[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5332400B2 - Torque pulsation suppression device and suppression method for electric motor - Google Patents

Torque pulsation suppression device and suppression method for electric motor Download PDF

Info

Publication number
JP5332400B2
JP5332400B2 JP2008216862A JP2008216862A JP5332400B2 JP 5332400 B2 JP5332400 B2 JP 5332400B2 JP 2008216862 A JP2008216862 A JP 2008216862A JP 2008216862 A JP2008216862 A JP 2008216862A JP 5332400 B2 JP5332400 B2 JP 5332400B2
Authority
JP
Japan
Prior art keywords
current
axis
pulsation
compensation
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008216862A
Other languages
Japanese (ja)
Other versions
JP2010057217A (en
Inventor
裕吾 只野
昌克 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2008216862A priority Critical patent/JP5332400B2/en
Publication of JP2010057217A publication Critical patent/JP2010057217A/en
Application granted granted Critical
Publication of JP5332400B2 publication Critical patent/JP5332400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、回転機械を駆動する電動機(回転電気機械)のトルク制御装置において、電動機パラメータに起因して発生するトルク脈動を抑制する装置および抑制方法に関する。   The present invention relates to an apparatus and a method for suppressing torque pulsation generated due to electric motor parameters in a torque control apparatus for an electric motor (rotating electric machine) that drives a rotating machine.

電動機は、構造的な磁束の歪みやコギングトルクを持つため、回転に応じて振動・騒音の一因となるトルク脈動を発生する。また、電動機と負荷との間で多慣性系が構成される場合、その機械系共振点とトルク脈動周波数成分が一致することで過大な軸ねじれトルクが発生し、運転特性上の悪影響やシステム破損の危険がある。   Since the electric motor has structural magnetic flux distortion and cogging torque, it generates torque pulsation that contributes to vibration and noise according to the rotation. In addition, when a multi-inertia system is configured between the motor and the load, the mechanical resonance point and the torque pulsation frequency component coincide with each other, generating an excessive shaft torsion torque, which adversely affects operating characteristics and damages the system. There is a danger of.

これらの問題を解決するために、フィードバック制御による軸ねじれ共振抑制手法がある。しかし、フィードバックによる共振抑制方法では、共振周波数とインバータの応答周波数が近い場合、または制御系のサンプリング時間を充分に短くできない場合に共振抑制が困難になる。   In order to solve these problems, there is a method for suppressing torsional resonance by feedback control. However, in the resonance suppression method using feedback, resonance suppression becomes difficult when the resonance frequency and the response frequency of the inverter are close, or when the sampling time of the control system cannot be sufficiently shortened.

これらの課題を解決するため、IPMモータ出力のトルクリップルを打ち消す補償信号をIPMモータのd、q軸電流指令またはトルク指令に加えるようにしたものがある(例えば、特許文献1参照)。
特開2007−267466号公報
In order to solve these problems, there is one in which a compensation signal for canceling the torque ripple of the IPM motor output is added to the d, q-axis current command or torque command of the IPM motor (for example, see Patent Document 1).
JP 2007-267466 A

電動機のトルク脈動は、モータ構造の磁気的な不完全性や、それを駆動するインバータ電源の応答・電流誤差、機械系の特性など、様々な要因が複雑に関連している。特に、埋込磁石式同期電動機(以後、IPMSMと呼ぶ)は、永久磁石によるトルクだけでなく、磁気的異方性を用いたリラクタンストルクも有効活用できる高効率な電動機であるが、反面、トルク脈動の観点からは、マグネットトルク脈動とリラクタンストルク脈動の双方が複合的に発生する問題がある。   The torque pulsation of an electric motor is complicatedly associated with various factors such as magnetic imperfection of the motor structure, response / current error of the inverter power source that drives the motor, and mechanical system characteristics. In particular, an embedded magnet type synchronous motor (hereinafter referred to as IPMSM) is a high-efficiency motor that can effectively utilize not only the torque by a permanent magnet but also reluctance torque using magnetic anisotropy. From the viewpoint of pulsation, there is a problem that both magnet torque pulsation and reluctance torque pulsation occur in a composite manner.

IPMSMの制御は、一般に、電動機の回転数に同期した回転座標(直交dq座標)上の電流をベクトル制御する手法が用いられる。d軸およびq軸電流と定常的なトルク式の関係は、以下で求められる。   In general, the IPMSM is controlled by vector control of current on rotational coordinates (orthogonal dq coordinates) synchronized with the rotational speed of the motor. The relationship between the d-axis and q-axis currents and the steady torque equation is obtained as follows.

Figure 0005332400
Figure 0005332400

ただし、Ψ:永久磁石による鎖交磁束数、Ld:d軸インダクタンス、Lq:q軸インダクタンス、id:d軸電流、iq:q軸電流
IPMSMにおいては、用途・目的に応じてd軸電流とq軸電流の割合を制御する必要がある(例えば、最大トルク制御を実現するなど)ため、別途に適切な指令値を与える必要がある。トルク脈動補償信号を重畳する際も、d軸、q軸電流が干渉しないように別途に考える必要がある。
However, Ψ: number of flux linkages by permanent magnet, L d : d-axis inductance, L q : q-axis inductance, i d : d-axis current, i q : q-axis current In IPMSM, d depends on the application and purpose. Since it is necessary to control the ratio between the shaft current and the q-axis current (for example, to realize maximum torque control), it is necessary to separately provide an appropriate command value. When superimposing the torque pulsation compensation signal, it is necessary to consider separately so that the d-axis and q-axis currents do not interfere with each other.

また、上記の式は、Ψ、Ld、Lqが平均値で簡略化された定常トルクであり、電動機パラメータの歪みによるトルク脈動は式に表されていない。そこで、例えば、前記の特許文献1では、磁束Ψには回転子位相θに依存した歪み成分があるとして、それを抑制するような補償信号を各軸の電流指令値id、iqに重畳している。しかしながら、インダクタンスLd、Lqの歪み成分が考慮されていないため、厳密にはトルク脈動補償誤差が生じると考えられる。 Further, the above formula is a steady torque simplified by average values of Ψ, L d , and L q , and torque pulsation due to distortion of the motor parameters is not expressed in the formula. Therefore, for example, in Patent Document 1, it is assumed that the magnetic flux Ψ has a distortion component depending on the rotor phase θ, and a compensation signal for suppressing the distortion component is superimposed on the current command values i d and i q of each axis. doing. However, since the distortion components of the inductances L d and L q are not taken into account, it is considered that a torque pulsation compensation error strictly occurs.

本発明の目的は、電動機パラメータ(インダクタンス、永久磁石による鎖交磁束数、構造的な不完全性等)の歪みに起因したトルク脈動を、高い精度で抑制できる電動機のトルク脈動抑制装置および抑制方法を提供することにある。   An object of the present invention is to provide a torque pulsation suppressing device and a suppression method for an electric motor that can highly accurately suppress torque pulsations caused by distortion of motor parameters (inductance, the number of flux linkages caused by permanent magnets, structural imperfections, etc.). Is to provide.

本発明は、前記の課題を解決するため、電動機のパラメータ(インダクタンス、永久磁石による鎖交磁束数、構造的な不完全性等)に起因して発生するトルク脈動分を導出し、このトルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を導出し、この新たな脈動成分を打ち消す電流補償信号をインバータの電流指令に加えるようにしたもので、以下のトルク脈動抑制装置および抑制方法を特徴とする。   In order to solve the above-mentioned problems, the present invention derives a torque pulsation generated due to the parameters of the motor (inductance, the number of flux linkages by a permanent magnet, structural imperfection, etc.), and this torque pulsation A new pulsation component generated by superimposing a compensation current to compensate for the inverter current command is derived, and a current compensation signal that cancels this new pulsation component is added to the inverter current command. The torque pulsation suppressing device and the suppressing method are characterized.

(1)電動機のトルク指令値をd,q軸電流成分に変換するトルク−電流指令変換部と、前記トルク−電流指令変換部の出力をd,q軸電流指令値とし、この電流指令値とインバータの出力電流検出値とから電動機の電流制御を行うインバータとを備えた電動機のトルク制御装置において、
電動機のパラメータに起因して発生するトルク脈動分を導出し、このトルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を導出し、トルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を打ち消す電流補償信号をインバータの電流指令に加える脈動補償部を備えたことを特徴とする。
(1) A torque-current command conversion unit for converting the torque command value of the motor into d and q-axis current components, and an output of the torque-current command conversion unit as a d and q-axis current command value. In the torque control device for an electric motor provided with an inverter that performs electric current control of the electric motor from the output current detection value of the inverter,
Deriving torque pulsation generated due to motor parameters and deriving new pulsation component generated by superimposing compensation current to compensate for this torque pulsation on inverter current command to compensate for torque pulsation And a pulsation compensator for adding a current compensation signal for canceling a new pulsation component generated by superimposing the compensation current to be superimposed on the inverter current command to the inverter current command.

(2)前記脈動補償部は、電動機のパラメータに起因して発生するトルク脈動分を、電動機の回転位相角θおよびインバータの運転周波数の3の整数倍および6の整数倍の脈動成分として導出し、これらのトルク脈動成分を打ち消す電流補償信号を求め、この電流補償信号をインバータの電流指令に加える手段を備えたことを特徴とする。   (2) The pulsation compensator derives the torque pulsation generated due to the motor parameters as a pulsation component of an integer multiple of 3 and an integer multiple of 6 of the rotational phase angle θ of the motor and the inverter operating frequency. The present invention is characterized in that there is provided means for obtaining a current compensation signal for canceling these torque pulsation components and adding the current compensation signal to the current command of the inverter.

(3)前記脈動補償部は、前記6の整数倍の脈動成分について、d軸補償電流を0とし、前記トルク脈動分が「0」となるq軸補償電流iqcを求め、このq軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする。 (3) The pulsation compensation unit obtains a q-axis compensation current i qc at which the d-axis compensation current is 0 for the pulsation component that is an integral multiple of 6 and the torque pulsation component is “0”. Means is provided for setting the current i qc to be an addition value to the q-axis current command value.

(4)前記脈動補償部は、前記6の整数倍の脈動成分について、q軸補償電流を0とし、前記トルク脈動分が「0」となるd軸補償電流idcを求め、このd軸補償電流idcを前記d軸電流指令値への加算値とする手段を備えたことを特徴とする。 (4) The pulsation compensation unit obtains a d-axis compensation current i dc at which the q-axis compensation current is 0 for the pulsation component that is an integral multiple of 6 and the torque pulsation component is “0”. Means is provided for setting the current i dc to be a value added to the d-axis current command value.

(5)前記脈動補償部は、前記6の整数倍の脈動成分について、前記トルク脈動分が「0」となるd軸補償電流idcおよびq軸補償電流iqcを求め、d軸補償電流idcを前記d軸電流指令値への加算値とし、q軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする。 (5) The pulsation compensation unit obtains a d-axis compensation current i dc and a q-axis compensation current i qc at which the torque pulsation component is “0” for the pulsation component that is an integral multiple of 6 to obtain a d-axis compensation current i There is provided means for setting dc as an addition value to the d-axis current command value and setting a q-axis compensation current i qc as an addition value to the q-axis current command value.

(6)前記脈動補償部は、前記3の整数倍の脈動成分について、d軸補償電流を0とし、前記トルク脈動分が「0」となるq軸補償電流iqcを求め、このq軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする。 (6) The pulsation compensation unit obtains a q-axis compensation current i qc at which the d-axis compensation current is set to 0 and the torque pulsation component is “0” for the pulsation component that is an integral multiple of 3 and this q-axis compensation Means is provided for setting the current i qc to be an addition value to the q-axis current command value.

(7)前記脈動補償部は、前記3の整数倍の脈動成分について、q軸補償電流を0とし、前記トルク脈動分が「0」となるd軸補償電流idcを求め、このd軸補償電流idcを前記d軸電流指令値への加算値とする手段を備えたことを特徴とする。 (7) The pulsation compensation unit obtains a d-axis compensation current i dc at which the q-axis compensation current is 0 for the pulsation component that is an integral multiple of 3 and the torque pulsation component is “0”. Means is provided for setting the current i dc to be a value added to the d-axis current command value.

(8)前記脈動補償部は、前記3の整数倍の脈動成分について、前記トルク脈動分が「0」となるd軸補償電流idcおよびq軸補償電流iqcを求め、d軸補償電流idcを前記d軸電流指令値への加算値とし、q軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする。 (8) The pulsation compensation unit obtains a d-axis compensation current i dc and a q-axis compensation current i qc at which the torque pulsation component is “0” for the pulsation component that is an integral multiple of 3 to obtain a d-axis compensation current i There is provided means for setting dc as an addition value to the d-axis current command value and setting a q-axis compensation current i qc as an addition value to the q-axis current command value.

(9)前記脈動補償部は、前記6の整数倍及び3の整数倍の脈動成分について、前記トルク脈動分が「0」となるd軸補償電流idc及びq軸補償電流iqcを求め、d軸補償電流idcを前記d軸電流指令値への加算値とし、q軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする。 (9) The pulsation compensation unit obtains a d-axis compensation current i dc and a q-axis compensation current i qc at which the torque pulsation component is “0” for the pulsation component of an integer multiple of 6 and an integral multiple of 3. The d-axis compensation current i dc is a value added to the d-axis current command value, and the q-axis compensation current i qc is a value added to the q-axis current command value.

(10)前記補償電流で補償したdq軸電流指令値を、インバータの応答遅れを表現する伝達関数の逆伝達関数をもつ応答補償部を通してインバータの電流指令値とすることを特徴とする。   (10) The dq-axis current command value compensated with the compensation current is used as an inverter current command value through a response compensation unit having an inverse transfer function of a transfer function expressing an inverter response delay.

(11)電動機のトルク指令値をd,q軸電流成分に変換するトルク−電流指令変換部と、前記トルク−電流指令変換部の出力をd,q軸電流指令値とし、この電流指令値とインバータの出力電流検出値とから電動機の電流制御を行うインバータとを備えた電動機のトルク制御装置において、
電動機のトルク脈動を抑制する脈動補償部は、電動機のパラメータに起因して発生するトルク脈動分を導出し、このトルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を導出し、この新たな脈動成分を打ち消す電流補償信号をインバータの電流指令に加えることを特徴とする。
(11) A torque-current command conversion unit that converts the torque command value of the motor into d and q-axis current components, and an output of the torque-current command conversion unit as a d and q-axis current command value. In the torque control device for an electric motor provided with an inverter that performs electric current control of the electric motor from the output current detection value of the inverter,
The pulsation compensation unit that suppresses the torque pulsation of the motor derives the torque pulsation generated due to the parameters of the motor, and a new current generated by superimposing the compensation current for compensating the torque pulsation on the current command of the inverter. A new pulsation component is derived, and a current compensation signal that cancels the new pulsation component is added to the current command of the inverter.

以上のとおり、本発明によれば、電動機のパラメータ(インダクタンス、永久磁石による鎖交磁束数、構造的な不完全性等)に起因して発生するトルク脈動分を導出し、このトルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を導出し、この新たな脈動成分を打ち消す電流補償信号をインバータの電流指令に加えるようにしたため、電動機パラメータの歪みに起因したトルク脈動を、高い精度で抑制できる。   As described above, according to the present invention, the torque pulsation generated due to the parameters of the motor (inductance, the number of interlinkage magnetic fluxes by permanent magnets, structural imperfections, etc.) is derived, and this torque pulsation is calculated. A new pulsation component generated by superimposing the compensation current to be compensated on the inverter current command is derived, and a current compensation signal that cancels this new pulsation component is added to the inverter current command. The resulting torque pulsation can be suppressed with high accuracy.

(実施形態1)
本発明の原理的な説明に続けて、本実施形態の抑制装置および抑制方法を説明する。
(Embodiment 1)
Following the principle description of the present invention, the suppression device and the suppression method of the present embodiment will be described.

(A)原理的な説明
IPMSMの3相電圧方程式は以下のように表すことができる。
(A) Principle Description The IPMSM three-phase voltage equation can be expressed as follows.

Figure 0005332400
Figure 0005332400

ただし、[v]:3相電圧、[i]:3相電流、[L]:インダクタンス行列、[ψ]:永久磁石鎖交磁束、R:巻線抵抗、p:微分演算子
ここで、電動機のパラメータである「Ψ:永久磁石による鎖交磁束数」、「L:インダクタンス」が何らかの歪み成分を持っているとして、以下のように級数展開した式を仮定する。
[V]: three-phase voltage, [i]: three-phase current, [L]: inductance matrix, [ψ]: permanent magnet flux linkage, R: winding resistance, p: differential operator Assuming that “Ψ: the number of flux linkages by a permanent magnet” and “L: inductance” have some distortion components, the following series expansion formula is assumed.

Figure 0005332400
Figure 0005332400

ただし、l:漏れインダクタンス、θ:回転子位相、n:フーリエ級数の次数
上記を回転座標変換(3相→直交dq軸座標変換)して行列表現で整理すると、以下のようになる。
However, l: leakage inductance, θ: rotor phase, n: order of Fourier series When the above is subjected to rotational coordinate transformation (3 phase → orthogonal dq axis coordinate transformation) and arranged in a matrix expression, the result is as follows.

Figure 0005332400
Figure 0005332400

ただし、[Vdq]:dq軸電圧、[idq]:dq軸電流
入力電力、出力電力、巻線損失、蓄積される磁気エネルギーを考慮し、エネルギー保存則から以下の式を導く。
However, [V dq ]: dq axis voltage, [i dq ]: dq axis current In consideration of input power, output power, winding loss, and accumulated magnetic energy, the following formula is derived from the energy conservation law.

Figure 0005332400
Figure 0005332400

ただし、Pm:出力電力、Pi:入力電力、Pr:損失電力、PL:蓄積される磁気エネルギー相当の電力
数式4、5から、トルクTを求めると以下となる。
However, P m : Output power, P i : Input power, P r : Loss power, P L : Power corresponding to accumulated magnetic energy The torque T is obtained from Equations 4 and 5 as follows.

Figure 0005332400
Figure 0005332400

数式2、3で定義した級数展開式を数式6に代入して整理すると、最終的にはトルクTは以下の式で表される。   Substituting the series expansion formulas defined in Formulas 2 and 3 into Formula 6 and rearranging them, the torque T is finally expressed by the following formula.

Figure 0005332400
Figure 0005332400

ここで、数式7の下線部はトルク脈動項ΔTを表しており、各係数は以下のとおりである。   Here, the underlined portion of Equation 7 represents the torque pulsation term ΔT, and the coefficients are as follows.

Figure 0005332400
Figure 0005332400

ただし、M:相互インダクタンス、τ:コギングトルク成分
係数のサフィックスは、回転位相θに基づいて級数展開した次数を示している。また、τcogはコギングトルクを示しており、その周波数成分は電動機のスロット数と極数に関連するが、ここでは一般性を考えて「6」の整数倍周波数で表す。(以後、回転基本波のn倍の脈動成分をnfと表現する。例:6倍成分→6f)
このように、電動機に起因したトルク脈動項は、基本的に3の倍数と6の倍数の周波数成分の正弦・余弦多項式で表現できることが分かる。また、数式7の三角関数の係数に着目すると、3f成分の係数は電流の1乗、6f成分の係数は電流の2乗で歪み成分が現れる。さらに、数式8に着目すると、3f成分の係数は永久磁石による鎖交磁束の歪み、6f成分の係数はインダクタンスの歪み、すなわちリラクタンストルク脈動成分に関わる関数であることが分かる。以上から、一般にトルク脈動は3f成分よりも6f成分の方が支配的であることが言えるとともに、回転位相に対して特定の周期性を有することが分かる。
However, the suffix of M: mutual inductance, τ: cogging torque component coefficient indicates the order of series expansion based on the rotational phase θ. Further, τ cog represents cogging torque, and its frequency component is related to the number of slots and the number of poles of the motor, but here, it is expressed by an integer multiple of “6” in consideration of generality. (Hereafter, the n-fold pulsation component of the rotation fundamental wave is expressed as nf. Example: 6-fold component → 6f)
Thus, it can be seen that the torque pulsation term due to the electric motor can be basically expressed by a sine / cosine polynomial of frequency components of multiples of 3 and multiples of 6. Focusing on the coefficient of the trigonometric function of Equation 7, a distortion component appears as a coefficient of 3f component to the first power of current, and a coefficient of 6f component to the square of current. Further, paying attention to Equation 8, it can be seen that the coefficient of the 3f component is a function related to the distortion of the linkage magnetic flux by the permanent magnet, and the coefficient of the 6f component is a function related to the distortion of the inductance, ie, the reluctance torque pulsation component. From the above, it can be seen that the torque pulsation is generally more dominant in the 6f component than in the 3f component, and has a specific periodicity with respect to the rotational phase.

次に、上記のトルク脈動項ΔTに基づいて、ΔT=0とするための補償信号を考える。IPMSMでは、d軸、q軸電流指令値の2つがあるため、補償信号もその両方に与えることができる。そこで、各軸の脈動補償信号をidc:d軸脈動補償電流、iqc:q軸脈動補償電流とし、これらを元の定常的なdq軸電流指令値に重畳するため、ここでは所望する理想の電流指令値をIdo、Iqoとする。すなわち、電流指令値を以下の式で表現する。 Next, a compensation signal for setting ΔT = 0 based on the torque pulsation term ΔT is considered. In IPMSM, since there are two d-axis and q-axis current command values, a compensation signal can be given to both. Therefore, the pulsation compensation signal for each axis is set to i dc : d-axis pulsation compensation current, i qc : q-axis pulsation compensation current, and these are superimposed on the original steady dq-axis current command value. Current command values of I do and I qo . That is, the current command value is expressed by the following formula.

Figure 0005332400
Figure 0005332400

これを、数式7の電流部に代入して整理すると、以下の数式10になる。ただし、ここでは例として、トルク脈動の支配的な成分である6f成分についてのみ着目し、補償電流は定常電流よりも十分に小さい条件(Ido>>idc、Iqo>>iqc)を与えてマクローリン展開した1次近似式を用いている。 By substituting this into the current part of Equation 7, the following Equation 10 is obtained. However, here, as an example, only the 6f component, which is the dominant component of torque pulsation, is focused, and the compensation current is sufficiently smaller than the steady current (I do >> i dc , I qo >> i qc ). A first-order approximate expression given by Macrolin's expansion is used.

Figure 0005332400
Figure 0005332400

上記の数式10の下線部がトルク脈動項を示しているが、数式7の元のトルク脈動項と比較すると、補償電流信号idc、iqcを重畳したことによって新たな脈動成分が発生していることが分かる。したがって、補償電流を重畳した影響も予め考慮して総合的に脈動を抑制するには、数式10の下線部のトルク脈動項を0とするように補償式を考えなければならない。 The underlined portion of Equation 10 above represents the torque pulsation term. Compared with the original torque pulsation term of Equation 7, a new pulsation component is generated by superimposing the compensation current signals i dc and i qc. I understand that. Therefore, in order to suppress the pulsation comprehensively in consideration of the effect of superimposing the compensation current in advance, the compensation formula must be considered so that the torque pulsation term in the underlined portion of Formula 10 is zero.

そこで、本実施形態では、簡便のためにidc=0として、iqcのみで脈動を補償する。すなわち、数式10のトルク脈動項にidc=0を代入した上でトルク脈動項が0となるようなiqcを求めると以下の数式11となる。 Therefore, in this embodiment, for convenience, i dc = 0 and pulsation is compensated only by i qc . That is, when i dc = 0 is substituted into the torque pulsation term of Equation 10 and i qc is obtained such that the torque pulsation term becomes 0, the following Equation 11 is obtained.

Figure 0005332400
Figure 0005332400

上記の数式11の電動機パラメータおよび各係数は電動機設計データに基づく電磁界解析や実機計測に基づく手法などにより、予め求めておいたものを代入する。これにより、q軸補償電流信号は回転位相角θと理想電流指令値Ido、Iqoの関数式で表現できるため、この関数式からトルク脈動成分が0となる補償信号を求め、この補償信号をトルク指令に加えることで、負荷運転状態に応じてトルク脈動を抑制することができる。 The motor parameters and the respective coefficients in the above formula 11 are substituted with those obtained in advance by electromagnetic field analysis based on the motor design data or a method based on actual machine measurement. As a result, the q-axis compensation current signal can be expressed by a functional expression of the rotational phase angle θ and ideal current command values I do and I qo , so that a compensation signal with a torque pulsation component of 0 is obtained from this functional expression, By adding to the torque command, torque pulsation can be suppressed in accordance with the load operation state.

(B)実施形態の説明
図1は、本実施形態のトルク脈動抑制装置の構成図を示す。トルク−電流指令変換部1は、電動機負荷のトルク指令値Trefをdq軸電流Ido、Iqoに変換する。この変換は、例えばIPMSMの最大トルク制御を行うためのd軸電流、q軸電流に変換する。
(B) Description of Embodiment FIG. 1 shows a configuration diagram of a torque pulsation suppressing device of the present embodiment. The torque-current command converter 1 converts the torque command value T ref of the motor load into dq-axis currents I do and I qo . This conversion is converted into d-axis current and q-axis current for performing maximum torque control of IPMSM, for example.

脈動補償部2Aは、変換部1で変換したdq軸電流Ido、Iqoと、エンコーダで計測またはオブザーバで推定される回転位相角θと、電動機パラメータおよび各係数とから、前記の数式11の演算を行い、トルク脈動項が0となる電流iqcを求める。 The pulsation compensation unit 2A uses the dq-axis currents I do and I qo converted by the conversion unit 1, the rotational phase angle θ measured by the encoder or estimated by the observer, the motor parameters, and the coefficients, and the equation 11 An operation is performed to obtain a current i qc at which the torque pulsation term becomes zero.

加算器3Aは、変換部1で変換したq軸電流Iqoに、脈動補償部2Aで求めた電流iqcを加算する。 The adder 3A adds the current i qc obtained by the pulsation compensation unit 2A to the q-axis current I qo converted by the conversion unit 1.

インバータ4は、dq軸に分離した電流指令と負荷電流の検出値(dq軸)を電流制御系で制御するベクトル制御により主回路の出力電圧が制御され、さらにこの制御にPWM制御が併用され、IPMSMになる電動機負荷5を駆動し、その出力トルクをトルク指令値Trefに一致させる。 In the inverter 4, the output voltage of the main circuit is controlled by vector control for controlling the current command separated into the dq axis and the detected value of the load current (dq axis) by the current control system, and PWM control is also used for this control. The motor load 5 which becomes IPMSM is driven, and the output torque is made to coincide with the torque command value T ref .

上記の構成において、インバータ4のq軸電流指令には脈動補償部2Aで求めた電流iqcが加算されており、電動機のパラメータに起因して発生するトルク脈動を負荷運転状態に応じて抑制することができる。 In the above configuration, the current i qc obtained by the pulsation compensation unit 2A is added to the q-axis current command of the inverter 4, and the torque pulsation generated due to the parameters of the motor is suppressed according to the load operation state. be able to.

(実施形態2)
本実施形態では、q軸補償電流iqc=0として、d軸補償電流idcのみでトルク脈動を補償する。すなわち、前記の数式10のトルク脈動項にiqc=0を代入した上でトルク脈動項が0となるようなd軸補償電流idcを求めると、以下の数式12となる。これにより、電圧飽和や電動機の運転状況に応じてd軸電流補償値に変更することができる。
(Embodiment 2)
In the present embodiment, the torque pulsation is compensated only by the d-axis compensation current i dc with the q-axis compensation current i qc = 0. That is, when substituting i qc = 0 into the torque pulsation term of Equation 10 above and obtaining the d-axis compensation current i dc so that the torque pulsation term becomes 0, Equation 12 below is obtained. Thereby, it can change to a d-axis current compensation value according to voltage saturation or the driving | running state of an electric motor.

Figure 0005332400
Figure 0005332400

図2は、本実施形態のトルク脈動抑制装置の構成図を示す。同図が図1と異なる部分は、脈動補償部2Aに代えて、脈動補償部2Bとし、この出力Idcを加算器3Bでd軸電流Idoに加算してインバータ4のd軸電流指令値とする点にある。 FIG. 2 shows a configuration diagram of the torque pulsation suppressing device of the present embodiment. 1 differs from FIG. 1 in that a pulsation compensation unit 2B is used in place of the pulsation compensation unit 2A, and this output I dc is added to the d-axis current I do by an adder 3B so that the d-axis current command value of the inverter 4 is obtained. It is in the point to.

したがって、本実施形態では、電圧飽和や電動機の運転状況に応じてトルクリップルを抑制することができる。   Therefore, in this embodiment, torque ripple can be suppressed in accordance with voltage saturation and the operating state of the electric motor.

(実施形態3)
実施形態1、2では、どちらかの補償電流信号を0にし、もう一方の補償演算式を導いたが、本実施形態では両方の補償信号を用いてトルク脈動を抑制する。
(Embodiment 3)
In the first and second embodiments, one of the compensation current signals is set to 0 and the other compensation calculation formula is derived. However, in this embodiment, torque pulsation is suppressed using both compensation signals.

d軸q軸の双方に脈動補償電流を与える方法は様々であるが、例として数式10における電動機パラメータ係数Kidiqを消去する場合を挙げる。 There are various methods for applying the pulsation compensation current to both the d-axis and the q-axis. As an example, a case where the motor parameter coefficient K idiq in Equation 10 is deleted will be given.

数式10より、Kidiqに関連する項はKidiq(Id0q0+Id0qc+Idcq0)であるので、以下の数式13に従った関係にする。 From Equation 10, terms related to K IDIQ since a K idiq (I d0 I q0 + I d0 I qc + I dc I q0), to the relationship according to the following equation 13.

Figure 0005332400
Figure 0005332400

上記の如く定義すれば、常にKidiqの値とは無関係にidcとiqcの関係を導くことができるので、予め求解する電動機パラメータ係数をひとつ減らすことができる。 If defined as described above, the relationship between i dc and i qc can be always derived irrespective of the value of K idiq , so that the motor parameter coefficient to be solved in advance can be reduced by one.

上記ではidcをiqcの式で表したが、逆に以下の数式14のように、q軸補償電流iqcをd軸補償電流idcで表しても良い。 In the above description, i dc is represented by the formula i iqc , but conversely, the q-axis compensation current i qc may be represented by the d-axis compensation current i dc as in the following formula 14.

Figure 0005332400
Figure 0005332400

数式13のようにidcとiqcの関係を定義した場合の脈動補償電流は以下のように計算できる。 The pulsation compensation current when the relationship between i dc and i qc is defined as in Equation 13 can be calculated as follows.

Figure 0005332400
Figure 0005332400

上記の数式15に従った演算により、Kidiq成分は消去される。これにより、例えば電磁界解析や実機計測から求める際の誤差の影響を低減できる。 The K idiq component is deleted by the calculation according to the above formula 15. Thereby, the influence of the error at the time of calculating | requiring from electromagnetic field analysis or actual machine measurement, for example can be reduced.

図3は、本実施形態のトルク脈動抑制装置の構成図を示す。同図が図1と異なる部分は、脈動補償部2Cにおいては、脈動補償部2Aで求めるiqcおよびトルク−電流指令変換部1からのIdo,Iqoから、数式13の演算でidcを求め、この電流idcを加算器3BでIdoに加算する点にある。 FIG. 3 shows a configuration diagram of the torque pulsation suppressing device of the present embodiment. 1 differs from FIG. 1 in that the pulsation compensation unit 2C calculates i dc by the calculation of Equation 13 from i qc obtained by the pulsation compensation unit 2A and I do and I qo from the torque-current command conversion unit 1. The current i dc is obtained and added to I do by the adder 3B.

本実施形態は、idcとiqcの両方を用いてKidiqを消去する方法を述べたが、消去対象の係数KidiqからKid2やKiq2などの他の係数に置き換えて同様に処理することも可能である。 In the present embodiment, the method of erasing K idiq using both i dc and i qc has been described. However, the coefficient K idiq to be erased is replaced with another coefficient such as K id2 or K iq2 and the same processing is performed. It is also possible.

(実施形態4)
上述までの実施形態では、トルク脈動の支配的な次数である6の整数倍成分(6nf)を例としていたが、数式7で示したとおり、3の整数倍成分(3nf成分)のトルク脈動も発生する。
(Embodiment 4)
In the above-described embodiments, the integral multiple component (6nf) of 6 which is the dominant order of torque pulsation is taken as an example. However, as shown in Equation 7, torque pulsation of an integral multiple component of 3 (3nf component) is also used. Occur.

そこで、本実施形態では3の倍数であるが6の倍数ではない次数(3f、9f、15f、…)についてもトルク脈動補償を可能とする。数式7および数式9より、6nf成分を除くトルク脈動項は以下となる。   Therefore, in this embodiment, torque pulsation compensation is also possible for orders (3f, 9f, 15f,...) That are multiples of 3 but not multiples of 6. From Equation 7 and Equation 9, the torque pulsation term excluding the 6nf component is as follows.

Figure 0005332400
Figure 0005332400

do>>idc、Iqo>>iqcを満たし、かつ実施形態1、2と同様にd軸またはq軸のどちらかの補償電流を0としたときの補償式を考える。この場合、数式16のトルク脈動項が0となるための条件は以下となる。 Consider a compensation formula when I do >> i dc and I qo >> i qc are satisfied and the compensation current of either the d-axis or the q-axis is 0 as in the first and second embodiments. In this case, the condition for the torque pulsation term of Formula 16 to be 0 is as follows.

Figure 0005332400
Figure 0005332400

よって、3の整数倍周波数成分(6の整数倍を除く)については、数式17によりトルク脈動を抑制することができる。   Therefore, with respect to the integral multiple frequency component of 3 (excluding the integral multiple of 6), torque pulsation can be suppressed by Equation 17.

具体的には、図1〜図3の構成において、脈動補償部2A〜2Cによる演算を行い、補償電流iqcまたはidcを求め、もしくは補償電流iqcとidcの両方を求める。 Specifically, in the configuration of FIGS. 1 to 3, the pulsation compensation units 2A to 2C are operated to obtain the compensation current i qc or i dc , or both the compensation currents i qc and i dc are obtained.

(実施形態5)
数式7、8より、電動機パラメータの歪みに起因するトルク脈動成分は6の整数倍と3の整数倍周波数成分で構成される。
(Embodiment 5)
From Equations 7 and 8, the torque pulsation component due to the distortion of the motor parameters is composed of an integer multiple of 6 and an integer multiple frequency component of 3.

そこで、本実施形態では両者を総合的に抑制する。ここでは、実施形態1と同様にd軸補償電流=0とした場合を例に挙げて説明する。   Therefore, in the present embodiment, both are comprehensively suppressed. Here, as in the first embodiment, the case where d-axis compensation current = 0 is described as an example.

実施形態1より、6の整数倍周波数成分については数式11で抑制できる。また、3の整数倍成分(6の整数倍を除く)は、数式17の上段の補償式により抑制できる。したがって、これらを重ね合わせてq軸電流指令値に重畳すれば、電動機パラメータの歪みに起因したトルク脈動を総合的に抑制することができる。   According to the first embodiment, the integral multiple frequency component of 6 can be suppressed by Expression 11. Further, the integral multiple component of 3 (excluding the integral multiple of 6) can be suppressed by the upper compensation equation of Equation 17. Therefore, if these are superimposed and superimposed on the q-axis current command value, torque pulsation caused by the distortion of the motor parameters can be comprehensively suppressed.

図4は、本実施形態のトルク脈動抑制装置の構成図を示す。同図が図1と異なる部分は、脈動補償部2Dでは数式11の演算で6nf成分の脈動電流を補償するiqcを求め、脈動補償部2Eでは数式17の演算で3nf成分の脈動電流を補償するiqcを求め、これらを加算器3Cで加算し、さらに加算器3Dでq軸電流指令値Iqoに加算する点にある。 FIG. 4 is a configuration diagram of the torque pulsation suppressing device of the present embodiment. 1 differs from FIG. 1 in that the pulsation compensation unit 2D obtains i qc to compensate the 6nf component pulsating current by the calculation of Equation 11, and the pulsation compensation unit 2E compensates the 3nf component pulsating current by the calculation of Equation 17. I qc is obtained, added by the adder 3C, and added to the q-axis current command value Iqo by the adder 3D.

この構成により、電動機パラメータの歪みに起因した6nf成分および3nf成分のトルク脈動を総合的に抑制することができる。   With this configuration, it is possible to comprehensively suppress torque pulsation of 6 nf components and 3 nf components due to distortion of the motor parameters.

ここではd軸補償電流を0とし、q軸補償電流のみでトルク脈動を抑制する場合を例に挙げたが、その逆も同様に実現できる。   In this example, the d-axis compensation current is set to 0 and the torque pulsation is suppressed only by the q-axis compensation current. However, the reverse is also possible.

(実施形態6)
実際の電動機駆動装置は、インバータ等を用いて可変速運転するので、インバータ応答や通信・演算むだ時間等により、理想指令値どおりの電流を電動機負荷に与えることができず、補償誤差を生じる。
(Embodiment 6)
Since an actual motor drive device is operated at a variable speed using an inverter or the like, a current corresponding to an ideal command value cannot be applied to the motor load due to an inverter response, communication / calculation dead time, or the like, resulting in a compensation error.

そこで、本実施形態では、インバータの応答遅れを一般的なシステム同定などの手段を用いて近似的な伝達関数G(s)で表し、その逆関数G(s)-1を介して電流指令値をインバータに与える。 Therefore, in this embodiment, the response delay of the inverter is expressed by an approximate transfer function G (s) using a means such as general system identification, and the current command value is obtained via the inverse function G (s) −1. To the inverter.

その構成例を図5に示す。この構成は、例として、q軸のみで補償する場合を示し、図1の構成において、dq軸電流指令値を応答補償部6を通してインバータ4の電流指令値とする。そして、応答補償部6の伝達関数がインバータ4の伝達関数の逆関数になるよう設計する。   An example of the configuration is shown in FIG. As an example, this configuration shows a case where compensation is performed only on the q axis. In the configuration of FIG. 1, the dq axis current command value is set as the current command value of the inverter 4 through the response compensation unit 6. The transfer function of the response compensation unit 6 is designed to be an inverse function of the transfer function of the inverter 4.

本実施形態によれば、インバータ等の駆動装置系の応答遅れを考慮して電流指令値の位相や大きさの補正を行うので、トルク脈動補償誤差を低減することができる。   According to the present embodiment, the phase and magnitude of the current command value are corrected in consideration of the response delay of the drive system such as an inverter, so that torque pulsation compensation error can be reduced.

なお、本実施形態は、図2〜図4の構成にした装置に適用できる。   The present embodiment can be applied to the apparatus having the configuration shown in FIGS.

実施形態1のトルク脈動抑制装置の構成図。1 is a configuration diagram of a torque pulsation suppressing device according to Embodiment 1. FIG. 実施形態2のトルク脈動抑制装置の構成図。FIG. 3 is a configuration diagram of a torque pulsation suppressing device according to a second embodiment. 実施形態3のトルク脈動抑制装置の構成図。FIG. 6 is a configuration diagram of a torque pulsation suppressing device according to a third embodiment. 実施形態5のトルク脈動抑制装置の構成図。FIG. 6 is a configuration diagram of a torque pulsation suppressing device according to a fifth embodiment. 実施形態6のトルク脈動抑制装置の構成図。FIG. 10 is a configuration diagram of a torque pulsation suppressing device according to a sixth embodiment.

符号の説明Explanation of symbols

1 トルク−電流指令変換部
2A、2B、2C、2D,2E 脈動補償部
3A、3B、3C 加算器
4 インバータ
5 電動機負荷
6 応答補償部
1 Torque-current command converter 2A, 2B, 2C, 2D, 2E Pulsation compensation unit 3A, 3B, 3C Adder 4 Inverter 5 Motor load 6 Response compensation unit

Claims (11)

電動機のトルク指令値をd,q軸電流成分に変換するトルク−電流指令変換部と、前記トルク−電流指令変換部の出力をd,q軸電流指令値とし、この電流指令値とインバータの出力電流検出値とから電動機の電流制御を行うインバータとを備えた電動機のトルク制御装置において、
電動機のパラメータに起因して発生するトルク脈動分を導出し、このトルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を導出し、トルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を打ち消す電流補償信号をインバータの電流指令に加える脈動補償部を備えたことを特徴とする電動機のトルク脈動抑制装置。
A torque-current command conversion unit that converts the torque command value of the motor into d and q-axis current components, and an output of the torque-current command conversion unit as a d and q-axis current command value. The current command value and the output of the inverter In the torque control device for an electric motor provided with an inverter that performs electric current control of the electric motor from the detected current value,
Deriving torque pulsation generated due to motor parameters and deriving new pulsation component generated by superimposing compensation current to compensate for this torque pulsation on inverter current command to compensate for torque pulsation A torque pulsation suppressing device for an electric motor, comprising: a pulsation compensation unit that adds a current compensation signal that cancels a new pulsation component generated by superimposing a compensation current to be superimposed on an inverter current command to the inverter current command.
前記脈動補償部は、電動機のパラメータに起因して発生するトルク脈動分を、電動機の回転位相角θおよびインバータの運転周波数の3の整数倍および6の整数倍の脈動成分として導出し、これらのトルク脈動成分を打ち消す電流補償信号を求め、この電流補償信号をインバータの電流指令に加える手段を備えたことを特徴とする請求項1に記載の電動機のトルク脈動抑制装置。   The pulsation compensation unit derives the torque pulsation generated due to the parameters of the motor as a pulsation component of an integer multiple of 3 and an integer multiple of 6 of the rotational phase angle θ of the motor and the operating frequency of the inverter. 2. The torque pulsation suppressing device for an electric motor according to claim 1, further comprising means for obtaining a current compensation signal for canceling the torque pulsation component and adding the current compensation signal to the current command of the inverter. 前記脈動補償部は、前記6の整数倍の脈動成分について、d軸補償電流を0とし、前記トルク脈動分が「0」となるq軸補償電流iqcを求め、このq軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする請求項2に記載の電動機のトルク脈動抑制装置。 The pulsation compensation unit obtains a q-axis compensation current i qc at which the d-axis compensation current is 0 for the pulsation component that is an integral multiple of 6 and the torque pulsation is “0”, and this q-axis compensation current i qc The torque pulsation suppressing device for an electric motor according to claim 2, further comprising means for adding a value to the q-axis current command value. 前記脈動補償部は、前記6の整数倍の脈動成分について、q軸補償電流を0とし、前記トルク脈動分が「0」となるd軸補償電流idcを求め、このd軸補償電流idcを前記d軸電流指令値への加算値とする手段を備えたことを特徴とする請求項2に記載の電動機のトルク脈動抑制装置。 The pulsation compensation unit obtains a d-axis compensation current i dc at which the q-axis compensation current is 0 for the pulsation component that is an integral multiple of 6 and the torque pulsation component is “0”, and this d-axis compensation current i dc The torque pulsation suppressing device for an electric motor according to claim 2, further comprising means for adding a value to the d-axis current command value. 前記脈動補償部は、前記6の整数倍の脈動成分について、前記トルク脈動分が「0」となるd軸補償電流idcおよびq軸補償電流iqcを求め、d軸補償電流idcを前記d軸電流指令値への加算値とし、q軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする請求項2に記載の電動機のトルク脈動抑制装置。 The pulsation compensation unit obtains a d-axis compensation current i dc and a q-axis compensation current i qc at which the torque pulsation component is “0” for a pulsation component that is an integral multiple of 6, and calculates the d-axis compensation current i dc 3. The torque pulsation suppression for an electric motor according to claim 2, further comprising means for adding the q-axis compensation current i qc to the d-axis current command value and adding the q-axis compensation current i qc to the q-axis current command value. apparatus. 前記脈動補償部は、前記3の整数倍の脈動成分について、d軸補償電流を0とし、前記トルク脈動分が「0」となるq軸補償電流iqcを求め、このq軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする請求項2に記載の電動機のトルク脈動抑制装置。 The pulsation compensation unit, for an integer multiple of the ripple component of the 3, the d-axis compensation current is set to 0 to obtain the q-axis compensation current i qc of the torque ripple component becomes "0", the q-axis compensation current i qc The torque pulsation suppressing device for an electric motor according to claim 2, further comprising means for adding a value to the q-axis current command value. 前記脈動補償部は、前記3の整数倍の脈動成分について、q軸補償電流を0とし、前記トルク脈動分が「0」となるd軸補償電流idcを求め、このd軸補償電流idcを前記d軸電流指令値への加算値とする手段を備えたことを特徴とする請求項2に記載の電動機のトルク脈動抑制装置。 The pulsation compensation unit obtains a d-axis compensation current i dc at which the q-axis compensation current is 0 for the pulsation component that is an integral multiple of 3 and the torque pulsation component is “0”, and this d-axis compensation current i dc The torque pulsation suppressing device for an electric motor according to claim 2, further comprising means for adding a value to the d-axis current command value. 前記脈動補償部は、前記3の整数倍の脈動成分について、前記トルク脈動分が「0」となるd軸補償電流idcおよびq軸補償電流iqcを求め、d軸補償電流idcを前記d軸電流指令値への加算値とし、q軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする請求項2に記載の電動機のトルク脈動抑制装置。 The pulsation compensation unit obtains a d-axis compensation current i dc and a q-axis compensation current i qc for which the torque pulsation component is “0” for the pulsation component that is an integral multiple of 3, and calculates the d-axis compensation current i dc 3. The torque pulsation suppression for an electric motor according to claim 2, further comprising means for adding the q-axis compensation current i qc to the d-axis current command value and adding the q-axis compensation current i qc to the q-axis current command value. apparatus. 前記脈動補償部は、前記6の整数倍及び3の整数倍の脈動成分について、前記トルク脈動分が「0」となるd軸補償電流idc及びq軸補償電流iqcを求め、d軸補償電流idcを前記d軸電流指令値への加算値とし、q軸補償電流iqcを前記q軸電流指令値への加算値とする手段を備えたことを特徴とする請求項2に記載の電動機のトルク脈動抑制装置。 The pulsation compensation unit obtains a d-axis compensation current i dc and a q-axis compensation current i qc at which the torque pulsation component is “0” for the pulsation component of an integer multiple of 6 and an integer multiple of 3, and d-axis compensation The means according to claim 2, further comprising means for setting a current i dc as an addition value to the d-axis current command value and a q-axis compensation current i qc as an addition value to the q-axis current command value. Torque pulsation suppression device for electric motors. 前記補償電流で補償したdq軸電流指令値を、インバータの応答遅れを表現する伝達関数の逆伝達関数をもつ応答補償部を通してインバータの電流指令値とすることを特徴とする請求項1〜8のいずれか1項に記載の電動機のトルク脈動抑制装置。   9. The dq-axis current command value compensated by the compensation current is used as an inverter current command value through a response compensation unit having an inverse transfer function of a transfer function expressing the response delay of the inverter. The torque pulsation suppressing device for an electric motor according to any one of claims. 電動機のトルク指令値をd,q軸電流成分に変換するトルク−電流指令変換部と、前記トルク−電流指令変換部の出力をd,q軸電流指令値とし、この電流指令値とインバータの出力電流検出値とから電動機の電流制御を行うインバータとを備えた電動機のトルク制御装置において、
電動機のトルク脈動を抑制する脈動補償部は、電動機のパラメータに起因して発生するトルク脈動分を導出し、このトルク脈動分を補償する補償電流をインバータの電流指令に重畳することによって発生する新たな脈動成分を導出し、この新たな脈動成分を打ち消す電流補償信号をインバータの電流指令に加えることを特徴とする電動機のトルク脈動抑制方法。
A torque-current command conversion unit that converts the torque command value of the motor into d and q-axis current components, and an output of the torque-current command conversion unit as a d and q-axis current command value. The current command value and the output of the inverter In the torque control device for an electric motor provided with an inverter that performs electric current control of the electric motor from the detected current value,
The pulsation compensation unit that suppresses the torque pulsation of the motor derives the torque pulsation generated due to the parameters of the motor, and a new current generated by superimposing the compensation current for compensating the torque pulsation on the current command of the inverter. A method for suppressing torque pulsation of an electric motor, wherein a current pulsation component is derived and a current compensation signal for canceling out the new pulsation component is added to an inverter current command.
JP2008216862A 2008-08-26 2008-08-26 Torque pulsation suppression device and suppression method for electric motor Expired - Fee Related JP5332400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216862A JP5332400B2 (en) 2008-08-26 2008-08-26 Torque pulsation suppression device and suppression method for electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216862A JP5332400B2 (en) 2008-08-26 2008-08-26 Torque pulsation suppression device and suppression method for electric motor

Publications (2)

Publication Number Publication Date
JP2010057217A JP2010057217A (en) 2010-03-11
JP5332400B2 true JP5332400B2 (en) 2013-11-06

Family

ID=42072560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216862A Expired - Fee Related JP5332400B2 (en) 2008-08-26 2008-08-26 Torque pulsation suppression device and suppression method for electric motor

Country Status (1)

Country Link
JP (1) JP5332400B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370231A (en) * 2016-01-27 2018-08-03 三电汽车部件株式会社 Control device of electric motor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417195B2 (en) * 2010-01-19 2014-02-12 国産電機株式会社 Torque ripple suppression control device for permanent magnet motor, electric power steering system
JP2011211815A (en) * 2010-03-30 2011-10-20 Kokusan Denki Co Ltd Controller of permanent magnet motor
JP5678880B2 (en) * 2011-12-28 2015-03-04 トヨタ自動車株式会社 Motor drive system and control method thereof
JP5741966B2 (en) 2012-12-03 2015-07-01 株式会社デンソー AC motor control device
JP6064207B2 (en) * 2012-12-17 2017-01-25 株式会社ミツバ Brushless motor control method, brushless motor control device, and electric power steering device
WO2016000215A1 (en) * 2014-07-01 2016-01-07 广东美芝制冷设备有限公司 Method for suppressing fluctuations in speed, control device and compressor control system
WO2019073599A1 (en) * 2017-10-13 2019-04-18 日立ジョンソンコントロールズ空調株式会社 Motor drive device, refrigeration cycle device equipped with same, and motor drive method
JPWO2019163589A1 (en) * 2018-02-20 2021-02-12 日本電産株式会社 Motor control system and power steering system
WO2019163588A1 (en) * 2018-02-20 2019-08-29 日本電産株式会社 Motor control system and power steering system
JP7443020B2 (en) * 2019-10-24 2024-03-05 三菱重工サーマルシステムズ株式会社 Control device, electric compressor, ripple voltage detection method and program
JP7351819B2 (en) * 2020-09-24 2023-09-27 オリエンタルモーター株式会社 stepping motor drive device
JP7571648B2 (en) 2021-03-30 2024-10-23 株式会社アイシン Rotating Electric Machine Control System
CN114884415B (en) * 2022-05-18 2024-08-30 北京交通大学 A strategy for eliminating output torque ripple of permanent magnet synchronous motor in rail transit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288076A (en) * 2005-03-31 2006-10-19 Toshiba Elevator Co Ltd Control unit
JP4910445B2 (en) * 2006-03-28 2012-04-04 株式会社明電舎 IPM motor vector control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370231A (en) * 2016-01-27 2018-08-03 三电汽车部件株式会社 Control device of electric motor
CN108370231B (en) * 2016-01-27 2021-08-24 三电汽车部件株式会社 Motor control device

Also Published As

Publication number Publication date
JP2010057217A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5332400B2 (en) Torque pulsation suppression device and suppression method for electric motor
JP5580384B2 (en) Parameter estimation device for permanent magnet synchronous motor drive system
CN104052361B (en) Electric machine control system to compensate torque pulsation
JP4910445B2 (en) IPM motor vector control device
JP4221307B2 (en) Synchronous motor control device, electrical equipment and module
JP2008295200A (en) Synchronous motor control device and method for optimizing synchronous motor control
WO2015019495A1 (en) Motor drive system and motor control device
JP2006288076A (en) Control unit
JP5033662B2 (en) Electric motor drive system
KR101758004B1 (en) Rotary machine controller
JP6166601B2 (en) Motor control device and generator control device
JP6473992B2 (en) Motor control device and generator control device
JP2010035352A (en) Device for estimating rotor position of synchronous electric motor
JP4884342B2 (en) Induction motor control device
JP4924115B2 (en) Permanent magnet synchronous motor drive control device
KR102155629B1 (en) Torque ripple reduction apparatus of electric motor
US12143038B2 (en) Rotary machine control device
KR101878090B1 (en) Method and system for controlling motor
JP5106295B2 (en) Rotor position estimation device for synchronous motor
JP5262267B2 (en) Three-phase AC motor drive device
JP5744151B2 (en) Electric motor driving apparatus and electric motor driving method
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP2013039015A (en) Method for controlling driving of permanent-magnet synchronous motor
JP2006197718A (en) Controller for motor
JP2024089123A (en) Rotary machine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees