JP5331200B2 - Method for recycling cerium-based abrasive - Google Patents
Method for recycling cerium-based abrasive Download PDFInfo
- Publication number
- JP5331200B2 JP5331200B2 JP2011512740A JP2011512740A JP5331200B2 JP 5331200 B2 JP5331200 B2 JP 5331200B2 JP 2011512740 A JP2011512740 A JP 2011512740A JP 2011512740 A JP2011512740 A JP 2011512740A JP 5331200 B2 JP5331200 B2 JP 5331200B2
- Authority
- JP
- Japan
- Prior art keywords
- abrasive
- cerium
- acid
- slurry
- based abrasive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052684 Cerium Inorganic materials 0.000 title claims abstract description 261
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 title claims abstract description 260
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000004064 recycling Methods 0.000 title claims description 4
- 239000002002 slurry Substances 0.000 claims abstract description 123
- 238000003756 stirring Methods 0.000 claims abstract description 82
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000002253 acid Substances 0.000 claims abstract description 32
- 150000003839 salts Chemical class 0.000 claims abstract description 24
- 239000002699 waste material Substances 0.000 claims description 56
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 33
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 33
- 239000003082 abrasive agent Substances 0.000 claims description 30
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 150000007522 mineralic acids Chemical class 0.000 claims description 8
- 150000007524 organic acids Chemical class 0.000 claims description 7
- 230000001172 regenerating effect Effects 0.000 claims description 6
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 5
- 230000004931 aggregating effect Effects 0.000 claims description 5
- 239000011975 tartaric acid Substances 0.000 claims description 5
- 235000002906 tartaric acid Nutrition 0.000 claims description 5
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 150000003863 ammonium salts Chemical class 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 159000000000 sodium salts Chemical class 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 239000000701 coagulant Substances 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 3
- 239000011521 glass Substances 0.000 abstract description 60
- 238000011069 regeneration method Methods 0.000 abstract description 59
- 239000000203 mixture Substances 0.000 abstract description 36
- 150000007513 acids Chemical class 0.000 abstract description 7
- 238000005299 abrasion Methods 0.000 abstract description 4
- 238000005498 polishing Methods 0.000 description 111
- 230000008929 regeneration Effects 0.000 description 56
- 230000000052 comparative effect Effects 0.000 description 52
- 239000007788 liquid Substances 0.000 description 52
- 230000008569 process Effects 0.000 description 41
- 230000000704 physical effect Effects 0.000 description 39
- 238000012545 processing Methods 0.000 description 37
- 239000000047 product Substances 0.000 description 37
- 238000011156 evaluation Methods 0.000 description 34
- 238000001914 filtration Methods 0.000 description 31
- 239000006228 supernatant Substances 0.000 description 28
- 239000002245 particle Substances 0.000 description 26
- 239000007787 solid Substances 0.000 description 24
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 21
- 238000000926 separation method Methods 0.000 description 18
- 239000003513 alkali Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 238000005259 measurement Methods 0.000 description 15
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 14
- 239000000654 additive Substances 0.000 description 14
- 239000011575 calcium Substances 0.000 description 14
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 13
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 description 10
- 229910052791 calcium Inorganic materials 0.000 description 10
- 235000015165 citric acid Nutrition 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 9
- 238000001035 drying Methods 0.000 description 8
- 238000010979 pH adjustment Methods 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 238000007517 polishing process Methods 0.000 description 7
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- -1 alkali metal salts Chemical class 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 5
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 5
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 5
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 5
- 238000010306 acid treatment Methods 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000002910 rare earth metals Chemical class 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- QOPUBSBYMCLLKW-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]-4-hydroxybutanoic acid Chemical compound OCCC(C(O)=O)N(CC(O)=O)CCN(CC(O)=O)CC(O)=O QOPUBSBYMCLLKW-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- DJQJFMSHHYAZJD-UHFFFAOYSA-N lidofenin Chemical compound CC1=CC=CC(C)=C1NC(=O)CN(CC(O)=O)CC(O)=O DJQJFMSHHYAZJD-UHFFFAOYSA-N 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000005304 optical glass Substances 0.000 description 3
- 239000003002 pH adjusting agent Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 229940048086 sodium pyrophosphate Drugs 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 3
- ZQIHYCWJAUSBQV-UHFFFAOYSA-N 1-hydroxyethane-1,1,2-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)C(O)=O ZQIHYCWJAUSBQV-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000008394 flocculating agent Substances 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- OQZCJRJRGMMSGK-UHFFFAOYSA-M potassium metaphosphate Chemical compound [K+].[O-]P(=O)=O OQZCJRJRGMMSGK-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- 238000003809 water extraction Methods 0.000 description 2
- CIOXZGOUEYHNBF-UHFFFAOYSA-N (carboxymethoxy)succinic acid Chemical compound OC(=O)COC(C(O)=O)CC(O)=O CIOXZGOUEYHNBF-UHFFFAOYSA-N 0.000 description 1
- RQALKBLYTUKBFV-UHFFFAOYSA-N 1,4-dioxa-7-thiaspiro[4.4]nonane Chemical compound O1CCOC11CSCC1 RQALKBLYTUKBFV-UHFFFAOYSA-N 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010332 dry classification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000010922 glass waste Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229940099402 potassium metaphosphate Drugs 0.000 description 1
- 235000019828 potassium polyphosphate Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 239000001476 sodium potassium tartrate Substances 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1454—Abrasive powders, suspensions and pastes for polishing
- C09K3/1463—Aqueous liquid suspensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B57/00—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
- B24B57/02—Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
本発明は、使用済みのセリウム系研摩材を含む廃研摩材スラリーまたは研摩材廃滓からなる研摩廃材からセリウム系研摩材を再生する技術に関する。 The present invention relates to a technique for regenerating a cerium-based abrasive from an abrasive waste made of a waste abrasive slurry or an abrasive waste containing a used cerium-based abrasive.
セリウム系研摩材は、光学レンズ等の光学用途ガラス、液晶ディスプレイやプラズマディスプレイ用のガラス基板、磁気ディスク、光ディスクなどの記録媒体用ガラス基板、フォトマスク用ガラス基板などの様々なガラスに対する表面研摩に用いられている。 Cerium-based abrasives are used for surface polishing of various types of glass such as optical lenses such as optical lenses, glass substrates for liquid crystal displays and plasma displays, glass substrates for recording media such as magnetic disks and optical disks, and glass substrates for photomasks. It is used.
ところで、このセリウム系研摩材を利用する分野においては、資源の有効利用という観点から、使用済みセリウム系研摩材を再利用するためのリサイクル技術が提唱されている。 By the way, in the field of using this cerium-based abrasive, a recycling technique for reusing the used cerium-based abrasive has been proposed from the viewpoint of effective use of resources.
例えば、特許文献1では、劣化した酸化セリウム系研摩材懸濁液に分散剤を添加して、この懸濁液のpHをpH10.5以上とし、50℃以上の温度に加熱して、酸化セリウム系研摩材を再生する方法が提案されている。しかしながら、懸濁液のpHをpH10.5以上にしても、ガラス成分のケイ素(Si)の溶解は十分に行われない。また、研摩対象のガラスに、カルシウム(Ca)やマグネシウム(Mg)等が含まれている場合、この特許文献1の再生方法では、CaやMgを除去することができず、これらが研摩傷の発生原因となる傾向がある。 For example, in Patent Document 1, a dispersant is added to a deteriorated cerium oxide abrasive suspension, the pH of the suspension is adjusted to 10.5 or higher, and the suspension is heated to a temperature of 50 ° C. or higher. A method of reclaiming the system abrasive has been proposed. However, even if the pH of the suspension is set to pH 10.5 or higher, the glass component silicon (Si) is not sufficiently dissolved. Further, when the glass to be polished contains calcium (Ca), magnesium (Mg), or the like, the regeneration method of this Patent Document 1 cannot remove Ca and Mg, and these are not scratched. There is a tendency to become the cause.
そして、特許文献2では、研摩廃液を限外ろ過膜を利用して限外ろ過膜処理を行い、その後限外ろ過膜処理工程より得られた濃縮液を、限外ろ過膜より孔径の大きな膜である精密ろ過膜を利用して精密ろ過処理を行って、その透過液から研摩材を回収する方法が提案されている。この特許文献2は、半導体のCMP用研摩材を再生対象としており、CMP用研摩材は微粒であるため、ガラスとCMP用研摩材との分離は、ろ過処理により分離可能であるものの、セリウム系研摩材のように微粒でない研摩材に対しては、特許文献2の再生方法では、有効な再生処理を行うことが難しい。 In Patent Document 2, the polishing waste liquid is subjected to an ultrafiltration membrane treatment using an ultrafiltration membrane, and then the concentrated liquid obtained from the ultrafiltration membrane treatment step is converted into a membrane having a larger pore size than the ultrafiltration membrane. A method of performing a microfiltration process using a microfiltration membrane and recovering the abrasive from the permeate has been proposed. This patent document 2 is intended to regenerate semiconductor CMP abrasives, and since the CMP abrasives are fine particles, the glass and the CMP abrasives can be separated by filtration, but are cerium-based. For abrasives that are not fine particles such as abrasives, it is difficult to perform an effective regeneration process with the regeneration method of Patent Document 2.
また、各種ガラス材料に使用されたセリウム系研摩材は、いわゆる廃棄物として排出される。使用済みセリウム系研摩材は、スラリーとして使用されることが多く、廃棄物として排出される場合は、使用済みセリウム系研摩材スラリーに、鉄(Fe)やアルミニウム(Al)のような凝集剤を加え、研摩材粒子を凝集して、ケーキ状にして排出される。本願においては、このような使用済みセリウム系研摩材スラリーに凝集剤を加えてケーキ状にした廃棄物を研摩材廃滓と称す。この研摩材廃滓は、希少資源であるセリウムを含む点においてリサイクル対象となる。しかし、研摩されたガラスを多く含むうえ、鉄(Fe)やアルミニウム(Al)のような凝集剤も含まれているため、効率的な再利用が容易ではない。 In addition, the cerium-based abrasive used for various glass materials is discharged as so-called waste. Used cerium-based abrasives are often used as slurries, and when discharged as waste, flocculants such as iron (Fe) and aluminum (Al) are added to used cerium-based abrasive slurries. In addition, the abrasive particles are aggregated and discharged as a cake. In the present application, such waste obtained by adding a flocculant to a used cerium-based abrasive slurry to form a cake is referred to as abrasive waste. This abrasive waste is subject to recycling in that it contains cerium, a rare resource. However, since it contains a lot of polished glass and also contains an aggregating agent such as iron (Fe) or aluminum (Al), efficient reuse is not easy.
例えば、特許文献3では、使用済みセリウム系研摩材に含まれる凝集剤を無機酸により除去するとともに、使用済みセリウム系研摩材に含まれるガラス屑や研摩材表面に付着しているガラスをフッ酸(HF)で溶解する再生技術が提案されている。しかしながら、フッ酸は研摩材を構成する希土類元素との反応性が高いため、フッ酸の処理によってはガラスのみを選択的に除去することが難しい。ガラスを完全に除去するために過剰のフッ酸を加えると、希土類元素とフッ酸との反応により、フッ化物が副生成してしまい、再生したセリウム系研摩材はその研摩速度が低下する傾向となり、研摩傷の発生を引き起こす特性になる傾向がある。さらに、この先行技術では、使用済みセリウム系研摩材に含まれる異物、例えば直径3μm以上の異物を効率的に取り除くことが難しい。 For example, in Patent Document 3, the flocculant contained in the used cerium-based abrasive is removed with an inorganic acid, and the glass scraps contained in the used cerium-based abrasive and the glass adhering to the surface of the abrasive are removed with hydrofluoric acid. Regeneration techniques that dissolve in (HF) have been proposed. However, since hydrofluoric acid has high reactivity with the rare earth elements constituting the abrasive, it is difficult to selectively remove only glass by the hydrofluoric acid treatment. If excessive hydrofluoric acid is added to completely remove the glass, fluoride is formed as a by-product due to the reaction between the rare earth element and hydrofluoric acid, and the regenerated cerium-based abrasive tends to decrease its polishing rate. , Tend to have properties that cause the occurrence of abrasive scratches. Furthermore, with this prior art, it is difficult to efficiently remove foreign matters contained in the used cerium-based abrasive, for example, foreign matters having a diameter of 3 μm or more.
本発明は、以上のような事情を背景になされたものであり、使用済みセリウム系研摩材を含む廃研摩材スラリーまたは研摩材廃滓からなる研摩廃材からセリウム系研摩材を再生する際に、含有されたガラスや、鉄やアルミニウムのような凝集剤を効率的に除去し、研摩速度を回復させるとともに、直径3μm以上の異物を効率的に取り除くことで研摩傷の発生を抑制したセリウム系研摩材を再生する技術を提供することを目的とする。 The present invention has been made in the background as described above, and when regenerating a cerium-based abrasive from an abrasive waste material comprising a waste abrasive slurry containing a used cerium-based abrasive or an abrasive waste, Cerium-based polishing that efficiently removes flocculants such as glass and iron and aluminum, restores the polishing speed, and efficiently removes foreign matter with a diameter of 3 μm or more to suppress the occurrence of scratches. It aims at providing the technology which reproduces material.
上記課題を解決するため、本発明は、使用済みのセリウム系研摩材を含む廃研摩材スラリーまたは研摩材廃滓からなる研摩廃材からセリウム系研摩材を再生する方法において、研摩廃材に、フッ酸を含有しない酸及びその塩から選択される少なくとも一種を添加してスラリー状態とし、周速4m/sec以上で撹拌することを特徴とするものとした。本発明によれば、ガラスを効率的に除去し、研摩速度が回復され、研摩傷の発生も抑制されたセリウム系研摩材を再生することが可能となる。 In order to solve the above problems, the present invention provides a method for regenerating a cerium-based abrasive from a waste abrasive slurry containing a used cerium-based abrasive or an abrasive waste comprising an abrasive waste, and the polishing waste is treated with hydrofluoric acid. At least one selected from an acid containing no acid and a salt thereof is added to form a slurry, and the mixture is stirred at a peripheral speed of 4 m / sec or more. According to the present invention, it is possible to regenerate a cerium-based abrasive in which glass is efficiently removed, the polishing speed is recovered, and the generation of abrasive scratches is suppressed.
本発明において、フッ酸を含有しない酸及びその塩から選択される少なくとも一種の添加剤(以下、単に添加剤と略す場合がある)を研摩廃材に加え、スラリー状態として4m/sec以上で撹拌を行う。この撹拌速度は、10m/sec以上がより好ましい。4m/sec未満であると、研摩材粒子の凝集が十分にほぐれず、付着したガラスと研摩材との分離が効率的に行えなくなるからである。スラリーの撹拌は、撹拌速度が大きいほど分散がよくなるので好ましいが、あまり大きな撹拌速度であると、装置コストやエネルギーコストが増大するため、100m/sec以下が好ましく、80m/sec以下がさらに好ましい。撹拌装置として、T.K.フィルミックス(登録商標/プライミクス(株)製)を用いて、安定的な処理となる50m/sec以下にすることが特に好ましい。本発明において、スラリーを撹拌する場合、その撹拌装置に特に制限はなく、種々の撹拌装置を使用できる。メディアを使用する撹拌装置でも可能であり、例えばビーズミルなどを使用できる。本発明におけるフッ酸を含有しない酸及びその塩から選択される少なくとも一種の添加剤は分散効果があり、周速4m/sec以上で撹拌することと相俟って、ガラスが研摩材粒子から分離され、後工程における沈殿、上澄み液抜き出しと、フィルタリングとの少なくとも一方を実施すると、ガラスを効率的に除去できる。スラリーを周速4m/sec以上で撹拌した後、フィルタリングを行った場合は研摩粒子のフィルターを通過する割合が向上する。 In the present invention, at least one additive selected from an acid not containing hydrofluoric acid and a salt thereof (hereinafter sometimes simply referred to as additive) is added to the abrasive waste, and the slurry is stirred at 4 m / sec or more. Do. The stirring speed is more preferably 10 m / sec or more. If it is less than 4 m / sec, the agglomeration of the abrasive particles will not be sufficiently loosened, and the adhered glass and the abrasive will not be efficiently separated. The stirring of the slurry is preferable because the dispersion becomes better as the stirring speed is higher. However, if the stirring speed is too high, the apparatus cost and the energy cost are increased, and therefore, 100 m / sec or less is preferable, and 80 m / sec or less is more preferable. As a stirring device, T.W. K. It is particularly preferable to use a film mix (registered trademark / manufactured by Primix Co., Ltd.) and set the viscosity to 50 m / sec or less for stable treatment. In the present invention, when the slurry is stirred, the stirring device is not particularly limited, and various stirring devices can be used. A stirrer using a medium is also possible, and for example, a bead mill can be used. At least one additive selected from an acid not containing hydrofluoric acid and a salt thereof in the present invention has a dispersing effect, and coupled with stirring at a peripheral speed of 4 m / sec or more, the glass is separated from the abrasive particles. When at least one of precipitation, supernatant liquid extraction, and filtering in the subsequent process is performed, the glass can be efficiently removed. When the slurry is stirred after the slurry is stirred at a peripheral speed of 4 m / sec or more, the ratio of the abrasive particles passing through the filter is improved.
本発明において、フッ酸を含有しない酸としては、カルボキシル基を2個以上有する酸、炭酸、リン酸などがあり、その塩としては、各酸のアルカリ金属塩(リチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩)、アンモニウム塩などがある。酸が2価以上の場合、その塩としては、複数の水素(H)のうち少なくとも1以上がアルカリ金属、アンモニウムに置換されていればよい。例えば、炭酸水素ナトリウム、クエン酸二水素カリウム、リン酸水素二アンモニウムなどの水素(H)の一部が置換されたものも含み、本発明では、このように一部しか置換されていない場合でも、ナトリウム塩、カリウム塩、アンモニウム塩に含まれる。また、その塩としては、酒石酸ナトリウムカリウムのように、複数の水素(H)が異なるアルカリ金属、アンモニウムに置換されている場合も含まれる。本発明におけるフッ酸を含有しない酸としては、カルボキシル基を2個以上有する酸及びその塩、並びにリン酸塩から選択される少なくとも一種を使用することが好ましい。また、酸の塩としては、ナトリウム塩、カリウム塩、アンモニウム塩が、安価で好ましいものである。 In the present invention, acids that do not contain hydrofluoric acid include acids having two or more carboxyl groups, carbonic acid, phosphoric acid, etc., and salts thereof include alkali metal salts (lithium salts, sodium salts, potassium salts) of each acid. , Rubidium salt) and ammonium salt. In the case where the acid is divalent or higher, as the salt, at least one of the plurality of hydrogens (H) may be substituted with an alkali metal or ammonium. For example, some hydrogen (H) such as sodium hydrogen carbonate, potassium dihydrogen citrate, and diammonium hydrogen phosphate are substituted. In the present invention, even when only a part of the hydrogen (H) is substituted, , Sodium salt, potassium salt and ammonium salt. In addition, the salt includes a case where a plurality of hydrogen (H) is substituted with different alkali metals and ammonium, such as sodium potassium tartrate. As the acid not containing hydrofluoric acid in the present invention, it is preferable to use at least one selected from an acid having two or more carboxyl groups, a salt thereof, and a phosphate. Moreover, as an acid salt, a sodium salt, potassium salt, and ammonium salt are cheap and preferable.
本発明におけるカルボキシル基を2個以上有する酸及びその塩としては、クエン酸、酒石酸、グルコン酸、コハク酸、フマル酸、ポリアクリル酸、カルボキシメチルタルトロン酸(CMT)、カルボキシメチルオキシコハク酸(CMOS)、ヒドロキシエチルエチレンジアミン四酢酸(HEDTA)、N−(2−ヒドロキシエチル)イミノ二酢酸(HIDA)、ジエチレントリアミノ五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、ニトリロ三酢酸(NTA)、シュウ酸、またはこれらのアルカリ金属塩、アンモニウム(NH4)塩があり、なかでもナトリウム(Na)塩、カリウム(K)塩、アンモニウム(NH4)塩が好ましい。Examples of the acid having two or more carboxyl groups and salts thereof in the present invention include citric acid, tartaric acid, gluconic acid, succinic acid, fumaric acid, polyacrylic acid, carboxymethyltartronic acid (CMT), carboxymethyloxysuccinic acid ( CMOS), hydroxyethylethylenediaminetetraacetic acid (HEDTA), N- (2-hydroxyethyl) iminodiacetic acid (HIDA), diethylenetriaminopentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), Shu There are acids, or alkali metal salts thereof, and ammonium (NH 4 ) salts. Among them, sodium (Na) salts, potassium (K) salts, and ammonium (NH 4 ) salts are preferable.
また、本発明におけるリン酸塩としては、アルカリ金属塩、アンモニウム(NH4)塩があり、なかでもナトリウム(Na)塩、カリウム(K)塩、アンモニウム(NH4)塩が好ましい。具体的には、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ウルトラポリリン酸ナトリウム、オルトリン酸ナトリウム、ピロリン酸カリウム、ポリリン酸カリウム、メタリン酸カリウムなどがあげられる。Further, as the phosphate in the present invention, the alkali metal salts, there are ammonium (NH 4) salts, among others sodium (Na) salt, potassium (K) salts, ammonium (NH 4) salts are preferred. Specific examples include sodium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium orthophosphate, potassium pyrophosphate, potassium polyphosphate, and potassium metaphosphate.
本発明において、フッ酸を含有しない酸及びその塩から選択される少なくとも一種を添加する場合、単独または組み合わせて併用して添加することができる。これらの添加剤としては、クエン酸またはピロリン酸若しくはその塩が特に好ましい。添加量としては、スラリーの固形分に対して、0.01質量%〜10質量%の範囲で添加することが好ましく、0.05質量%〜6質量%の範囲がより好ましい。添加量が0.01質量%未満では、分散効果が不十分になり、ガラスと研摩材粒子の分離が不十分になりやすい。また、10質量%を超えて添加しても分散効果はほとんど増加しない。 In this invention, when adding at least 1 type selected from the acid and its salt which do not contain hydrofluoric acid, it can add individually or in combination. As these additives, citric acid or pyrophosphoric acid or a salt thereof is particularly preferable. As addition amount, it is preferable to add in 0.01 mass%-10 mass% with respect to solid content of a slurry, and the range of 0.05 mass%-6 mass% is more preferable. When the addition amount is less than 0.01% by mass, the dispersion effect is insufficient, and the separation between the glass and the abrasive particles tends to be insufficient. Moreover, even if it adds exceeding 10 mass%, the dispersion effect hardly increases.
本発明において、撹拌するスラリーのpHをpH3〜pH12とすることが好ましい。より好ましくはpH6〜10である。pH3未満であると、セリウム系研摩材自体が溶解する傾向となり、再生率が悪くなる。pHがpH12を超えても、分散効果や、ガラスと研摩材粒子の分離のし易さに変化はないが、水酸化ナトリウムやアンモニア水などのアルカリ使用量が増える。 In the present invention, the pH of the slurry to be stirred is preferably pH 3 to pH 12. More preferably, the pH is 6-10. When the pH is less than 3, the cerium-based abrasive itself tends to be dissolved, and the regeneration rate is deteriorated. Even if the pH exceeds pH 12, there is no change in the dispersion effect and the ease of separation of the glass and abrasive particles, but the amount of alkali such as sodium hydroxide or aqueous ammonia increases.
本発明において、研摩廃材が研摩材廃滓である場合、研摩材廃滓に、フッ酸以外の酸により凝集剤成分を除去する凝集剤除去処理を予め行うことが好ましい。本発明における凝集剤除去処理は、フッ酸以外の酸により行う。フッ酸を利用しても、鉄やアルミニウムを除去することは可能であるが、フッ酸は希土類元素と反応してフッ化物を生成するため、再生したセリウム系研摩材にしたときに研摩傷を発生しやすくなる。また、本発明における凝集剤除去処理は、フッ酸以外の酸として、硫酸、塩酸、硝酸から選ばれる無機酸、クエン酸、酒石酸、酢酸から選ばれる有機酸の少なくともいずれかの酸により行うことが好ましい。これらの酸であると、凝集剤として含まれる鉄やアルミニウムを容易に溶解することができる。この酸処理においては、硫酸が特に好ましい。硫酸は、凝集剤を除去する効率が比較的高く、再生時の廃水処理も容易に行えるので低コストで済むからである。 In the present invention, when the abrasive waste is an abrasive waste, it is preferable that the abrasive waste is preliminarily subjected to an aggregating agent removal treatment for removing an aggregating agent component with an acid other than hydrofluoric acid. The flocculant removal treatment in the present invention is performed with an acid other than hydrofluoric acid. Even if hydrofluoric acid is used, iron and aluminum can be removed. However, hydrofluoric acid reacts with rare earth elements to produce fluoride, so that when it is made into a recycled cerium-based abrasive, it will cause abrasive scratches. It tends to occur. Further, the flocculant removal treatment in the present invention may be performed with an acid other than hydrofluoric acid, at least one of an inorganic acid selected from sulfuric acid, hydrochloric acid, and nitric acid, an organic acid selected from citric acid, tartaric acid, and acetic acid. preferable. When these acids are used, iron and aluminum contained as a flocculant can be easily dissolved. In this acid treatment, sulfuric acid is particularly preferable. This is because sulfuric acid has a relatively high efficiency for removing the flocculant and can be easily treated with waste water at the time of regeneration, so that the cost is low.
本発明において、凝集剤が鉄、アルミニウムの少なくとも一方を含む場合、凝集剤除去処理におけるフッ酸以外の酸は、硫酸、塩酸、硝酸から選ばれる無機酸、クエン酸、酒石酸、酢酸から選ばれる有機酸の少なくともいずれかであることが好ましい。 In the present invention, when the flocculant contains at least one of iron and aluminum, the acid other than hydrofluoric acid in the flocculant removing treatment is an inorganic acid selected from sulfuric acid, hydrochloric acid and nitric acid, an organic acid selected from citric acid, tartaric acid and acetic acid. It is preferably at least one of acids.
本発明の凝集剤除去処理において、凝集剤としての鉄やアルミニウムを取り除く場合は、鉄またはアルミニウム(両方含まれる場合はその合計)1molあたりの酸使用量は、n価の無機酸であれば2.5/n〜9/n molが好ましく、3/n〜6/n molがさらに好ましい。少なすぎると凝集剤成分の溶解除去が不十分になる傾向があり、多すぎると希土類成分の溶解が多くなり再生率が低下する傾向となる。一価の無機酸は塩酸、硝酸であり、二価の無機酸としては硫酸が挙げられる。また、本発明における酸処理において有機酸を使用する場合も、その酸使用量は上記した無機酸の場合と同様である。一価の有機酸は酢酸であり、二価の有機酸は酒石酸であり、三価の有機酸としてはクエン酸が挙げられる。 In the flocculant removal treatment of the present invention, when iron or aluminum as a flocculant is removed, the amount of acid used per 1 mol of iron or aluminum (the total when both are included) is 2 for an n-valent inorganic acid. 5 / n to 9 / n mol is preferable, and 3 / n to 6 / n mol is more preferable. If the amount is too small, the dissolution and removal of the flocculant component tends to be insufficient. If the amount is too large, the rare earth component is dissolved and the regeneration rate tends to decrease. The monovalent inorganic acid is hydrochloric acid or nitric acid, and the divalent inorganic acid is sulfuric acid. Moreover, also when using an organic acid in the acid treatment in this invention, the acid usage-amount is the same as the case of the above-mentioned inorganic acid. The monovalent organic acid is acetic acid, the divalent organic acid is tartaric acid, and the trivalent organic acid includes citric acid.
本発明において、スラリーの撹拌後、スラリーをフィルタリングして異物やガラスを除去することが好ましい。このフィルタリングにより、研摩材粒子より大きな異物を効率的に除去することができ、また、凝集剤除去処理によりゲル化したガラス屑も除去することができるため、研摩傷の発生を抑制された再生セリウム系研摩材を実現することができる。このフィルタリングは、いわゆるカートリッジフィルター(使い捨て用)により行うことができるが、環境負荷を軽減するため、所定開口径のナイロンメッシュ(例えば、開口径1μm、V−SEP(テクノアルファ社製))を使用することが好ましい。 In the present invention, after stirring the slurry, it is preferable to filter the slurry to remove foreign substances and glass. By this filtering, foreign particles larger than the abrasive particles can be efficiently removed, and glass waste that has been gelated by the flocculant removal treatment can also be removed. A system abrasive can be realized. This filtering can be performed by a so-called cartridge filter (for disposable use), but a nylon mesh having a predetermined opening diameter (for example, an opening diameter of 1 μm, V-SEP (manufactured by Techno Alpha)) is used in order to reduce the environmental load. It is preferable to do.
本発明において、使用済みセリウム系研摩材から分離したガラスを除去する方法としては、撹拌後のスラリーを沈降、上澄み液の抜き出しを行い、必要に応じて、さらにリパルプと沈降、上澄み液の抜き出しを繰り返し、上澄み液中に含まれる、研摩材粒子よりも軽いガラス成分を除去することで行うことができる。また、上記したカートリッジフィルターでフィルタリングして研摩材を通過させ、ガラスを捕捉して除去することもできる。そして、沈降、上澄み液の抜き出しと、フィルタリングを組み合わせて行うこともできる。 In the present invention, as a method for removing the glass separated from the used cerium-based abrasive, the slurry after agitation is settled and the supernatant liquid is extracted, and if necessary, the repulp and the sediment are further extracted. It can repeat by removing the glass component lighter than the abrasive particle contained repeatedly in a supernatant liquid. It is also possible to filter the above-described cartridge filter and pass the abrasive, and capture and remove the glass. And it can also carry out combining sedimentation, extraction of supernatant liquid, and filtering.
本発明において、ガラスの除去或いは、ガラス及び異物の除去を行う場合、フィルターとしては1μm〜5μmの濾過精度のものを使用することが好ましい。5μmを超えるフィルターのみを通過させると、とガラスや異物の除去が不十分になりやすく、再生されたセリウム系研摩材により研摩処理を行うと研摩傷が多く発生しやすくなる。特に、上澄み液の抜き出しを行っていない場合はその傾向が強くなる。また、1μm未満では、研摩材粒子がフィルターを通過し難く、再生率が大きく低下する傾向となる。最初から1μm〜5μmのフィルターを通過させると、フィルターが詰まりやすいので、5μmより大きなフィルターを予め通過させた後に、1μm〜5μmのフィルターを通過させてもよい。例えば、10μm、次に5μm、最後に3μmというように順次複数のフィルターを通過させてもよい。ガラスの除去或いは、ガラス及び異物の除去を行う場合、撹拌後のスラリーの固形分はフィルターを通過する割合(フィルター固形分通過率)は50質量%以上が好ましく、70質量%がより好ましく、90質量%以上がさらに好ましく、95質量%以上が特に好ましい。この固形分は、その大部分がセリウム系研摩材の研摩材粒子であるが、フィルタリング前は微量なガラスや異物も混入している。そして、この固形分は、フィルタリング前のスラリーとフィルタリング後のスラリーとについて、それぞれ全体質量を測定するとともに、十分に撹拌して一部サンプリングして赤外線乾燥水分計にて固形分濃度(質量%)を測定できる。フィルター固形分通過率は、フィルタリング前後の固形分全量を計算して算出する。なお、全体質量は、直接測定してもよいし、全体スラリー量(体積)及びスラリーの比重を測定して計算して求めてもよい。 In the present invention, when removing glass or removing glass and foreign matters, it is preferable to use a filter having a filtration accuracy of 1 μm to 5 μm. If only a filter exceeding 5 μm is passed, the removal of glass and foreign matters tends to be insufficient, and if polishing treatment is performed with the regenerated cerium-based abrasive, a lot of abrasive scratches are likely to occur. In particular, when the supernatant liquid is not extracted, the tendency becomes strong. If it is less than 1 μm, the abrasive particles hardly pass through the filter, and the regeneration rate tends to be greatly reduced. When the filter of 1 μm to 5 μm is passed from the beginning, the filter is likely to be clogged. Therefore, after passing a filter larger than 5 μm in advance, the filter of 1 μm to 5 μm may be passed. For example, a plurality of filters may be sequentially passed through such as 10 μm, then 5 μm, and finally 3 μm. When removing glass or removing glass and foreign matter, the solid content of the slurry after stirring is preferably 50% by mass or more, more preferably 70% by mass, and the ratio of passing through the filter (filter solid content passing rate) is preferably 90% by mass. More preferably, it is more preferably 95% by mass or more. Most of the solid content is abrasive particles of a cerium-based abrasive, but a minute amount of glass or foreign matter is also mixed before filtering. The solid content of the slurry before filtering and the slurry after filtering is measured for the total mass, and after stirring, a part is sampled and the solid content concentration (% by mass) is measured using an infrared dry moisture meter. Can be measured. The filter solid content passage rate is calculated by calculating the total solid content before and after filtering. The total mass may be measured directly, or may be determined by measuring and calculating the total slurry amount (volume) and the specific gravity of the slurry.
本発明において、研摩廃材が研摩材廃滓である場合、その研摩材廃滓には特に制限はないが、使用済みセリウム系研摩材スラリーに、鉄系やアルミニウム系の凝集剤或いは有機高分子系の凝集剤を添加し、ろ過等により固液分離してケーキ状にしたものを用いることが好ましい。 In the present invention, when the abrasive waste is an abrasive waste, the abrasive waste is not particularly limited, but the used cerium-based abrasive slurry may be added to an iron-based or aluminum-based flocculant or an organic polymer-based material. It is preferable to use a cake obtained by adding a flocculant and separating into solid and liquid by filtration or the like.
研摩材廃滓に含まれる使用済みセリウム系研摩材の平均粒径としては、廃滓そのものでは凝集が強く測定が困難なため、本発明における酸処理を行った後の添加剤を加えた撹拌処理前のスラリー中のセリウム系研摩材の平均粒径が、レーザー回折・散乱法による体積基準のメジアン径(D50)で0.1μm以上であることが好ましく、0.2μm以上であることがより好ましい。D50が0.1μm未満になると、研摩材廃滓に含まれるガラスとの分離が難しくなる傾向となる。また、D50は5μm以下が好ましく、3μm以下がさらに好ましい。D50が5μmを超えると、得られる再生セリウム系研摩材が研摩傷を発生しやすい特性になる。さらに、使用済みセリウム系研摩材としては、ハードディスク用ガラス基板、液晶用ガラス基板、フォトマスク用ガラス基板、光学ガラスなどのガラス材料または水晶の研摩処理に使用されたものが好ましい。As the average particle size of the used cerium-based abrasive contained in the abrasive waste, the waste itself is agglomerated and difficult to measure, so the stirring treatment with the additive after the acid treatment in the present invention is added The average particle diameter of the cerium-based abrasive in the previous slurry is preferably 0.1 μm or more, more preferably 0.2 μm or more in terms of volume-based median diameter (D 50 ) by laser diffraction / scattering method. preferable. If D 50 is less than 0.1 [mu] m, separation of the glass contained in the abrasive waste slag it tends to become difficult. D 50 is preferably 5 μm or less, and more preferably 3 μm or less. If D 50 exceeds 5 [mu] m, playback cerium-obtained is easily characteristic generating the polishing scratches. Further, the used cerium-based abrasive is preferably a glass material such as a hard disk glass substrate, a liquid crystal glass substrate, a photomask glass substrate, or an optical glass, or a material used for polishing of quartz.
また、本発明において、研摩廃材が廃研摩材スラリーである場合、その廃研摩材スラリーには特に制限はない。使用済みの廃研摩材スラリーの研摩材の平均粒径としては、使用済みセリウム系研摩材スラリーでは凝集が強く測定が困難なため、本発明における添加剤を加えた撹拌処理前スラリー中のセリウム系研摩材の平均粒径が、レーザー回折・散乱法による体積基準のメジアン径(D50)で0.1μm以上であることが好ましく、0.2μm以上であることがより好ましい。D50が0.1μm未満になると、ガラス成分の除去が難しくなる傾向となる。また、D50は5μm以下が好ましく、3μm以下がさらに好ましい。D50が5μmを超えると、得られる再生セリウム系研摩材スラリーが研摩傷を発生しやすい特性になる。また、廃研摩材スラリーとしては、ハードディスク用ガラス基板、液晶用ガラス基板、フォトマスク用ガラス基板、光学ガラスなどのガラス材料または水晶の研摩処理に使用されたものが好ましい。さらに、再生対象となる使用済みセリウム系研摩材スラリーは、固液が混合した状態、いわゆるスラリー状態のものだけではなく、保存などにより研摩材成分が沈降して固液が分離されたものであっても、これを撹拌してスラリー状態としたものも含まれる。In the present invention, when the abrasive waste is a waste abrasive slurry, the waste abrasive slurry is not particularly limited. As the average particle size of the used abrasive slurry of the used abrasive slurry, the cerium system in the slurry before the stirring treatment with the additive in the present invention is added because the used cerium-based abrasive slurry has high agglomeration and is difficult to measure. The average particle diameter of the abrasive is preferably 0.1 μm or more, and more preferably 0.2 μm or more, in terms of volume-based median diameter (D 50 ) by laser diffraction / scattering method. If D 50 is less than 0.1 [mu] m, tend to removal of the glass component becomes difficult. D 50 is preferably 5 μm or less, and more preferably 3 μm or less. When D 50 exceeds 5 μm, the obtained recycled cerium-based abrasive slurry becomes a characteristic that easily causes abrasive scratches. Further, the waste abrasive slurry is preferably a glass material such as a glass substrate for hard disk, a glass substrate for liquid crystal, a glass substrate for photomask, or an optical glass, or a material used for polishing treatment of quartz. Furthermore, the used cerium-based abrasive slurry to be reclaimed is not only in a solid-liquid mixed state, that is, in a so-called slurry state, but also in which the abrasive components settled and separated from the solid-liquid by storage or the like. However, the thing which made this a slurry state by stirring is also included.
本発明において、沈降、上澄み液抜き出し後のケーキは、そのままスラリー化して再生セリウム系研摩材スラリーとして使用することも可能であるが、乾燥または乾燥後に焼成を行って使用することもできる。また、フィルタリング後のスラリーを必要に応じて濃度調整をして再生セリウム系研摩材スラリーとして使用することも可能であるが、乾燥または乾燥後に焼成を行って使用することもできる。乾燥又は焼成後には、乾式粉砕或いは乾式粉砕及び乾式分級を行うことが好ましい。このようにすれば、粉末状の再生セリウム系研摩材を得ることができる。また、粉末状の再生セリウム系研摩材をスラリー化して使用することもできる。さらに、スラリー状の再生セリウム系研摩材は、再生品でないスラリー状のセリウム系研摩材と混合して使用でき、粉末状の再生セリウム系研摩材は、再生品でない粉末状のセリウム系研摩材と混合して使用することが可能である。なお、スラリー化或いは乾燥する前のケーキ状の再生セリウム系研摩材、スラリー化後の再生セリウム系研摩材及び粉末状の再生セリウム系研摩材は、そのまま単独または他のセリウム系研摩材原料と共に、研摩材の原料として使用することも可能である。本発明により得られる再生セリウム系研摩材は、ハードディスク用ガラス基板、液晶用ガラス基板、フォトマスク用ガラス基板、光学ガラスなどのガラス材料または水晶の研摩処理に使用することが好ましい。 In the present invention, the cake after sedimentation and removal of the supernatant liquid can be slurried as it is and used as a recycled cerium-based abrasive slurry, but it can also be used after drying or drying. Moreover, the slurry after filtering can be used as a regenerated cerium-based abrasive slurry by adjusting the concentration as necessary, but it can also be used after drying or drying. After drying or firing, dry pulverization or dry pulverization and dry classification are preferably performed. In this way, a powdered recycled cerium-based abrasive can be obtained. Further, a powdered recycled cerium-based abrasive can be used in the form of a slurry. Furthermore, slurry-like recycled cerium-based abrasives can be used by mixing with slurry-like cerium-based abrasives that are not recycled, and powder-like recycled cerium-based abrasives can be used as powdered cerium-based abrasives that are not recycled. It can be used as a mixture. In addition, the cake-like recycled cerium-based abrasive before slurrying or drying, the recycled cerium-based abrasive after slurrying, and the powdered recycled cerium-based abrasive are used alone or together with other cerium-based abrasive raw materials, It can also be used as a raw material for abrasives. The regenerated cerium-based abrasive obtained by the present invention is preferably used for polishing of glass materials such as hard disk glass substrates, liquid crystal glass substrates, photomask glass substrates, optical glass, or quartz.
本発明によれば、研摩速度が回復し、研摩傷の発生を抑制されたセリウム系研摩材を、使用済みのセリウム系研摩材を含む廃研摩材スラリーまたは研摩材廃滓からなる研摩廃材から容易に再生することができる。また、本発明によれば、使用済みセリウム系研摩材の再利用が有効に行えるので、資源の有効利用という観点から極めて有効なものである。 According to the present invention, a cerium-based abrasive whose polishing speed has been recovered and the generation of abrasive scratches has been suppressed can be easily made from an abrasive scrap made from a waste abrasive slurry or abrasive waste containing a used cerium-based abrasive. Can be played. In addition, according to the present invention, the used cerium-based abrasive can be effectively reused, which is extremely effective from the viewpoint of effective use of resources.
第一実施形態:この第一実施形態においては、再生対象の研摩廃材として、使用済みセリウム系研摩材を含む研摩材廃滓を用いた場合について説明する。 First Embodiment: In this first embodiment, a case will be described in which an abrasive waste containing a used cerium-based abrasive is used as an abrasive waste to be recycled.
実施例1−1:再生対象の使用済みのセリウム系研摩材は、製品であるセリウム系研摩材(商品名ミレークE23(三井金属鉱業(株)製、CeO2/TREO=63質量%)を、研摩試験機HSP−21型(台東精機(株)製)にて、平面パネル用ガラスを研摩処理したもので、その研摩速度が研摩初期時の50%未満に低下するまで、研摩材スラリーを交換することなく使用したものを用いた。そして、この使用済みセリウム系研摩材スラリーに、塩化第二鉄の凝集剤(関東化学社製)を加え、苛性ソーダ(関東化学社製)を添加してスラリーpHをpH7以上にすることで、沈殿を生成した。この沈殿物には、研摩処理における平面パネルの破片物も混入していた。Example 1-1: The used cerium-based abrasive to be recycled is a cerium-based abrasive (product name: Mireke E23 (Mitsui Metal Mining Co., Ltd., CeO 2 / TREO = 63% by mass)), which is a product. Abrasive testing machine HSP-21 type (Taito Seiki Co., Ltd.) is used to polish flat panel glass, and the abrasive slurry is replaced until the polishing speed drops below 50% of the initial polishing. Then, a ferric chloride flocculant (manufactured by Kanto Chemical Co.) is added to this used cerium-based abrasive slurry, and caustic soda (manufactured by Kanto Chemical Co., Ltd.) is added to the slurry. A precipitate was generated by adjusting the pH to 7 or more, and this precipitate was also contaminated with flat panel fragments in the polishing process.
次に、この沈殿物をフィルタープレス(アタカ大機株式会社製、TFP−3)にて固液分離を行い、再生対象となるケーキ状の研摩材廃滓を得た。このようして得られたケーキ状の研摩材廃滓は、含水率50.2%で、Feが固形分に対して12質量%混入していた。そして、Si(ケイ素)が固形分に対して2質量%含有されていた。 Next, this precipitate was subjected to solid-liquid separation with a filter press (manufactured by Ataca Daiki Co., Ltd., TFP-3) to obtain a cake-like abrasive waste to be regenerated. The cake-like abrasive waste thus obtained had a water content of 50.2%, and Fe was mixed by 12% by mass with respect to the solid content. And 2 mass% of Si (silicon) was contained with respect to solid content.
このような研摩材廃滓に、Feの二倍等量となる1mol/L硫酸(Fe 1mol当たり、硫酸 3mol)を加え、凝集剤成分であるFeを溶解した。そして、静置して沈降した後、上澄み液を抜き出し、純水を加えて再度スラリー化した。この操作(沈降−上澄み液抜き出し−純水添加の再スラリー化)を繰り返し、上澄み液中のFe濃度が0.3g/L以下になるまで行った。上澄み液中のFe濃度が0.3g/L以下となったものを廃滓スラリーとした。 To such abrasive waste, 1 mol / L sulfuric acid (3 mol of sulfuric acid per 1 mol of Fe), which is twice the equivalent of Fe, was added to dissolve Fe as a flocculant component. And after leaving still and settling, the supernatant liquid was extracted and the pure water was added and it slurried again. This operation (sedimentation-supernatant liquid extraction-pure water addition reslurry) was repeated until the Fe concentration in the supernatant liquid became 0.3 g / L or less. A waste slurry having a Fe concentration of 0.3 g / L or less in the supernatant was used.
そして、この廃滓スラリーを、純水を用いて濃度100g/Lのスラリーとした後、固形分に対して6質量%のクエン酸を添加して、pH調整材としてのアルカリ調整剤(アンモニア水)を加え、廃滓スラリーのpHをpH7とした。また、pH調整後のスラリー中のセリウム系研摩材の平均粒径D50は、1.4μmであった。And after making this waste slurry into a slurry having a concentration of 100 g / L using pure water, 6% by mass of citric acid is added to the solid content, and an alkali adjusting agent (ammonia water) as a pH adjusting material is added. ) To adjust the pH of the waste slurry to pH 7. The average particle diameter D 50 of the cerium-based abrasive in the slurry after pH adjustment, was 1.4 [mu] m.
pH調整後、撹拌装置T.Kフィルミックス(プライミクス(株)製)により、周速50m/secにて撹拌処理を30秒間行った。撹拌処理後、ろ過精度3μmのスロープピュアフィルター250L−SLS−030((株)ロキテクノ社製)にてフィルタリングすることにより、異物除去の処理を行った。この異物除去処理を行ったフィルター内をデジタルマイクロスコープにより確認したところ、研摩材粒子より大きい直径3μm以上の異物が多数観察された。 After the pH adjustment, the stirring device T.I. Stirring was performed for 30 seconds at a peripheral speed of 50 m / sec using K Fillmix (manufactured by PRIMIX Corporation). After the stirring treatment, foreign matter removal treatment was performed by filtering with a slope pure filter 250L-SLS-030 (manufactured by Loki Techno Co., Ltd.) having a filtration accuracy of 3 μm. When the inside of the filter subjected to the foreign matter removal treatment was confirmed by a digital microscope, many foreign matters having a diameter of 3 μm or more larger than the abrasive particles were observed.
異物除去の処理を行った後、廃滓スラリーの固液分離処理を行った。この固液分離処理は、スラリーを静置沈降後、上澄み液を抜き出し→純水添加→撹拌→再度静止沈降の操作を2回繰り返し、上澄み液を抜き出した。この固液分離処理により得られた回収固形分を乾燥後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この再生セリウム系研摩材を、ICP―AES法によりSi成分の分析を行った結果、0.1質量%未満であり、ガラス成分がほとんど取り除かれていることが判明した。尚、上記した実施例1−1に関する研摩材廃滓の再生処理条件を表1に纏めて示す。 After the foreign matter removal process, a solid-liquid separation process of the waste slurry was performed. In this solid-liquid separation treatment, after the slurry was allowed to settle and settled, the supernatant liquid was extracted → pure water addition → stirring → static sedimentation was repeated twice, and the supernatant liquid was extracted. The recovered solid content obtained by this solid-liquid separation treatment was dried and then dry pulverized with a hammer-type mill, and recovered as a recycled cerium-based abrasive. As a result of analyzing the Si component of this recycled cerium-based abrasive by the ICP-AES method, it was found that it was less than 0.1% by mass and the glass component was almost removed. In addition, Table 1 summarizes the conditions for the regeneration treatment of the abrasive debris related to Example 1-1 described above.
この回収した再生セリウム系研摩材と、使用前のセリウム系研摩材(製品)について、その物性及び研摩評価を行った。物性は、BET法比表面積、粒度、組成(フッ素(F)、鉄(Fe)、ケイ素(Si)、カルシウム(Ca)、アルミニウム(Al)、全酸化希土(TREO))について測定し、研摩評価は、研摩速度と研摩傷を調査した。試験条件は、次の通りである。 The recovered physical cerium-based abrasive and the cerium-based abrasive (product) before use were evaluated for physical properties and polishing. Physical properties were measured for BET specific surface area, particle size, and composition (fluorine (F), iron (Fe), silicon (Si), calcium (Ca), aluminum (Al), total oxidized rare earth (TREO)) and polished. In the evaluation, the polishing speed and the scratches were investigated. The test conditions are as follows.
BET比表面積(A)の測定:JIS R 1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 の(3.5)一点法」に準拠して測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。なお、スラリー研摩材についての測定では、当該スラリーを十分に乾燥(105℃に加熱)させることにより得られた乾燥品についてBET法比表面積を測定した。 Measurement of BET specific surface area (A): Conforms to “(3.5) Single point method of 6.2 flow method” of JIS R 1626-1996 (Method of measuring specific surface area of fine ceramic powder by gas adsorption BET method). And measured. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used. In the measurement of the slurry abrasive, the BET method specific surface area was measured for a dried product obtained by sufficiently drying (heating to 105 ° C.) the slurry.
粒度:レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製LA−920)を使用して粒度分布を測定することにより、体積基準の小粒径側からの積算分率における10%径(D10)、50%径(D50)及び90%径(D90)を求めた。Particle size: 10% of the integrated fraction from the small particle size side on the volume basis by measuring the particle size distribution using a laser diffraction / scattering particle size distribution measuring device (LA-920 manufactured by Horiba, Ltd.) The diameter (D 10 ), 50% diameter (D 50 ) and 90% diameter (D 90 ) were determined.
全酸化希土(TREO)の測定:研摩材原料或いは研摩材原料の全酸化希土は、シュウ酸塩沈殿・焼成・重量法により測定した(単位 固形物:質量%、液:g/L)。前処理として、固形物(研摩材)は過塩素酸及び過酸化水素により溶解し、煮沸して行った。測定対象が液である場合は、そのまま煮沸して行った。また、CeO2/TREOについては、上記した全酸化希土(TREO)測定を行って得られたTREO試料を、過塩素酸及び過酸化水素により溶解し、ICP−AES法により測定した。Measurement of total oxidized rare earth (TREO): Abrasive raw material or total oxidized rare earth of abrasive raw material was measured by oxalate precipitation / firing / weight method (unit: solid mass: liquid: g / L) . As a pretreatment, the solid (abrasive) was dissolved in perchloric acid and hydrogen peroxide and boiled. When the measurement object was a liquid, it was boiled as it was. As for the CeO 2 / TREO, a TREO sample obtained by performing a total rare earth oxide (TREO) measured as described above, was dissolved by perchloric acid and hydrogen peroxide, it was measured by ICP-AES method.
フッ素含有量の測定:フッ素(F)含有量は、フッ化物イオン電極法(単位 固形物:質量%、液:g/L)により測定した。測定対象となる固形物は(研摩材)、アルカリ溶融・温湯抽出により溶液化して測定を行った。 Measurement of fluorine content: The fluorine (F) content was measured by the fluoride ion electrode method (unit solid: mass%, liquid: g / L). The solid matter to be measured (abrasive material) was measured by being made into a solution by alkaline melting / hot water extraction.
ケイ素(Si)、鉄(Fe)、カルシウム(Ca)、アルミニウム(Al)含有量の測定:Siの含有量は、測定対象となる固形物(研摩材)をアルカリ溶融・温湯抽出により溶液化して、ICP−AES法により測定した。Si以外のFe、Ca、Alなどの含有量は、上記固形物(研摩材)をアルカリ溶融・温湯抽出後、塩酸溶解処理を行って、ICP−AES法により測定した。 Measurement of silicon (Si), iron (Fe), calcium (Ca), and aluminum (Al) content: The content of Si is obtained by making a solid (abrasive material) to be measured into a solution by alkaline melting / hot water extraction. , Measured by ICP-AES method. The contents of Fe, Ca, Al and the like other than Si were measured by ICP-AES method after the above solid (abrasive) was melted with alkali and extracted with hot water, and then dissolved in hydrochloric acid.
研摩速度:研摩機として、研摩試験機(HSP−21型、台東精機(株)製)を用意した。この研摩試験機は、研摩材スラリーを研摩対象面に供給しながら、当該研摩対象面を研摩パッドで研摩するものである。研摩材スラリーの砥粒濃度は、100g/Lとした(分散媒は水のみ)。研摩対象物は65mmφの平面パネル用ガラスとした。また、研摩パッドはポリウレタン製のものを使用した。研摩面に対する研摩パッドの圧力は9.8kPa(100g/cm2)とし、研摩試験機の回転速度は100min−1(rpm)に設定して研摩をした。研摩速度は、研摩前後のガラス重量を測定して研摩によるガラス重量の減少量を求め、使用前のセリウム系研摩材(製品)の減少量を100として、この製品研摩速度の相対値として、再生セリウム系研摩材の研摩速度を調べた。Polishing speed: A polishing tester (HSP-21 type, manufactured by Taito Seiki Co., Ltd.) was prepared as a polishing machine. This polishing tester polishes the polishing target surface with a polishing pad while supplying the abrasive slurry to the polishing target surface. The abrasive grain concentration of the abrasive slurry was 100 g / L (dispersion medium was water only). The object to be polished was a flat panel glass with a diameter of 65 mm. A polishing pad made of polyurethane was used. Polishing was performed with the pressure of the polishing pad against the polishing surface set to 9.8 kPa (100 g / cm 2 ) and the rotation speed of the polishing tester set to 100 min −1 (rpm). The polishing speed is determined by measuring the glass weight before and after polishing to determine the reduction in glass weight due to polishing, and taking the reduction in cerium-based abrasive (product) before use as 100. The polishing speed of the cerium-based abrasive was examined.
研摩傷:研摩傷評価は、30万ルクスのハロゲンランプを光源として用いる反射法で研摩後のガラス表面を目視観察し、ガラス全面の観察範囲中に、幅1mm以上の研摩傷の本数をカウントし、合計8枚のガラスについて研摩傷観察を行い、その合計本数を研摩傷評価値とした。研摩傷の評価は、使用前のセリウム系研摩材(製品)による研摩傷と、再生セリウム系研摩材による研摩傷とを比較することにより調べた。この研摩傷評価では、合計本数が50本を超える場合は研摩材として使用困難で、50本〜21本の場合は研摩材として使用可能で、20本〜11本の場合は研摩材として好適なものであり、10本以下の場合が研摩材として特に好適なものとした。 Abrasion scratches: Abrasion scratches are evaluated by visually observing the polished glass surface with a reflection method using a 300,000 lux halogen lamp as the light source, and counting the number of abrasive scratches with a width of 1 mm or more within the observation range of the entire glass surface. Abrasive scratches were observed on a total of 8 glasses, and the total number was used as an abrasive scratch evaluation value. The evaluation of the abrasive scratch was examined by comparing the abrasive scratch by the cerium-based abrasive (product) before use with the abrasive scratch by the recycled cerium-based abrasive. In this abrasive scratch evaluation, if the total number exceeds 50, it is difficult to use as an abrasive, 50 to 21 can be used as an abrasive, and 20 to 11 is suitable as an abrasive. The case of 10 or less was particularly suitable as an abrasive.
実施例1−1の再生セリウム系研摩材の物性及び研摩特性の測定結果を表2に示す。表2に示すように、実施例1−1の再生セリウム系研摩材の研摩速度は相対値98であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷とほぼ同等で、特に好適なものであった。これにより、この実施例1−1の再生セリウム系研摩材は、研摩処理の再利用として実用的なものであることが判明した。 Table 2 shows the measurement results of the physical properties and polishing characteristics of the recycled cerium-based abrasive of Example 1-1. As shown in Table 2, the polishing speed of the recycled cerium-based abrasive of Example 1-1 is a relative value of 98, and the scratches of the recycled cerium-based abrasive are the cerium-based abrasive (product) before use. It was almost the same as an abrasive scratch and was particularly suitable. Thereby, it turned out that the reproduction | regeneration cerium type abrasive | polishing material of this Example 1-1 is a thing practical as reuse of a grinding | polishing process.
実施例1−2:この実施例1−2は、上記実施例1−1と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、フィルタリングしてから固液分離した研摩材を乾燥後、800℃で焼成処理をした後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この実施例1−2の再生処理条件を表1に示す。また、この実施例1−2の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-2: This Example 1-2 was obtained by performing a regeneration process under basically the same conditions as in Example 1-1. After the stirring process, the abrasive was filtered and solid-liquid separated. After being dried, it was calcined at 800 ° C., and then dry-pulverized with a hammer mill, and recovered as a recycled cerium-based abrasive. Table 1 shows the reproduction processing conditions of Example 1-2. Table 2 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 1-2.
表2に示すように、実施例1−2の再生セリウム系研摩材の研摩速度は、102(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷とほぼ同等で、特に好適なものであった。これにより、この実施例1−2の再生セリウム系研摩材は、研摩処理の再利用として実用的なものであることが判明した。 As shown in Table 2, the polishing speed of the recycled cerium-based abrasive of Example 1-2 was 102 (relative value), and the scratches on the recycled cerium-based abrasive were cerium-based abrasives before use ( It was almost the same as the abrasive scratches of the product) and was particularly suitable. Thereby, it turned out that the reproduction | regeneration cerium type abrasive | polishing material of this Example 1-2 is a thing practical as reuse of a grinding | polishing process.
実施例1−3:この実施例1−3は、上記実施例1−1と基本的には同じ条件の再生処理を行ったもので、クエン酸の代わりに、ピロリン酸ナトリウムを使用した。また、アルカリ調整剤によるpH調整は行わず、スラリーpHはpH7.5であった。その他の条件は、上記実施例1−1と同じとした。実施例1−3の再生処理条件を表1に示す。また、実施例1−3の再生セリウム系研摩材について、その物性及び研摩評価を行った結果を表2に示す。 Example 1-3: In Example 1-3, regeneration treatment was performed under basically the same conditions as in Example 1-1, and sodium pyrophosphate was used instead of citric acid. Moreover, pH adjustment by an alkali adjuster was not performed, and the slurry pH was pH 7.5. Other conditions were the same as those in Example 1-1. Table 1 shows the reproduction processing conditions of Example 1-3. Table 2 shows the physical properties and results of polishing evaluation of the recycled cerium-based abrasive of Example 1-3.
表2に示すように、実施例1−3の再生セリウム系研摩材の研摩速度は相対値98であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷とほぼ同等で、特に好適なものであった。これにより、この実施例1−3の再生セリウム系研摩材は、研摩処理の再利用として実用的なものであることが判明した。 As shown in Table 2, the polishing speed of the regenerated cerium-based abrasive of Example 1-3 has a relative value of 98, and the scratches on the regenerated cerium-based abrasive are those of the cerium-based abrasive (product) before use. It was almost the same as an abrasive scratch and was particularly suitable. Thereby, it turned out that the reproduction | regeneration cerium type abrasive | polishing material of this Example 1-3 is a thing practical as reuse of polishing process.
実施例1−4:この実施例1−4は、上記実施例1−3と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、フィルタリングしてから固液分離した研摩材を乾燥後、800℃で焼成処理をした後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この実施例1−4の再生処理条件を表1に示す。また、この実施例1−4の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-4: This Example 1-4 was obtained by performing a regeneration process under basically the same conditions as in Example 1-3 above. After the stirring process, the abrasive was filtered and solid-liquid separated. After being dried, it was calcined at 800 ° C., and then dry-pulverized with a hammer mill, and recovered as a recycled cerium-based abrasive. Table 1 shows the reproduction processing conditions of Example 1-4. Table 2 shows the physical properties, composition, and evaluation results of the recycled cerium-based abrasive of Example 1-4.
表2に示すように、実施例1−4の再生セリウム系研摩材の研摩速度は、110(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷とほぼ同等で、特に好適なものであった。これにより、この実施例1−4の再生セリウム系研摩材は、研摩処理の再利用として実用的なものであることが判明した。 As shown in Table 2, the polishing speed of the recycled cerium-based abrasive of Example 1-4 was 110 (relative value), and the scratches of the recycled cerium-based abrasive were cerium-based abrasives before use ( It was almost the same as the abrasive scratches of the product) and was particularly suitable. Thereby, it turned out that the reproduction | regeneration cerium type abrasive | polishing material of this Example 1-4 is a thing practical as reuse of a grinding | polishing process.
実施例1−5:この実施例1−5は、上記実施例1−3と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を10m/secとしたものである。この実施例1−5の再生処理条件を表1に示す。また、この実施例1−5の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-5: Example 1-5 was obtained by performing regeneration treatment under basically the same conditions as in Example 1-3, and the stirring speed during the stirring process was 10 m / sec. is there. Table 1 shows the reproduction processing conditions of Example 1-5. Table 2 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 1-5.
表2に示すように、実施例1−5の再生セリウム系研摩材の研摩速度は、103(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷よりわずかに多かったが、実用上まったく問題のない程度のもので、特に好適なものであることが判明した。 As shown in Table 2, the polishing speed of the recycled cerium-based abrasive of Example 1-5 is 103 (relative value), and the scratches of the recycled cerium-based abrasive are cerium-based abrasives before use ( It was found to be particularly suitable because it was slightly more than the scratches of the product), but to the extent that there was no practical problem at all.
実施例1−6:この実施例1−6は、上記実施例1−4と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を10m/secとしたものである。この実施例1−6の再生処理条件を表1に示す。また、この実施例1−6の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-6: This Example 1-6 was obtained by performing regeneration processing under basically the same conditions as in Example 1-4 above, and the stirring speed during the stirring process was 10 m / sec. is there. Table 1 shows the reproduction processing conditions of Example 1-6. Table 2 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 1-6.
表2に示すように、実施例1−6の再生セリウム系研摩材の研摩速度は、109(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多かったが、研摩材としては好適であることが判明した。 As shown in Table 2, the polishing speed of the recycled cerium-based abrasive of Example 1-6 was 109 (relative value), and the scratches of the recycled cerium-based abrasive were cerium-based abrasives ( It was found to be suitable as an abrasive.
実施例1−7:この実施例1−7は、上記実施例1−3と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を5m/secとしたものである。この実施例1−7の再生処理条件を表1に示す。また、この実施例1−7の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-7: This Example 1-7 was obtained by performing a regeneration process under basically the same conditions as in Example 1-3 above, and the stirring speed during the stirring process was 5 m / sec. is there. Table 1 shows the reproduction processing conditions of Example 1-7. Table 2 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 1-7.
表2に示すように、実施例1−7の再生セリウム系研摩材の研摩速度は、108(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、22本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 2, the polishing rate of the recycled cerium-based abrasive of Example 1-7 was 108 (relative value). Further, the number of scratches on the recycled cerium abrasive was larger than that on the cerium-based abrasive (product) before use, and 22 were confirmed. However, it was found that the abrasive was usable as an abrasive.
実施例1−8:この実施例1−8は、上記実施例1−4と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を5m/secとしたものである。この実施例1−8の再生処理条件を表1に示す。また、この実施例1−8の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-8: Example 1-8 was obtained by performing a regeneration process under basically the same conditions as in Example 1-4 above, and the stirring speed during the stirring process was 5 m / sec. is there. Table 1 shows the reproduction processing conditions of Example 1-8. Table 2 shows the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasive of Example 1-8.
表2に示すように、実施例1−8の再生セリウム系研摩材の研摩速度は、113(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、29本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 2, the polishing rate of the recycled cerium-based abrasive of Example 1-8 was 113 (relative value). In addition, the number of abrasive scratches on the recycled cerium abrasive was larger than that on the cerium-based abrasive (product) before use, and 29 were confirmed. However, it was found that the abrasive was usable as an abrasive.
実施例1−9:この実施例1−9は、上記実施例1−1と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を10m/secとしたものである。この実施例1−9の再生処理条件を表1に示す。また、この実施例1−9の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-9: This Example 1-9 was obtained by performing a regeneration process under basically the same conditions as in Example 1-1 above, and the stirring speed during the stirring process was 10 m / sec. is there. Table 1 shows the reproduction processing conditions of Example 1-9. Table 2 shows the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasive of Example 1-9.
表2に示すように、実施例1−9の再生セリウム系研摩材の研摩速度は、100(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多かったが、研摩材としては好適であることが判明した。 As shown in Table 2, the polishing rate of the recycled cerium-based abrasive of Example 1-9 was 100 (relative value). Moreover, although the number of abrasive scratches on the recycled cerium abrasive was greater than that on the cerium-based abrasive (product) before use, it was found to be suitable as an abrasive.
実施例1−10:この実施例1−10は、上記実施例1−1と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を5m/secとしたものである。この実施例1−10の再生処理条件を表1に示す。また、この実施例1−10の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2に示す。 Example 1-10: This Example 1-10 was obtained by performing a regeneration process under basically the same conditions as in Example 1-1 above, and the stirring speed during the stirring process was 5 m / sec. is there. Table 1 shows the reproduction processing conditions of Example 1-10. Table 2 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 1-10.
表2に示すように、実施例1−10の再生セリウム系研摩材の研摩速度は、105(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、23本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 2, the polishing rate of the recycled cerium-based abrasive of Example 1-10 was 105 (relative value). In addition, the number of abrasive scratches on the recycled cerium abrasive was larger than that on the cerium-based abrasive (product) before use, and 23 were confirmed. However, it was found that the abrasive was usable as an abrasive.
実施例1−11〜29:この実施例1−11〜29では、上記実施例1−1と基本的に同じ再生処理条件で、廃滓スラリーに添加する添加剤を各種変更した場合を評価したものである。実施例1−11〜29の再生処理条件を表1に示す。尚、再生処理におけるpH調整剤としてはアルカリ調整剤(アンモニア水)または塩酸を用い、実施例1−18、1−19の場合はアルカリ調整剤を添加しないとHEDTA、DTPA、EDTAは溶解しなかった。さらに、コハク酸、HIDAはアルカリ調整剤を添加しないと溶解しにくかった。また、この実施例1−11〜29の再生セリウム系研摩材の物性、組成、研摩評価の結果を表2及び表3に示す。 Examples 1-11 to 29: In Examples 1-11 to 29, the case where various additives were added to the waste slurry was evaluated under basically the same regeneration conditions as in Example 1-1. Is. Table 1 shows the reproduction processing conditions of Examples 1-11 to 29. In addition, as a pH adjuster in the regeneration treatment, an alkali adjuster (ammonia water) or hydrochloric acid is used. In the case of Examples 1-18 and 1-19, HEDTA, DTPA, and EDTA are not dissolved unless an alkali adjuster is added. It was. Furthermore, succinic acid and HIDA were difficult to dissolve unless an alkali modifier was added. Tables 2 and 3 show the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasives of Examples 1-11 to 29.
表2及び表3に示すように、実施例1−11〜29の各種添加剤を用いた再生セリウム系研摩材の研摩速度は、少なくとも96(相対値)以上の値であった。また、実施例1−11〜29の再生セリウム研摩材の研摩傷は、実施例1−29では13本確認されたが、その他のものは10本未満であった。実施例1−11〜29の各種添加剤を用いても、良好なセリウム系研摩材を再生できることが判明した。 As shown in Table 2 and Table 3, the polishing rate of the recycled cerium-based abrasive using the various additives of Examples 1-11 to 29 was a value of at least 96 (relative value) or more. In addition, although 13 scratches of the recycled cerium abrasive of Examples 1-11 to 29 were confirmed in Example 1-29, the number of other scratches was less than 10. It has been found that a good cerium-based abrasive can be regenerated even if the various additives of Examples 1-11 to 29 are used.
比較例1−1:この比較例1−1では、上記実施例1−1と同じ研摩材廃滓(含水率50.2%、Feが固形分に対して12質量%混入、Siが固形分に対して2質量%含有)を用いた。 Comparative Example 1-1: In Comparative Example 1-1, the same abrasive waste as in Example 1-1 (water content 50.2%, Fe mixed in 12% by mass with respect to solid content, Si as solid content) 2% by mass).
この研摩材廃滓に、Feの二倍等量となる1mol/L硫酸(Fe 1mol当たり、硫酸 3mol)を加え、凝集剤成分であるFeを溶解した。そして、実施例1−1の場合と同様に、静置して沈降した後、上澄み液を抜き出し、純水を加えて再度スラリー化した。この操作(沈降−上澄み液抜き出し−純水添加の再スラリー化)を繰り返し、上澄み液中のFe濃度が0.3g/L以下になるまで行った。上澄み液中のFe濃度が0.3g/L以下となったものを廃滓スラリーとした。 To this abrasive waste, 1 mol / L sulfuric acid (3 mol of sulfuric acid per 1 mol of Fe), which is twice the amount of Fe, was added to dissolve Fe as a coagulant component. And like the case of Example 1-1, after leaving still and sedimenting, the supernatant liquid was extracted, and the pure water was added and it was made into the slurry again. This operation (sedimentation-supernatant liquid extraction-pure water addition reslurry) was repeated until the Fe concentration in the supernatant liquid became 0.3 g / L or less. A waste slurry having a Fe concentration of 0.3 g / L or less in the supernatant was used.
そして、この廃滓スラリーを、純水を用いて濃度100g/Lのスラリーとした後、添加剤を加えることなくアルカリ調整剤(アンモニア水)のみを加え、廃滓スラリーpHをpH7.0とした。pH調整後、撹拌装置T.Kフィルミックス(プライミクス(株)製)により、周速50m/secにて撹拌処理を30秒間行った。 And after making this waste slurry into a slurry with a concentration of 100 g / L using pure water, only an alkali adjusting agent (ammonia water) was added without adding an additive, and the waste slurry pH was adjusted to pH 7.0. . After the pH adjustment, the stirring device T.I. Stirring was performed for 30 seconds at a peripheral speed of 50 m / sec using K Fillmix (manufactured by PRIMIX Corporation).
撹拌処理後、フィルタリングを実施せず、スラリーの固液分離処理して得られた固形分を乾燥後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この比較例1−1の再生処理条件を表1に示す。また、比較例1−1の再生セリウム系研摩材の物性及び研摩特性を表3に示す。 After the stirring treatment, filtering was not performed, and the solid content obtained by the solid-liquid separation treatment of the slurry was dried and then dry pulverized with a hammer mill and recovered as a recycled cerium-based abrasive. Table 1 shows the reproduction processing conditions of Comparative Example 1-1. Table 3 shows the physical properties and polishing characteristics of the recycled cerium-based abrasive of Comparative Example 1-1.
表3に示すように、比較例1−1の再生セリウム系研摩材の研摩速度は53(相対値)であった。また、比較例1−1の再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。さらに、組成的には、Si、Ca、Alが各実施例の再生セリウム系研摩材より、多く含有されていることが確認された。 As shown in Table 3, the polishing rate of the recycled cerium-based abrasive of Comparative Example 1-1 was 53 (relative value). In addition, it is clear that the abrasive scratches of the recycled cerium abrasive of Comparative Example 1-1 is about 10 times or more of the abrasive scratches of the cerium-based abrasive (product) before use, and the measurement is very much because there are many scratches. It was impossible. Furthermore, compositionally, it was confirmed that Si, Ca, and Al were contained more than the regenerated cerium-based abrasive of each Example.
比較例1−2:この比較例1−2では、上記実施例1−3の再生処理条件の中で、アルカリ調整剤(アンモニア水)によるpH調整をせず、撹拌処理後のフィルタリングを実施しない条件にて、再生処理を行った。この比較例1−2の再生処理条件を表1に示す。また、比較例1−2の再生セリウム系研摩材の物性及び研摩特性を表3に示す。 Comparative Example 1-2: In Comparative Example 1-2, the pH is not adjusted with an alkali adjusting agent (ammonia water) in the regeneration processing conditions of Example 1-3, and the filtering after the stirring process is not performed. Reproduction processing was performed under conditions. Table 1 shows the reproduction processing conditions of Comparative Example 1-2. Table 3 shows the physical properties and polishing characteristics of the recycled cerium-based abrasive of Comparative Example 1-2.
表3に示すように、比較例1−2の再生セリウム系研摩材の研摩速度は89(相対値)であった。また、比較例1−2の再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。さらに、組成的には、Si、Ca、Alが各実施例の再生セリウム系研摩材より、多く含有されていることが確認された。 As shown in Table 3, the polishing speed of the recycled cerium-based abrasive of Comparative Example 1-2 was 89 (relative value). In addition, it is clear that the abrasive scratches of the recycled cerium abrasive of Comparative Example 1-2 is about 10 times or more than the abrasive scratches of the cerium-based abrasive (product) before use. It was impossible. Furthermore, compositionally, it was confirmed that Si, Ca, and Al were contained more than the regenerated cerium-based abrasive of each Example.
比較例1−3:この比較例1−3では、上記比較例1−2の再生処理条件の中で、撹拌処理時の周速を3m/secとして、フィルタリングを実施して再生処理を行った。この比較例1−3の再生処理条件を表1に示す。また、比較例1−3の再生セリウム系研摩材の物性及び研摩特性を表3に示す。 Comparative Example 1-3: In this comparative example 1-3, the regeneration process was performed by filtering the peripheral speed during the stirring process at 3 m / sec in the regeneration process conditions of the comparative example 1-2. . Table 1 shows the reproduction processing conditions of Comparative Example 1-3. Table 3 shows the physical properties and polishing characteristics of the recycled cerium-based abrasive of Comparative Example 1-3.
表3に示すように、比較例1−3の再生セリウム系研摩材の研摩速度は122(相対値)と非常に高い値であった。しかしながら、比較例1−3の再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。さらに、組成的には、Si、Ca、Alが各実施例の再生セリウム系研摩材より、多く含有されていることが確認された。 As shown in Table 3, the polishing rate of the recycled cerium-based abrasive of Comparative Example 1-3 was a very high value of 122 (relative value). However, it is clear that the abrasive scratches of the recycled cerium abrasive of Comparative Example 1-3 is about 10 times or more the abrasive scratches of the cerium-based abrasive (product) before use. It was impossible. Furthermore, compositionally, it was confirmed that Si, Ca, and Al were contained more than the regenerated cerium-based abrasive of each Example.
比較例1−4:この比較例1−4では、上記実施例1−1で示した再生処理条件において、酸処理、アルカリ調整剤によるpH調整、添加剤を加えてのスラリーの撹拌処理を行わず、フィルタリングを実施して再生処理を行った。この比較例1−4の再生処理条件を表1に示す。また、比較例1−4の再生セリウム系研摩材の物性及び研摩特性を表3に示す。 Comparative Example 1-4: In Comparative Example 1-4, the acid treatment, pH adjustment with an alkali adjuster, and stirring of the slurry with addition of the additive were performed under the regeneration treatment conditions shown in Example 1-1 above. First, the playback process was performed with filtering. Table 1 shows the reproduction processing conditions of Comparative Example 1-4. Table 3 shows the physical properties and polishing characteristics of the recycled cerium-based abrasive of Comparative Example 1-4.
表3に示すように、比較例1−4の再生セリウム系研摩材の研摩速度は12(相対値)と非常に低い値であった。また、比較例1−4の再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。そして、組成的には、Si、Ca、Alが各実施例の再生セリウム系研摩材より、多く含有されていることが確認された。さらに、研摩材の比表面積も非常に大きく、その粒度も大きい値であることが確認された。 As shown in Table 3, the polishing speed of the recycled cerium-based abrasive of Comparative Example 1-4 was a very low value of 12 (relative value). In addition, it is clear that the scratches of the recycled cerium abrasive of Comparative Example 1-4 are about 10 times or more than those of the cerium-based abrasive (product) before use. It was impossible. And compositionally, it was confirmed that Si, Ca, and Al were contained more than the reproduction | regeneration cerium type abrasive | polishing material of each Example. Furthermore, it was confirmed that the specific surface area of the abrasive was very large and the particle size was also a large value.
比較例1−5:この比較例1−5は、上記実施例1−1と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を3m/secとしたものである。この比較例1−5の再生処理条件を表1に示す。また、この比較例1−5の再生セリウム系研摩材の物性、組成、研摩評価の結果を表3に示す。 Comparative Example 1-5: Comparative Example 1-5 was obtained by performing a regeneration process under basically the same conditions as in Example 1-1, and the stirring speed during the stirring process was 3 m / sec. is there. Table 1 shows the reproduction processing conditions of Comparative Example 1-5. Table 3 shows the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasive of Comparative Example 1-5.
表3に示すように、比較例1−5の再生セリウム系研摩材の研摩速度は、110(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。 As shown in Table 3, the polishing rate of the recycled cerium-based abrasive of Comparative Example 1-5 was 110 (relative value). In addition, it was clear that the scratches of the recycled cerium abrasive were about 10 times or more than those of the cerium-based abrasive (product) before use, and measurement was impossible because there were so many scratches.
第二実施形態:この第二実施形態においては、再生対象の研摩廃材として、使用済みセリウム系研摩材スラリーを用いた場合について説明する。 Second Embodiment: In this second embodiment, a case where a used cerium-based abrasive slurry is used as an abrasive waste to be recycled will be described.
実施例2−1:再生対象の使用済みセリウム系研摩材スラリーは、スラリー中のSiが研摩材(固形分)に対して1.1質量%含有するものを使用した。また、この使用済みセリウム系研摩材スラリーの研摩材平均粒径D50は1.3μm(この平均粒径D50は、以下に示すように使用済みセリウム系研摩材スラリーにクエン酸を添加し、アルカリ調整剤(アンモニア水)によりpH調整した撹拌処理前スラリー中のセリウム系研摩材の値である。)であった。尚、使用前のセリウム系研摩材は、商品名ミレークE23(三井金属鉱業(株)製、CeO2/TREO=63質量%、)であり、この再生対象の使用済みセリウム系研摩材スラリーは、研摩試験機HSP−21型(台東精機(株)製)にて、平面パネル用ガラスを研摩処理したもので、その研摩速度が研摩初期時の50%未満に低下するまで、研摩材スラリーを交換することなく使用したものである。Example 2-1: The used cerium-based abrasive slurry to be regenerated was such that Si in the slurry contained 1.1% by mass with respect to the abrasive (solid content). Moreover, the spent cerium-based abrasive abrasive average particle diameter D 50 of the slurry is 1.3 .mu.m (the average particle diameter D 50 is citric acid was added to the spent cerium abrasive slurry as described below, It was the value of the cerium-based abrasive in the slurry before stirring treatment, which was pH adjusted with an alkali adjuster (ammonia water). In addition, the cerium-based abrasive before use is trade name Mille E23 (Mitsui Metal Mining Co., Ltd., CeO 2 / TREO = 63% by mass), and the used cerium-based abrasive slurry for regeneration is Abrasive testing machine HSP-21 type (Taito Seiki Co., Ltd.) is used to polish flat panel glass, and the abrasive slurry is replaced until the polishing speed drops below 50% of the initial polishing. It was used without doing.
まず、この使用済みセリウム系研摩材スラリーを、純水を用いて濃度100g/Lのスラリーとした。このスラリーの上澄み液中のSi濃度を測定したところ、20mg/Lであった。そして、スラリー中の研摩材に対して3質量%となる添加量のクエン酸をスラリーに添加した。その後、pH調整材としてのアルカリ調整剤(アンモニア水)を加え、スラリーのpHをpH8.2とした。 First, this used cerium-based abrasive slurry was made into a slurry having a concentration of 100 g / L using pure water. The Si concentration in the supernatant of this slurry was measured and found to be 20 mg / L. And the addition amount of the citric acid used as 3 mass% with respect to the abrasive in a slurry was added to the slurry. Thereafter, an alkali adjuster (ammonia water) as a pH adjuster was added to adjust the pH of the slurry to pH 8.2.
pH調整後、撹拌装置T.Kフィルミックス(プライミクス(株)製)により、周速50m/secにて撹拌処理を30秒間行った。撹拌処理後、ろ過精度3μmのダイアIIフィルター250L−DCP−030((株)ロキテキノ製)にてフィルタリングを行い、その後スラリーの固液分離処理を行った。固液分離処理は、撹拌処理後のスラリーを静止沈降後、上澄み液を抜き出し→純水添加→撹拌→再度静止沈降の操作を2回繰り返し、上澄み液を抜き出した。この固液分離した1回目の上澄み液のSi濃度を測定したところ、1100mg/Lであった。このSi濃度の結果から、ほとんどのSi(ガラス成分)が除去されていたことが確認された。 After the pH adjustment, the stirring device T.I. Stirring was performed for 30 seconds at a peripheral speed of 50 m / sec using K Fillmix (manufactured by PRIMIX Corporation). After the stirring treatment, filtering was performed with a Dia II filter 250L-DCP-030 (manufactured by Loki Tecino Co., Ltd.) having a filtration accuracy of 3 μm, and then the slurry was subjected to solid-liquid separation treatment. In the solid-liquid separation treatment, the slurry after stirring treatment was settled down, and then the supernatant liquid was extracted, followed by the addition of pure water → stirring → static sedimentation twice, and the supernatant liquid was extracted. When the Si concentration of the first supernatant liquid-separated was measured, it was 1100 mg / L. From the result of this Si concentration, it was confirmed that most of Si (glass component) was removed.
固液分離した研摩材を乾燥後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この実施例2−1の再生処理条件を表4及び表5に示す。 After the solid-liquid separated abrasive was dried, it was dry-ground with a hammer mill and recovered as a recycled cerium-based abrasive. Table 4 and Table 5 show the regeneration processing conditions of Example 2-1.
この回収した再生セリウム系研摩材と、使用前のセリウム系研摩材(製品)について、その物性及び研摩評価を行った。物性は、BET法比表面積、粒度、組成(フッ素(F)、ケイ素(Si)、カルシウム(Ca)、アルミニウム(Al)、全酸化希土(TREO))について測定し、研摩評価は、研摩速度と研摩傷を調査した。これらの測定条件は、第一実施形態と同様である。尚、組成に関する測定では、使用済みセリウム系研摩材スラリーからセリウム系研摩材を回収し、そのセリウム系研摩材を用いて行った。 The recovered physical cerium-based abrasive and the cerium-based abrasive (product) before use were evaluated for physical properties and polishing. Physical properties were measured for BET specific surface area, particle size, and composition (fluorine (F), silicon (Si), calcium (Ca), aluminum (Al), total oxidized rare earth (TREO)). And investigated the abrasive scratches. These measurement conditions are the same as in the first embodiment. In the measurement regarding the composition, the cerium-based abrasive was collected from the used cerium-based abrasive slurry, and the cerium-based abrasive was used.
表6に、実施例2−1の再生セリウム系研摩材スラリーにおける研摩材の物性、組成、研摩評価の結果を示す。表6に示すように、実施例2−1の再生セリウム系研摩材の研摩速度は、相対値95であり、また、再生セリウム系研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷とほぼ同等で特に好適なものであった。これにより、この実施例2−1の再生セリウム系研摩材は、研摩処理の再利用として実用的なものであることが判明した。 Table 6 shows the physical properties, composition, and polishing evaluation results of the abrasive in the recycled cerium-based abrasive slurry of Example 2-1. As shown in Table 6, the polishing speed of the recycled cerium-based abrasive of Example 2-1 is a relative value of 95, and the scratches of the recycled cerium-based abrasive are cerium-based abrasives (product) before use. It was almost the same as the abrasive scratches of Thereby, it turned out that the reproduction | regeneration cerium type abrasive | polishing material of this Example 2-1 is a thing practical as reuse of polishing process.
実施例2−2:この実施例2−2は、上記実施例2−1と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、フィルタリングしてから固液分離した研摩材を乾燥後、800℃で焼成処理をした後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この実施例2−2の再生処理条件を表4及び表5に示す。また、この実施例2−2の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-2: This Example 2-2 was obtained by performing a regeneration process under basically the same conditions as in Example 2-1 above. After the stirring process, the abrasive was filtered and solid-liquid separated. After being dried, it was calcined at 800 ° C., and then dry-pulverized with a hammer mill, and recovered as a recycled cerium-based abrasive. Table 4 and Table 5 show the regeneration processing conditions of Example 2-2. Table 6 shows the physical properties, composition, and evaluation results of the recycled cerium-based abrasive of Example 2-2.
表6に示すように、実施例2−2の再生セリウム系研摩材の研摩速度は、102(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷とほぼ同等で特に好適なものであった。これにより、この実施例2−2の再生セリウム系研摩材は、研摩処理の再利用として実用的なものであることが判明した。 As shown in Table 6, the polishing speed of the recycled cerium-based abrasive of Example 2-2 was 102 (relative value), and the scratches on the recycled cerium-based abrasive were cerium-based abrasives before use ( This was particularly suitable because it was almost the same as the product scratches. Thereby, it turned out that the reproduction | regeneration cerium type abrasive | polishing material of this Example 2-2 is a thing practical as reuse of polishing process.
実施例2−3:この実施例2−3では、上記実施例2−1と同じ使用済みセリウム系研摩材スラリーを用いた(Siを研摩材に対して1.1質量%含有)。 Example 2-3: In this Example 2-3, the same used cerium-based abrasive slurry as in Example 2-1 was used (1.1% by mass of Si with respect to the abrasive).
そして、この使用済みセリウム系研摩材スラリーを、純水を用いて濃度100g/Lのスラリーとした。このスラリーの上澄み液中のSi濃度を測定したところ、20mg/Lであった。 This used cerium-based abrasive slurry was made into a slurry having a concentration of 100 g / L using pure water. The Si concentration in the supernatant of this slurry was measured and found to be 20 mg / L.
そして、スラリー中の研摩材に対して3質量%となる添加量のピロリン酸ナトリウムをスラリーに添加した。このときのスラリーpHはpH8.4であった。 And the sodium pyrophosphate of the addition amount used as 3 mass% with respect to the abrasive in a slurry was added to the slurry. The slurry pH at this time was pH 8.4.
その後、撹拌装置T.Kフィルミックス(プライミクス(株)製)により、周速50m/secにて撹拌処理を30秒間行った。撹拌処理後、フィルタリングを行わず、実施例1と同様なスラリーの固液分離処理を行った。この固液分離処理おける1回目の上澄み液のSi濃度を測定したところ、1100mg/Lであった。このSi濃度の結果から、ほとんどのSi(ガラス成分)が除去されていることが確認された。 Thereafter, the stirring device T.I. Stirring was performed for 30 seconds at a peripheral speed of 50 m / sec using K Fillmix (manufactured by PRIMIX Corporation). After the stirring treatment, the same solid-liquid separation treatment as in Example 1 was performed without filtering. When the Si concentration of the first supernatant liquid in this solid-liquid separation treatment was measured, it was 1100 mg / L. From the result of this Si concentration, it was confirmed that most of Si (glass component) was removed.
固液分離した研摩材を乾燥後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この実施例2−3の再生処理条件を表4及び表5に纏めて示す。 After the solid-liquid separated abrasive was dried, it was dry-ground with a hammer mill and recovered as a recycled cerium-based abrasive. Table 4 and Table 5 collectively show the reproduction processing conditions of Example 2-3.
また、この実施例2−3の再生セリウム系研摩材の物性及び組成、研摩評価を行った結果を表6に示す。表6に示すように、実施例2−3の再生セリウム系研摩材の研摩速度は98(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷よりわずかに多かったが、実用上まったく問題のない程度のもので、特に好適なものであることが判明した。 Table 6 shows the physical properties and composition of the recycled cerium-based abrasive of Example 2-3 and the results of polishing evaluation. As shown in Table 6, the polishing rate of the recycled cerium-based abrasive of Example 2-3 was 98 (relative value). In addition, although the scratches of the recycled cerium abrasive were slightly more than those of the cerium-based abrasive (product) before use, they were of a level that was not a problem at all practically and should be particularly suitable. found.
実施例2−4:この実施例2−4は、上記実施例2−3と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、固液分離した研摩材を乾燥後、800℃で焼成処理をした後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この実施例2−4の再生処理条件を表4及び表5に示す。また、この実施例2−4の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-4: This Example 2-4 was obtained by performing regeneration treatment under basically the same conditions as in the above Example 2-3, and after drying the abrasive that was solid-liquid separated after stirring, After baking at 800 ° C., the powder was dry-ground with a hammer mill and recovered as a recycled cerium-based abrasive. Tables 4 and 5 show the reproduction processing conditions of Example 2-4. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-4.
表6に示すように、実施例2−4の再生セリウム系研摩材の研摩速度は、110(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷とほぼ同等であった。これにより、この実施例2−4の再生セリウム系研摩材は、使用前のセリウム系研摩材(製品)の研摩傷よりわずかに多かったが、実用上まったく問題のない程度のもので、特に好適なものであることが判明した。 As shown in Table 6, the polishing speed of the recycled cerium-based abrasive of Example 2-4 was 110 (relative value), and the scratches of the recycled cerium-based abrasive were cerium-based abrasives before use ( Product). As a result, the recycled cerium-based abrasive of Example 2-4 was slightly more than the scratches of the cerium-based abrasive (product) before use, but it has a practically no problem and is particularly suitable. It turned out to be something.
実施例2−5:この実施例2−5は、上記実施例1と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を10m/secとしたものである。この実施例2−5の再生処理条件を表4及び表5に示す。また、この実施例2−5の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-5: In Example 2-5, regeneration treatment was performed under basically the same conditions as in Example 1 described above, and the stirring speed during stirring was set to 10 m / sec. Tables 4 and 5 show the regeneration processing conditions of Example 2-5. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-5.
表6に示すように、実施例2−5の再生セリウム系研摩材の研摩速度は、93(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷よりわずかに多かったが、実用上まったく問題のない程度のもので、特に好適なものであることが判明した。 As shown in Table 6, the polishing speed of the recycled cerium-based abrasive of Example 2-5 was 93 (relative value), and the scratches on the recycled cerium-based abrasive were cerium-based abrasives before use ( It was found to be particularly suitable because it was slightly more than the scratches of the product), but to the extent that there was no practical problem at all.
実施例2−6:この実施例2−6は、上記実施例2−2と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を10m/secとしたものである。この実施例2−6の再生処理条件を表4及び表5に示す。また、この実施例2−6の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-6: This Example 2-6 was obtained by performing a regeneration process under basically the same conditions as in the above Example 2-2, and the stirring speed during the stirring process was 10 m / sec. is there. Tables 4 and 5 show the regeneration processing conditions of Example 2-6. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-6.
表6に示すように、実施例2−6の再生セリウム系研摩材の研摩速度は、98(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多かったが、研摩材としては好適であることが判明した。 As shown in Table 6, the polishing speed of the recycled cerium-based abrasive of Example 2-6 was 98 (relative value), and the scratches of the recycled cerium-based abrasive were cerium-based abrasives before use ( It was found to be suitable as an abrasive.
実施例2−7:この実施例2−7は、上記実施例2−5と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、ろ過処理をろ過精度5μmのダイアIIフィルター250L−DCP−050((株)ロキテクノ製)を使用して行った。この実施例2−7の再生処理条件を表4及び表5に示す。また、この実施例2−7の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-7: This Example 2-7 was subjected to regeneration treatment under basically the same conditions as in the above Example 2-5. After the stirring treatment, the filtration treatment was performed with a Dia II filter having a filtration accuracy of 5 μm. 250L-DCP-050 (manufactured by Loki Techno Co., Ltd.) was used. Table 4 and Table 5 show the regeneration processing conditions of Example 2-7. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-7.
表6に示すように、実施例2−7の再生セリウム系研摩材の研摩速度は、94(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多かったが、研摩材としては好適であることが判明した。 As shown in Table 6, the polishing speed of the recycled cerium-based abrasive of Example 2-7 is 94 (relative value), and the scratches on the recycled cerium-based abrasive are cerium-based abrasives before use ( It was found to be suitable as an abrasive.
実施例2−8:この実施例2−8は、上記実施例2−6と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、ろ過処理をろ過精度5μmとしたものである。この実施例2−8の再生処理条件を表4及び表5に示す。また、この実施例2−8の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-8: This Example 2-8 was obtained by performing regeneration treatment under basically the same conditions as in the above Example 2-6. After the stirring treatment, the filtration treatment was performed with a filtration accuracy of 5 μm. is there. Table 4 and Table 5 show the reproduction processing conditions of Example 2-8. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-8.
表6に示すように、実施例2−8の再生セリウム系研摩材の研摩速度は、100(相対値)であり、また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多かったが、研摩材としては好適であることが判明した。 As shown in Table 6, the polishing speed of the recycled cerium-based abrasive of Example 2-8 is 100 (relative value), and the scratches of the recycled cerium-based abrasive are cerium-based abrasives before use ( It was found to be suitable as an abrasive.
実施例2−9:この実施例2−9は、上記実施例2−1と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を5m/secとしたものである。この実施例2−9の再生処理条件を表4及び表5に示す。また、この実施例2−9の再生セリウム系研摩材3の物性、組成、研摩評価の結果を表6に示す。 Example 2-9: This Example 2-9 was obtained by performing a regeneration process under basically the same conditions as in Example 2-1, and the stirring speed during the stirring process was 5 m / sec. is there. Table 4 and Table 5 show the regeneration processing conditions of Example 2-9. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive 3 of Example 2-9.
表6に示すように、実施例2−9の再生セリウム系研摩材の研摩速度は、90(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、22本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 6, the polishing rate of the recycled cerium-based abrasive of Example 2-9 was 90 (relative value). Further, the number of scratches on the recycled cerium abrasive was larger than that on the cerium-based abrasive (product) before use, and 22 were confirmed. However, it was found that the abrasive was usable as an abrasive.
実施例2−10:この実施例2−10は、上記実施例2−2と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を5m/secとしたものである。この実施例2−10の再生処理条件を表4及び表5に示す。また、この実施例2−10の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-10: This Example 2-10 was obtained by performing a regeneration process under basically the same conditions as in the above Example 2-2, and the stirring speed during the stirring process was 5 m / sec. is there. Tables 4 and 5 show the regeneration processing conditions of Example 2-10. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-10.
表6に示すように、実施例2−10の再生セリウム系研摩材の研摩速度は、97(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、25本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 6, the polishing rate of the recycled cerium-based abrasive of Example 2-10 was 97 (relative value). In addition, the number of scratches on the recycled cerium abrasive was 25 more than the scratches on the cerium-based abrasive (product) before use, and 25 were confirmed, but it was found that the abrasive can be used as an abrasive.
実施例2−11:この実施例2−11は、上記実施例2−9と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、ろ過処理をろ過精度5μmとしたものである。この実施例2−11の再生処理条件を表4及び表5に示す。また、この実施例2−11の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-11: This Example 2-11 was obtained by performing a regeneration treatment under basically the same conditions as in the above Example 2-9. After the stirring treatment, the filtration treatment was performed with a filtration accuracy of 5 μm. is there. Tables 4 and 5 show the reproduction processing conditions of Example 2-11. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-11.
表6に示すように、実施例2−11の再生セリウム系研摩材の研摩速度は、92(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、24本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 6, the polishing rate of the recycled cerium-based abrasive of Example 2-11 was 92 (relative value). Further, the number of abrasive scratches on the recycled cerium abrasive was larger than that on the cerium-based abrasive (product) before use, and 24 were confirmed. However, it was found that the abrasive was usable as an abrasive.
実施例2−12:この実施例2−12は、上記実施例2−10と基本的には同じ条件の再生処理を行ったもので、撹拌処理後、ろ過処理をろ過精度5μmとしたものである。この実施例2−12の再生処理条件を表4及び表5に示す。また、この実施例2−12の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-12: This Example 2-12 was obtained by performing regeneration treatment under basically the same conditions as in the above Example 2-10. After stirring, the filtration treatment was performed with a filtration accuracy of 5 μm. is there. Tables 4 and 5 show the reproduction processing conditions of Example 2-12. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-12.
表6に示すように、実施例2−12の再生セリウム系研摩材の研摩速度は、98(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、28本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 6, the polishing rate of the recycled cerium-based abrasive of Example 2-12 was 98 (relative value). Further, the number of abrasive scratches on the recycled cerium abrasive was 28 more than that on the cerium-based abrasive (product) before use, but it was found that the abrasive was usable as an abrasive.
実施例2−13:この実施例2−13は、上記実施例2−3と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を10m/secとしたものである。この実施例2−13の再生処理条件を表4及び表5に示す。また、この実施例2−13の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-13: This Example 2-13 was obtained by performing a regeneration process under basically the same conditions as in the above Example 2-3, and the stirring speed during the stirring process was 10 m / sec. is there. Tables 4 and 5 show the reproduction processing conditions of Example 2-13. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-13.
表6に示すように、実施例2−13の再生セリウム系研摩材の研摩速度は、96(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多かったが、研摩材としては好適であることが判明した。 As shown in Table 6, the polishing rate of the recycled cerium-based abrasive of Example 2-13 was 96 (relative value). Moreover, although the number of abrasive scratches on the recycled cerium abrasive was greater than that on the cerium-based abrasive (product) before use, it was found to be suitable as an abrasive.
実施例2−14:この実施例2−14は、上記実施例2−3と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を5m/secとしたものである。この実施例2−14の再生処理条件を表4及び表5に示す。また、この実施例2−14の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6に示す。 Example 2-14: This Example 2-14 was obtained by performing a regeneration process under basically the same conditions as in Example 2-3 above, and the stirring speed during the stirring process was 5 m / sec. is there. Tables 4 and 5 show the reproduction processing conditions of Example 2-14. Table 6 shows the physical properties, composition, and results of polishing evaluation of the recycled cerium-based abrasive of Example 2-14.
表6に示すように、実施例2−14の再生セリウム系研摩材の研摩速度は、92(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷より多く、29本確認されたが、研摩材としては使用可能であることが判明した。 As shown in Table 6, the polishing rate of the recycled cerium-based abrasive of Example 2-14 was 92 (relative value). In addition, the number of abrasive scratches on the recycled cerium abrasive was larger than that on the cerium-based abrasive (product) before use, and 29 were confirmed. However, it was found that the abrasive was usable as an abrasive.
実施例2−15〜33:この実施例1−15〜33では、上記実施例2−1と基本的に同じ再生処理条件で、使用済みセリウム系研摩材スラリーに添加する添加剤を各種変更した場合を評価したものである。実施例2−15〜33の再生処理条件を表4及び表5に示す。尚、再生処理におけるpH調整剤としてアルカリ調整剤(アンモニア水)または塩酸を用い、実施例2−22、2−23の場合はアルカリ調整剤を添加しないとHEDTA、DTPA、EDTAは溶解しなかった。さらに、コハク酸、HIDAはアルカリ調整剤を添加しないと溶解しにくかった。また、この実施例2−15〜33の再生セリウム系研摩材の物性、組成、研摩評価の結果を表6及び表7に示す。 Examples 2-15 to 33: In Examples 1 to 15 to 33, various additives were added to the used cerium-based abrasive slurry under basically the same regeneration conditions as in Example 2-1. The case is evaluated. Tables 4 and 5 show the regeneration processing conditions of Examples 2-15 to 33. In addition, HEDTA, DTPA, and EDTA did not melt | dissolve, if an alkali adjuster (ammonia water) or hydrochloric acid was used as a pH adjuster in a regeneration process, and in the case of Examples 2-22 and 2-23, an alkali adjuster was not added. . Furthermore, succinic acid and HIDA were difficult to dissolve unless an alkali modifier was added. Tables 6 and 7 show the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasives of Examples 2-15 to 33.
表6及び表7に示すように、実施例2−15〜33の各種添加剤を用いた再生セリウム系研摩材の研摩速度は、少なくとも96(相対値)以上の値であった。また、実施例2−15〜33の再生セリウム研摩材の研摩傷は、実施例2−33では12本確認されたが、その他のものは10本未満であった。実施例2−15〜33の各種添加剤を用いても、良好なセリウム系研摩材を再生できることが判明した。 As shown in Table 6 and Table 7, the polishing speed of the recycled cerium-based abrasive using the various additives of Examples 2-15 to 33 was a value of at least 96 (relative value) or more. Further, 12 scratches of the recycled cerium abrasives of Examples 2-15 to 33 were confirmed in Example 2-33, but the others were less than 10. It has been found that a good cerium-based abrasive can be regenerated even if the various additives of Examples 2-15 to 33 are used.
比較例2−1:この比較例2−1では、上記実施例2−1と同じ使用済みセリウム系研摩材スラリーを用いた(Siを研摩材に対して1.1質量%含有)。 Comparative Example 2-1 In this Comparative Example 2-1, the same used cerium-based abrasive slurry as in Example 2-1 was used (1.1% by mass of Si with respect to the abrasive).
そして、この使用済みセリウム系研摩材スラリーを、純水を用いて濃度100g/Lのスラリーとした。このスラリーの上澄み液中のSi濃度を測定したところ、20mg/Lであった。 This used cerium-based abrasive slurry was made into a slurry having a concentration of 100 g / L using pure water. The Si concentration in the supernatant of this slurry was measured and found to be 20 mg / L.
スラリーにアルカリ調整剤(アンモニア水)を加え、スラリーのpHをpH8.0とした。 An alkali adjuster (ammonia water) was added to the slurry, and the pH of the slurry was adjusted to pH 8.0.
pH調整後、撹拌装置T.Kフィルミックス(プライミクス(株)製)により、周速50m/secにて撹拌処理を30秒間行った。撹拌処理後、実施例2−1と同様なスラリーの固液分離処理を行った。この固液分離処理おける1回目の上澄み液のSi濃度を測定したところ、20mg/Lであった。このSi濃度の結果から、ほとんどのSi(ガラス成分)が残存していることが確認された。 After the pH adjustment, the stirring device T.I. Stirring was performed for 30 seconds at a peripheral speed of 50 m / sec using K Fillmix (manufactured by PRIMIX Corporation). After the stirring treatment, the same solid-liquid separation treatment as in Example 2-1 was performed. When the Si concentration of the first supernatant liquid in this solid-liquid separation treatment was measured, it was 20 mg / L. From the result of this Si concentration, it was confirmed that most Si (glass component) remained.
撹拌処理後、フィルタリングしてから固液分離した研摩材を乾燥後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。尚、この比較例2−1でのフィルタリングは、ろ過精度5μmのダイアIIフィルター250L−DCP−050((株)ロキテクノ製)を使用した(以下の比較例2−2、比較例2−3も同じ)。この比較例2−1の再生処理条件を表4及び表5に示す。 After the stirring treatment, the abrasive that had been filtered and solid-liquid separated was dried, and then dry pulverized with a hammer mill, and recovered as a recycled cerium-based abrasive. The filtering in Comparative Example 2-1 used Dia II filter 250L-DCP-050 (manufactured by Loki Techno Co., Ltd.) having a filtration accuracy of 5 μm (Comparative Examples 2-2 and 2-3 below). the same). Table 4 and Table 5 show the regeneration processing conditions of Comparative Example 2-1.
また、この比較例2−1の再生セリウム系研摩材の物性、組成、研摩評価の結果を表7に示す。表7に示すように、比較例2−1の再生セリウム系研摩材の研摩速度は51(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。 Table 7 shows the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasive of Comparative Example 2-1. As shown in Table 7, the polishing rate of the recycled cerium-based abrasive of Comparative Example 2-1 was 51 (relative value). In addition, it was clear that the scratches of the recycled cerium abrasive were about 10 times or more than those of the cerium-based abrasive (product) before use, and measurement was impossible because there were so many scratches.
比較例2−2:この比較例2−2では、上記実施例2−1と同じ使用済みセリウム系研摩材スラリーを用いた(Siを研摩材に対して1.1質量%含有)。 Comparative Example 2-2: In Comparative Example 2-2, the same used cerium-based abrasive slurry as in Example 2-1 was used (1.1% by mass of Si with respect to the abrasive).
そして、この使用済みセリウム系研摩材スラリーを、純水を用いて濃度100g/Lのスラリーとした。このスラリーの上澄み液中のSi濃度を測定したところ、20mg/Lであった。 This used cerium-based abrasive slurry was made into a slurry having a concentration of 100 g / L using pure water. The Si concentration in the supernatant of this slurry was measured and found to be 20 mg / L.
そして、スラリー中の研摩材に対して3質量%となる添加量のクエン酸をスラリーに添加した。その後、アルカリ調整剤(アンモニア水)を加え、スラリーのpHをpH8.1とした。 And the addition amount of the citric acid used as 3 mass% with respect to the abrasive in a slurry was added to the slurry. Thereafter, an alkali adjuster (ammonia water) was added to adjust the pH of the slurry to pH 8.1.
pH調整後、撹拌装置T.Kフィルミックス(プライミクス(株)製)により、周速3m/secにて撹拌処理を30秒間行った。撹拌処理後、フィルタリングをしてから、スラリーの固液分離処理を行った。この固液分離処理おける1回目の上澄み液のSi濃度を測定したところ、20mg/Lであった。このSi濃度の結果から、ほとんどのSi(ガラス成分)が残存していることが確認された。 After the pH adjustment, the stirring device T.I. Stirring was performed for 30 seconds at a peripheral speed of 3 m / sec using K Fillmix (manufactured by PRIMIX Corporation). After the stirring treatment, the slurry was filtered, and then the slurry was subjected to solid-liquid separation treatment. When the Si concentration of the first supernatant liquid in this solid-liquid separation treatment was measured, it was 20 mg / L. From the result of this Si concentration, it was confirmed that most Si (glass component) remained.
固液分離した研摩材を乾燥後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この比較例2−2の再生処理条件を表4及び表5に示す。 After the solid-liquid separated abrasive was dried, it was dry-ground with a hammer mill and recovered as a recycled cerium-based abrasive. Table 4 and Table 5 show the regeneration processing conditions of Comparative Example 2-2.
また、この比較例2−2の再生セリウム系研摩材の物性、組成、研摩評価の結果を表7に示す。表7に示すように、比較例2−2の再生セリウム系研摩材の研摩速度は60(相対値)であった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。 Table 7 shows the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasive of Comparative Example 2-2. As shown in Table 7, the polishing rate of the recycled cerium-based abrasive of Comparative Example 2-2 was 60 (relative value). In addition, it was clear that the scratches of the recycled cerium abrasive were about 10 times or more than those of the cerium-based abrasive (product) before use, and measurement was impossible because there were so many scratches.
比較例2−3:この比較例2−3では、上記実施例2−1と同じ使用済みセリウム系研摩材スラリーを用いた(Siを研摩材に対して1.1質量%含有)。 Comparative Example 2-3: In Comparative Example 2-3, the same used cerium-based abrasive slurry as in Example 2-1 was used (containing Si by 1.1 mass% with respect to the abrasive).
そして、この使用済みセリウム系研摩材スラリーを、純水を用いて濃度100g/Lのスラリーとした。このスラリーの上澄み液中のSi濃度を測定したところ、20mg/Lであった。 This used cerium-based abrasive slurry was made into a slurry having a concentration of 100 g / L using pure water. The Si concentration in the supernatant of this slurry was measured and found to be 20 mg / L.
そして、スラリー中のSiに対して2倍等量となる55%フッ化水素酸(HF)をスラリーに添加した。そして、室温にて撹拌処理(マグネチックスタラー、撹拌条件:0.94m/sec、1時間)を行った。 And 55% hydrofluoric acid (HF) used as 2 times equivalent with respect to Si in a slurry was added to the slurry. And the stirring process (magnetic stirrer, stirring conditions: 0.94 m / sec, 1 hour) was performed at room temperature.
撹拌処理後、フィルタリングしてからスラリーの固液分離処理を行い、固形分を洗浄して、フッ化水素を十分に除去した。また、この固液分離処理における1回目の上澄み液のSi濃度を測定したところ、1100mg/Lであった。このSi濃度の結果から、ほとんどのSi(ガラス成分)が除去されていることが確認された。 After the stirring treatment, the slurry was filtered, and then the slurry was subjected to solid-liquid separation treatment, and the solid content was washed to sufficiently remove hydrogen fluoride. Further, when the Si concentration of the first supernatant liquid in this solid-liquid separation treatment was measured, it was 1100 mg / L. From the result of this Si concentration, it was confirmed that most of Si (glass component) was removed.
固液分離した研摩材を乾燥後、ハンマー式ミルで乾式粉砕して、再生セリウム系研摩材として回収した。この比較例2−3の再生処理条件を表4及び表5に示す。 After the solid-liquid separated abrasive was dried, it was dry-ground with a hammer mill and recovered as a recycled cerium-based abrasive. Tables 4 and 5 show the reproduction processing conditions of Comparative Example 2-3.
また、この比較例2−3の再生セリウム系研摩材の物性、組成、研摩評価の結果を表7に示す。表7に示すように、比較例2−3の再生セリウム系研摩材の研摩速度は99(相対値)であった。しかし、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。 Table 7 shows the physical properties, composition, and polishing evaluation results of the recycled cerium-based abrasive of Comparative Example 2-3. As shown in Table 7, the polishing rate of the recycled cerium-based abrasive of Comparative Example 2-3 was 99 (relative value). However, it is clear that the abrasive scratches of the recycled cerium abrasive are about 10 times or more than the abrasive scratches of the cerium-based abrasive (product) before use, and measurement was impossible because there were so many scratches.
比較例2−4:この比較例2−4は、上記実施例2−3と基本的には同じ条件の再生処理を行ったもので、撹拌処理時の撹拌速度を3m/secとしたものである。この比較例2−4の再生処理条件を表4及び表5に示す。また、この比較例2−4の再生セリウム系研摩材の物性、組成、研摩評価の結果を表7に示す。 Comparative Example 2-4: This Comparative Example 2-4 was obtained by performing a regeneration process under basically the same conditions as in Example 2-3, and the stirring speed during the stirring process was 3 m / sec. is there. Tables 4 and 5 show the reproduction processing conditions of Comparative Example 2-4. Table 7 shows the physical properties, composition, and evaluation results of the recycled cerium-based abrasive of Comparative Example 2-4.
表7に示すように、比較例2−4の再生セリウム系研摩材の研摩速度は63(相対値)と低い値となった。また、再生セリウム研摩材の研摩傷は、使用前のセリウム系研摩材(製品)の研摩傷の約10倍以上であることは明らかで、非常に傷が多いため計測が不能であった。 As shown in Table 7, the polishing rate of the recycled cerium-based abrasive of Comparative Example 2-4 was a low value of 63 (relative value). In addition, it was clear that the scratches of the recycled cerium abrasive were about 10 times or more than those of the cerium-based abrasive (product) before use, and measurement was impossible because there were so many scratches.
本発明によれば、使用済みセリウム系研摩材を含む研摩廃材からガラス成分や凝集剤を効率的に除去することが可能となり、資源の有効利用を促進できる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to remove a glass component and a coagulant | flocculant efficiently from the grinding | polishing waste material containing a used cerium type abrasive, and can promote the effective utilization of resources.
Claims (5)
研摩廃材が研摩材廃滓であり、研摩材廃滓に、フッ酸以外の酸により凝集剤成分を除去する凝集剤除去処理を予め行い、
当該研摩材廃滓に、フッ酸を含有しない酸及びその塩から選択される少なくとも一種を添加してスラリー状態とし、周速4m/sec以上で撹拌し、当該スラリーの攪拌後、スラリーをフィルタリングすることを特徴とするセリウム系研摩材の再生方法。 In a method of reclaiming cerium-based abrasives from waste abrasive slurries containing used cerium-based abrasives or abrasive waste consisting of abrasive waste,
The abrasive waste is an abrasive waste, and the abrasive waste is preliminarily subjected to an aggregating agent removal treatment for removing an aggregating agent component with an acid other than hydrofluoric acid,
At least one selected from an acid not containing hydrofluoric acid and its salt is added to the abrasive waste to form a slurry, and the slurry is stirred at a peripheral speed of 4 m / sec or more. After stirring the slurry, the slurry is filtered. A method for recycling a cerium-based abrasive.
凝集剤除去処理におけるフッ酸以外の酸は、硫酸、塩酸、硝酸から選ばれる無機酸、クエン酸、酒石酸、酢酸から選ばれる有機酸の少なくともいずれかである請求項1に記載のセリウム系研摩材の再生方法。 The flocculant contains at least one of iron and aluminum,
The cerium-based abrasive according to claim 1, wherein the acid other than hydrofluoric acid in the coagulant removing treatment is at least one of an inorganic acid selected from sulfuric acid, hydrochloric acid, and nitric acid, an organic acid selected from citric acid, tartaric acid, and acetic acid. How to play.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011512740A JP5331200B2 (en) | 2010-02-15 | 2011-02-14 | Method for recycling cerium-based abrasive |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010029858 | 2010-02-15 | ||
JP2010029859 | 2010-02-15 | ||
JP2010029859 | 2010-02-15 | ||
JP2010029858 | 2010-02-15 | ||
JP2010103399 | 2010-04-28 | ||
JP2010103398 | 2010-04-28 | ||
JP2010103398 | 2010-04-28 | ||
JP2010103399 | 2010-04-28 | ||
JPPCT/JP2010/068443 | 2010-10-20 | ||
PCT/JP2010/068443 WO2011099197A1 (en) | 2010-02-15 | 2010-10-20 | Cerium-based abrasive regeneration method |
PCT/JP2011/052982 WO2011099596A1 (en) | 2010-02-15 | 2011-02-14 | Cerium-based abrasive slurry regeneration method |
JP2011512740A JP5331200B2 (en) | 2010-02-15 | 2011-02-14 | Method for recycling cerium-based abrasive |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011099596A1 JPWO2011099596A1 (en) | 2013-06-17 |
JP5331200B2 true JP5331200B2 (en) | 2013-10-30 |
Family
ID=44367490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011512740A Active JP5331200B2 (en) | 2010-02-15 | 2011-02-14 | Method for recycling cerium-based abrasive |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5331200B2 (en) |
KR (1) | KR101398904B1 (en) |
MY (1) | MY155812A (en) |
TW (2) | TW201129685A (en) |
WO (2) | WO2011099197A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101225746B1 (en) * | 2010-08-03 | 2013-02-15 | 주식회사 랜코 | Method of recycling cerium oxide abrasive material |
JP2013126928A (en) * | 2011-12-19 | 2013-06-27 | Shin-Etsu Chemical Co Ltd | Method for recovering cerium oxide |
JP6044550B2 (en) * | 2011-12-28 | 2016-12-14 | コニカミノルタ株式会社 | Abrasive manufacturing method |
CN103571336B (en) * | 2012-07-30 | 2015-04-29 | 张艺兵 | Recycling and utilizing method of waste polishing powder |
CN104619433B (en) * | 2012-09-13 | 2016-08-24 | 株式会社Lg化学 | Oxidation-containing cerium gives up the renovation process of abrasive material |
JP5967246B2 (en) * | 2015-04-03 | 2016-08-10 | 信越化学工業株式会社 | Recovery method of cerium oxide |
TWI645045B (en) * | 2017-09-25 | 2018-12-21 | 國立臺北科技大學 | A seperation method of cerium oxide abrasive and glass powder |
KR102282872B1 (en) * | 2019-11-11 | 2021-07-28 | 주식회사 켐톤 | Fabrication method of cerium oxide particles, polishing particles and slurry composition comprising the same |
TWI759787B (en) * | 2020-07-07 | 2022-04-01 | 環創源科技股份有限公司 | Method for processing waste polishing solution and waste solution containing hydrofluoric acid |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205460A (en) * | 2002-01-15 | 2003-07-22 | Speedfam Co Ltd | Cerium oxide-based abrasive regeneration method |
JP2004306210A (en) * | 2003-04-08 | 2004-11-04 | Speedfam Co Ltd | Processing method and processing equipment for reusing cerium oxide-based polishing agent and water, in drainage in glass polishing |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4729428B2 (en) * | 2006-04-07 | 2011-07-20 | Agcセイミケミカル株式会社 | Regeneration method of cerium-based abrasive |
JP4969313B2 (en) * | 2007-05-11 | 2012-07-04 | Agcセイミケミカル株式会社 | Recovery method of rare earth elements |
-
2010
- 2010-10-20 WO PCT/JP2010/068443 patent/WO2011099197A1/en active Application Filing
- 2010-12-03 TW TW099142081A patent/TW201129685A/en unknown
-
2011
- 2011-02-14 KR KR1020127021043A patent/KR101398904B1/en not_active IP Right Cessation
- 2011-02-14 MY MYPI2012003444A patent/MY155812A/en unknown
- 2011-02-14 WO PCT/JP2011/052982 patent/WO2011099596A1/en active Application Filing
- 2011-02-14 JP JP2011512740A patent/JP5331200B2/en active Active
- 2011-02-15 TW TW100104873A patent/TWI499481B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003205460A (en) * | 2002-01-15 | 2003-07-22 | Speedfam Co Ltd | Cerium oxide-based abrasive regeneration method |
JP2004306210A (en) * | 2003-04-08 | 2004-11-04 | Speedfam Co Ltd | Processing method and processing equipment for reusing cerium oxide-based polishing agent and water, in drainage in glass polishing |
Also Published As
Publication number | Publication date |
---|---|
KR20120123084A (en) | 2012-11-07 |
JPWO2011099596A1 (en) | 2013-06-17 |
MY155812A (en) | 2015-11-30 |
TWI499481B (en) | 2015-09-11 |
WO2011099197A1 (en) | 2011-08-18 |
TW201129685A (en) | 2011-09-01 |
TW201136709A (en) | 2011-11-01 |
WO2011099596A1 (en) | 2011-08-18 |
KR101398904B1 (en) | 2014-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331200B2 (en) | Method for recycling cerium-based abrasive | |
JP6421887B2 (en) | Method for producing cerium salt, cerium oxide and cerium-based abrasive | |
JP5858050B2 (en) | Abrasive recycling method | |
JP6107669B2 (en) | Abrasive recycling method | |
CN104619462B (en) | The renovation process of the useless abrasive material of oxidation-containing cerium | |
JP6292119B2 (en) | Abrasive recycling method | |
JP5945634B2 (en) | Recycling method of waste abrasive containing ceria | |
JP2013086204A (en) | Method for reproducing cerium oxide-based abrasive slurry and reproduced cerium oxide-based abrasive slurry | |
JPWO2013099666A1 (en) | Abrasive separation method and recycled abrasive | |
JP2005336400A (en) | Cerium abradant | |
JP5682222B2 (en) | Method for producing cerium oxide abrasive | |
JP6372059B2 (en) | Collection method of cerium abrasive grains | |
JPH11147713A (en) | Production of raw material for rare earth-based abrasion material from waste of abrasion material | |
KR20160032680A (en) | Method of regenerating polishing slurry and method of manufacturing substrate | |
CN104619433B (en) | Oxidation-containing cerium gives up the renovation process of abrasive material | |
JPWO2012101868A1 (en) | Method for recovering abrasive components containing cerium oxide from used abrasive slurry | |
JP4540611B2 (en) | Cerium-based abrasive and method for producing cerium-based abrasive | |
JP2023061348A (en) | Regeneration method for abrasive slurry, and regeneration system for abrasive slurry | |
WO2014042494A1 (en) | Method for recycling waste abrasive material containing ceria |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130726 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5331200 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |