JP5329816B2 - Novel optical field effect transistor with organic semiconductor layer - Google Patents
Novel optical field effect transistor with organic semiconductor layer Download PDFInfo
- Publication number
- JP5329816B2 JP5329816B2 JP2008014555A JP2008014555A JP5329816B2 JP 5329816 B2 JP5329816 B2 JP 5329816B2 JP 2008014555 A JP2008014555 A JP 2008014555A JP 2008014555 A JP2008014555 A JP 2008014555A JP 5329816 B2 JP5329816 B2 JP 5329816B2
- Authority
- JP
- Japan
- Prior art keywords
- organic semiconductor
- field effect
- effect transistor
- semiconductor layer
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Thin Film Transistor (AREA)
Description
本発明は、光検出機能を有する、すなわち、光センサーとして機能する、有機半導体層を有する新規光電界効果トランジスタに関する。 The present invention relates to a novel optical field effect transistor having an organic semiconductor layer, which has a light detection function, that is, functions as an optical sensor.
現在、光センサーとして、フォトダイオードやフォトダイオードの信号をトランジスタで増幅するフォトトランジスタなどの光検出素子や光検出素子をアレイ化したCMOS、CCDなどアレイセンサーが知られている。これらの素子はシリコンを中心とするフォトダイオードへの光照射によって生じる電流変化を利用している。フォトダイオードは、p型半導体/n型半導体の接合を用い光照射によって接合面で電荷分離されたキャリア(ホールと電子)が半導体を通じ電極に流れることを利用している。また、p型半導体又はn型半導体を極薄い絶縁層を介して金属電極と接合したMIS(金属/絶縁体/半導体)構造素子において光照射により絶縁層界面に蓄積された電荷が絶縁層を通じて金属電極に流れることを利用した光検出素子も知られている。 At present, photosensors such as photodiodes and phototransistors that amplify signals of photodiodes with transistors, and array sensors such as CMOS and CCD in which photodetectors are arrayed are known as photosensors. These elements utilize a current change caused by light irradiation to a photodiode centered on silicon. The photodiode uses a p-type semiconductor / n-type semiconductor junction and carriers (holes and electrons) separated by charge at the junction surface by light irradiation flow to the electrode through the semiconductor. Further, in a MIS (metal / insulator / semiconductor) structure element in which a p-type semiconductor or an n-type semiconductor is bonded to a metal electrode through an extremely thin insulating layer, charges accumulated at the interface of the insulating layer due to light irradiation are transferred to the metal through the insulating layer. There is also known a photodetecting element utilizing the flow through the electrode.
ところで、有機半導体材料は電流注入による発光素子の成分として発光ディスプレイ等に利用されている。また、有機半導体材料を使用した電界効果トランジスタや有機太陽電池等の研究が盛んに行われている。有機半導体材料を使用した電界効果トランジスタは、電界効果により有機半導体層の抵抗を調整してスイッチングを行うものであり、これを薄膜トランジスタとしてアレイ化して電子ペーパー、液晶表示素子や有機発光素子などのディスプレイに応用することが期待されている。また、有機太陽電池は、前記したフォトダイオードと同様の原理を用いp型半導体とn型半導体を混合・積層して光照射による電荷分離と発生したキャリアを取り出すことを利用するものである。このような有機フォトダイオードや太陽電池の報告例は多い(以下の特許文献1、2を参照のこと)。かかる従来技術の有機半導体素子は、p型とn型の接合構造(p/n接合構造)である。例えば、特許文献2に開示される有機半導体は、有機半導体層に2種のことなる材料の混合体を用いている。
By the way, organic semiconductor materials are used in light emitting displays and the like as components of light emitting elements by current injection. In addition, research on field effect transistors and organic solar cells using organic semiconductor materials has been actively conducted. A field effect transistor using an organic semiconductor material performs switching by adjusting a resistance of an organic semiconductor layer by a field effect, and is arrayed as a thin film transistor to display electronic paper, a liquid crystal display element, an organic light emitting element, or the like. It is expected to be applied to. The organic solar cell utilizes the same principle as that of the photodiode described above, and mixes and stacks p-type semiconductors and n-type semiconductors to separate charges by light irradiation and take out generated carriers. There are many reports of such organic photodiodes and solar cells (see
また、有機半導体材料は光照射により導電性を示すことが知られており、有機感光性材料として感光ドラム等に利用されている。感光ドラムは光照射で発生したキャリアが有機半導体薄膜に蓄積されることを利用するものである。
従来のシリコン系又は有機半導体材料を半導体層に用いたフォトダイオードにおいては、暗電流の低減が不十分であり、また、光照射前後における検出電流比(導電率比)が3桁ないし4桁に留まっている。そこで、高い導電率比をもち、かつ、簡単な構造であり、温和な条件下で製造することができる高感度光センサーを提供することができれば、高感度光センサーとして単体として利用できるだけでなく、様々な機器やデバイスに組み込むことにより当該機器等を高機能化することができる。したがって、光照射に応じた高い電流出力比(明電流/暗電流比)及び/又は電圧出力比を有する簡単な構造の高感度光センサーを提供する必要性が未だ在る。 In a photodiode using a conventional silicon-based or organic semiconductor material as a semiconductor layer, the reduction of dark current is insufficient, and the detection current ratio (conductivity ratio) before and after light irradiation is 3 to 4 digits. Stays. Therefore, if a high-sensitivity photosensor having a high conductivity ratio and a simple structure and capable of being manufactured under mild conditions can be provided, not only can it be used as a single unit as a high-sensitivity photosensor, By incorporating the device into various devices and devices, the device can be highly functionalized. Therefore, there is still a need to provide a high-sensitivity optical sensor having a simple structure having a high current output ratio (bright current / dark current ratio) and / or a voltage output ratio according to light irradiation.
本願発明者は、前記した課題を解決すべく鋭意研究を重ねた結果、今般、驚くべきことに、前記有機半導体層を、p型とn型の接合構造ではなく、p型半導体単体又はn型半導体単体のいずれか1種で構成した光電界効果トランジスタが、高い電流出力比(明電流/暗電流比)及び/又は電圧出力比を有することを発見し、本願発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has now surprisingly found that the organic semiconductor layer is not a p-type and n-type junction structure, but a p-type semiconductor alone or an n-type. The present inventors have found that an optical field effect transistor composed of any one of semiconductors has a high current output ratio (bright current / dark current ratio) and / or a voltage output ratio, and has completed the present invention.
具体的には、前記課題は、以下の手段[1]〜[5]により解決される。
[1] 以下の:
ゲート電極;
ゲート絶縁膜;
ソース電極、及びドレイン電極; 並びに
有機半導体層;
を順次含む光電界効果トランジスタであって、前記有機半導体層が広がる面内に前記ソース電極とドレイン電極が間隔を空けて配置されて前記ソース電極とドレイン電極の間の有機半導体層内にチャンネルが形成され、前記有機半導体層への光照射に応じて生じる前記ソース電極と前記ドレイン電極の間の電流変化又は閾値電圧変化が検出され、そして前記有機半導体層が、p型とn型の接合構造ではなく、p型半導体単体又はn型半導体単体のいずれか1種で構成されることを特徴とする、前記光電界効果トランジスタ。
Specifically, the problem is solved by the following means [1] to [5].
[1] The following:
Gate electrode;
Gate insulating film;
A source electrode and a drain electrode; and an organic semiconductor layer;
In which the source electrode and the drain electrode are spaced apart in a plane in which the organic semiconductor layer extends, and a channel is formed in the organic semiconductor layer between the source electrode and the drain electrode. A current change or a threshold voltage change between the source electrode and the drain electrode, which is formed in response to light irradiation to the organic semiconductor layer, is detected, and the organic semiconductor layer has a p-type and n-type junction structure Instead, the optical field effect transistor is composed of either a single p-type semiconductor or a single n-type semiconductor.
[2] 前記有機半導体層が結晶性縮合多環芳香族化合物を含む、前記[1]に記載の光電界効果トランジスタ。 [2] The optical field effect transistor according to [1], wherein the organic semiconductor layer includes a crystalline condensed polycyclic aromatic compound.
[3] 前記結晶性縮合多環芳香族が結晶性アセン系化合物である、前記[2]に記載の光電界効果トランジスタ。 [3] The optical field effect transistor according to [2], wherein the crystalline condensed polycyclic aromatic is a crystalline acene-based compound.
[4] 前記結晶性アセン系化合物がテトラセン又はテトラセン誘導体である、前記[3]に記載の光電界効果トランジスタ。 [4] The optical field effect transistor according to [3], wherein the crystalline acene compound is tetracene or a tetracene derivative.
[5] 前記テトラセン誘導体が、2,3−ジブチルテトラセン、2−ヘキシルテトラセン、及び2−ブトキシテトラセンから成る群から選ばれる、前記[4]に記載の光電界効果トランジスタ。 [5] The optical field effect transistor according to [4], wherein the tetracene derivative is selected from the group consisting of 2,3-dibutyltetracene, 2-hexyltetracene, and 2-butoxytetracene.
本発明に係る光電界効果トランジスタは、有機半導体層を単層として含むプレナー型素子構造であり、高感度かつ低暗電流の光センサーとして機能することができる。
通常の光センサーは半導体を一対の電極でサンドイッチした構造であるため、下部電極上に半導体層を形成した後に上部電極を形成し、さらに、上部電極又は下部電極のいずれかを透光性電極とするする必要がある。これに反し、本発明に係る光電界効果トランジスタは、ソース電極とドレイン電極が有機半導体層(薄膜)が広がる面内で間隔を空けて配置されたプレナー型素子構造を呈するので、ソース電極とドレイン電極の電極パターン上に有機半導体層を単層で形成するだけで素子を形成することができ、また、ソース電極とドレイン電極間の距離が前記したサンドイッチ構造に比較して大きく取れるため半導体層の欠陥による短絡や欠陥素子の頻度が低減され、さらには、透光性でない電極材料を使用することもできる。
The optical field effect transistor according to the present invention has a planar device structure including an organic semiconductor layer as a single layer, and can function as a photosensor with high sensitivity and low dark current.
Since an ordinary optical sensor has a structure in which a semiconductor is sandwiched between a pair of electrodes, an upper electrode is formed after a semiconductor layer is formed on the lower electrode, and either the upper electrode or the lower electrode is used as a translucent electrode. It is necessary to do. On the other hand, the optical field effect transistor according to the present invention has a planar element structure in which the source electrode and the drain electrode are spaced apart in the plane in which the organic semiconductor layer (thin film) extends. An element can be formed by simply forming an organic semiconductor layer as a single layer on the electrode pattern of the electrode, and the distance between the source electrode and the drain electrode can be made larger than in the sandwich structure described above. The frequency of short-circuits and defective elements due to defects is reduced, and electrode materials that are not translucent can also be used.
本発明に係る光電界効果トランジスタは、暗電流が低いだけでなく高い明電流を示すため、すなわち、高い電流出力比(明電流/暗電流比)及び/又は電圧出力比、例えば、略6桁の照射前後における検出電流比(導電率比)を有するため、高感度であるばかりでなく低消費電力でもある。さらに、本発明に係る光電界効果トランジスタにおいては、有機半導体材料を適宜調整することにより感受波長域を調整することもできる。 The optical field effect transistor according to the present invention not only has a low dark current but also exhibits a high bright current, that is, a high current output ratio (bright current / dark current ratio) and / or a voltage output ratio, for example, approximately six digits. Since it has a detection current ratio (conductivity ratio) before and after irradiation, not only high sensitivity but also low power consumption is achieved. Furthermore, in the optical field effect transistor according to the present invention, the sensitive wavelength region can be adjusted by appropriately adjusting the organic semiconductor material.
本発明に係る光電界効果トランジスタは、以下に説明する有機半導体層を受光部に用いたものである。
以下、本発明の係る光電界効果トランジスタに用いる有機半導体材料、当該有機半導体材料を用いた有機半導体層の作製、光電界効果トランジスタの製造方法、及び得られた光電界効果トランジスタの性能について順次説明する。
The optical field effect transistor according to the present invention uses an organic semiconductor layer described below as a light receiving portion.
Hereinafter, the organic semiconductor material used for the optical field effect transistor according to the present invention, the production of an organic semiconductor layer using the organic semiconductor material, the method for producing the optical field effect transistor, and the performance of the obtained optical field effect transistor will be sequentially described. To do.
有機半導体材料
本発明に係る光電界効果トランジスタは、光センサーとして機能し、かかる光センサーの受光部としての有機半導体層は、有機半導体材料の薄膜として形成される。かかる有機半導体層は、p型とn型の接合構造ではなく、p型半導体単体又はn型半導体単体のいずれか1種で構成される。
Organic Semiconductor Material The optical field effect transistor according to the present invention functions as an optical sensor, and an organic semiconductor layer as a light receiving portion of the optical sensor is formed as a thin film of an organic semiconductor material. Such an organic semiconductor layer is not a p-type and n-type junction structure, but is composed of either a single p-type semiconductor or a single n-type semiconductor.
有機半導体層を構成する有機半導体材料は、前記有機半導体層が広がる面内方向と当該面に垂直な方向との間に電導度異方性を有し、かつ、当該面内方向の電導度が当該面に垂直な方向の電導度よりも高いものである。通常のシリコンや化合物半導体などの無機系半導体材料と異なり有機半導体材料は分子がファンデルワールスで自己集積した構造を呈し、かかる自己集積構造は、有機半導体分子の形状によって変化する。有機半導体分子が自己集積した構造は、通常、等方性でなく、異方性を示す。本発明に係る光電界効果トランジスタは、高い電導度異方性を示す材料を用いることによって高感度を示すことができる。かかる電導度異方性が生じる原因は明らかでないが、前記有機半導体層が広がる面内方向の高導電性と当該面に垂直な方向に比較的高い抵抗を示すことによってプレナー構造の素子において高感度の光センシング機能を発現すると考えられる。また、本発明に係る光電界効果トランジスタは、有機半導体層を単層として含むプレナー型素子構造であるため、有機半導体材料の薄膜が作る面に対して垂直方向にチャネルが形成される前記したサンドイッチ構造の素子に比較してソース電極とドレン電極の間の距離が大きくとれるので、低い暗電流がもたらされる。 The organic semiconductor material constituting the organic semiconductor layer has conductivity anisotropy between an in-plane direction in which the organic semiconductor layer extends and a direction perpendicular to the surface, and the electric conductivity in the in-plane direction is It is higher than the conductivity in the direction perpendicular to the surface. Unlike ordinary inorganic semiconductor materials such as silicon and compound semiconductors, organic semiconductor materials exhibit a structure in which molecules are self-assembled by van der Waals, and the self-assembled structure varies depending on the shape of the organic semiconductor molecule. A structure in which organic semiconductor molecules are self-assembled usually shows anisotropy rather than isotropic properties. The optical field effect transistor according to the present invention can exhibit high sensitivity by using a material exhibiting high conductivity anisotropy. The cause of such conductivity anisotropy is not clear, but it is highly sensitive in planar structure devices by exhibiting high conductivity in the in-plane direction in which the organic semiconductor layer spreads and relatively high resistance in the direction perpendicular to the surface. It is thought that the optical sensing function of In addition, since the optical field effect transistor according to the present invention has a planar element structure including an organic semiconductor layer as a single layer, the above-described sandwich in which a channel is formed in a direction perpendicular to a surface formed by a thin film of an organic semiconductor material. Since the distance between the source electrode and the drain electrode can be increased as compared with the element of the structure, a low dark current is brought about.
前記した面内方向に高い導電性(電導度)を示す有機半導体材料としては、低分子系有機半導体材料や高分子系有機半導体材料が挙げられる。低分子系有機半導体材料としては、例えば、複数(例えば、2個以上15個以下)の芳香環が縮合した多環化合物が好ましい。このような化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、オバレン、コロネン、ジベンゾコロネン、ヘキサベンゾコロネン、テリレン、クオテリレン、イソビオラントレン、ビスアンテン、アンタンスレン、サーカムアントラセン、テトラベンゾコロネン、ジコロニレン、サーコビフェニルなどの縮合多環芳香族化合物;及びチオフェン、チオフェン-フェニレン、フェニルアミン、フェニレンビニレン、チエニレンビニレン、チエノチオフェン、ベンゾチオフェン、ピロールなどのオリゴマーが挙げられる。また、高分子系有機半導体材料としては、例えば、アルキル置換されたポリチオフェン、ポリピロール、ポリアニリン、ポリチエニレンビニレン、ポリフェニレンビニレン、ポリビスチオフェンチエノチオフェン及びこれらの共重合体を挙げることができる。 Examples of the organic semiconductor material exhibiting high conductivity (conductivity) in the in-plane direction include a low molecular weight organic semiconductor material and a high molecular weight organic semiconductor material. As the low-molecular organic semiconductor material, for example, a polycyclic compound in which a plurality of (for example, 2 to 15) aromatic rings are condensed is preferable. Such compounds include, for example, anthracene, tetracene, pentacene, hexacene, ovarene, coronene, dibenzocoronene, hexabenzocoronene, terylene, quaterylene, isoviolanthrene, bisanthene, anthanthrene, circumanthracene, tetrabenzocoronene, dicolonylene, And condensed polycyclic aromatic compounds such as circobiphenyl; and oligomers such as thiophene, thiophene-phenylene, phenylamine, phenylene vinylene, thienylene vinylene, thienothiophene, benzothiophene, and pyrrole. Examples of the polymer organic semiconductor material include alkyl-substituted polythiophene, polypyrrole, polyaniline, polythienylene vinylene, polyphenylene vinylene, polybisthiophene thienothiophene, and copolymers thereof.
前記した有機半導体材料は、ベンゼン環などの芳香環に結合する水素原子の一部又は全部が官能基で置換された分子構造を有する誘導体であってもよい。官能基としては、例えば、アルキル基、アルケニル基、アルキニル基等の脂肪族炭化水素基、芳香族炭化水素基、アルコキシル基、エーテル基、ハロゲン基、ホルミル基、アシル基、エステル基、メルカプト基、チオアルキル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基等が挙げられる。また、前記した縮合多環芳香族化合物中の炭素の一部は硫黄、窒素などのヘテロ原子で置換されていてもよい。 The organic semiconductor material described above may be a derivative having a molecular structure in which part or all of hydrogen atoms bonded to an aromatic ring such as a benzene ring are substituted with a functional group. Examples of functional groups include aliphatic hydrocarbon groups such as alkyl groups, alkenyl groups, and alkynyl groups, aromatic hydrocarbon groups, alkoxyl groups, ether groups, halogen groups, formyl groups, acyl groups, ester groups, mercapto groups, A thioalkyl group, a sulfide group, a disulfide group, a sulfonyl group, an amide group and the like can be mentioned. Moreover, a part of carbon in the above-mentioned condensed polycyclic aromatic compound may be substituted with a heteroatom such as sulfur or nitrogen.
前記した有機半導体材料の内、テトラセン、ペンタセン、ヘキサセン等のポリアセン化合物及びポリアセン化合物の誘導体は、高い電導度異方性を示すとともに高いキャリア移動度を示すため、とりわけ好ましい。この理由としては、ポリアセン化合物が分子同士でスタックして導電面が2次元的ネットワークを有するヘリンボン構造を取りやすいため、π電子軌道の重なりが大きくなり、キャリアが分子間を移動しやすいことが挙げられる。また、ポリアセン化合物の誘導体は、置換基が共役系でない場合にさらに高い電導度異方性を示すため好ましい。分子の自己集積能が高い芳香族系材料は高い異方性を示し、共役系構造が発達した縮合多環芳香族化合物はさらに高い電導度異方性を示す。縮合多環芳香族化合物は、分子凝集力が強いため薄膜状態では結晶化しやすく、また、薄膜の面内方向に電流が流れやすい構造を形成することが知られている。さらに、ポリアセン化合物の内テトラセン及びその誘導体は室内光や可視光の分光感受性に優れるため好ましい。前記テトラセン誘導体は、2,3−ジブチルテトラセン、2−ヘキシルテトラセン、及び2−ブトキシテトラセンから成る群から選ばれることができる。 Of the organic semiconductor materials described above, polyacene compounds such as tetracene, pentacene, and hexacene and derivatives of polyacene compounds are particularly preferable because they exhibit high conductivity anisotropy and high carrier mobility. The reason for this is that polyacene compounds are easily stacked to form a herringbone structure in which the conductive surface has a two-dimensional network, so that the overlap of π-electron orbits increases and carriers can easily move between molecules. It is done. In addition, a derivative of a polyacene compound is preferable because it exhibits higher conductivity anisotropy when the substituent is not conjugated. Aromatic materials with high molecular self-assembling ability exhibit high anisotropy, and condensed polycyclic aromatic compounds with a conjugated structure developed exhibit further higher conductivity anisotropy. It is known that a condensed polycyclic aromatic compound has a strong molecular cohesive force and thus is easily crystallized in a thin film state, and forms a structure in which a current easily flows in the in-plane direction of the thin film. Furthermore, among the polyacene compounds, tetracene and derivatives thereof are preferable because they are excellent in spectral sensitivity of room light and visible light. The tetracene derivative may be selected from the group consisting of 2,3-dibutyltetracene, 2-hexyltetracene, and 2-butoxytetracene.
有機半導体材料を用いた有機半導体層の作製
有機半導体層の作製方法としては、使用する有機半導体材料によって、通常のドライプロセスとウエットプロセスの両者とも利用できる。低分子系有機半導体材料にはドライプロセス、例えば、MBE法、真空蒸着法、気相輸送成長法、スパッタリング法、レーザー蒸着法等が適用できる。気相輸送成長法とは、材料を加熱して昇華した蒸気を、高真空、真空、低真空又は常圧で基板表面に輸送して薄膜を形成するものである。また、スパッタリング法は、プラズマ中でイオン化させて、例えば、テトラセンの分子を基板上に堆積して薄膜を形成する方法である。また、レーザー蒸着法は、レーザー照射により材料を加熱して蒸気を生成させ、分子を基板上に堆積して薄膜を形成する方法である。これらの各種作製方法の内、MBE法、真空蒸着法、及び気相輸送成長法は、生成する薄膜の平坦性及び有機半導体材料の結晶性に優れるので好ましい。
Production of Organic Semiconductor Layer Using Organic Semiconductor Material As a method for producing an organic semiconductor layer, both a normal dry process and a wet process can be used depending on the organic semiconductor material used. Dry processes such as MBE, vacuum deposition, vapor transport growth, sputtering, laser deposition, etc. can be applied to the low molecular organic semiconductor material. The vapor transport growth method is a method in which a vapor sublimated by heating a material is transported to a substrate surface under high vacuum, vacuum, low vacuum or normal pressure to form a thin film. The sputtering method is a method of forming a thin film by ionizing in plasma and depositing, for example, tetracene molecules on a substrate. The laser deposition method is a method of forming a thin film by heating a material by laser irradiation to generate vapor and depositing molecules on a substrate. Among these various production methods, the MBE method, the vacuum deposition method, and the vapor transport growth method are preferable because they are excellent in the flatness of a thin film to be formed and the crystallinity of an organic semiconductor material.
また、本発明に使用される高分子系有機半導体材料は、低分子系材料ともにウェットプロセスにおいても形成することができる。本発明に用いる有機半導体材料の溶液を(基板等の)ベース上に被覆し、次いで、加熱等の方法により前記溶液の溶媒を気化させることにより有機半導体材料の薄膜を得ることができる。前記溶液をベース上に被覆する方法として、塗布、噴霧の他、ベースを前記溶液に接触させる方法等が挙げられる。具体的には、スピンコート、ディップコート、スクリーン印刷、インクジェット印刷、ブレード塗布、印刷(平版印刷、凹版印刷、凸版印刷等)などの公知の方法が挙げられる。また、溶媒を気化させる際には、ベース付近の温度や雰囲気の溶媒蒸気圧により気液界面の溶媒気化速度を調節することによって、結晶成長を制御することもできる。さらに、所望により、溶液とベースとの界面に、温度勾配、電場、磁場の内の少なくとも1つを印加して、薄膜成長を制御することもできる。これらの方法により高結晶性の有機半導体層(薄膜)を製造することができ、得られた有機半導体薄膜は高結晶性であることから優れた半導体特性が得られる。また、有機半導体材料の溶媒(液状媒体)に分散した分散体を前記のウエットプロセスを用い有機半導体層(薄膜)を形成することもできる。このような分散体を用いる場合、板状やシート状の結晶粒子を用いることが好ましく、また、塗布によって高配向性の薄膜が形成できるので、高電導度異方性が発現される。 Further, the high molecular organic semiconductor material used in the present invention can be formed in a wet process together with a low molecular material. A thin film of an organic semiconductor material can be obtained by coating a solution of an organic semiconductor material used in the present invention on a base (such as a substrate) and then evaporating the solvent of the solution by a method such as heating. Examples of the method for coating the solution on the base include a method of bringing the base into contact with the solution in addition to coating and spraying. Specific examples include known methods such as spin coating, dip coating, screen printing, ink jet printing, blade coating, printing (lithographic printing, intaglio printing, letterpress printing, etc.). Further, when the solvent is vaporized, crystal growth can be controlled by adjusting the solvent vaporization rate at the gas-liquid interface according to the temperature near the base and the solvent vapor pressure of the atmosphere. Furthermore, if desired, thin film growth can be controlled by applying at least one of a temperature gradient, an electric field, and a magnetic field to the interface between the solution and the base. By these methods, a highly crystalline organic semiconductor layer (thin film) can be produced, and since the obtained organic semiconductor thin film is highly crystalline, excellent semiconductor characteristics can be obtained. Moreover, an organic semiconductor layer (thin film) can also be formed by using the above-described wet process for a dispersion dispersed in a solvent (liquid medium) of an organic semiconductor material. When such a dispersion is used, it is preferable to use plate-like or sheet-like crystal particles, and since a highly oriented thin film can be formed by coating, high conductivity anisotropy is exhibited.
有機半導体層(薄膜)を形成するためのベース材料としては、各種材料が挙げられる。例えば、ガラス、石英、酸化アルミニウム、酸化マグネシウム、シリコン、ガリウム砒素、インジウム・スズ酸化物(ITO)、酸化亜鉛、マイカ等のセラミックスや、アルミニウム、金、ステンレス鋼、鉄、銀等の金属が挙げられる。また、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリカーボネート、ノルボルネン系樹脂、ポリエーテルスルフォン、ポリイミド、ポリアミド、セルロース、シリコーン樹脂、エポキシ樹脂等の樹脂や、炭素や、紙等が挙げられる。また、ベース材料として各種材料の複合体を用いてもよい。ベースが膨潤や溶解を起こし、不都合が生じるおそれがある場合には、ベースに溶媒などが拡散することを抑制するためバリア層を設けることが好ましい。 Various materials can be used as the base material for forming the organic semiconductor layer (thin film). Examples include ceramics such as glass, quartz, aluminum oxide, magnesium oxide, silicon, gallium arsenide, indium tin oxide (ITO), zinc oxide, mica, and metals such as aluminum, gold, stainless steel, iron, and silver. It is done. Also, polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polycarbonate, norbornene resin, polyethersulfone, polyimide, polyamide, cellulose, silicone resin, epoxy resin, carbon, paper, etc. It is done. A composite of various materials may be used as the base material. In the case where the base swells or dissolves and there is a possibility that inconvenience may occur, it is preferable to provide a barrier layer in order to prevent the solvent and the like from diffusing into the base.
ベースの形状は特に限定されるものではないが、通常はフィルム状のベースや板状のベース(基板)が用いられる。さらに、線状体や繊維構造体をベースとして用いることもできる。なお、必要があればベースの濡れ性を調整するため、ベースの表面に表面処理を施してもよい。有機半導体材料の濡れ性にあわせてベース表面を局所的に表面処理して表面エネルギーを調整して局所塗布を行うこともできる。また、ベースに表面エネルギーを調整した材料を局所的にパターン化してバンク構造を形成して分散体を所定の位置(バンク)に保持して薄膜パターンを形成することもできる。 The shape of the base is not particularly limited, but a film-like base or a plate-like base (substrate) is usually used. Furthermore, a linear body or a fiber structure can also be used as a base. If necessary, surface treatment may be applied to the surface of the base in order to adjust the wettability of the base. According to the wettability of the organic semiconductor material, the base surface can be locally surface-treated to adjust the surface energy and perform local application. Alternatively, a thin film pattern can be formed by locally patterning a material whose surface energy is adjusted on the base to form a bank structure and holding the dispersion in a predetermined position (bank).
光電界効果トランジスタの製造方法
本発明に係る光電界効果トランジスタの構造としては、例えば、基板/ゲート電極(シリコン基板)/絶縁体層(誘電体層、ゲート絶縁膜、シリコン熱酸化膜)/ソース電極及びドレイン電極/有機半導体層という構造;基板/有機半導体層/ソース電極及びドレイン電極/絶縁体層(誘電体層、ゲート絶縁膜、シリコン熱酸化膜)/ゲート電極(シリコン基板)という構造;並びに基板/ソース電極/半導体層+絶縁体層(誘電体層)+ゲート電極/ドレイン電極という構造など挙げられる。ソース電極、ドレイン電極、及びゲート電極は、それぞれ、複数設けてもよい。また、複数の有機半導体層を同一面内に設けてもよいし、積層してもよい。基板/ゲート電極(シリコン基板)/絶縁体層(誘電体層、ゲート絶縁膜、シリコン熱酸化膜)/ソース電極及びドレイン電極/有機半導体層という構造;及び基板/有機半導体層/ソース電極及びドレイン電極/絶縁体層(誘電体層、ゲート絶縁膜、シリコン熱酸化膜)/ゲート電極(シリコン基板)という構造、すなわち、基板面内方向に並行して形成された有機半導体層内にソース電極とドレイン電極が当該面内で少なくとも当該有機半導体層を介して接合し、そして当該ソース電極とドレイン電極の間のチャネル部の有機半導体層に積層された絶縁体層と、当該有機半導体層と反対側の当該絶縁体層の面にゲート電極が形成された構造が、好ましい。このような構造は、通常のフォトダイオードなどのサンドイッチ構造の縦型素子に比較して有機半導体層のチャネル部を介して配置されたソース電極とドレイン電極の間の距離を比較的長くすることができるので、当該電極間の短絡による素子欠損等が起こりにくいため好ましい。
Manufacturing Method of Optical Field Effect Transistor The structure of the optical field effect transistor according to the present invention includes, for example, substrate / gate electrode (silicon substrate) / insulator layer (dielectric layer, gate insulating film, silicon thermal oxide film) / source. Structure of electrode and drain electrode / organic semiconductor layer; Structure of substrate / organic semiconductor layer / source electrode and drain electrode / insulator layer (dielectric layer, gate insulating film, silicon thermal oxide film) / gate electrode (silicon substrate); In addition, a structure of substrate / source electrode / semiconductor layer + insulator layer (dielectric layer) + gate electrode / drain electrode may be used. A plurality of source electrodes, drain electrodes, and gate electrodes may be provided. A plurality of organic semiconductor layers may be provided in the same plane or may be stacked. Structure of substrate / gate electrode (silicon substrate) / insulator layer (dielectric layer, gate insulating film, silicon thermal oxide film) / source electrode and drain electrode / organic semiconductor layer; and substrate / organic semiconductor layer / source electrode and drain Structure of electrode / insulator layer (dielectric layer, gate insulating film, silicon thermal oxide film) / gate electrode (silicon substrate), that is, a source electrode in an organic semiconductor layer formed in parallel with the substrate in-plane direction An insulator layer bonded to at least the organic semiconductor layer in the plane through the organic semiconductor layer and stacked on the organic semiconductor layer in the channel portion between the source electrode and the drain electrode, and the opposite side of the organic semiconductor layer A structure in which a gate electrode is formed on the surface of the insulator layer is preferable. Such a structure can make the distance between the source electrode and the drain electrode arranged through the channel portion of the organic semiconductor layer relatively long as compared with a vertical element having a sandwich structure such as a normal photodiode. Therefore, it is preferable because element loss or the like due to a short circuit between the electrodes hardly occurs.
本発明に係る光電界効果トランジスタの構造としては、MOS(メタル−酸化物(絶縁体層)−半導体)型が好ましい。有機半導体のうち、多くはp型半導体であるので、これらを半導体として用いる以外に、ドナードーピングしてn型半導体として用い、有機半導体又は有機半導体以外のn型半導体と組み合わせたりすることにより、素子を構成することができる。 The structure of the optical field effect transistor according to the present invention is preferably a MOS (metal-oxide (insulator layer) -semiconductor) type. Among organic semiconductors, many are p-type semiconductors, and in addition to using them as semiconductors, they can be used as n-type semiconductors by donor doping and combined with organic semiconductors or n-type semiconductors other than organic semiconductors. Can be configured.
本発明に関わる光電界効果トランジスタは、従来素子で利用されるp型とn型の接合構造(p/n接合構造ともいう。)を用いることなく、p型半導体単体又はn型半導体単体のいずれか1種で光電効果を発現することができる。本発明者は、特定の理論に拘束されることを欲しないが、その原因としては、結晶粒子が集合して形成された半導体薄膜内に介在する粒子間の粒界や不純物等によるキャリアトラップ内のキャリアが光励起により放出されることが推定される。かかる理論に従えば、本発明に係る光電界効果トランジスタにおいては、光励起されうる適量のトラップが存在していると推定される。通常、多数のトラップを含有する半導体薄膜においては光励起によって光電効果は発現するが高い電流は得られにくく、一方、極めて少数のトラップしか含有しない半導体薄膜においては高電流を示すが光電効果は発現し難い。したがって、本発明に係る光電界効果トランジスタにおいては、欠陥の少ない結晶性粒子と(当該結晶性粒子間に介在する)光励起でキャリア放出できる粒界構造とを併せ持つ構造が存在することによって、高い光電効果と光照射時の高い電流の両者を提供することができると思われる。 The optical field effect transistor according to the present invention does not use a p-type and n-type junction structure (also referred to as a p / n junction structure) used in a conventional element, and either a p-type semiconductor or an n-type semiconductor alone. The photoelectric effect can be expressed with one kind. The present inventor does not want to be bound by a specific theory, but the cause is that the inside of a carrier trap due to grain boundaries or impurities between the grains intervening in a semiconductor thin film formed by aggregating crystal grains. It is estimated that the carriers are emitted by photoexcitation. According to this theory, it is presumed that there is an appropriate amount of traps that can be photoexcited in the optical field effect transistor according to the present invention. Normally, a semiconductor thin film containing a large number of traps exhibits a photoelectric effect by photoexcitation, but a high current is difficult to obtain. On the other hand, a semiconductor thin film containing a very small number of traps exhibits a high current but exhibits a photoelectric effect. hard. Therefore, in the optical field effect transistor according to the present invention, there is a structure having both a crystalline particle with few defects and a grain boundary structure capable of releasing carriers by photoexcitation (intervening between the crystalline particles). It seems that both the effect and the high current during light irradiation can be provided.
本発明の光電界効果トランジスタにおける有機半導体薄膜を構成する結晶粒子の粒径範囲として、好ましくは10μm以下10nm以上であり、更に好ましくは2μm以下50nm以上である。 The particle size range of the crystal particles constituting the organic semiconductor thin film in the optical field effect transistor of the present invention is preferably 10 μm or less and 10 nm or more, more preferably 2 μm or less and 50 nm or more.
本願発明に係る光電界効果トランジスタの有機半導体薄膜内部又は有機半導体薄膜表面と電極との接合面の少なくとも一部は、ショットキー接合及び/又はトンネル接合とすることができる。このような接合構造を有する有機半導体素子は、単純な構成でダイオードやトランジスタを作製することができるので好ましい。さらに、このような接合構造を有する有機半導体素子を複数接合して、インバータ、オスシレータ、メモリ、センサ等の素子を形成することもできる。 At least a part of the interface between the organic semiconductor thin film or the surface of the organic semiconductor thin film and the electrode of the optical field effect transistor according to the present invention may be a Schottky junction and / or a tunnel junction. An organic semiconductor element having such a junction structure is preferable because a diode or a transistor can be manufactured with a simple structure. Furthermore, a plurality of organic semiconductor elements having such a bonded structure can be bonded to form an element such as an inverter, an oscillator, a memory, or a sensor.
本発明に係る光電界効果トランジスタは、光電変換素子、太陽電池、赤外線センサー等の受光素子やフォトダイオードとして利用できる。また、本発明に係るの光電界効果トランジスタを複数アレイ構造で形成したイメージセンサーやスキャナーなどの素子を形成することもできる。また、本発明に係る光電界効果トランジスタは、ICカード、スマートカード又は電子タグに併設したり、積層したりして複合素子化することもできる。さらに、本発明に係る光電界効果トランジスタを発光素子と組み合わせて複合素子化したり、他の機能を持つガスセンサ、バイオセンサ、血液センサ、免疫センサ、味覚センサ等の各種センサと複合化させて複数機能を発現するセンサーとすることもできる。
なお、本発明に係る光電界効果トランジスタの上に、保護層、配線、別素子等をさらに積層することもできる。
The optical field effect transistor according to the present invention can be used as a light receiving element such as a photoelectric conversion element, a solar cell, an infrared sensor, or a photodiode. Also, an element such as an image sensor or a scanner in which the optical field effect transistor according to the present invention is formed in a plurality of array structures can be formed. In addition, the optical field effect transistor according to the present invention can be combined with an IC card, a smart card, or an electronic tag, or stacked to form a composite element. Furthermore, the optical field effect transistor according to the present invention is combined with a light emitting element to form a composite element, or combined with various sensors such as gas sensors, biosensors, blood sensors, immunosensors, and taste sensors having other functions, so that a plurality of functions are provided. It can also be a sensor that expresses.
In addition, a protective layer, wiring, another element, etc. can be further laminated on the optical field effect transistor according to the present invention.
得られた光電界効果トランジスタの性能
本発明に係る光電界効果トランジスタは、電界効果トランジスタの光照射前後のドレイン電流の変化及び/又は閾値電圧の変化を検出することにより、光センサーとして機能する。したがって、電圧モード及び/又は電流モードで動作させることができるため利用範囲は広い。電界効果トランジスタの伝達特性曲線は、一定ドレイン電圧におけるゲート電圧とドレイン電流との関係を示し、本発明に係る光電界効果トランジスタは光照射前後の伝達特性曲線変化を検出するものである。例えば、p型半導体を用いた場合、光照射によってフリーキャリアが増加し、伝達曲線における閾値電圧が正電位側にシフトする。一方、n型半導体をチャネルに用いた電界効果トランジスタでは光照射により逆電位(負電位)側にシフトする。この閾値電圧のシフトから電界効果トランジスタの半導体チャネルに照射されている光を検出することができる。このシフト幅は用いる有機半導体材料の電子構造、不純物、構造欠陥などによって異なるため限定されないが、本発明に係る光電界効果トランジスタにおいては、通常の室内(照明)光(250Lx)の光照射前後で閾値電圧が数mVから20V程度まで変化する。また、電流モードで検出する場合、電界効果トランジスタのゲート電圧を選ぶことによって暗所での低ドレイン電流(暗電流)と明所での高ドレイン電流(明電流)の電流差、すなわち、電流比により光を検出することができる。本発明の光センサーにより通常の室内光照射の前後で6桁以上の明電流/暗電流比を検出することもできる。通常のシリコンのフォトダイオードでは、3桁ないし4桁の明電流/暗電流比であるので、従来型のフォトダイオードに比較して本発明に係る光電界効果トランジスタは高感度である。さらに、フタロシアニンなどの代表的な光導電体を用いショットキー障壁を設けた積層構造素子の光電特性は明電流/暗電流比として3桁ないし4桁であるので、この点でも、本発明に係る光電界効果トランジスタは高感度である。さらに、本発明に係る光電界効果トランジスタの暗電流は10-10〜10-12A程度と低く、暗状態での消費電力が低減できるため好ましい。通常のシリコンフォトダイオードの暗電流はサブμA以上であることから、本発明に係る光電界効果トランジスタは低暗電流を特徴とするといえる。本発明に係る光電界効果トランジスタにおいては、光照射時の出力として、単純な構造(電界効果トランジスタのチャネル長20μm/チャネル幅500μm)においても10μW〜mWの出力が可能である。また、光照射時の出力調整のため電界効果トランジスタの電極構造を適宜変更することができ、例えば、串型電極でチャネル長を長くして出力を増加させることもできる。
Performance of the obtained optical field effect transistor The optical field effect transistor according to the present invention functions as an optical sensor by detecting a change in drain current and / or a change in threshold voltage before and after light irradiation of the field effect transistor. Therefore, since it can be operated in the voltage mode and / or current mode, the range of use is wide. The transfer characteristic curve of the field effect transistor shows the relationship between the gate voltage and the drain current at a constant drain voltage, and the optical field effect transistor according to the present invention detects a change in the transfer characteristic curve before and after the light irradiation. For example, when a p-type semiconductor is used, free carriers increase due to light irradiation, and the threshold voltage in the transfer curve shifts to the positive potential side. On the other hand, a field effect transistor using an n-type semiconductor for a channel shifts to a reverse potential (negative potential) side by light irradiation. The light applied to the semiconductor channel of the field effect transistor can be detected from this threshold voltage shift. This shift width is not limited because it varies depending on the electronic structure, impurities, structural defects, and the like of the organic semiconductor material to be used. However, in the optical field effect transistor according to the present invention, before and after irradiation with normal indoor (illumination) light (250 Lx). The threshold voltage changes from several mV to about 20V. When detecting in the current mode, by selecting the gate voltage of the field effect transistor, the current difference between the low drain current (dark current) in the dark place and the high drain current (light current) in the bright place, that is, the current ratio Can detect light. The light sensor of the present invention can detect a light / dark current ratio of 6 digits or more before and after normal indoor light irradiation. Since an ordinary silicon photodiode has a light current / dark current ratio of 3 to 4 digits, the optical field effect transistor according to the present invention is more sensitive than a conventional photodiode. Furthermore, since the photoelectric characteristics of a laminated structure element using a typical photoconductor such as phthalocyanine and provided with a Schottky barrier is 3 to 4 digits in terms of the bright current / dark current ratio, this point also relates to the present invention. The optical field effect transistor is highly sensitive. Furthermore, the dark current of the optical field effect transistor according to the present invention is as low as about 10 −10 to 10 −12 A, which is preferable because power consumption in the dark state can be reduced. Since the dark current of a normal silicon photodiode is sub-μA or more, it can be said that the optical field effect transistor according to the present invention is characterized by a low dark current. In the optical field effect transistor according to the present invention, an output of 10 μW to mW can be output even with a simple structure (channel length of the field effect transistor is 20 μm / channel width of 500 μm). In addition, the electrode structure of the field effect transistor can be appropriately changed to adjust the output during light irradiation. For example, the output can be increased by increasing the channel length with a skewed electrode.
以下の例示を目的とする実施例において、本発明をさらに説明する。
実施例1:有機半導体材料として2,3−ジブチルテトラセンを用いた光電界効果トランジスタの製造及びその性能
4,5−ジブチル−1,2−フタルアルデヒドと1,4−ジヒドロキシナフタレンをカップリングして合成した。次いで、得られた2,3−ジブチル−6,11−テトラセンキノンを還元して、2,3−ジブチルテトラセンを合成した。
得られた2,3−ジブチルテトラセンを石英セルに装填し、真空蒸着装置を用いシリコン基板上に2,3−ジブチルテトラセン薄膜を作製した(成膜時のバックプレッシャーは2×10-5Pa、基板温度30℃、成膜速度15nm/minで膜厚200nmの薄膜を成長させた)。シリコン基板として、n型ドーパントでドープされたシリコン基板(厚さ200nmの酸化膜を表面に備えている)の表面にソース電極及びドレイン電極として金電極のパターンを形成し、次いで基板表面にヘキサメチレンジシラザン(和光純薬製)をスピンコート(2000rpm、20秒)処理したものを用いた。このようにして薄膜トランジスタ(チャネル長20μm、チャネル幅500μm)を作製した。
The invention is further described in the following illustrative examples.
Example 1: Production and performance of an optical field effect transistor using 2,3-dibutyltetracene as an organic
The obtained 2,3-dibutyltetracene was loaded into a quartz cell, and a 2,3-dibutyltetracene thin film was produced on a silicon substrate using a vacuum deposition apparatus (the back pressure during film formation was 2 × 10 −5 Pa, A thin film having a thickness of 200 nm was grown at a substrate temperature of 30 ° C. and a deposition rate of 15 nm / min. As a silicon substrate, a gold electrode pattern is formed as a source electrode and a drain electrode on the surface of a silicon substrate (having an oxide film having a thickness of 200 nm on the surface) doped with an n-type dopant, and then hexamethylene is formed on the substrate surface. Dissilazane (manufactured by Wako Pure Chemical Industries, Ltd.) subjected to spin coating (2000 rpm, 20 seconds) was used. In this way, a thin film transistor (
図3に示すように、得られた薄膜トランジスタの伝達特性を暗状態及び蛍光灯の室内灯(約200Lx)照射下(明状態)で測定した結果、on電圧は暗状態では略18Vであったが明状態で略40Vにシフトした。閾値電圧(ドレイン電流が立ち上がるゲート電圧)は暗状態では−8V、明状態では+13Vであった。また、ゲート電圧20Vにおける明電流/暗電流比は6桁であった。また、2,3−ジブチルテトラセン薄膜のキャリア移動度は0.03cm2/V・sであった。 As shown in FIG. 3, as a result of measuring the transfer characteristics of the obtained thin film transistor in the dark state and under the illumination of the indoor lamp (about 200 Lx) of the fluorescent lamp (bright state), the on voltage was about 18 V in the dark state. It shifted to about 40V in the bright state. The threshold voltage (gate voltage at which the drain current rises) was −8V in the dark state and + 13V in the bright state. The light / dark current ratio at a gate voltage of 20 V was 6 digits. In addition, the carrier mobility of the 2,3-dibutyltetracene thin film was 0.03 cm 2 / V · s.
シリコン基板上に作製した薄膜の結晶構造を広角X線回折で測定した結果、図4に示すように、面間距離1.85nmの(00n)(n=1〜4)が観測され面間距離が分子長とほぼ等しいことから薄膜中で分子長軸が基板面に垂直に配列した結晶構造を形成していることが判明した。また、金電極パターン上に2,3−ジブチルテトラセン薄膜が形成された表面にさらに金電極を電子線蒸着装置により厚さ50nmで形成した後、下部金電極との間の抵抗値を測定した結果、膜厚方向の薄膜の電導度は10-9(Ωcm)-1であった。また面内方向の薄膜の電導度は3×10-5(Ωcm)-1であった。したがって、該薄膜の電導度異方性は3×104であった。
該薄膜トランジスタの薄膜形態を原子間力顕微鏡により観察した結果、平均粒径0.2μmからなる結晶粒子が密集して形成されていることがわかった。
As a result of measuring the crystal structure of the thin film formed on the silicon substrate by wide-angle X-ray diffraction, as shown in FIG. 4, (00n) (n = 1 to 4) having an inter-surface distance of 1.85 nm was observed. Is almost equal to the molecular length, and it was found that a crystal structure was formed in which the molecular long axis was aligned perpendicular to the substrate surface in the thin film. Moreover, after forming a gold electrode with a thickness of 50 nm by an electron beam evaporation apparatus on the surface on which the 2,3-dibutyltetracene thin film was formed on the gold electrode pattern, the resistance value measured with the lower gold electrode was measured. The electric conductivity of the thin film in the film thickness direction was 10 −9 (Ωcm) −1 . The conductivity of the thin film in the in-plane direction was 3 × 10 −5 (Ωcm) −1 . Therefore, the conductivity anisotropy of the thin film was 3 × 10 4 .
As a result of observing the thin film form of the thin film transistor with an atomic force microscope, it was found that crystal particles having an average particle diameter of 0.2 μm were formed densely.
実施例2:有機半導体材料として2−ヘキシルテトラセンを用いた光電界効果トランジスタの製造及びその性能
4−ヘキシル−1,2−フタルアルデヒドと1,4−ジヒドロキシナフタレンのカップリングで得た2−ヘキシル−6,11−テトラセンキノンを還元して、2−ヘキシルテトラセンを合成した。
実施例1と同様にして電極パターンが形成されたシリコン基板上に2−ヘキシルテトラセンの蒸着膜を作製した(バックプレッシャー2.5×10-6Pa、基板温度は30℃、成膜速度は15nm/minで膜厚200nmの薄膜を成長させた)。
該薄膜トランジスタの薄膜形態を原子間力顕微鏡により観察した結果、平均粒径0.5μmからなる結晶粒子が密集して形成されていることがわかった。
得られた薄膜トランジスタの伝達特性を暗状態および蛍光灯の室内灯(約200Lx)照射下(明状態)で測定した結果、on電圧は暗状態では10Vであったが明状態で18Vにシフトした。閾値電圧は暗状態では−2V、明状態では+6Vであった。また、ゲート電圧20Vにおける明電流/暗電流比は6桁であった。また、2−ヘキシルテトラセン薄膜のキャリア移動度は0.06cm2/V・sであった。
Example 2: Production and performance of an optical field effect transistor using 2-hexyltetracene as an organic semiconductor material 2-hexyl obtained by coupling 4-hexyl-1,2-phthalaldehyde and 1,4-dihydroxynaphthalene -6,11-tetracenequinone was reduced to synthesize 2-hexyltetracene.
In the same manner as in Example 1, a deposited film of 2-hexyltetracene was produced on a silicon substrate on which an electrode pattern was formed (back pressure 2.5 × 10 −6 Pa,
As a result of observing the thin film form of the thin film transistor with an atomic force microscope, it was found that crystal grains having an average particle diameter of 0.5 μm were formed densely.
As a result of measuring the transfer characteristics of the obtained thin film transistor in the dark state and under irradiation (about 200 Lx) of a fluorescent lamp (light state), the on voltage was 10 V in the dark state but shifted to 18 V in the bright state. The threshold voltage was -2V in the dark state and + 6V in the bright state. The light / dark current ratio at a gate voltage of 20 V was 6 digits. The carrier mobility of the 2- hexyltetracene thin film was 0.06 cm 2 / V · s.
シリコン基板上に作製した薄膜の結晶構造を広角X線回折で測定した結果、面間距離1.99nmの(00n)(n=1〜4)が観測され面間距離が分子長とほぼ等しいことから薄膜中で分子長軸が基板面に垂直に配列した結晶構造を形成していることが判明した。また、金電極パターン上に2−ヘキシルテトラセン薄膜が形成された表面にさらに金電極を電子線蒸着装置により厚さ50nmで形成した後、下部金電極との間の抵抗値を測定した結果、膜厚方向の薄膜の電導度は10-9(Ωcm)-1であった。また、面内方向の薄膜の電導度は1×10-5(Ωcm)-1であった。したがって、該薄膜の電導度異方性は1×104であった。 As a result of measuring the crystal structure of the thin film formed on the silicon substrate by wide-angle X-ray diffraction, (00n) (n = 1 to 4) having a surface distance of 1.99 nm is observed and the surface distance is substantially equal to the molecular length. From the results, it was found that a crystal structure was formed in which the molecular long axis was aligned perpendicular to the substrate surface in the thin film. Further, after forming a gold electrode with a thickness of 50 nm by an electron beam evaporation apparatus on the surface on which the 2-hexyltetracene thin film was formed on the gold electrode pattern, the resistance value between the gold electrode pattern and the lower gold electrode was measured. The electric conductivity of the thin film in the thickness direction was 10 −9 (Ωcm) −1 . Further, the electric conductivity of the thin film in the in-plane direction was 1 × 10 −5 (Ωcm) −1 . Therefore, the conductivity anisotropy of the thin film was 1 × 10 4 .
実施例3:有機半導体材料として2−ブトキシテトラセンを用いた光電界効果トランジスタの製造及びその性能
4−ブトキシ−1,2−フタルアルデヒドと1,4−ジヒドロキシナフタレンのカップリングで得た2−ブトキシ−6,11−テトラセンキノンを還元して、2−ブトキシテトラセンを合成した。
実施例1と同様にして電極パターンが形成されたシリコン基板上に2−ブトキシテトラセンの蒸着膜を作製した(バックプレッシャー7×10-6Pa、基板温度は30℃、成膜速度は15nm/minで膜厚200nmの薄膜を成長させた)。
該薄膜トランジスタの薄膜形態を原子間力顕微鏡により観察した結果、平均粒径0.8μmからなる結晶粒子が密集して形成されていることがわかった。
得られた薄膜トランジスタの伝達特性を暗状態および蛍光灯の室内灯(約200Lx)照射下(明状態)で測定した結果、on電圧は暗状態では2Vであったが明状態で5Vにシフトした。閾値電圧は暗状態では−9V、明状態では−5Vであった。また、ゲート電圧20Vにおける明電流/暗電流比は6桁であった。2−ブトキシテトラセン薄膜のキャリア移動度は0.02cm2/V・sであった。
Example 3: Production and performance of an optical field effect transistor using 2-butoxytetracene as an organic semiconductor material 2-Butoxy obtained by coupling 4-butoxy-1,2-phthalaldehyde and 1,4-dihydroxynaphthalene -6,11-tetracenequinone was reduced to synthesize 2-butoxytetracene.
A vapor deposition film of 2-butoxytetracene was produced on a silicon substrate on which an electrode pattern was formed in the same manner as in Example 1 (back pressure 7 × 10 −6 Pa,
As a result of observing the thin film form of the thin film transistor with an atomic force microscope, it was found that crystal particles having an average particle diameter of 0.8 μm were formed densely.
As a result of measuring the transfer characteristics of the obtained thin film transistor in the dark state and under irradiation (about 200 Lx) of a fluorescent lamp (light state), the on voltage was 2 V in the dark state but shifted to 5 V in the bright state. The threshold voltage was -9V in the dark state and -5V in the bright state. The light / dark current ratio at a gate voltage of 20 V was 6 digits. The carrier mobility of the 2-butoxytetracene thin film was 0.02 cm 2 / V · s.
シリコン基板上に作製した薄膜の結晶構造を広角X線回折で測定した結果、面間距離1.77nmの(00n)(n=1〜4)が観測され面間距離が分子長とほぼ等しいことから薄膜中で分子長軸が基板面に垂直に配列した結晶構造を形成していることが判明した。また、金電極パターン上に2,3−ジブチルテトラセン薄膜が形成された表面にさらに金電極を電子線蒸着装置により厚さ50nmで形成した後、下部金電極との間の抵抗値を測定した結果、膜厚方向の薄膜の電導度は10-9(Ωcm)-1であった。また、面内方向の薄膜の電導度は6×10-6(Ωcm)-1であった。したがって、該薄膜の電導度異方性は6×103であった。 As a result of measuring the crystal structure of the thin film formed on the silicon substrate by wide-angle X-ray diffraction, (00n) (n = 1 to 4) with a surface distance of 1.77 nm is observed, and the surface distance is almost equal to the molecular length. From the results, it was found that a crystal structure was formed in which the molecular long axis was aligned perpendicular to the substrate surface in the thin film. Moreover, after forming a gold electrode with a thickness of 50 nm by an electron beam evaporation apparatus on the surface on which the 2,3-dibutyltetracene thin film was formed on the gold electrode pattern, the resistance value measured with the lower gold electrode was measured. The electric conductivity of the thin film in the film thickness direction was 10 −9 (Ωcm) −1 . The conductivity of the thin film in the in-plane direction was 6 × 10 −6 (Ωcm) −1 . Therefore, the conductivity anisotropy of the thin film was 6 × 10 3 .
本発明に係る光電界効果トランジスタは、エレクトロニクス、フォトニクス、バイオエレクトロニクス等において利用可能である。 The optical field effect transistor according to the present invention can be used in electronics, photonics, bioelectronics, and the like.
Claims (2)
ゲート電極;
ゲート絶縁膜;
ソース電極、及びドレイン電極;並びに
有機半導体層;
を順次含む光電界効果トランジスタであって、前記有機半導体層が広がる面内に前記ソース電極とドレイン電極が間隔を空けて配置されて前記ソース電極とドレイン電極の間の有機半導体層内にチャンネルが形成され、前記有機半導体層への光照射に応じて生じる前記ソース電極と前記ドレイン電極の間の電流変化又は閾値電圧変化が検出され、そして前記有機半導体層が、p型とn型の接合構造ではなく、p型半導体単体又はn型半導体単体のいずれか1種で構成され、かつ、結晶性テトラセン誘導体を含むことを特徴とする、前記光電界効果トランジスタ。 below:
Gate electrode;
Gate insulating film;
A source electrode and a drain electrode; and an organic semiconductor layer;
In which the source electrode and the drain electrode are spaced apart in a plane in which the organic semiconductor layer extends, and a channel is formed in the organic semiconductor layer between the source electrode and the drain electrode. A current change or a threshold voltage change between the source electrode and the drain electrode, which is formed in response to light irradiation to the organic semiconductor layer, is detected, and the organic semiconductor layer has a p-type and n-type junction structure Instead, the optical field effect transistor is composed of any one of a single p-type semiconductor and a single n-type semiconductor and includes a crystalline tetracene derivative .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008014555A JP5329816B2 (en) | 2008-01-25 | 2008-01-25 | Novel optical field effect transistor with organic semiconductor layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008014555A JP5329816B2 (en) | 2008-01-25 | 2008-01-25 | Novel optical field effect transistor with organic semiconductor layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009176985A JP2009176985A (en) | 2009-08-06 |
JP5329816B2 true JP5329816B2 (en) | 2013-10-30 |
Family
ID=41031764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008014555A Expired - Fee Related JP5329816B2 (en) | 2008-01-25 | 2008-01-25 | Novel optical field effect transistor with organic semiconductor layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5329816B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106565428B (en) * | 2016-10-18 | 2019-11-26 | 北京大学深圳研究生院 | A kind of aphthacene organic semiconducting materials and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768132B2 (en) * | 2002-03-07 | 2004-07-27 | 3M Innovative Properties Company | Surface modified organic thin film transistors |
JP2005268355A (en) * | 2004-03-17 | 2005-09-29 | Japan Science & Technology Agency | Upper optical absorptive organic photodiode |
JP2005268550A (en) * | 2004-03-18 | 2005-09-29 | Japan Science & Technology Agency | Organic semiconductor, semiconductor device using the same, and method of manufacturing the same |
JP2005302888A (en) * | 2004-04-08 | 2005-10-27 | Sharp Corp | Optical sensor, optical sensor array and its driving method |
JP5040057B2 (en) * | 2004-09-03 | 2012-10-03 | コニカミノルタエムジー株式会社 | Method for manufacturing photoelectric conversion element and method for manufacturing radiation image detector |
JP2007059483A (en) * | 2005-08-22 | 2007-03-08 | Fujifilm Corp | Photoelectric conversion element, imaging device and method of applying electric field thereto |
JPWO2007029551A1 (en) * | 2005-09-08 | 2009-03-19 | コニカミノルタホールディングス株式会社 | Organic thin film transistor, substrate for organic thin film transistor, and method for producing organic thin film transistor |
-
2008
- 2008-01-25 JP JP2008014555A patent/JP5329816B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009176985A (en) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Functional organic field‐effect transistors | |
Han et al. | Recent progress in 2D inorganic/organic charge transfer heterojunction photodetectors | |
US5670791A (en) | Photoresponsive device with a photoresponsive zone comprising a polymer blend | |
KR101787121B1 (en) | Organic semiconductors | |
Ouali et al. | Oligo (phenylenevinylene)/fullerene photovoltaic cells: Influence of morphology | |
US20060065888A1 (en) | Organic semiconductor diode | |
US9496315B2 (en) | Top-gate bottom-contact organic transistor | |
Neethipathi et al. | High-performance photomultiplication photodiode with a 70 nm-thick active layer assisted by IDIC as an efficient molecular sensitizer | |
Zafar et al. | A MEHPPV/VOPcPhO composite based diode as a photodetector | |
Rekab et al. | High-performance phototransistors based on PDIF-CN2 solution-processed single fiber and multifiber assembly | |
Nam et al. | Hybrid phototransistors based on bulk heterojunction films of poly (3-hexylthiophene) and zinc oxide nanoparticle | |
KR20150068398A (en) | Novel condensed polycyclic aromatic compound and use thereof | |
Li et al. | Recent progress and strategies in photodetectors based on 2D inorganic/organic heterostructures | |
El-Mahalawy et al. | Fabrication and photoresponse characteristics of high rectification photodetector based on methyl violet nanoparticles-PVA/p-si heterojunction for optoelectronic applications | |
Luo et al. | A photoswitch based on self-assembled single microwire of a phenyleneethynylene macrocycle | |
Jin et al. | High-responsivity solution-processed organic–inorganic hybrid bilayer thin film photoconductors | |
JP5329816B2 (en) | Novel optical field effect transistor with organic semiconductor layer | |
Kikuchi et al. | Lateral alternating donor/acceptor multilayered junction for organic solar cells | |
Gupta et al. | Photoconductivity anisotropy study in uniaxially aligned polymer based planar photodiodes | |
Zhou et al. | Transfer-printed nanoscale poly (3-hexylthiophene-2, 5-diyl) layers for organic photodetectors | |
Kösemen et al. | Effect of intrinsic polymer properties on the photo sensitive organic field-effect transistors (Photo-OFETs) | |
KR101506350B1 (en) | Electronic device comprising semiconducting polymers | |
Singh et al. | A comparative study of Al and LiF: Al interfaces with poly (3-hexylthiophene) using bias dependent photoluminescence technique | |
Lu et al. | Optical upconversion devices based on photosensitizer-doped organic light-emitting diodes | |
KR20130094720A (en) | Organic semiconductors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130725 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
LAPS | Cancellation because of no payment of annual fees |