の外表面に形成された蛍光体17は、全体で均一な厚みとなり、二重管型蛍光ランプ10の管軸方向および管軸に対する周方向で光出力が均一になる。   According to such a double tube fluorescent lamp, the phosphors 17 formed on the inner surface of the outer tube 12 and the outer surface of the inner tube 13 have a uniform thickness as a whole. The light output is uniform in the tube axis direction and in the circumferential direction with respect to the tube axis.

そして、図3に示す二重管型蛍光ランプのように、突起部21が放電容器11の長手方向の管軸に沿って複数形成されていることによって、放電容器11内に流れる窒素ガスの流れをより一層ランダムにすることができ、放電容器11内に流れる窒素ガスがより均一に流れるようになり、蛍光体の厚みを確実に均一にすることができる。
この結果、二重管型蛍光ランプ10の管軸方向および管軸に対する周方向で光出力の均一性がより高いものになる。
Then, as in the double tube fluorescent lamp shown in FIG. 3, a plurality of protrusions 21 are formed along the tube axis in the longitudinal direction of the discharge vessel 11, whereby the flow of nitrogen gas flowing into the discharge vessel 11. Can be made even more random, the nitrogen gas flowing into the discharge vessel 11 can flow more uniformly, and the thickness of the phosphor can be made uniform with certainty.
As a result, the light output is more uniform in the tube axis direction of the double tube fluorescent lamp 10 and in the circumferential direction with respect to the tube axis.

上記実施例では、内側管に突起部を形成した例を示しが、外側管に放電容器の内部空間に向かって突起部を形成してもよく、内側管と外側管の両方に放電容器の内部空間に向かって突起部を形成してもよい。   In the above embodiment, an example in which the protrusion is formed on the inner tube is shown, but the protrusion may be formed on the outer tube toward the inner space of the discharge vessel, and the inner portion of the discharge vessel is formed on both the inner tube and the outer tube. A protrusion may be formed toward the space.

図4は、本願発明の二重管型蛍光ランプの他の実施例の説明図である。
この実施例では、内側管13の図中右側の端部は外側管12の端部と接合されており、内側管13の図中左側の端部は内側管13のみで封止し、外側管12の図中左側の端部は外側管12のみで封止し放電容器11が形成されている。
また、外側管12には、シリカガラスよりなる柱状体を溶着して突起部20を形成する。この突起部20は、放電容器11の内部空間に向かって突出するように外側管12に設けられている。
この突起部20の先端は、内側管13の内表面には接しておらず、突起部20の先端と内側管13の内表面との間に空隙が形成され、ガスが流通するものである。
FIG. 4 is an explanatory diagram of another embodiment of the double tube fluorescent lamp of the present invention.
In this embodiment, the right end of the inner tube 13 in the drawing is joined to the end of the outer tube 12, and the left end of the inner tube 13 in the drawing is sealed only by the inner tube 13, and the outer tube is sealed. 12 is sealed with only the outer tube 12 to form a discharge vessel 11.
Further, a columnar body made of silica glass is welded to the outer tube 12 to form the protruding portion 20. The protrusion 20 is provided on the outer tube 12 so as to protrude toward the inner space of the discharge vessel 11.
The tip of the projection 20 is not in contact with the inner surface of the inner tube 13, and a gap is formed between the tip of the projection 20 and the inner surface of the inner tube 13 so that gas flows.

この実施例においても、窒素ガスは放電空間S1,S2に流れ込む。そして、放電空間S1,S2に流れ込んだ窒素ガスは、突起部20に衝突してガスの一部がそれぞれ反対側の放電空間側にも流れ込むものであり、蛍光体原料を乾燥させる工程において、放電容器11内に流れる窒素ガスは、排気管残部18として示されている排気管から放電容器11の流れ込み遍なく流れるようになり、蛍光体原料はどの位置においても略同じ速度で乾燥して、蛍光体17の厚みを均一にすることができる。   Also in this embodiment, nitrogen gas flows into the discharge spaces S1, S2. The nitrogen gas that has flowed into the discharge spaces S1 and S2 collides with the protrusions 20 and part of the gas also flows into the discharge space on the opposite side. In the step of drying the phosphor material, The nitrogen gas flowing into the container 11 flows evenly from the exhaust pipe shown as the exhaust pipe remainder 18 into the discharge container 11, and the phosphor material is dried at almost the same speed at any position, and the fluorescent material is dried. The thickness of the body 17 can be made uniform.

このような二重管型蛍光ランプによれば、外側管12の内表面と内側管13の外表面に形成された蛍光体17は、全体で均一な厚みとなり、二重管型蛍光ランプ10の管軸方向および管軸に対する周方向で光出力が均一になる。   According to such a double tube fluorescent lamp, the phosphors 17 formed on the inner surface of the outer tube 12 and the outer surface of the inner tube 13 have a uniform thickness as a whole. The light output is uniform in the tube axis direction and in the circumferential direction with respect to the tube axis.

そして、図4に示す二重管型蛍光ランプのように、突起部20が放電容器11の長手方向の管軸に沿って複数形成されていることによって、放電容器11内に流れる窒素ガスの流れをより一層ランダムにすることができ、放電容器11内に流れる窒素ガスがより均一に流れるようになり、蛍光体の厚みを確実に均一にすることができる。
この結果、二重管型蛍光ランプ10の管軸方向および管軸に対する周方向で光出力の均一性がより高いものになる。
Then, as in the double tube fluorescent lamp shown in FIG. 4, the plurality of protrusions 20 are formed along the tube axis in the longitudinal direction of the discharge vessel 11, whereby the flow of nitrogen gas flowing into the discharge vessel 11. Can be made even more random, the nitrogen gas flowing into the discharge vessel 11 can flow more uniformly, and the thickness of the phosphor can be made uniform with certainty.
As a result, the light output is more uniform in the tube axis direction of the double tube fluorescent lamp 10 and in the circumferential direction with respect to the tube axis.

本願発明の二重管型蛍光ランプの説明図である。It is explanatory drawing of the double tube | pipe type fluorescent lamp of this invention. 本願発明の二重管型蛍光ランプの製造工程説明図である。It is explanatory drawing of the manufacturing process of the double tube | pipe type fluorescent lamp of this invention. 本願発明の他の実施例の二重管型蛍光ランプの説明図である。It is explanatory drawing of the double tube | pipe type fluorescent lamp of the other Example of this invention. 本願発明の他の実施例の二重管型蛍光ランプの説明図である。It is explanatory drawing of the double tube | pipe type fluorescent lamp of the other Example of this invention. 従来二重管型蛍光ランプの説明図である。It is explanatory drawing of the conventional double tube | pipe type fluorescent lamp. 従来の二重管型蛍光ランプの製造工程説明図である。It is manufacturing process explanatory drawing of the conventional double tube | pipe type fluorescent lamp.

符号の説明Explanation of symbols

11 放電容器
12 外側管
13 内側管
15 電極
16 電極
17 蛍光体
18 排気管残部
19 排気管残部
20 突起部
21 突起部
11 Discharge vessel 12 Outer tube 13 Inner tube 15 Electrode 16 Electrode 17 Phosphor 18 Remaining exhaust pipe 19 Remaining exhaust pipe 20 Protrusion 21 Protrusion

Claims (3)

外側管と内側管とによる円筒状二重管構造の放電容器を有し、前記外側管の内表面と前記内側管の外表面に蛍光体を有する二重管型蛍光ランプの製造方法において、
前記外側管と前記内側管の少なくとも一方に、放電容器の内部空間に向かって突起部を作る工程と、
前記外側管と前記内側管とで放電容器を形成するとともに、それぞれ排気管を設ける工程と、
前記排気管から蛍光体となる蛍光体原料を前記放電容器内に流し込む工程と、
前記一方の排気管から前記他方の排気管に向けて気体を流し、当該気体が前記突起部に衝突して流れる方向を変えて、前記蛍光体原料を乾燥させる工程と、
前記それぞれの排気管を封止切る工程と、
を備えることを特徴とする二重管型蛍光ランプの製造方法。
In a manufacturing method of a double tube fluorescent lamp having a discharge vessel of a cylindrical double tube structure with an outer tube and an inner tube, and having a phosphor on the inner surface of the outer tube and the outer surface of the inner tube,
Forming a protrusion on at least one of the outer tube and the inner tube toward the internal space of the discharge vessel;
Forming a discharge vessel with the outer tube and the inner tube, and providing an exhaust tube;
Pouring a phosphor raw material to be a phosphor from the exhaust pipe into the discharge vessel;
Flowing a gas from the one exhaust pipe toward the other exhaust pipe, changing the direction in which the gas collides with the protrusion and flows, and drying the phosphor material;
Sealing off each of the exhaust pipes;
A method for producing a double-tube fluorescent lamp, comprising:
外側管と内側管とによる円筒状二重管構造の放電容器を有し、前記外側管の内表面と前記内側管の外表面に蛍光体が設けられ、前記外側管と前記内側管との間に形成された円筒状の放電容器内に希ガスが封入され、前記外側管の外表面と前記内側管の内表面にそれぞれ電極が配置されてなる二重管型蛍光ランプであって、
前記放電容器の両端にそれぞれ排気管を封止切った排気管残部が形成されており、
前記外側管と前記内側管の少なくとも一方に、放電容器の内部空間に向かって突起部が形成され、
前記突起は、前記蛍光体を形成する際の蛍光体原料を乾燥させるための気体が衝突する位置に形成され、
前記突起部の先端と前記外側管の内表面との間、もしくは、前記突起部の先端と前記内側管の内表面との間に、空隙が形成されている
ことを特徴とする二重管型蛍光ランプ。
A discharge vessel having a cylindrical double-tube structure composed of an outer tube and an inner tube; a phosphor is provided on the inner surface of the outer tube and the outer surface of the inner tube; and between the outer tube and the inner tube A double tube fluorescent lamp in which a rare gas is enclosed in a cylindrical discharge vessel formed on the electrode, and electrodes are respectively disposed on the outer surface of the outer tube and the inner surface of the inner tube,
Exhaust pipe remainders are formed by sealing off the exhaust pipe at both ends of the discharge vessel,
At least one of the outer tube and the inner tube is formed with a protrusion toward the inner space of the discharge vessel,
The protrusion is formed at a position where a gas for drying the phosphor material at the time of forming the phosphor collides,
A space is formed between the tip of the projection and the inner surface of the outer tube, or between the tip of the projection and the inner surface of the inner tube. Double tube fluorescent lamp.
前記突起部は、前記放電容器の長手方向の管軸に沿って、複数形成されていることを特徴とする請求項2に記載の二重管型蛍光ランプ。   The double tube fluorescent lamp according to claim 2, wherein a plurality of the protrusions are formed along a tube axis in a longitudinal direction of the discharge vessel.
JP2008303340A 2008-11-28 2008-11-28 Method for manufacturing double tube fluorescent lamp and double tube fluorescent lamp Expired - Fee Related JP5332555B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008303340A JP5332555B2 (en) 2008-11-28 2008-11-28 Method for manufacturing double tube fluorescent lamp and double tube fluorescent lamp
TW098130555A TWI438821B (en) 2008-11-28 2009-09-10 A double tube type fluorescent lamp manufacturing method and a double tube type fluorescent lamp
KR1020090095538A KR101217329B1 (en) 2008-11-28 2009-10-08 Method for manufacturing a double tube type fluorescent lamp and the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303340A JP5332555B2 (en) 2008-11-28 2008-11-28 Method for manufacturing double tube fluorescent lamp and double tube fluorescent lamp

Publications (2)

Publication Number Publication Date
JP2010129400A JP2010129400A (en) 2010-06-10
JP5332555B2 true JP5332555B2 (en) 2013-11-06

Family

ID=42329648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303340A Expired - Fee Related JP5332555B2 (en) 2008-11-28 2008-11-28 Method for manufacturing double tube fluorescent lamp and double tube fluorescent lamp

Country Status (3)

Country Link
JP (1) JP5332555B2 (en)
KR (1) KR101217329B1 (en)
TW (1) TWI438821B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910020B2 (en) * 2011-11-18 2016-04-27 ウシオ電機株式会社 Blue phase liquid crystal panel manufacturing apparatus and blue phase liquid crystal panel manufacturing method
JP6921557B2 (en) * 2016-03-23 2021-08-18 株式会社オーク製作所 Discharge lamp and its manufacturing method
KR102349121B1 (en) * 2020-02-11 2022-01-11 유니램 주식회사 Double tube type fluorescent excimer lamp and method for manufacturing thereof
KR20220008562A (en) 2020-07-14 2022-01-21 유니램 주식회사 Stabilizer integrated excimer air purifier
KR20220008982A (en) 2020-07-14 2022-01-24 유니램 주식회사 Air purifying device
KR102451427B1 (en) 2020-07-14 2022-10-07 유니램 주식회사 Triple tube type excimer lamp
KR20220155080A (en) 2021-05-14 2022-11-22 유니램 주식회사 Excimer lamp and light irradiation device having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161126B2 (en) * 1993-01-20 2001-04-25 ウシオ電機株式会社 Dielectric barrier discharge fluorescent lamp
JP3491566B2 (en) * 1999-07-05 2004-01-26 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3381688B2 (en) * 1999-11-26 2003-03-04 サンケン電気株式会社 Manufacturing method of cold cathode fluorescent discharge tube
JP4029715B2 (en) * 2002-10-18 2008-01-09 ウシオ電機株式会社 Excimer discharge lamp
WO2006006139A1 (en) * 2004-07-09 2006-01-19 Philips Intellectual Property & Standards Gmbh Dielectric barrier discharge lamp with integrated multifunction means

Also Published As

Publication number Publication date
KR101217329B1 (en) 2012-12-31
KR20100061323A (en) 2010-06-07
TW201021081A (en) 2010-06-01
JP2010129400A (en) 2010-06-10
TWI438821B (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5332555B2 (en) Method for manufacturing double tube fluorescent lamp and double tube fluorescent lamp
JP2003203603A (en) Gas discharge tube
JP2010027268A (en) Excimer lamp
TW516068B (en) Dielectric barrier discharge lamp
JP6921557B2 (en) Discharge lamp and its manufacturing method
JP2010177050A (en) Fluorescent lamp and method for manufacturing the same
JP2004079268A (en) External electrode type fluorescent lamp
JP2004127781A (en) Excimer lamp
JP7132540B2 (en) excimer lamp
JP2006085983A (en) External electrode discharge lamp and its manufacturing method
JP2016066559A (en) Ultraviolet lamp
JP2001126662A (en) Short arc type extra-high pressure discharge lamp
KR100859858B1 (en) Double tube fluorescent lamp
US8164263B2 (en) Excimer discharge lamp
KR101166124B1 (en) A helical electrode module for cold cathode fluorescent and method of manufacturing thereof
JP2014186987A (en) Ultraviolet lamp and irradiation device
JP2005190782A (en) Manufacturing method of discharge tube
JP3906696B2 (en) Low pressure mercury vapor discharge lamp
JP2008071723A (en) Discharge light emitting device
JP5290859B2 (en) Lamp manufacturing method and lamp manufacturing apparatus
JP2007103168A (en) Arc tube and method of manufacturing arc tube
JP4230862B2 (en) Dielectric barrier discharge lamp
JPWO2005036586A1 (en) Light emitting discharge tube, method for manufacturing light emitting discharge tube, and protective film forming apparatus
JPH0718124Y2 (en) Short arc type discharge lamp
JP2013105555A (en) Excimer lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5332555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees