[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5323503B2 - Temperature sensor anomaly detection method - Google Patents

Temperature sensor anomaly detection method

Info

Publication number
JP5323503B2
JP5323503B2 JP2009000888A JP2009000888A JP5323503B2 JP 5323503 B2 JP5323503 B2 JP 5323503B2 JP 2009000888 A JP2009000888 A JP 2009000888A JP 2009000888 A JP2009000888 A JP 2009000888A JP 5323503 B2 JP5323503 B2 JP 5323503B2
Authority
JP
Japan
Prior art keywords
temperature sensor
temperature
abnormality
engine
temperature sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009000888A
Other languages
Japanese (ja)
Other versions
JP2010159643A (en
Inventor
亘 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2009000888A priority Critical patent/JP5323503B2/en
Publication of JP2010159643A publication Critical patent/JP2010159643A/en
Application granted granted Critical
Publication of JP5323503B2 publication Critical patent/JP5323503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気系路に装備されて排気ガスの温度を検出する温度センサの異常検知方法に関するものである。   The present invention relates to an abnormality detection method for a temperature sensor that is provided in an exhaust system and detects the temperature of exhaust gas.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが従来より行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of soot composed of carbonaceous matter and SOF content (Soluble Organic Fraction) composed of high-boiling hydrocarbon components. The composition contains a small amount of sulfate (mist-like sulfuric acid component). As a measure to reduce this type of particulates, a particulate filter is installed in the middle of the exhaust pipe through which the exhaust gas flows. It has been done conventionally.

この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   This type of particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the flow paths partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. About the flow path, the exit is sealed, and only the exhaust gas which permeate | transmitted the porous thin wall which divides each flow path is discharged | emitted downstream.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ない。   Then, the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, so that the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging. Although it is necessary to regenerate, in an ordinary diesel engine operation state, there are few opportunities to obtain an exhaust temperature high enough for the particulates to self-combust.

この為、例えばアルミナに白金を担持させたものに適宜な量のセリウム等の希土類元素を添加して成る酸化触媒を一体的にパティキュレートフィルタに担持させ、該パティキュレートフィルタ内に捕集されたパティキュレートの酸化反応を前記酸化触媒により促進して着火温度を低下せしめ、従来より低い排気温度でもパティキュレートを燃焼除去できるようにしている。   For this reason, for example, an oxidation catalyst obtained by adding an appropriate amount of a rare earth element such as cerium to a material in which platinum is supported on alumina is integrally supported on a particulate filter and collected in the particulate filter. The oxidation reaction of the particulates is promoted by the oxidation catalyst to lower the ignition temperature, so that the particulates can be burned and removed even at an exhaust temperature lower than that of the prior art.

ただし、このようにした場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上まわってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞れがあり、パティキュレートの堆積量が増加してきた段階でパティキュレートフィルタをフィルタ再生手段により強制的に加熱して捕集済みパティキュレートを焼却する必要がある。   However, even in such a case, in the operation region where the exhaust temperature is low, the trapped amount exceeds the processing amount of the particulates, and therefore the operation state at such a low exhaust temperature continues. There is a risk that the particulate filter will fall into an over-collected state without the particulate filter regenerating well, and the particulate filter is forcibly forced by the filter regeneration means at the stage where the amount of accumulated particulate matter has increased. It is necessary to incinerate the collected particulates by heating.

この種のフィルタ再生手段には、パティキュレートフィルタの前段に酸化触媒を配置し且つその上流側に燃料を添加して前記酸化触媒上での酸化反応熱により加熱する手段や、パティキュレートフィルタの前段に電気ヒータやバーナを配置して加熱する手段等が開発されている。   This type of filter regeneration means includes means for disposing an oxidation catalyst in the preceding stage of the particulate filter and adding fuel to the upstream side thereof for heating by the heat of oxidation reaction on the oxidation catalyst, and for the stage before the particulate filter. Means and the like for heating by arranging an electric heater and a burner have been developed.

他方、ディーゼルエンジンの排気浄化を図る場合、排気ガス中のパティキュレートを除去するだけでは十分ではなく、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減することも行われている。   On the other hand, when purifying exhaust gas from a diesel engine, it is not enough to remove particulates in the exhaust gas. In the middle of the exhaust pipe where the exhaust gas flows, NOx selectively reacts with the reducing agent even in the presence of oxygen. A selective reduction catalyst having the property of causing the NOx (nitrogen oxides) in the exhaust gas on the selective reduction catalyst by adding a necessary amount of the reducing agent upstream of the selective reduction catalyst. ) To reduce the NOx emission concentration.

このように排気ガスを通過させて浄化するパティキュレートフィルタや選択還元型触媒等といった排気浄化材は、その再生制御や排気浄化の反応制御を良好に行うために、その入側と出側の排気温度を検出して適切な温度管理を行う必要がある(例えば下記の特許文献1等を参照)。   Exhaust purifying materials such as particulate filters and selective reduction catalysts that pass exhaust gas in this way and purify the exhaust and reaction of the exhaust purification in order to perform the regeneration control and exhaust purification reaction control well, It is necessary to detect the temperature and perform appropriate temperature management (see, for example, Patent Document 1 below).

特開2003−225657号公報JP 2003-225657 A

このように適切な温度管理を行う上で各温度センサの信頼性は非常に重要であるが、従来においては、各温度センサが正常に作動しているか否かを判定することは行われておらず、各温度センサの断線やショート等といった極端な異常が生じた時に、その検出値の下限(断線の場合)又は上限(ショートの場合)への貼り付きで検知できていただけであった。   As described above, the reliability of each temperature sensor is very important in performing appropriate temperature management. However, conventionally, it is not determined whether each temperature sensor is operating normally. First, when an extreme abnormality such as disconnection or short circuit of each temperature sensor occurred, it could only be detected by sticking to the lower limit (in case of disconnection) or upper limit (in case of short circuit) of the detected value.

本発明は上述の実情に鑑みてなしたもので、各温度センサが正常に作動しているか否かを確実に判定し得る温度センサの異常検知方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a temperature sensor abnormality detection method that can reliably determine whether or not each temperature sensor is operating normally.

本発明は、排気ガスを通過させて浄化する複数の排気浄化材の夫々を間に挟むように前記排気ガスの流れ方向の三箇所以上に装備された温度センサの異常を検知する方法であって、エンジンの冷間始動直後における個々の温度センサの検出値を相互に比較し、その相互偏差が所定の基準偏差を上回っている時に温度センサの異常を判定し、個々の温度センサの検出値を相互に比較した中で一つだけ他の温度センサの測定値と大きく異なるものに異常が生じていることを特定すると共に、エンジンの運転中に所定時間以上の安定運転条件下で排気浄化材の夫々を間に挟む前後の温度センサの組み合わせ毎に前側の温度センサの検出値から後側の温度センサの検出値を推定し、その推定値が後側の温度センサの実測値に対し所定の基準偏差を上回る偏差を持っている時に温度センサの異常を判定し、その異常が判定された組の前後の温度センサの何れに異常が生じているかを残りの組の判定結果を照らし合わせて特定することを特徴とするものである。 The present invention is a method for detecting abnormalities in temperature sensors provided at three or more locations in the flow direction of the exhaust gas so as to sandwich each of a plurality of exhaust purification materials to be purified by passing the exhaust gas. The detected values of the individual temperature sensors immediately after the cold start of the engine are compared with each other, and when the mutual deviation exceeds a predetermined reference deviation, the abnormality of the temperature sensor is determined. with it to identify the abnormality in only one significantly different from the measured value of the other temperature sensors things in compared to each other occurs, the exhaust purifying member in a stable operating conditions of a predetermined time or more during operation of the engine estimates the detection value of the temperature sensor of the rear respectively from the detected value of the front temperature sensor to each combination of the temperature sensors before and after sandwiching between a predetermined reference to measured values of the temperature sensor estimates rear Above deviation Characterized in that to determine the abnormality of the temperature sensor, the abnormality is identified against the remaining sets of the determination result either on whether abnormality has occurred in the temperature sensor before and after the set where it is determined when to have deviation It is what.

即ち、エンジンの冷間始動直後に個々の温度センサの検出値を相互に比較すると、この段階では未だエンジンや排気系路が冷え切っているため、各温度センサが全て正常であるならば、その全ての検出値が外気温度に近い検出温度で測定されることになるはずであり、各温度センサの相互偏差が所定の基準偏差を上回っている時には、何れかの温度センサに異常が発生しているものと判定される。   That is, when the detected values of the individual temperature sensors are compared with each other immediately after the cold start of the engine, the engine and exhaust system are still cold at this stage. All detected values should be measured at a detected temperature close to the outside temperature, and when the mutual deviation of each temperature sensor exceeds a predetermined standard deviation, an abnormality has occurred in any of the temperature sensors. It is determined that

この際、正常な温度センサ同士は外気温度と略同じ検出値となるため、個々の温度センサの検出値を相互に比較した中で一つだけ他の温度センサの測定値と大きく異なるものに異常が生じていることが特定される。   At this time, normal temperature sensors have almost the same detected value as the outside air temperature, and therefore, when the detected values of the individual temperature sensors are compared with each other, only one of the measured values of the other temperature sensors is significantly different. Is identified as occurring.

また、エンジンの運転中における所定時間以上の安定運転条件下では、既に排気浄化材の床温度が排気温度に暖められて該排気浄化材の前後で大きな排気温度の変化は起こらなくなっており、僅かに排気浄化材を通過する間に外気へ放熱していく分だけ温度低下するにすぎない。   In addition, under stable operating conditions for a predetermined time or longer during engine operation, the floor temperature of the exhaust purification material is already warmed to the exhaust temperature, and a large change in exhaust temperature does not occur before and after the exhaust purification material. However, the temperature is only lowered by the amount of heat released to the outside air while passing through the exhaust purification material.

このため、排気浄化材の前側の温度センサによる検出値が判れば、この検出値から外気への放熱分だけ低い排気温度が後側の温度センサで検出されるものと推定され、前後の温度センサが共に正常であるならば、後側の温度センサの実測値が推定値に近い検出温度で測定されることになるはずであり、後側の温度センサの実測値に対し推定値が所定の基準偏差を上回る偏差を持っている時には、前後何れかの温度センサに異常が発生しているものと判定される。   For this reason, if the detection value by the temperature sensor on the front side of the exhaust purification material is known, it is estimated that the exhaust temperature lower by the amount of heat released to the outside air from this detection value is detected by the temperature sensor on the rear side. If both are normal, the measured value of the rear side temperature sensor should be measured at a detected temperature close to the estimated value, and the estimated value for the measured value of the rear side temperature sensor is a predetermined standard. When the deviation exceeds the deviation, it is determined that an abnormality has occurred in either the front or rear temperature sensor.

この際、後側の温度センサは、次段の排気浄化材から見て前側の温度センサに当たるものであるため、次段の排気浄化材について同様の判定を行い、次段の排気浄化材を挟む前後の温度センサに異常が判定されなかったならば、前述した前段の排気浄化材における前側の温度センサに異常が生じていることが特定され、次段の排気浄化材を挟む前後の温度センサに異常が判定されたならば、前述した前段の排気浄化材における後側の温度センサに異常が生じていることが特定される。   At this time, since the rear side temperature sensor corresponds to the front side temperature sensor as viewed from the next-stage exhaust purification material, the same determination is made for the next-stage exhaust purification material, and the next-stage exhaust purification material is sandwiched. If no abnormality is determined in the front and rear temperature sensors, it is determined that an abnormality has occurred in the temperature sensor on the front side of the previous exhaust purification material, and the temperature sensor before and after the next exhaust purification material is sandwiched. If an abnormality is determined, it is specified that an abnormality has occurred in the temperature sensor on the rear side of the preceding exhaust purification material.

更に、本発明においては、エンジンの始動時における冷却水温度が所定温度以下の時に冷間始動であると判定すれば良く、また、エンジンの回転数と燃料噴射量が所定の運転領域内に所定時間以上留まっていた時に安定運転条件下にあると判定すれば良い。   Furthermore, in the present invention, it is only necessary to determine that the engine is cold-started when the coolant temperature at the time of starting the engine is equal to or lower than a predetermined temperature, and the engine speed and the fuel injection amount are within a predetermined operating range. What is necessary is just to determine that it is in the stable driving | running condition when staying for more than time.

上記した本発明の温度センサの異常検知方法によれば、複数の排気浄化材を間に挟むように装備された各温度センサが正常に作動しているか否かを冷間始動時と運転中の両方で判定することができるので、各温度センサに異常が発生したことを確実に検知することができ、しかも、その異常が何れの温度センサに生じているかを特定することができるという優れた効果を奏し得る。   According to the above-described temperature sensor abnormality detection method of the present invention, whether or not each temperature sensor equipped so as to sandwich a plurality of exhaust purification materials is operating normally during cold start and during operation Since it can be determined by both, it is possible to reliably detect that an abnormality has occurred in each temperature sensor, and it is possible to identify which temperature sensor the abnormality has occurred. Can be played.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の制御装置による具体的な異常検知の手順を示すフローチャートである。It is a flowchart which shows the procedure of the concrete abnormality detection by the control apparatus of FIG.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、排気系路を成す排気管1の途中に介装されたケーシング2内に二種類の触媒3,4(排気浄化材)が直列に収容されており、該各触媒3,4に排気ガス5を通過させることで該排気ガス5を浄化し得るようにしてある。   1 and 2 show an example of an embodiment for carrying out the present invention. Two types of catalysts 3 and 4 (exhaust purification materials) are provided in a casing 2 interposed in the middle of an exhaust pipe 1 constituting an exhaust system path. Are accommodated in series, and the exhaust gas 5 can be purified by passing the exhaust gas 5 through the catalysts 3 and 4.

そして、これら触媒3,4を間に挟むように前記排気ガス5の流れ方向の三箇所に温度センサ6,7,8が装備されており、該各温度センサ6,7,8からの温度信号6a,7a,8aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を兼ねた制御装置9に対し入力されるようになっている。   Temperature sensors 6, 7, and 8 are provided at three locations in the flow direction of the exhaust gas 5 so as to sandwich the catalysts 3 and 4, and temperature signals from the temperature sensors 6, 7, and 8 are provided. 6a, 7a, and 8a are input to a control device 9 that also serves as an engine control computer (ECU: Electronic Control Unit).

ここで、前記制御装置9には、アクセル開度をエンジンの負荷として検出するアクセルセンサ10(負荷センサ)からのアクセル開度信号10aと、エンジンの回転数を検出する回転センサ11からの回転数信号11aと、エンジンの冷却水温度を検出する水温センサ12からの水温信号12aとが入力されるようになっており、前記各温度センサ6,7,8が正常に作動しているか否かを下記の如く確認するようになっている。   Here, the control device 9 includes an accelerator opening signal 10a from an accelerator sensor 10 (load sensor) that detects the accelerator opening as a load of the engine, and a rotation speed from the rotation sensor 11 that detects the rotation speed of the engine. A signal 11a and a water temperature signal 12a from a water temperature sensor 12 for detecting the cooling water temperature of the engine are inputted, and whether or not each of the temperature sensors 6, 7, 8 is operating normally. Confirmation is as follows.

即ち、図2にフローチャートで示す如く、ステップS1において、エンジンの始動時に水温センサ12からの水温信号12aに基づき冷却水温度が所定温度以下であるか否かが判定され、所定温度以下である時に限り冷間始動時であるとしてステップS2へ進むようにしてある。   That is, as shown in the flowchart of FIG. 2, in step S1, it is determined whether or not the cooling water temperature is equal to or lower than a predetermined temperature based on the water temperature signal 12a from the water temperature sensor 12 when the engine is started. As long as it is during cold start, the process proceeds to step S2.

そして、ステップS2において、エンジンの冷間始動直後における個々の温度センサ6,7,8の検出値を相互に比較し、次のステップS3において、各温度センサ6,7,8の相互偏差が所定の基準偏差を上回っている時にステップS4へ進んで温度センサ6,7,8の異常を判定するようにしてある。   In step S2, the detected values of the individual temperature sensors 6, 7, 8 immediately after the cold start of the engine are compared with each other. In the next step S3, the mutual deviation between the temperature sensors 6, 7, 8 is predetermined. When the reference deviation is exceeded, the routine proceeds to step S4, where the abnormality of the temperature sensors 6, 7, 8 is determined.

つまり、エンジンの冷間始動直後に個々の温度センサ6,7,8の検出値を相互に比較すると、この段階では未だエンジンや排気系路が冷え切っているため、各温度センサ6,7,8が全て正常であるならば、その全ての検出値が外気温度に近い検出温度で測定されることになるはずであり、各温度センサ6,7,8の相互偏差が所定の基準偏差を上回っている時には、何れかの温度センサ6,7,8に異常が発生しているものと判定される。   That is, when the detected values of the individual temperature sensors 6, 7, and 8 are compared with each other immediately after the cold start of the engine, the engine and exhaust system are still cold at this stage. If all 8 are normal, all the detected values should be measured at a detected temperature close to the outside air temperature, and the mutual deviation between the temperature sensors 6, 7, and 8 exceeds a predetermined reference deviation. When any of the temperature sensors 6, 7, 8 is abnormal, it is determined that an abnormality has occurred.

この際、正常な温度センサ6,7,8同士は外気温度と略同じ検出値となるため、個々の温度センサ6,7,8の検出値を相互に比較した中で一つだけ他の温度センサ6,7,8の測定値と大きく異なるものに異常が生じていることが特定される。   At this time, the normal temperature sensors 6, 7, and 8 have substantially the same detected value as the outside air temperature, so only one other temperature is compared among the detected values of the individual temperature sensors 6, 7, and 8. It is specified that an abnormality has occurred in the sensor 6, 7, 8, which is greatly different from the measured values.

例えば、温度センサ6と温度センサ7との比較で相互偏差が上回っている場合に、温度センサ7と温度センサ8との比較で相互偏差が上回っていないことが確認されたら、温度センサ6に異常が生じているものと特定される。   For example, when the mutual deviation exceeds the temperature sensor 6 and the temperature sensor 7, if it is confirmed that the mutual deviation does not exceed the comparison between the temperature sensor 7 and the temperature sensor 8, the temperature sensor 6 is abnormal. Is identified as occurring.

更に、先のステップS3で各温度センサ6,7,8の相互偏差が所定の基準偏差を上回っていない時には、ステップS5において、エンジンの運転状態が監視されて所定時間以上の安定運転条件が確認された時に限りステップS6へ進むようにしてある。   Further, when the mutual deviation between the temperature sensors 6, 7, and 8 does not exceed a predetermined reference deviation in the previous step S3, the operating state of the engine is monitored in step S5 to confirm stable operating conditions for a predetermined time or more. Only when it is done, the process proceeds to step S6.

ここで、先のステップS5では、エンジンの回転数と燃料噴射量が所定の運転領域内に所定時間以上留まっていた時に安定運転条件下にあると判定されるようになっており、エンジンの回転数については、回転センサ11からの回転数信号11aに基づいて把握され、燃料噴射量については、エンジン制御コンピュータを兼ねた制御装置9が、アクセルセンサ10及び回転センサ11からのアクセル開度信号10a及び回転数信号11aに基づいて制御を担っている燃料噴射制御系の中で把握されるようになっている。   Here, in the previous step S5, when the engine speed and the fuel injection amount remain within a predetermined operating region for a predetermined time or more, it is determined that the engine is operating under stable operating conditions. The number is grasped on the basis of the rotation speed signal 11a from the rotation sensor 11, and the fuel injection amount is controlled by the control device 9 also serving as an engine control computer by the accelerator sensor 10 and the accelerator opening signal 10a from the rotation sensor 11. And it is grasped | ascertained in the fuel-injection control system which bears control based on the rotation speed signal 11a.

そして、次のステップS6において、触媒3を間に挟む前後の温度センサ6,7同士について前側の温度センサ6の検出値から後側の温度センサ7の検出値を推定し、また、触媒4を間に挟む前後の温度センサ7,8同士について前側の温度センサ7の検出値から後側の温度センサ8の検出値を推定するようにしてある。   In the next step S6, the detected value of the rear temperature sensor 7 is estimated from the detected value of the front temperature sensor 6 with respect to the temperature sensors 6 and 7 before and after the catalyst 3 interposed therebetween, and the catalyst 4 is The detected value of the rear temperature sensor 8 is estimated from the detected value of the front temperature sensor 7 with respect to the temperature sensors 7 and 8 before and after being sandwiched therebetween.

更に、次のステップS7では、触媒3,4の夫々を間に挟む前後の温度センサ6,7及び温度センサ7,8の組み合わせ毎に、各組で後側となる温度センサ7,8の実測値が先のステップS6で求めた推定値と比較され、その推定値が実測値に対し所定の基準偏差を上回る偏差を持っている時にステップS8へ進んで温度センサ6,7,8の異常を判定し、偏差が基準偏差を上回っていなければステップS9へ進んで温度センサ6,7,8が正常であると判定されるようにしてある。   Further, in the next step S7, for each combination of the temperature sensors 6 and 7 and the temperature sensors 7 and 8 before and after sandwiching the catalysts 3 and 4, the actual measurement of the temperature sensors 7 and 8 on the rear side in each group is performed. The value is compared with the estimated value obtained in the previous step S6, and when the estimated value has a deviation exceeding a predetermined reference deviation with respect to the actually measured value, the process proceeds to step S8 and abnormality of the temperature sensors 6, 7, 8 is detected. If it is determined that the deviation does not exceed the reference deviation, the process proceeds to step S9 where it is determined that the temperature sensors 6, 7, and 8 are normal.

つまり、エンジンの運転中における所定時間以上の安定運転条件下では、既に触媒3,4の床温度が排気温度に暖められて該触媒3,4の前後で大きな排気温度の変化は起こらなくなっており、僅かに触媒3,4を通過する間に外気へ放熱していく分だけ温度低下するにすぎないため、触媒3,4の夫々を間に挟む前後の温度センサ6,7及び温度センサ7,8の組み合わせに関し、各組で前側となる温度センサ6,7の検出値が判れば、この検出値から外気への放熱分だけ低い排気温度が各組で後側となる温度センサ7,8で検出されるものと推定される。   In other words, under stable operating conditions for a predetermined time or longer during engine operation, the bed temperature of the catalysts 3 and 4 is already warmed to the exhaust temperature, and a large change in exhaust temperature before and after the catalysts 3 and 4 does not occur. The temperature sensors 6 and 7 and the temperature sensors 7 and 7 before and after sandwiching each of the catalysts 3 and 4 are only lowered by the amount of heat released to the outside air while passing through the catalysts 3 and 4. If the detected values of the temperature sensors 6 and 7 on the front side in each set are known with respect to the combination of 8, the exhaust temperature lower by the amount of heat released from the detected value to the outside air is the Presumed to be detected.

従って、触媒3,4の夫々を間に挟む前後の温度センサ6,7及び温度センサ7,8の組み合わせが共に正常であるならば、各組で後側となる温度センサ7,8の実測値が推定値に近い検出温度で測定されることになるはずであり、各組で後側となる温度センサ7,8の実測値に対し推定値が所定の基準偏差を上回る偏差を持っている時には、その該当する組の何れかに異常が発生しているものと判定される。   Therefore, if the combination of the temperature sensors 6 and 7 and the temperature sensors 7 and 8 before and after sandwiching the catalysts 3 and 4 is normal, the measured values of the temperature sensors 7 and 8 on the rear side in each group Will be measured at a detected temperature close to the estimated value, and the estimated value has a deviation exceeding a predetermined reference deviation with respect to the actually measured values of the temperature sensors 7 and 8 on the rear side in each set. , It is determined that an abnormality has occurred in any of the corresponding sets.

この際、各組の判定結果が判れば、その判定結果を相互に照らし合わせることにより各温度センサ6,7,8のうちの何れに異常が発生しているかを特定することが可能であり、例えば、触媒3を間に挟む前後の温度センサ6,7の組の何れかに異常が発生していると判定された場合に、次段の触媒4を間に挟む前後の温度センサ7,8の組に異常が判定されなかったならば、前述した前段の触媒3における前側の温度センサ6に異常が生じていることが特定され、次段の触媒4を挟む前後の温度センサ7,8の組に異常が判定されたならば、前述した前段の触媒3における後側の温度センサ7に異常が生じていることが特定される。   At this time, if the determination results of each set are known, it is possible to specify which of the temperature sensors 6, 7, and 8 is abnormal by comparing the determination results with each other. For example, when it is determined that an abnormality has occurred in any of the pair of temperature sensors 6 and 7 before and after sandwiching the catalyst 3, the temperature sensors 7 and 8 before and after sandwiching the catalyst 4 at the next stage. If no abnormality is determined in the pair of the above, it is specified that an abnormality has occurred in the temperature sensor 6 on the front side of the catalyst 3 in the preceding stage, and the temperature sensors 7 and 8 before and after sandwiching the catalyst 4 in the next stage are identified. If an abnormality is determined for the set, it is specified that an abnormality has occurred in the temperature sensor 7 on the rear side of the catalyst 3 in the preceding stage.

而して、このようにすれば、複数の触媒3,4を間に挟むように装備された各温度センサ6,7,8が正常に作動しているか否かを冷間始動時と運転中の両方で判定することができるので、各温度センサ6,7,8に異常が発生したことを確実に検知することができ、しかも、その異常が何れの温度センサ6,7,8に生じているかを特定することができる。   Thus, in this way, whether or not the temperature sensors 6, 7 and 8 equipped so as to sandwich the plurality of catalysts 3 and 4 are operating normally is determined during cold start and during operation. Therefore, it is possible to reliably detect that an abnormality has occurred in each of the temperature sensors 6, 7, 8, and the abnormality has occurred in any of the temperature sensors 6, 7, 8. Can be specified.

尚、本発明の温度センサの異常検知方法は、上述の形態例にのみ限定されるものではなく、排気浄化材には、パティキュレートフィルタや選択還元型触媒の他、NOx吸蔵還元触媒、酸化触媒等を適宜に採用し得ること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The abnormality detection method for the temperature sensor of the present invention is not limited to the above-described embodiment. The exhaust purification material includes a particulate filter, a selective reduction catalyst, a NOx occlusion reduction catalyst, and an oxidation catalyst. Of course, various modifications can be made without departing from the scope of the present invention.

1 排気管(排気系路)
3 触媒(排気浄化材)
4 触媒(排気浄化材)
5 排気ガス
6 温度センサ
6a 温度信号
7 温度センサ
7a 温度信号
8 温度センサ
8a 温度信号
9 制御装置
11 回転センサ
11a 回転数信号
12 水温センサ
12a 水温信号
1 Exhaust pipe (exhaust line)
3 Catalyst (exhaust gas purification material)
4 Catalyst (exhaust gas purification material)
DESCRIPTION OF SYMBOLS 5 Exhaust gas 6 Temperature sensor 6a Temperature signal 7 Temperature sensor 7a Temperature signal 8 Temperature sensor 8a Temperature signal 9 Control apparatus 11 Rotation sensor 11a Rotation number signal 12 Water temperature sensor 12a Water temperature signal

Claims (3)

排気ガスを通過させて浄化する複数の排気浄化材の夫々を間に挟むように前記排気ガスの流れ方向の三箇所以上に装備された温度センサの異常を検知する方法であって、エンジンの冷間始動直後における個々の温度センサの検出値を相互に比較し、その相互偏差が所定の基準偏差を上回っている時に温度センサの異常を判定し、個々の温度センサの検出値を相互に比較した中で一つだけ他の温度センサの測定値と大きく異なるものに異常が生じていることを特定すると共に、エンジンの運転中に所定時間以上の安定運転条件下で排気浄化材の夫々を間に挟む前後の温度センサの組み合わせ毎に前側の温度センサの検出値から後側の温度センサの検出値を推定し、その推定値が後側の温度センサの実測値に対し所定の基準偏差を上回る偏差を持っている時に温度センサの異常を判定し、その異常が判定された組の前後の温度センサの何れに異常が生じているかを残りの組の判定結果を照らし合わせて特定することを特徴とする温度センサの異常検知方法。 A method for detecting abnormalities in temperature sensors provided at three or more locations in the exhaust gas flow direction so as to sandwich each of a plurality of exhaust gas purification materials to be purified by passing exhaust gas. The detected values of the individual temperature sensors are compared with each other immediately after starting, and when the mutual deviation exceeds a predetermined reference deviation, the abnormality of the temperature sensor is judged, and the detected values of the individual temperature sensors are compared with each other. Among them, it is determined that there is an abnormality in one that is significantly different from the measured value of the other temperature sensor, and each of the exhaust purifying materials is placed under stable operating conditions for a predetermined time or more during engine operation. For each combination of temperature sensors before and after sandwiching, the detection value of the rear temperature sensor is estimated from the detection value of the front temperature sensor, and the estimated value exceeds the predetermined reference deviation with respect to the actual measurement value of the rear temperature sensor Have Determining an abnormality of the temperature sensor when is the temperature, characterized in that the abnormality is identified either on whether abnormality has occurred in the temperature sensor before and after the set it is judged against the remaining sets of determination results Sensor abnormality detection method. エンジンの始動時における冷却水温度が所定温度以下の時に冷間始動であると判定することを特徴とする請求項1に記載の温度センサの異常検知方法。   The temperature sensor abnormality detection method according to claim 1, wherein it is determined that the engine is cold-started when a coolant temperature at engine startup is equal to or lower than a predetermined temperature. エンジンの回転数と燃料噴射量が所定の運転領域内に所定時間以上留まっていた時に安定運転条件下にあると判定することを特徴とする請求項1又は2に記載の温度センサの異常検知方法。   The temperature sensor abnormality detection method according to claim 1 or 2, wherein when the engine speed and the fuel injection amount remain in a predetermined operation region for a predetermined time or more, it is determined that the engine is in a stable operation condition. .
JP2009000888A 2009-01-06 2009-01-06 Temperature sensor anomaly detection method Active JP5323503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000888A JP5323503B2 (en) 2009-01-06 2009-01-06 Temperature sensor anomaly detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009000888A JP5323503B2 (en) 2009-01-06 2009-01-06 Temperature sensor anomaly detection method

Publications (2)

Publication Number Publication Date
JP2010159643A JP2010159643A (en) 2010-07-22
JP5323503B2 true JP5323503B2 (en) 2013-10-23

Family

ID=42576996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000888A Active JP5323503B2 (en) 2009-01-06 2009-01-06 Temperature sensor anomaly detection method

Country Status (1)

Country Link
JP (1) JP5323503B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6246623B2 (en) * 2014-03-10 2017-12-13 日立オートモティブシステムズ株式会社 Cooling device for internal combustion engine
KR101806372B1 (en) 2016-12-09 2018-01-10 현대오트론 주식회사 Diagnosis Method of the Relative Humidity Sensor for Vehicle
AT521736B1 (en) * 2018-09-27 2022-04-15 Avl List Gmbh Procedure for checking the function of a temperature sensor arrangement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264852A (en) * 1993-03-11 1994-09-20 Mitsubishi Motors Corp Cooling water temperature control device for water-cooled engine
JP2003286888A (en) * 2002-03-27 2003-10-10 Honda Motor Co Ltd Controller of vehicle for detecting abnormality of temperature sensor
JP2006350707A (en) * 2005-06-16 2006-12-28 Hitachi Ltd Fault diagnosis device for detection means
JP4172594B2 (en) * 2005-08-25 2008-10-29 本田技研工業株式会社 Temperature sensor failure determination device
JP4247843B2 (en) * 2006-09-01 2009-04-02 本田技研工業株式会社 Temperature detection device abnormality determination device

Also Published As

Publication number Publication date
JP2010159643A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
JP4325367B2 (en) Exhaust temperature sensor failure detection device
WO2010073511A1 (en) Method of diagnosing regeneration failure of exhaust purifying device
EP2261489B1 (en) Method for controlling exhaust gas purification system and exhaust gas purification system
US8181449B2 (en) Control method of exhaust gas purification system and exhaust gas purification system
JP3988785B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4673226B2 (en) Exhaust gas purification method and exhaust gas purification system
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
US20120023911A1 (en) Detection of exhaust particulate filter substrate failure
WO2015046445A1 (en) Diagnosing device
US9074507B2 (en) Event-based deviation integration temperature control loop diagnostic system
JP2004218497A (en) Exhaust emission control device for internal combustion engine
JP2004116332A (en) Exhaust emission control device of internal combustion engine
JP3938865B2 (en) Exhaust purification device control method
JP2007182849A (en) Excessive combustion detection method in particulate filter regeneration
US9046026B2 (en) Particulate oxidation catalyst with dual pressure-drop sensors
JP5323503B2 (en) Temperature sensor anomaly detection method
JP2006022730A (en) Exhaust temperature sensor failure detection device for exhaust emission control device
JP6223024B2 (en) Closed sticking detection device for fuel shut-off valve
JP4636278B2 (en) Exhaust gas purification device for internal combustion engine
JP4040833B2 (en) Diesel engine exhaust purification system
JP4012037B2 (en) Exhaust purification equipment
JP2003155913A (en) Method and device for cleaning exhaust gas
JP6056267B2 (en) Engine exhaust purification system
JP4894569B2 (en) Temperature sensor failure diagnosis device
JP2004300973A (en) Regeneration start judgment method of dpf and exhaust emission control system having dpf

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250