[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5325070B2 - Fluorinated carbon fine particles - Google Patents

Fluorinated carbon fine particles Download PDF

Info

Publication number
JP5325070B2
JP5325070B2 JP2009239923A JP2009239923A JP5325070B2 JP 5325070 B2 JP5325070 B2 JP 5325070B2 JP 2009239923 A JP2009239923 A JP 2009239923A JP 2009239923 A JP2009239923 A JP 2009239923A JP 5325070 B2 JP5325070 B2 JP 5325070B2
Authority
JP
Japan
Prior art keywords
fluorinated
particles
fine particles
carbon fine
nanodiamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009239923A
Other languages
Japanese (ja)
Other versions
JP2011084443A (en
Inventor
晋 米沢
正之 高島
俊昌 久保
在虎 金
肇 清川
達治 有福
秀臣 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiyokawa Plating Industries Co Ltd
Nippon Kayaku Co Ltd
University of Fukui NUC
Original Assignee
Kiyokawa Plating Industries Co Ltd
Nippon Kayaku Co Ltd
University of Fukui NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiyokawa Plating Industries Co Ltd, Nippon Kayaku Co Ltd, University of Fukui NUC filed Critical Kiyokawa Plating Industries Co Ltd
Priority to JP2009239923A priority Critical patent/JP5325070B2/en
Publication of JP2011084443A publication Critical patent/JP2011084443A/en
Application granted granted Critical
Publication of JP5325070B2 publication Critical patent/JP5325070B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

本発明は、フッ素化炭素微粒子に関する。さらに詳しくは、例えば、めっき材料、塗料、研磨剤、潤滑剤、熱交換流動媒体、樹脂や金属などとの複合材料、低誘電皮膜、エミッター材料などの電子材料、DNA担体、ウイルス捕捉用担体などの医療用材料などの用途に使用することが期待されるフッ素化炭素微粒子およびその製造方法ならびに当該フッ素化炭素微粒子を含有する複合めっき材料に関する。   The present invention relates to fluorinated carbon fine particles. More specifically, for example, plating materials, paints, abrasives, lubricants, heat exchange fluid media, composite materials with resins and metals, electronic materials such as low dielectric films and emitter materials, DNA carriers, carriers for capturing viruses, etc. The present invention relates to a fluorinated carbon fine particle expected to be used for applications such as medical materials, a manufacturing method thereof, and a composite plating material containing the fluorinated carbon fine particle.

一次粒子の粒子径が数ナノメートルの炭素微粒子は、その粒子の大きさを生かして種々の用途に応用することが期待されている。例えば、ナノダイヤモンド粒子に代表される炭素微粒子は、めっき皮膜や塗膜の耐摩耗性を向上させることから、めっき材料や塗料などに使用することが考えられている。   Carbon fine particles having a primary particle size of several nanometers are expected to be applied to various applications by taking advantage of the size of the particles. For example, carbon fine particles typified by nanodiamond particles improve the wear resistance of plating films and coating films, and are therefore considered to be used for plating materials and paints.

しかし、炭素微粒子、なかでも特に一次粒子の粒子径が数ナノメートルから数十ナノメートルのダイヤモンド微粒子は、非常に強く凝集するため、通常、マイクロメートルオーダーの粒子径を有する凝集体として存在している。したがって、このように凝集した炭素微粒子は、めっき材料や塗料における分散安定性が悪いのみならず、めっき皮膜や塗膜の平滑性を阻害することから、めっき材料や塗料中でその凝集体を解砕させて均一に分散させなければならない。   However, carbon fine particles, especially diamond fine particles with a primary particle size of several nanometers to several tens of nanometers, agglomerate very strongly, and usually exist as aggregates having a particle diameter of the order of micrometers. Yes. Therefore, the aggregated carbon fine particles not only have a poor dispersion stability in the plating material or paint, but also inhibit the smoothness of the plating film or coating film. It must be crushed and dispersed uniformly.

ナノダイヤモンド粒子の分散液として、水とエタノールとの混合溶媒にナノダイヤモンド粒子の凝集体を添加し、これにポリエチレングリコール単位を含有する高分子アゾ系重合開始剤を添加した後、加熱することによって得られるナノダイヤモンド粒子の分散液や、ナノダイヤモンド粒子の凝集体とポリマーとからなるミセルに硫酸ニッケルが添加されたナノダイヤモンド粒子の分散体が提案されている(例えば、特許文献1参照)。しかし、これらのナノダイヤモンド粒子の分散体には、ナノダイヤモンド粒子以外の成分が含まれており、その成分がめっき材料や塗料において不純物として作用するという欠点がある。   As a dispersion of nanodiamond particles, an aggregate of nanodiamond particles is added to a mixed solvent of water and ethanol, a polymer azo polymerization initiator containing a polyethylene glycol unit is added thereto, and then heated. Proposed dispersions of nanodiamond particles and nanodiamond particle dispersions in which nickel sulfate is added to micelles composed of aggregates and polymers of nanodiamond particles have been proposed (for example, see Patent Document 1). However, these nanodiamond particle dispersions contain components other than nanodiamond particles, and have a drawback that these components act as impurities in plating materials and paints.

また、他のナノダイヤモンド粒子の分散液として、ナノダイヤモンド粒子の凝集体と非水系液状媒体との混合物をビーズミルで湿式微粉砕することによって得られるナノダイヤモンド粒子の非水分散液が提案されている(例えば、特許文献2参照)。しかし、このナノダイヤモンド粒子の非水分散液は、ビーズミルで湿式微粉砕することによって得られるものであるため、長期間にわたる分散安定性に劣り、イオンを含むめっき材料などに使用したときに凝集が生じるという欠点がある。   As another nanodiamond particle dispersion liquid, a nonaqueous dispersion liquid of nanodiamond particles obtained by wet-pulverizing a mixture of nanodiamond particle aggregates and a nonaqueous liquid medium with a bead mill has been proposed. (For example, refer to Patent Document 2). However, since this non-aqueous dispersion of nanodiamond particles is obtained by wet pulverization with a bead mill, the dispersion stability is inferior over a long period of time, and aggregation occurs when used for plating materials containing ions. There is a disadvantage that it occurs.

近年、フッ素化ナノダイヤモンド粒子は、精密研磨剤などとして有用であることから注目されているが、フッ素化ナノダイヤモンド粒子も例に洩れず、通常、凝集体として存在しているため、分散安定性に劣る。そこで、フッ素化ナノダイヤモンド粒子の分散安定性が改善されたフッ素化ナノダイヤモンド粒子の分散液として、フッ素化ナノダイヤモンド粒子の凝集体と20℃における粘度が2.5cP以下の液体との懸濁液を調製し、得られた懸濁液を分級し、この分級によって得られた分散液と20℃における粘度が4cP以上の液体の分散液とを混合することによって得られるフッ素化ナノダイヤモンド粒子の分散液が提案されている(例えば、特許文献3参照)。しかし、このフッ素化ナノダイヤモンド粒子の分散液には、当該分散液を製造するために粘度が異なる2種類の溶媒を必要とするとともに、その製造工程が煩雑であるという欠点があるのみならず、フッ素化ナノダイヤモンド粒子の分散液からフッ素化ナノダイヤモンド粒子を取り出すために、当該分散液から溶媒を除去し、そのフッ素化ナノダイヤモンド粒子を乾燥させたとき、当該フッ素化ナノダイヤモンド粒子が再凝集するという欠点がある。   In recent years, fluorinated nanodiamond particles have attracted attention because they are useful as precision abrasives. However, fluorinated nanodiamond particles do not leak into examples and usually exist as aggregates. Inferior to Therefore, as a dispersion of fluorinated nanodiamond particles with improved dispersion stability of the fluorinated nanodiamond particles, a suspension of an aggregate of fluorinated nanodiamond particles and a liquid having a viscosity at 20 ° C. of 2.5 cP or less. Dispersion of the fluorinated nanodiamond particles obtained by classifying the obtained suspension and mixing the dispersion obtained by this classification with a liquid dispersion having a viscosity at 20 ° C. of 4 cP or more A liquid has been proposed (see, for example, Patent Document 3). However, this dispersion of fluorinated nanodiamond particles requires not only two types of solvents having different viscosities in order to produce the dispersion, but also has the disadvantage that the production process is complicated, To remove the fluorinated nanodiamond particles from the dispersion of fluorinated nanodiamond particles, the solvent is removed from the dispersion and the fluorinated nanodiamond particles are re-agglomerated when the fluorinated nanodiamond particles are dried. There is a drawback.

特開2008−150250号公報JP 2008-150250 A 特開2005−97375号公報JP 2005-97375 A 特開2009−190902号公報JP 2009-190902 A

本発明は、前記従来技術に鑑みてなされたものであり、水中で凝集せずに分散し、分散安定性に優れたフッ素化炭素微粒子を簡単な操作で製造することができるフッ素化炭素微粒子の製造方法を提供することを課題とする。 The present invention, wherein has been made in view of the prior art, dispersed without aggregating in water, fluorinated carbon particles can be produced superior fluorinated carbon fine particles in the dispersion stability by a simple operation it is an object of the present invention to provide a manufacturing how.

本発明は、炭素粒からフッ素化されたフッ素化炭素微粒子製造する方法であって、前記炭素粒子が、粒子径が1〜30nmであるダイヤモンド微粒子の一次粒子が凝集してなり、粒子径が0.1〜10μmであるダイヤモンド微粒子の凝集体であり、当該凝集体をフッ素ガス雰囲気中で5〜200℃の温度で0.1〜80kPaの減圧下でフッ素化させることを特徴とするフッ素化炭素微粒子の製造方法に関する。 The present invention provides a method for producing a fluorinated fluorinated carbon particulates from the carbon granules child, the carbon particles become aggregated primary particles of the diamond fine particle size is 1 to 30 nm, the particles An aggregate of diamond fine particles having a diameter of 0.1 to 10 μm, wherein the aggregate is fluorinated at a temperature of 5 to 200 ° C. under a reduced pressure of 0.1 to 80 kPa in a fluorine gas atmosphere. about the production how of fluorinated carbon particles.

本発明によれば、水中で凝集せずに分散するとともに、分散安定性に優れたフッ素化炭素微粒子を簡単な操作で製造することができる。また、本発明の複合めっき材料は、それに含まれているフッ素化炭素微粒子が当該めっき材料中で凝集せずに分散するとともに分散安定性に優れているので、当該めっき材料から形成されためっき皮膜は、耐摩耗性および組成の均一性に優れている。   According to the present invention, it is possible to produce fluorinated carbon fine particles that are dispersed without being aggregated in water and that are excellent in dispersion stability by a simple operation. In addition, the composite plating material of the present invention is a plating film formed from the plating material because the fluorinated carbon fine particles contained therein are dispersed without being aggregated in the plating material and are excellent in dispersion stability. Is excellent in abrasion resistance and composition uniformity.

実施例1〜3および比較例2で得られたフッ素化されたナノダイヤモンド粒子ならびに比較例1のフッ素化させる前のナノダイヤモンド粒子の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of the fluorinated nanodiamond particles obtained in Examples 1 to 3 and Comparative Example 2 and the nanodiamond particles of Comparative Example 1 before fluorination. 実施例1〜3および比較例2で得られたフッ素化されたナノダイヤモンド粒子ならびに比較例1のフッ素化させる前のナノダイヤモンド粒子のX線光学分光分析(XPS)によるC1sスペクトルおよびF1sスペクトルを示す図である。The C1s spectrum and F1s spectrum by X-ray optical spectroscopy (XPS) of the fluorinated nanodiamond particles obtained in Examples 1 to 3 and Comparative Example 2 and the nanodiamond particles before fluorination of Comparative Example 1 are shown. FIG. 実施例4で得られたフッ素化されたナノダイヤモンド粒子の分散液の超音波の照射前後の図面代用写真である。6 is a drawing-substituting photograph before and after ultrasonic irradiation of a dispersion liquid of fluorinated nanodiamond particles obtained in Example 4. FIG. 実施例4で得られたフッ素化されたナノダイヤモンド粒子の分散液におけるフッ素化されたナノダイヤモンド粒子の粒度分布を示すグラフである。4 is a graph showing the particle size distribution of fluorinated nanodiamond particles in a dispersion of fluorinated nanodiamond particles obtained in Example 4. 参考で得られたフッ素化されたナノダイヤモンド粒子の粉末X線回折図である。6 is a powder X-ray diffraction pattern of fluorinated nanodiamond particles obtained in Reference Example 2. FIG.

一般に、炭素微粒子は、マイクロメートルオーダーの凝集体として存在している。なかでも一次粒子の粒子径が数ナノメートルから数十ナノメートルのダイヤモンド微粒子であるナノダイヤモンド粒子は、非常に強く凝集し、粒子径が数マイクロメートルの二次粒子や三次粒子のナノダイヤモンド粒子の凝集体として存在している。   In general, the carbon fine particles exist as aggregates on the order of micrometers. Among them, nanodiamond particles, which are diamond fine particles with a primary particle size of several nanometers to several tens of nanometers, are very strongly aggregated, and secondary diamond particles with a particle size of several micrometers or tertiary nanodiamond particles. It exists as an aggregate.

本発明者らは、炭素微粒子の凝集体、特にナノダイヤモンド粒子の凝集体を如何にして解砕し、一次粒子に近づけて水溶液中に分散させるかを技術的課題として鋭意研究を重ねたところ、驚くべきことに、特定の減圧度に減圧させたフッ素ガス雰囲気中で炭素微粒子をフッ素化させた場合には、得られるフッ素化炭素微粒子が水中で凝集せずに分散するとともに、分散安定性に優れていることが見出された。本発明は、かかる知見に基づいて完成されたものである。   The inventors of the present invention have intensively studied as a technical issue how to disintegrate aggregates of carbon fine particles, particularly nanodiamond particles, and disperse them in an aqueous solution close to primary particles. Surprisingly, when carbon fine particles are fluorinated in a fluorine gas atmosphere depressurized to a specific degree of decompression, the resulting fluorinated carbon fine particles are dispersed without agglomeration in water, and dispersion stability is improved. It was found to be excellent. The present invention has been completed based on such findings.

本発明のフッ素化炭素微粒子の製造方法は、前記したように、炭素微粒子をフッ素化させるフッ素化炭素微粒子の製造方法であり、フッ素ガス雰囲気中で炭素微粒子の凝集体を0.1〜80kPaの減圧下でフッ素化させることを特徴とする。本発明の製造方法によって得られたフッ素化炭素微粒子は、水中で凝集せずに分散するので、例えば、めっき材料、塗料などに使用した場合であっても、均一に分散させることができ、しかも形成されためっき皮膜や塗膜は、耐摩耗性および組成の均一性に優れている。   As described above, the method for producing fluorinated carbon fine particles of the present invention is a method for producing fluorinated carbon fine particles in which carbon fine particles are fluorinated, and the aggregate of carbon fine particles is 0.1 to 80 kPa in a fluorine gas atmosphere. Fluorinated under reduced pressure. Since the fluorinated carbon fine particles obtained by the production method of the present invention are dispersed without agglomerating in water, for example, even when used in plating materials, paints, etc., they can be dispersed uniformly. The formed plating film or coating film is excellent in wear resistance and composition uniformity.

炭素微粒子としては、例えば、ダイヤモンド微粒子、黒鉛微粒子、フラーレン微粒子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記炭素微粒子は、必要により、水素化されたものであってもよい。   Examples of the carbon fine particles include diamond fine particles, graphite fine particles, and fullerene fine particles. However, the present invention is not limited to such examples. The carbon fine particles may be hydrogenated if necessary.

本発明の製造方法によれば、炭素微粒子のなかでも、ダイヤモンド微粒子の一次粒子が非常に強く凝集することによって形成されているナノダイヤモンド粒子の凝集体についても、水中で凝集させずに均一に分散させることができるフッ素化ナノダイヤモンド粒子を製造することができ、その水分散体は、分散安定性に優れている。ダイヤモンド微粒子は、例えば、国際公開第2007/001031号パンフレットに記載されているように、アダマンタンなどの炭素数4〜15のシクロ環を有する化合物、フラーレン、カーボンナノチューブなどの炭素原料および爆薬成分を含有する爆薬組成物を密閉容器内または水中で爆発させることによって製造することができる。   According to the production method of the present invention, among the carbon fine particles, the aggregates of nanodiamond particles formed by very strong aggregation of the primary particles of the diamond fine particles are also uniformly dispersed without being aggregated in water. Fluorinated nanodiamond particles can be produced, and the aqueous dispersion has excellent dispersion stability. The diamond fine particles contain, for example, a compound having a 4 to 15 carbon ring such as adamantane, a carbon raw material such as fullerene or carbon nanotube, and an explosive component as described in WO 2007/001031. Can be produced by exploding the explosive composition in a closed container or in water.

炭素微粒子の一次粒子の粒子径は、通常、数ナノメートルから数十ナノメートルである。例えば、ダイヤモンド微粒子は、一般に衝撃圧縮法で製造されているが、その一次粒子の粒子径は、1〜30nmである。また、酸素欠如爆轟法によって得られるダイヤモンド微粒子の一次粒子の粒子径は、通常、3〜8nm程度である。これらのダイヤモンド微粒子は、一般にナノダイヤモンド粒子と称されている。   The particle diameter of primary particles of carbon fine particles is usually several nanometers to several tens of nanometers. For example, diamond fine particles are generally produced by an impact compression method, and the primary particles have a particle size of 1 to 30 nm. Moreover, the particle diameter of the primary particles of the diamond fine particles obtained by the oxygen-deficient detonation method is usually about 3 to 8 nm. These diamond fine particles are generally referred to as nanodiamond particles.

原料として用いられる炭素微粒子の凝集体は、炭素微粒子の一次粒子が凝集した二次粒子または三次粒子であり、通常、0.1〜10μm程度の粒子径を有する。   Aggregates of carbon fine particles used as a raw material are secondary particles or tertiary particles in which primary particles of carbon fine particles are aggregated, and usually have a particle diameter of about 0.1 to 10 μm.

炭素微粒子の凝集体をフッ素化させるにあたり、炭素微粒子に水分が含まれている場合には、当該炭素微粒子をフッ素化させたときに水分とフッ素とが反応するおそれがある。したがって、炭素微粒子に水分が含まれている場合には、あらかじめ炭素微粒子を乾燥させておくことが好ましい。炭素微粒子を乾燥させる方法としては、例えば、減圧乾燥法、加熱乾燥法、除湿剤による乾燥方法などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。   In fluorinating the aggregate of carbon fine particles, if the carbon fine particles contain moisture, there is a possibility that the moisture and fluorine react when the carbon fine particles are fluorinated. Therefore, when the carbon fine particles contain moisture, it is preferable to dry the carbon fine particles in advance. Examples of the method for drying the carbon fine particles include a reduced pressure drying method, a heat drying method, a drying method using a dehumidifying agent, and the like, but the present invention is not limited to such examples.

炭素微粒子の凝集体のフッ素化は、フッ素ガス雰囲気中で行なわれる。フッ素ガス雰囲気は、例えば、閉鎖空間を形成することができる反応容器の内部空間を減圧することによって大気を除去した後、その内部空間にフッ素ガスを導入する方法、閉鎖空間を形成することができる反応容器の内部空間にフッ素ガスを直接導入することによって大気をフッ素ガスで置換する方法などによって形成することができるが、本発明は、かかる方法のみに限定されるものではない。   The fluorination of the carbon fine particle aggregate is performed in a fluorine gas atmosphere. The fluorine gas atmosphere can be formed, for example, by removing the atmosphere by depressurizing the internal space of the reaction vessel that can form a closed space, and then introducing the fluorine gas into the internal space. Although it can be formed by a method of replacing the atmosphere with fluorine gas by directly introducing fluorine gas into the internal space of the reaction vessel, the present invention is not limited to such a method.

前記閉鎖空間を形成することができる反応容器を用いる場合、炭素微粒子の凝集体を当該反応容器内に入れた後、炭素微粒子の凝集体のフッ素化を行なうことが安全性の観点から好ましい。   When a reaction vessel capable of forming the closed space is used, it is preferable from the viewpoint of safety that the aggregates of carbon fine particles are fluorinated after the aggregates of carbon fine particles are placed in the reaction vessel.

本明細書にいうフッ素ガス雰囲気とは、フッ素ガスのみで形成されている雰囲気のみならず、本発明の目的が阻害されない範囲内で、例えば、ヘリウムガス、アルゴンガス、窒素ガスなどの不活性ガスで希釈されたフッ素ガスで形成されている雰囲気を意味する。これらのなかでは、フッ素化の効率を高める観点から、フッ素ガス雰囲気に占めるフッ素ガス分圧が高いことが好ましい。   The fluorine gas atmosphere referred to in this specification is not limited to an atmosphere formed of only fluorine gas, but is within a range in which the object of the present invention is not impaired, for example, an inert gas such as helium gas, argon gas, nitrogen gas, etc. Means an atmosphere formed of fluorine gas diluted with Among these, from the viewpoint of increasing the efficiency of fluorination, it is preferable that the fluorine gas partial pressure in the fluorine gas atmosphere is high.

炭素微粒子の凝集体をフッ素ガス雰囲気中でフッ素化させるとき、そのフッ素ガス雰囲気におけるフッ素ガス雰囲気の圧力を0.1〜80kPaの所定値に制御する。本発明においては、このようにフッ素ガス雰囲気の圧力を所定値に制御する点に1つの大きな特徴があり、このフッ素ガス雰囲気の圧力が所定値となるように制御されているので、水中で凝集せずに分散するとともに分散安定性に優れたフッ素化炭素微粒子を得ることができる。   When the carbon fine particle aggregate is fluorinated in a fluorine gas atmosphere, the pressure of the fluorine gas atmosphere in the fluorine gas atmosphere is controlled to a predetermined value of 0.1 to 80 kPa. In the present invention, there is one major feature in that the pressure of the fluorine gas atmosphere is controlled to a predetermined value as described above. Since the pressure of the fluorine gas atmosphere is controlled to be a predetermined value, It is possible to obtain fluorinated carbon fine particles that are dispersed without being dispersed and excellent in dispersion stability.

フッ素ガス雰囲気の圧力は、水中で凝集せずに分散するとともに分散安定性に優れたフッ素化炭素微粒子を効率よく製造する観点から、0.1〜80kPa、好ましくは0.1〜60kPa、より好ましくは0.1〜55kPa、さらに好ましくは0.3〜55kPaである。   The pressure of the fluorine gas atmosphere is from 0.1 to 80 kPa, preferably from 0.1 to 60 kPa, more preferably from the viewpoint of efficiently producing fine fluorinated carbon fine particles that are dispersed without being aggregated in water and are excellent in dispersion stability. Is 0.1 to 55 kPa, more preferably 0.3 to 55 kPa.

炭素微粒子の凝集体をフッ素化させる際のフッ素ガス雰囲気の温度は、特に限定されないが、水中で凝集せずに微分散するとともに分散安定性に優れたフッ素化炭素微粒子を効率よく製造する観点から、好ましくは0〜500℃、より好ましくは5〜450℃、さらに好ましくは5〜400℃、より一層好ましくは5〜200℃、特に好ましくは10〜100℃である。   The temperature of the fluorine gas atmosphere when the carbon fine particle aggregate is fluorinated is not particularly limited, but from the viewpoint of efficiently producing fine fluorinated carbon fine particles that are finely dispersed without being aggregated in water and excellent in dispersion stability. The temperature is preferably 0 to 500 ° C, more preferably 5 to 450 ° C, still more preferably 5 to 400 ° C, still more preferably 5 to 200 ° C, and particularly preferably 10 to 100 ° C.

炭素微粒子の凝集体のフッ素化は、得られるフッ素化炭素微粒子を例えばX線光学分光分析などにより、炭素微粒子による炭素原子が検出されなくなるまで行なうことが好ましい。   The fluorination of the aggregates of the carbon fine particles is preferably performed until the carbon atoms by the carbon fine particles are not detected by, for example, X-ray optical spectroscopic analysis.

炭素微粒子の凝集体のフッ素化に要する時間は、フッ素ガス雰囲気の圧力およびその温度、炭素微粒子の凝集体の量などによって異なるので一概には決定することができない。通常、炭素微粒子の凝集体をフッ素ガス雰囲気中でフッ素化させるのに要する時間は、水中で凝集せずに微分散するとともに分散安定性に優れたフッ素化炭素微粒子を効率よく製造する観点から、好ましくは0.3〜5時間、より好ましくは0.5〜3時間、さらに好ましくは0.5〜1.5時間である。   The time required for the fluorination of the carbon fine particle aggregate varies depending on the pressure and temperature of the fluorine gas atmosphere, the amount of the carbon fine particle aggregate, and the like, and therefore cannot be determined unconditionally. Usually, the time required to fluorinate the carbon fine particle aggregate in a fluorine gas atmosphere is finely dispersed without agglomerating in water and from the viewpoint of efficiently producing fluorinated carbon fine particles having excellent dispersion stability. Preferably it is 0.3-5 hours, More preferably, it is 0.5-3 hours, More preferably, it is 0.5-1.5 hours.

以上のようにして炭素微粒子の凝集体をフッ素化させることにより、フッ素化炭素微粒子を製造することができる。得られたフッ素化炭素微粒子は、以下の実施例によって明らかにされているように、少なくともその粒子の表面がフッ素化されているが、その中心部にまでフッ素化が進行しておらず、その表面が適切にフッ素化されているので、水中で凝集せずに分散するとともに分散安定性に優れていると考えられる。本発明のフッ素化炭素微粒子は、少なくともその粒子の表面がフッ素化されている点を除き、基本的にはフッ素化前の炭素微粒子の形状および大きさとほとんど同一である。   By fluorinating the aggregate of carbon fine particles as described above, fluorinated carbon fine particles can be produced. The obtained fluorinated carbon fine particles, as will be clarified by the following examples, at least the surface of the particles are fluorinated, but the fluorination has not progressed to the center, Since the surface is appropriately fluorinated, it is considered that the surface is dispersed without agglomerating in water and is excellent in dispersion stability. The fluorinated carbon fine particles of the present invention are basically the same as the shape and size of the carbon fine particles before fluorination except that at least the surface of the particles is fluorinated.

なお、得られたフッ素化炭素微粒子の表面にはフッ素ガスが付着しており、当該フッ素ガスと大気中の水分とが反応することを回避する観点から、フッ素化炭素微粒子を大気中に取り出す前に、その表面に付着しているフッ素ガスを不活性ガスで除去することが好ましい。フッ素化炭素微粒子の表面に付着しているフッ素ガスの除去は、例えば、前記反応容器を用いた場合には、前記反応容器内のフッ素ガスを不活性ガスに置換することによって行なうことができる。不活性ガスとしては、例えば、ヘリウムガス、アルゴンガス、窒素ガスなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。   In addition, fluorine gas adheres to the surface of the obtained fluorinated carbon fine particles, and from the viewpoint of avoiding the reaction between the fluorine gas and moisture in the atmosphere, before removing the fluorinated carbon fine particles into the air. Moreover, it is preferable to remove the fluorine gas adhering to the surface with an inert gas. For example, when the reaction vessel is used, the fluorine gas adhering to the surface of the fluorinated carbon fine particles can be removed by replacing the fluorine gas in the reaction vessel with an inert gas. Examples of the inert gas include helium gas, argon gas, and nitrogen gas, but the present invention is not limited to such examples.

本発明の複合めっき材料は、前記フッ素化炭素微粒子を含有するものである。なお、本明細書において、複合めっき材料とは、通常のめっき材料のほかに本発明のフッ素化炭素微粒子を含んでいることを意味する。   The composite plating material of the present invention contains the fluorinated carbon fine particles. In this specification, the composite plating material means that the fluorinated carbon fine particles of the present invention are included in addition to a normal plating material.

本発明の複合めっき材料に用いられるめっき材料は、水系めっき浴などの一般に使用されているめっき材料であればよく、特に限定されないが、その一例として、金属材料にニッケルめっきを施す場合には、例えば、スルファミン酸ニッケル水溶液などが挙げられる。   The plating material used in the composite plating material of the present invention is not particularly limited as long as it is a commonly used plating material such as a water-based plating bath. For example, nickel sulfamate aqueous solution etc. are mentioned.

本発明の複合めっき材料におけるフッ素化炭素微粒子の含有量は、その複合めっき材料の用途などによって異なるので一概には決定することができないが、通常、めっき皮膜の高硬度化および耐摩耗性の付与の観点から、0.05〜10重量%程度の範囲内にあることが好ましい。   Although the content of the fluorinated carbon fine particles in the composite plating material of the present invention varies depending on the use of the composite plating material and the like, it cannot generally be determined. However, usually, the plating film has high hardness and imparts wear resistance. From this point of view, it is preferably in the range of about 0.05 to 10% by weight.

本発明の複合めっき材料には、前記フッ素化炭素微粒子が含まれており、このフッ素化炭素微粒子がめっき材料中で凝集せずに分散するとともに分散安定性に優れているので、このめっき材料から形成されためっき皮膜は、耐摩耗性および組成の均一性に優れている。   The composite plating material of the present invention contains the fluorinated carbon fine particles, and the fluorinated carbon fine particles are dispersed without being aggregated in the plating material and are excellent in dispersion stability. The formed plating film is excellent in wear resistance and composition uniformity.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited to such examples.

実施例1〜3および比較例1〜2
炭素微粒子としてナノダイヤモンド粒子〔日本化薬(株)製、水素化ナノダイヤモンド粒子、商品名:Ustalla−Type C、一次粒子の平均粒子径:4nm±1nm、二次粒子の平均粒子径:0.5μm±0.5μm〕1.0gをニッケル製反応管内に入れ、この反応管を反応容器に入れた後、室温で反応容器内を1.0×10-1Paに減圧することにより、ナノダイヤモンド粒子を乾燥させた。この乾燥させたナノダイヤモンド粒子の外観を走査型電子顕微鏡(SEM)にて観察した。その走査型電子顕微鏡写真を図1の(a)に示す(比較例1)。
Examples 1-3 and Comparative Examples 1-2
Nano diamond particles as carbon fine particles [manufactured by Nippon Kayaku Co., Ltd., hydrogenated nano diamond particles, trade name: Ustalla-Type C, average particle size of primary particles: 4 nm ± 1 nm, average particle size of secondary particles: 0.00. 5 μm ± 0.5 μm] 1.0 g was put in a nickel reaction tube, and after putting this reaction tube in a reaction vessel, the inside of the reaction vessel was depressurized to 1.0 × 10 −1 Pa at room temperature to obtain nanodiamonds. The particles were dried. The appearance of the dried nanodiamond particles was observed with a scanning electron microscope (SEM). The scanning electron micrograph is shown in FIG. 1 (a) (Comparative Example 1).

次に、室温でフッ素ガスの圧力が0.67kPa(実施例1)、13.3kPa(実施例2)、50.7kPa(実施例3)または101.3kPa(比較例2)となるまでフッ素ガスを反応容器内に導入し、ナノダイヤモンド粒子のフッ素化を1時間行なった後、反応容器内にアルゴンガスを導入してアルゴンガス置換を行ない、反応管を反応容器から取り出した。   Next, the fluorine gas is used until the pressure of the fluorine gas reaches 0.67 kPa (Example 1), 13.3 kPa (Example 2), 50.7 kPa (Example 3), or 101.3 kPa (Comparative Example 2) at room temperature. Was introduced into the reaction vessel, and fluorination of the nanodiamond particles was performed for 1 hour. Then, argon gas was introduced into the reaction vessel to perform argon gas substitution, and the reaction tube was taken out of the reaction vessel.

反応管内からフッ素化されたナノダイヤモンド粒子(フッ素化ナノダイヤモンド粒子)を取り出し、その外観を走査型電子顕微鏡にて観察した。フッ素ガスの圧力0.67kPa、13.3kPa、50.7kPaまたは101.3kPaでフッ素化されたナノダイヤモンド粒子の走査型電子顕微鏡写真を、それぞれ順に図1の(b)〜(e)に示す。なお、各写真における尺度は、各写真の右下に示されている。   Fluorinated nanodiamond particles (fluorinated nanodiamond particles) were taken out from the reaction tube, and the appearance was observed with a scanning electron microscope. Scanning electron micrographs of nanodiamond particles fluorinated at a fluorine gas pressure of 0.67 kPa, 13.3 kPa, 50.7 kPa, or 101.3 kPa are shown in FIG. 1B to FIG. 1E, respectively. In addition, the scale in each photograph is shown in the lower right of each photograph.

図1に示された結果から、フッ素化させる前のナノダイヤモンド粒子では(比較例1)、一次粒子がほとんど観察されず〔図1(a)〕、フッ素ガスの圧力101.3kPaでフッ素化させたナノダイヤモンド粒子では、解砕して一次粒子に近づいた微小粒子が少量で存在していることがわかる〔図1(e)〕。これに対して、フッ素ガスの圧力0.67〜50.7kPaでフッ素化させたナノダイヤモンド粒子では、多数の一次粒子に近い微小粒子が存在していることがわかる〔図1(b)〜(d)〕。   From the results shown in FIG. 1, in the nanodiamond particles before fluorination (Comparative Example 1), almost no primary particles are observed [FIG. 1 (a)], and fluorinated at a fluorine gas pressure of 101.3 kPa. In the nanodiamond particles, it can be seen that a small amount of fine particles which have been crushed and approached the primary particles are present [FIG. 1 (e)]. On the other hand, in the nanodiamond particles fluorinated with a fluorine gas pressure of 0.67 to 50.7 kPa, it can be seen that a large number of microparticles close to primary particles exist [FIG. d)].

次に、実施例1〜3および比較例2で得られたフッ素化されたナノダイヤモンド粒子ならびに比較例1のフッ素化させる前のナノダイヤモンド粒子をそれぞれ別々に水100質量部あたり0.1質量部の割合で水中に投入し、超音波洗浄機で1時間超音波を照射することによって分散液を調製したところ、実施例1〜3で得られたフッ素化されたナノダイヤモンド粒子を投入した分散液は、いずれも透明となった。   Next, the fluorinated nanodiamond particles obtained in Examples 1 to 3 and Comparative Example 2 and the nanodiamond particles before fluorination of Comparative Example 1 were each separately 0.1 parts by mass per 100 parts by mass of water. When a dispersion was prepared by irradiating with ultrasonic waves for 1 hour with an ultrasonic cleaner, the dispersion containing the fluorinated nanodiamond particles obtained in Examples 1 to 3 was added. Became transparent.

実施例1〜3で得られたフッ素化されたナノダイヤモンド粒子の分散液に含まれているフッ素化されたナノダイヤモンド粒子の粒子径を測定したところ、いずれも10nm程度以下の一次粒子の粒子径に近い大きさの粒子に解砕されていることがわかった。   When the particle diameter of the fluorinated nanodiamond particles contained in the dispersion liquid of the fluorinated nanodiamond particles obtained in Examples 1 to 3 was measured, the particle diameter of the primary particles was about 10 nm or less. It was found that it was crushed into particles of a size close to.

以上のことから、ナノダイヤモンド粒子をフッ素化させる際のフッ素ガスの圧力を制御することにより、ナノダイヤモンド粒子から多数の球状のフッ素化されたナノダイヤモンド粒子の一次粒子または一次粒子の粒子径に近い大きさに解砕された微細な二次粒子を形成させることができることがわかる。   From the above, by controlling the pressure of the fluorine gas when fluorinating the nanodiamond particles, the primary particles of the spherical fluorinated nanodiamond particles or the particle diameter of the primary particles is close to the nanodiamond particles. It can be seen that fine secondary particles crushed to size can be formed.

次に、比較例1のフッ素化させる前のナノダイヤモンド粒子ならびに各実施例および比較例2で得られたフッ素化されたナノダイヤモンド粒子のX線光電子分光分析(XPS)を行なった。その際、X線光電子分光分析装置〔日本電子(株)製、品番:XPS−9010〕を用い、X線:Mg−Kα線、電圧:10kV、電流:2.5mAの条件でX線光電子分光分析を行なった。なお、帯電補正は、炭素の1s電子の結合エネルギーを基準に行なった。X線光電子分光分析(XPS)によるC1sスペクトルおよびF1sスペクトルをそれぞれ図2(a)および(b)に示す。   Next, X-ray photoelectron spectroscopy (XPS) of the nanodiamond particles before fluorination of Comparative Example 1 and the fluorinated nanodiamond particles obtained in each Example and Comparative Example 2 was performed. At that time, an X-ray photoelectron spectroscopy analyzer [manufactured by JEOL Ltd., product number: XPS-9010] was used, and X-ray photoelectron spectroscopy was performed under the conditions of X-ray: Mg-Kα ray, voltage: 10 kV, current: 2.5 mA. Analysis was performed. The charge correction was performed based on the binding energy of carbon 1s electrons. The C1s spectrum and F1s spectrum obtained by X-ray photoelectron spectroscopy (XPS) are shown in FIGS. 2 (a) and 2 (b), respectively.

図2(a)および(b)において、pは比較例1のデータ、qは実施例1のデータ、rは実施例2のデータ、sは実施例3のデータ、tは比較例2のデータを示す。   2A and 2B, p is the data of Comparative Example 1, q is the data of Example 1, r is the data of Example 2, s is the data of Example 3, and t is the data of Comparative Example 2. Indicates.

図2(a)に示された結果から、C1s電子について、原子核への結合エネルギー(B.E.)288eV付近のピークは、1個以上のフッ素原子と結合した炭素原子(−CHF−または−CF2−)に由来するものであり、フッ素と結合することによって純粋なダイヤモンド中の炭素原子に由来のピーク(285eV付近)と比較して高エネルギー側に移動していると考えられる。 From the results shown in FIG. 2 (a), for the C1s electrons, the peak near the bond energy (BE) 288 eV to the nucleus is a carbon atom (—CHF— or —) bonded to one or more fluorine atoms. It is derived from CF 2- ) and is considered to have moved to a higher energy side by bonding with fluorine as compared with a peak derived from a carbon atom in pure diamond (around 285 eV).

また、フッ素ガスと反応させた場合には、圧力が高くなるにしたがって、C1s電子について、原子核への結合エネルギー(B.E.)が大きくなり、ナノダイヤモンド粒子の表面にフッ素が順次導入されていることがわかる。   In addition, when reacted with fluorine gas, as the pressure increases, the binding energy (BE) to the nucleus increases for C1s electrons, and fluorine is sequentially introduced onto the surface of the nanodiamond particles. I understand that.

しかし、フッ素ガスの圧力が高くなると、そのピークの頂部が低エネルギー側にシフトし、最終的には原子核への結合エネルギー289eV付近に頂部を有する非対称なプロファイルを示すようになる。これは、ナノダイヤモンド粒子の表面における結合手数を超える過剰量のフッ素が導入されたことにより、部分的な結合の切断などが生じ、−CHF−や−CF2−という結合状態を有する炭素原子が減少するとともに、少量の−CF3という結合状態などが生じ、その結果、原子核への結合エネルギー288eV付近の−CHF−や−CF2−という結合状態を有する炭素原子のピークおよび粒子内部の基本構造を支持する炭素に由来する原子核への結合エネルギー285eV付近のピークに加え、−CF3という結合状態を持つ炭素に由来する原子核への結合エネルギー290eV付近のピークを、それぞれの結合状態にある炭素原子の試料表面における濃度比率に比例した強度比率で加算し、合成した形状として出現したことによるものと考えられる。 However, when the pressure of the fluorine gas increases, the peak top shifts to a lower energy side, and finally shows an asymmetric profile having a peak near the binding energy 289 eV to the nucleus. This is because, due to the introduction of an excessive amount of fluorine exceeding the number of bonds on the surface of the nanodiamond particles, partial bond breakage occurs, and carbon atoms having a bond state of —CHF— or —CF 2 — are generated. As a result, a small amount of bonding state such as —CF 3 is generated, and as a result, a peak of carbon atoms having a bonding state of —CHF— or —CF 2 — in the vicinity of a binding energy of 288 eV to the nucleus and a basic structure inside the particle In addition to the peak near the bond energy 285 eV to the nucleus derived from the carbon supporting the carbon, the peak near the bond energy 290 eV to the nucleus derived from the carbon having the bond state of —CF 3 is changed to a carbon atom in each bond state. The result is the addition of a strength ratio proportional to the concentration ratio on the sample surface and the appearance as a composite shape it is conceivable that.

また、図2(b)に示された結果から、C−F結合に基づくと考えられるF1s電子についての原子核への結合エネルギー689eV付近のピークが観測され、その強度は、フッ素ガスの圧力を大きくすることによって増大した。   In addition, from the result shown in FIG. 2B, a peak in the vicinity of 689 eV of binding energy to the nucleus for the F1s electron considered to be based on the C—F bond is observed, and the intensity increases the pressure of the fluorine gas. Increased by doing.

以上のことから、反応時のフッ素ガスの圧力が高くなるにしたがってナノダイヤモンド粒子の表面により多くのフッ素が導入されることがわかる。   From the above, it can be seen that more fluorine is introduced to the surface of the nanodiamond particles as the pressure of the fluorine gas during the reaction increases.

さらに実験を進め、フッ素ガスの圧力13.3kPaにてフッ素化されたナノダイヤモンド粒子(実施例2)についてAr+エッチングを行なったところ、そのC1sXPSスペクトルおよびF1sXPSスペクトルは、いずれもフッ素化させる前のナノダイヤモンド粒子(比較例1)と同様であった。このことから、フッ素化は、ナノダイヤモンド粒子のごく表面でのみ進行し、その内部はフッ素化されていないと考えられる。 Further experiments were conducted, and Ar + etching was performed on nanodiamond particles (Example 2) fluorinated at a fluorine gas pressure of 13.3 kPa. Both the C1sXPS spectrum and the F1sXPS spectrum were the same as before fluorination. Similar to the nanodiamond particles (Comparative Example 1). From this, it is considered that the fluorination proceeds only on the very surface of the nanodiamond particles, and the inside thereof is not fluorinated.

実施例4および比較例3
実施例1において、フッ素ガスの圧力およびフッ素化の時間を0.67kPaで1時間から、1.3kPaで1時間(実施例4)または101.32kPaで12時間(比較例3)に変更したこと以外は、実施例1と同様にして、フッ素化されたナノダイヤモンド粒子を製造した。
Example 4 and Comparative Example 3
In Example 1, the pressure of the fluorine gas and the fluorination time were changed from 0.67 kPa for 1 hour to 1.3 kPa for 1 hour (Example 4) or 101.32 kPa for 12 hours (Comparative Example 3). Except for the above, fluorinated nanodiamond particles were produced in the same manner as in Example 1.

実施例4で得られたフッ素化されたナノダイヤモンド粒子を水100質量部あたり0.1質量部の割合で水中に投入し、得られた混合溶液を透明ガラス容器に入れ、軽く振とうすることにより、分散液を得た。得られた分散液の図面代用写真を図3(a)に示す。また、この分散液を24時間放置した後の粒度分布を、動的光散乱式粒度分布計を用いて測定した。その結果を図4のAに示す。   The fluorinated nanodiamond particles obtained in Example 4 are put into water at a ratio of 0.1 parts by mass per 100 parts by mass of water, and the resulting mixed solution is put into a transparent glass container and shaken lightly. Thus, a dispersion liquid was obtained. A drawing-substituting photograph of the obtained dispersion is shown in FIG. Moreover, the particle size distribution after leaving this dispersion for 24 hours was measured using a dynamic light scattering particle size distribution meter. The result is shown in FIG.

次に、この分散液に超音波洗浄機で1時間超音波を照射したところ、この分散液は、透明となった。その分散液の図面代用写真を図3(b)に示す。また、この分散液を24時間放置した後の粒度分布を前記と同様にして測定した。その結果を図4のBに示す。   Next, when this dispersion was irradiated with ultrasonic waves for 1 hour with an ultrasonic cleaner, the dispersion became transparent. A drawing-substituting photograph of the dispersion is shown in FIG. Further, the particle size distribution after leaving this dispersion for 24 hours was measured in the same manner as described above. The result is shown in FIG.

図3(b)に示された結果から、実施例4で得られたフッ素化されたナノダイヤモンド粒子は、水中に均一に分散させることができることがわかる。   From the result shown in FIG. 3B, it can be seen that the fluorinated nanodiamond particles obtained in Example 4 can be uniformly dispersed in water.

また、図4のAおよびBに示された結果から、実施例4で得られたフッ素化されたナノダイヤモンド粒子の分散液に含まれているフッ素化されたナノダイヤモンド粒子の粒子径は、超音波で均一な組成となるように分散させると、10nm程度以下の一次粒子の粒子径に近い大きさの粒子に解砕され、その分散状態が維持されることがわかる。   Further, from the results shown in FIGS. 4A and 4B, the particle diameter of the fluorinated nanodiamond particles contained in the dispersion liquid of the fluorinated nanodiamond particles obtained in Example 4 is It can be seen that when dispersed with a sonic wave so as to have a uniform composition, the particles are crushed into particles having a size close to the particle size of primary particles of about 10 nm or less, and the dispersed state is maintained.

これらのことから、フッ素化されたナノダイヤモンド粒子を均一な組成となるように水に分散させることにより、一次粒子または一次粒子に近い大きさに解砕された粒子が生じ、しかもその粒子が安定して分散することがわかる。   From these, by dispersing fluorinated nanodiamond particles in water so as to have a uniform composition, primary particles or particles crushed to a size close to primary particles are generated, and the particles are stable. It can be seen that they are dispersed.

参考
実施例1において、フッ素ガスの圧力を0.67kPaから6.66kPaに変更するとともにフッ素化の際の温度を室温から400℃に変更したこと以外は、実施例1と同様にして、フッ素化されたナノダイヤモンド粒子を製造した。
Reference example 1
In Example 1, except that the pressure of the fluorine gas was changed from 0.67 kPa to 6.66 kPa and the temperature at the time of fluorination was changed from room temperature to 400 ° C., it was fluorinated in the same manner as in Example 1. Nano-diamond particles were produced.

次に、前記で得られたフッ素化されたナノダイヤモンド粒子の粉末X線回折を調べたところ、その粉末X線回折は、比較例1のフッ素化させる前のナノダイヤモンド粒子の粉末X線回折と同様であった。このことから、ナノダイヤモンド粒子をフッ素化させても、当該ナノダイヤモンド粒子の内部構造は影響を受けないことがわかる。   Next, the powder X-ray diffraction of the fluorinated nanodiamond particles obtained above was examined. The powder X-ray diffraction was the same as the powder X-ray diffraction of the nanodiamond particles before fluorination in Comparative Example 1. It was the same. From this, it can be seen that even if the nanodiamond particles are fluorinated, the internal structure of the nanodiamond particles is not affected.

なお、前記粉末X線回折は、粉末X線回折測定装置〔(株)島津製作所製、商品名:粉末X線回折測定装置XD−6100〕を用いて測定し、そのときの測定条件は、電圧:40kV、電流:30mA、走査モード:連続スキャン、走査範囲:40〜160°、走査速度:2.0°/min、雰囲気:大気とした。   The powder X-ray diffraction was measured using a powder X-ray diffraction measurement apparatus [manufactured by Shimadzu Corporation, trade name: powder X-ray diffraction measurement apparatus XD-6100]. : 40 kV, current: 30 mA, scanning mode: continuous scanning, scanning range: 40 to 160 °, scanning speed: 2.0 ° / min, atmosphere: air.

参考
参考で得られたフッ素化されたナノダイヤモンド粒子を、さらに参考と同様にしてフッ素ガスの圧力6.66kPa、フッ素化の際の温度400℃で、フッ素化させる操作を4回繰り返した後、その粉末X線回折を調べた。その粉末X線回折図を図5のxに示す。
Reference example 2
The resulting fluorinated nanodiamond particles in Reference Example 1, further pressure 6.66kPa similar to a fluorine gas as in Reference Example 1, at a temperature 400 ° C. during the fluorination, repeated four times an operation of fluorinated Thereafter, the powder X-ray diffraction was examined. The powder X-ray diffraction pattern is shown as x in FIG.

また、参考のため、比較例1のフッ素化させる前のナノダイヤモンド粒子についても粉末X線回折を調べた。その粉末X線回折図を図5のyに示す。   For reference, the powder X-ray diffraction of the nanodiamond particles of Comparative Example 1 before fluorination was also examined. The powder X-ray diffraction pattern is shown in y of FIG.

図5に示されるように、参考で得られたフッ素化されたナノダイヤモンド粒子には、フッ素化が5回施されているが、そのフッ素化されたナノダイヤモンド粒子のX線回折が比較例1のフッ素化させる前のナノダイヤモンド粒子のX線回折と同様であった。 As shown in FIG. 5, the fluorinated nanodiamond particles obtained in Reference Example 2 were subjected to fluorination five times, and the X-ray diffraction of the fluorinated nanodiamond particles was compared. This was similar to the X-ray diffraction of nanodiamond particles before fluorination in Example 1.

このことから、ナノダイヤモンド粒子をフッ素化させても、その結晶構造が変化しないので、フッ素化は、ナノダイヤモンド粒子のごく表面でのみ進行し、その内部がフッ素化されていないと考えられる。   From this, even if the nanodiamond particles are fluorinated, the crystal structure thereof does not change. Therefore, it is considered that the fluorination proceeds only on the very surface of the nanodiamond particles and the inside thereof is not fluorinated.

実験例1
実施例1〜4で得られたフッ素化されたナノダイヤモンド粒子、比較例1のナノダイヤモンド粒子および比較例2〜3で得られたフッ素化されたナノダイヤモンド粒子をそれぞれ別々に0.01gの量で秤量し、各粒子を水10mLとともにそれぞれ別々の試験管内に入れ、超音波洗浄機で1時間程度超音波を照射することにより、室温中で十分に攪拌して均一な組成となるように分散させた分散液を得た。なお、ナノダイヤモンド粒子を迅速に分散させるためには、ビーズミリングなどの手法を用いることもできる。
Experimental example 1
0.01 g each of the fluorinated nanodiamond particles obtained in Examples 1-4, the nanodiamond particles of Comparative Example 1 and the fluorinated nanodiamond particles obtained in Comparative Examples 2-3 Weigh each sample in a separate test tube together with 10 mL of water, and irradiate with ultrasonic waves for about 1 hour with an ultrasonic cleaner to disperse the mixture so that it has a uniform composition with sufficient stirring at room temperature. A dispersion was obtained. In order to rapidly disperse the nanodiamond particles, a technique such as bead milling can be used.

得られた分散液の物性として、分散安定性およびゼータ電位を以下の方法に基づいて調べた。その結果を表1に示す。なお、比較例2〜3では、分散安定性が劣るため、ゼータ電位の測定をしなかった。   As physical properties of the obtained dispersion, dispersion stability and zeta potential were examined based on the following methods. The results are shown in Table 1. In Comparative Examples 2 and 3, since the dispersion stability was poor, the zeta potential was not measured.

〔分散安定性〕
前記で得られた分散液を垂直に保持して放置し、24時間経過後に試験管の丸底部に生じた沈殿物の直径を測定し、以下の評価基準に基づいて評価した。
(評価基準)
○:沈殿物の直径が3mm未満
△:沈殿物の直径が3mm以上10mm未満
×:沈殿物の直径が10mm以上
(Dispersion stability)
The dispersion obtained above was held vertically and allowed to stand, and after 24 hours, the diameter of the precipitate formed at the round bottom of the test tube was measured and evaluated based on the following evaluation criteria.
(Evaluation criteria)
○: The diameter of the precipitate is less than 3 mm Δ: The diameter of the precipitate is 3 mm or more and less than 10 mm x: The diameter of the precipitate is 10 mm or more

〔ゼータ電位〕
ゼータ電位測定システム〔大塚電子(株)製、品番:ELSZ−2〕を用いて分散液中のナノダイヤモンド粒子のゼータ電位を求めた。
[Zeta potential]
The zeta potential of the nanodiamond particles in the dispersion was determined using a zeta potential measurement system [manufactured by Otsuka Electronics Co., Ltd., product number: ELSZ-2].

表1に示された結果から、各実施例で得られたフッ素化されたナノダイヤモンド粒子は、比較例1のナノダイヤモンド粒子および比較例2〜3で得られたフッ素化されたナノダイヤモンド粒子と対比して、上澄み液における分散安定性が良好であり、分散液における分散安定性に優れていることがわかる。   From the results shown in Table 1, the fluorinated nanodiamond particles obtained in each example are the same as the nanodiamond particles in Comparative Example 1 and the fluorinated nanodiamond particles obtained in Comparative Examples 2 to 3. In contrast, it can be seen that the dispersion stability in the supernatant is good and the dispersion stability in the dispersion is excellent.

また、各実施例で得られた上澄み液および分散液におけるゼータ電位は、比較例1と対比して同等であり、正の値であることから、各実施例で得られたフッ素化されたナノダイヤモンド粒子は、いずれも、金属イオン(正イオン)との共析による複合めっきに利用する際に、共析効率を低下させる原因とならないことがわかる。   Further, since the zeta potential in the supernatant and dispersion obtained in each example is equivalent to that in Comparative Example 1 and is a positive value, the fluorinated nanoparticle obtained in each Example It can be seen that none of the diamond particles cause a decrease in eutectoid efficiency when used for composite plating by eutectoid with metal ions (positive ions).

さらに、各比較例で得られた(フッ素化された)ナノダイヤモンド粒子の分散液中における粒子径は、主として100nm以上であるのに対し、各実施例で得られたフッ素化されたナノダイヤモンド粒子の分散液中における粒子径は、10nm程度であった。このことから、各実施例で得られたフッ素化されたナノダイヤモンド粒子は、分散安定性に優れていることがわかる。   Furthermore, the particle diameter in the dispersion liquid of the (fluorinated) nanodiamond particles obtained in each comparative example is mainly 100 nm or more, whereas the fluorinated nanodiamond particles obtained in each example. The particle size in the dispersion was about 10 nm. This shows that the fluorinated nanodiamond particles obtained in each example are excellent in dispersion stability.

以上のことから、各実施例で得られたフッ素化されたナノダイヤモンド粒子は、いずれも、分散状態が良好であるとともに、帯電状態がめっきプロセスに適しているという2点を兼ね備えているので、ナノダイヤモンド粒子を高濃度で含有する複合めっき液に適していることがわかる。   From the above, each of the fluorinated nanodiamond particles obtained in each example has both a good dispersion state and a charge state suitable for the plating process. It can be seen that it is suitable for a composite plating solution containing nanodiamond particles at a high concentration.

実験例2
実施例4および比較例3で得られたフッ素化されたナノダイヤモンド粒子1.0gを、それぞれ別々に、60重量%スルファミン酸ニッケル水溶液100mL中に添加し、十分に攪拌し、均一な組成を有するめっき浴を調製した。
Experimental example 2
1.0 g of the fluorinated nanodiamond particles obtained in Example 4 and Comparative Example 3 are separately added to 100 mL of a 60 wt% aqueous nickel sulfamate solution, and sufficiently stirred to have a uniform composition. A plating bath was prepared.

得られためっき浴に、陽極としてニッケル板と陰極としてアルカリ処理した鉄製のハルセル板(表面積:18cm2)との電極2枚を浸漬し、電流密度0.05Acm-1となるように定電流電源〔北斗電工(株)製、品番:HA−105B〕を用いて電圧を制御しながら、あらかじめ設定された通電電気量に到達するまで両電極間に通電を行ない、膜厚が1μmのニッケルめっき皮膜を形成させた。その後、電極をめっき浴から取り出し、純水で洗浄した後、十分に乾燥させた。 A constant-current power source was soaked in the plating bath obtained by immersing two electrodes, a nickel plate as an anode and an iron-made hull cell plate (surface area: 18 cm 2 ) treated with an alkali as a cathode, so that the current density was 0.05 Acm −1. While controlling the voltage using [Hokuto Denko Co., Ltd., product number: HA-105B], energization is performed between both electrodes until reaching a preset energization amount, and the nickel plating film has a film thickness of 1 μm. Formed. Thereafter, the electrode was removed from the plating bath, washed with pure water, and sufficiently dried.

電極に形成されためっき皮膜の物性として、耐摩耗性を以下の方法に基づいて調べた。その結果、フッ素化されたナノダイヤモンド粒子が複合されたニッケルめっき皮膜は、フッ素化されたナノダイヤモンド粒子が複合されていないニッケルめっき皮膜と比べて、耐摩耗性に優れていた。   As physical properties of the plating film formed on the electrode, the wear resistance was examined based on the following method. As a result, the nickel plating film in which the fluorinated nanodiamond particles were combined was superior in wear resistance as compared to the nickel plating film in which the fluorinated nanodiamond particles were not combined.

〔耐摩耗性の測定方法〕
ボール・オン・ディスク型摩擦試験機〔レスカ(株)製、品番:FPR−2000〕を用い、めっき皮膜が形成されている試料のメッキ皮膜面に5Nの一定荷重でステンレス小球を押し付け、両者を一定の相対速度で摺動させ、そのときの摩擦係数の相対移動距離に対する変化を測定することによって耐摩耗性を評価した。
[Measurement method of wear resistance]
Using a ball-on-disk friction tester (Resca Co., Ltd., product number: FPR-2000), press the stainless steel spheres with a constant load of 5 N against the plated film surface of the sample on which the plated film is formed. Was slid at a constant relative speed, and the wear resistance was evaluated by measuring the change of the friction coefficient with respect to the relative movement distance.

実施例4で得られたフッ素化されたナノダイヤモンド粒子が複合されたニッケルめっき皮膜では、摩擦係数の変動が始まるまでの相対移動距離は50mであるのに対し、比較例3で得られたフッ素化されたナノダイヤモンド粒子が複合されたニッケルめっき皮膜では、相対移動距離が30mと6割程度にとどまることが確認された。   In the nickel plating film composited with the fluorinated nanodiamond particles obtained in Example 4, the relative movement distance until the friction coefficient starts to be changed is 50 m, whereas the fluorine obtained in Comparative Example 3 is used. It was confirmed that the relative moving distance was 30 m, which was about 60%, in the nickel plating film in which the nanodiamond particles were combined.

このことから、実施例4で得られたフッ素化されたナノダイヤモンド粒子を用いることにより、耐摩耗性に優れた複合めっき皮膜を形成させることができることがわかる。   From this, it can be seen that by using the fluorinated nanodiamond particles obtained in Example 4, a composite plating film having excellent wear resistance can be formed.

以上の結果から、本発明のフッ素化炭素微粒子の製造方法によれば、水中で凝集せずに分散するとともに、分散安定性に優れたフッ素化炭素微粒子を簡単な操作で製造することができることがわかる。また、本発明の複合めっき材料は、それに含まれているフッ素化炭素微粒子がめっき材料中で凝集せずに分散するとともに分散安定性に優れているので、当該めっき材料から形成されためっき皮膜は、耐摩耗性に優れていることがわかる。   From the above results, according to the method for producing fluorinated carbon fine particles of the present invention, it is possible to produce fluorinated carbon fine particles that are dispersed without agglomerating in water and that are excellent in dispersion stability by a simple operation. Recognize. Moreover, since the composite plating material of the present invention disperses the fluorinated carbon fine particles contained therein without agglomerating in the plating material and is excellent in dispersion stability, the plating film formed from the plating material is It can be seen that the wear resistance is excellent.

本発明のフッ素化炭素微粒子は、例えば、めっき材料、塗料、研磨材、潤滑剤、熱交換流動媒体、樹脂や金属などとの複合材料、低誘電皮膜、エミッター材料などの電子材料、DNA担体、ウイルス捕捉用担体などの医療用材料などの用途に使用することが期待される。
The fluorinated carbon fine particles of the present invention include, for example, plating materials, paints, abrasives, lubricants, heat exchange fluid media, composite materials with resins and metals, electronic materials such as low dielectric films and emitter materials, DNA carriers, It is expected to be used for medical materials such as carriers for capturing viruses.

Claims (1)

素粒からフッ素化されたフッ素化炭素微粒子製造する方法であって、前記炭素粒子が、粒子径が1〜30nmであるダイヤモンド微粒子の一次粒子が凝集してなり、粒子径が0.1〜10μmであるダイヤモンド微粒子の凝集体であり、当該凝集体をフッ素ガス雰囲気中で5〜200℃の温度で0.1〜80kPaの減圧下でフッ素化させることを特徴とするフッ素化炭素微粒子の製造方法。 A method of manufacturing a fluorinated fluorinated carbon particulates from coal elementary particle element, wherein the carbon particles become aggregated primary particles of the diamond fine particle size is 1 to 30 nm, particle size 0 Fluorinated carbon, characterized in that it is an aggregate of diamond fine particles of 1 to 10 μm, and the aggregate is fluorinated at a temperature of 5 to 200 ° C. under a reduced pressure of 0.1 to 80 kPa in a fluorine gas atmosphere. A method for producing fine particles.
JP2009239923A 2009-10-17 2009-10-17 Fluorinated carbon fine particles Expired - Fee Related JP5325070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009239923A JP5325070B2 (en) 2009-10-17 2009-10-17 Fluorinated carbon fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239923A JP5325070B2 (en) 2009-10-17 2009-10-17 Fluorinated carbon fine particles

Publications (2)

Publication Number Publication Date
JP2011084443A JP2011084443A (en) 2011-04-28
JP5325070B2 true JP5325070B2 (en) 2013-10-23

Family

ID=44077686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239923A Expired - Fee Related JP5325070B2 (en) 2009-10-17 2009-10-17 Fluorinated carbon fine particles

Country Status (1)

Country Link
JP (1) JP5325070B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012174710A1 (en) * 2011-06-21 2012-12-27 Dow Global Technologies Llc Isocyanate-based polymer foam with improved thermal insulation properties
WO2016171239A1 (en) * 2015-04-22 2016-10-27 ステラケミファ株式会社 Cross-linked structure of carbon material and method for producing same
JP6420228B2 (en) * 2015-12-01 2018-11-07 株式会社神戸製鋼所 Method for producing coated particles and method for producing functional materials
JP2018108904A (en) * 2016-12-30 2018-07-12 国立大学法人福井大学 Fine particle aggregate of fluorinated graphite, and production method of the same
JP6804574B2 (en) * 2019-01-22 2020-12-23 Dowaメタルテック株式会社 Composite plating material and its manufacturing method
JP6804597B1 (en) * 2019-08-01 2020-12-23 Dowaメタルテック株式会社 Composite plating material and its manufacturing method
JP7501896B2 (en) 2020-07-16 2024-06-18 奥野製薬工業株式会社 Electronic nickel plating film and plating solution, and method for producing electronic nickel plating film using electronic nickel plating solution

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201094A (en) * 1987-02-17 1988-08-19 Toray Ind Inc Diamondlike material
JP3291803B2 (en) * 1992-11-06 2002-06-17 ダイキン工業株式会社 Carbon fluoride particles and their production and use
JP2005097375A (en) * 2003-09-24 2005-04-14 Okamoto Machine Tool Works Ltd Nano-diamond nonaqueous dispersion and its preparing method
CN101390234B (en) * 2006-02-21 2011-03-23 加州理工学院 Electrochemistry of carbon subfluorides
JP5167696B2 (en) * 2006-06-05 2013-03-21 セントラル硝子株式会社 Method for preparing fluorinated nanodiamond dispersion
JP2008001812A (en) * 2006-06-22 2008-01-10 Central Glass Co Ltd Mixture including fluorinated nano diamond, and heat-treated products thereof
JP2008150250A (en) * 2006-12-19 2008-07-03 Eyetec Co Ltd Dispersion method for nano-diamond
JP2008303104A (en) * 2007-06-07 2008-12-18 Naoki Komatsu Nanodiamond and its producing method

Also Published As

Publication number Publication date
JP2011084443A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5325070B2 (en) Fluorinated carbon fine particles
KR101313768B1 (en) Nano-diamond dispersion liquid and method of manufacturing the same
US7820130B2 (en) Functionalization of nanodiamond powder through fluorination and subsequent derivatization reactions
JP5201655B2 (en) Method for producing core-shell type metal oxide fine particle dispersion and dispersion thereof
JP5364588B2 (en) Nanodiamond organic solvent dispersion and process for producing the same
JP4701409B2 (en) Core-shell cerium oxide polymer hybrid nanoparticles and method for producing dispersion thereof
KR20090125089A (en) Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
JP2007146279A (en) Method for producing silver colloidal solution, silver particulate obtained by the production method and dispersed solution thereof
Shi et al. Surface modifications of nanoparticles and nanotubes by plasma polymerization
JP2007331990A (en) Method for producing dispersion of diamond-based ultrafine particles
KR101246801B1 (en) Fluorinated nano diamond and dispersion thereof, and process for production of the same
Wang et al. Photochemical synthesis and self-assembly of gold nanoparticles
Porras et al. Titanate nanotubes for reinforcement of a poly (ethylene oxide)/chitosan polymer matrix
JP2014519461A (en) Plate-type carbon nanoparticle manufacturing method and aluminum-carbon composite material manufacturing method using the same
JP5417116B2 (en) Organic solvent paint
JP2011089156A (en) Metal fine particle, and method for producing the same
JP2024051133A (en) Base metal plating film
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
WO2015050257A1 (en) Inorganic pigment particle and method for producing same
KR100896340B1 (en) Method for manufacturing onion-like carbon particles in the aqueous solution
Biswas et al. Tailored polymer–metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates
KR101804656B1 (en) A wear resistance and low friction polymer composite comprising nano diamond powder treated with hydrogen plasma and the manufacturing method of the same
JP5887773B2 (en) Dispersion containing diamond fine particles
JP7229779B2 (en) METHOD FOR MANUFACTURING PLATING FILM HAVING LOW CONTACT RESISTANCE VALUE
Lee et al. Effect of attrition milling on dispersion of onion like carbon in aqueous medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5325070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees