JP5321218B2 - CO2 electrolysis apparatus and method for producing CO2 electrolysis product - Google Patents
CO2 electrolysis apparatus and method for producing CO2 electrolysis product Download PDFInfo
- Publication number
- JP5321218B2 JP5321218B2 JP2009103357A JP2009103357A JP5321218B2 JP 5321218 B2 JP5321218 B2 JP 5321218B2 JP 2009103357 A JP2009103357 A JP 2009103357A JP 2009103357 A JP2009103357 A JP 2009103357A JP 5321218 B2 JP5321218 B2 JP 5321218B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- electrolysis
- cathode
- electrolytic
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
本発明は、CO2電解装置及びCO2電解生成物の製造方法に関し、さらに詳しくは、CO2を電気分解することにより得られる一酸化炭素、メタン、エタン、エチレン、メタノールなどの電解生成物を効率よく製造することが可能なCO2電解装置及びCO2電解生成物の製造方法に関する。 The present invention relates to a CO 2 electrolysis device and a method for producing a CO 2 electrolysis product, and more specifically, an electrolysis product such as carbon monoxide, methane, ethane, ethylene, methanol obtained by electrolyzing CO 2. The present invention relates to a CO 2 electrolysis apparatus that can be efficiently produced and a method for producing a CO 2 electrolysis product.
電気分解とは、化合物の溶液又は融液に電流を流すことによって、電気化学的に酸化還元反応を引き起こし、化合物を分解させる反応をいう。
電気分解は、
(1)水から水素を製造したり、あるいは、塩化ナトリウムから水酸化ナトリウムと塩素を製造する電解採取、
(2)粗金属(例えば、Cu)から不純物を除去する電解精製、
(3)メッキなどの表面処理、
(4)アクリロニトリルなどの有機物や過酸化物を合成するための電解合成、
などに利用されている。
Electrolysis refers to a reaction in which an oxidation-reduction reaction is electrochemically caused by flowing an electric current through a solution or melt of a compound to decompose the compound.
Electrolysis is
(1) Electrowinning to produce hydrogen from water or to produce sodium hydroxide and chlorine from sodium chloride,
(2) electrolytic purification to remove impurities from the crude metal (for example, Cu),
(3) Surface treatment such as plating,
(4) Electrosynthesis for synthesizing organic substances and peroxides such as acrylonitrile,
It is used for such as.
電気分解の中でも、CO2の電気分解は、エネルギー源や有機化合物合成用の原料として使用することが可能な種々のガスや液体(例えば、CO、CH4、エタノールなど)を製造することができる。そのため、CO2の電気分解に関し、従来から種々の提案がなされている。
例えば、非特許文献1には、0.1M KHCO3水溶液中でPt線(又は、Pt板)を対極、Cu線(又は、Cu板)を作用電極として、CO2をバブリングしながら電解するCO2の電気化学還元方法(以下、「バブリング法」という)が開示されている。
Among electrolysis, electrolysis of CO 2 can produce various gases and liquids (for example, CO, CH 4 , ethanol, etc.) that can be used as an energy source or a raw material for organic compound synthesis. . For this reason, various proposals have been made regarding CO 2 electrolysis.
For example, Non-Patent Document 1 discloses CO in which electrolysis is performed while bubbling CO 2 in a 0.1 M KHCO 3 aqueous solution using a Pt wire (or Pt plate) as a counter electrode and a Cu wire (or Cu plate) as a working electrode. 2 electrochemical reduction methods (hereinafter referred to as “bubbling methods”) are disclosed.
また、非特許文献2には、
(1)Cu粉末とPTFE粉末を混合及びホットプレスすることによりミクロンオーダーの細孔のある多孔性電極(ガス拡散電極)を作製し、
(2)この多孔性電極を側壁に用いた容器内に電解液を入れ、
(3)多孔性電極の裏面に加圧されたCO2を供給し、CO2を多孔性電極の裏面から電解液側に供給しながら電気分解を行う
CO2の電気化学還元方法(以下、「ガス拡散電極法」という)が開示されている。
同文献には、電解液とCu微粒子の界面にCO2を供給できるため、効率よくCO2の電気化学還元が可能となる点が記載されている。
Non-Patent Document 2 includes
(1) A porous electrode (gas diffusion electrode) having micron-order pores is prepared by mixing and hot pressing Cu powder and PTFE powder,
(2) The electrolyte is placed in a container using the porous electrode as a side wall,
(3) the pressurized CO 2 was supplied to the back surface of the porous electrode, the electrochemical reduction method CO 2 for performing electrolysis while supplying CO 2 from the back surface of the porous electrode to the electrolyte side (hereinafter, " Gas diffusion electrode method ”).
This document describes that CO 2 can be efficiently supplied to the interface between the electrolytic solution and the Cu fine particles, so that the electrochemical reduction of CO 2 can be efficiently performed.
また、非特許文献3には、1mM程度の硫酸銅(CuSO4)を含む0.5M KHSO4水溶液中でCu網からなるガス拡散電極を用いてCO2を電気化学還元する方法が開示されている。
さらに、特許文献1には、CO2の電気分解ではないが、導電性の多孔性Ni基板の表面にポリイミドを含む溶液を塗布して均一な膜を形成し、非酸化性雰囲気下で炭化することにより得られるポリイミド炭化膜、及びこれを用いた水電解方法が開示されている。
Non-Patent Document 3 discloses a method for electrochemical reduction of CO 2 using a gas diffusion electrode made of a Cu net in a 0.5 M KHSO 4 aqueous solution containing about 1 mM of copper sulfate (CuSO 4 ). Yes.
Furthermore, in Patent Document 1, although not electrolysis of CO 2 , a solution containing polyimide is applied to the surface of a conductive porous Ni substrate to form a uniform film and carbonized in a non-oxidizing atmosphere. The polyimide carbide film obtained by this and the water electrolysis method using the same are disclosed.
バブリング法を用いてCO2の電気化学還元を行う場合、作用電極で生じたガス状の電解生成物(例えば、メタン、水素など)は、そのまま電解液外に排出される。そのため、採取されるガスは、未反応のCO2とガス状電解生成物の混合ガスとなり、電解生成物の濃度が極めて低い。また、液体状の電解生成物(例えば、エタノール、アセトンなど)は、そのまま電解液に溶解し、採取することができない。
この点は、ガス拡散電極法を用いた場合も同様である。すなわち、ガス拡散電極の裏面から圧入されるCO2の一部のみが還元されるため、採取されるガスは、未反応のCO2とガス状電解生成物の混合ガスとなる。また、液体状の電解生成物は、そのまま電解液に溶解し、採取することができない。
When electrochemical reduction of CO 2 is performed using a bubbling method, gaseous electrolytic products (eg, methane, hydrogen, etc.) generated at the working electrode are discharged out of the electrolyte as they are. Therefore, the collected gas becomes a mixed gas of unreacted CO 2 and the gaseous electrolytic product, and the concentration of the electrolytic product is extremely low. In addition, liquid electrolytic products (for example, ethanol, acetone, etc.) are dissolved in the electrolytic solution as they are and cannot be collected.
This is the same when the gas diffusion electrode method is used. That is, since only a part of CO 2 that is press-fitted from the back surface of the gas diffusion electrode is reduced, the collected gas becomes a mixed gas of unreacted CO 2 and a gaseous electrolytic product. Further, the liquid electrolytic product is dissolved as it is in the electrolytic solution and cannot be collected.
本発明が解決しようとする課題は、CO2を電気化学還元することにより得られるガス状の電解生成物を相対的に高濃度で採取することが可能なCO2電解装置及びCO2電解生成物の製造方法を提供することにある。
また、本発明が解決しようとする他の課題は、CO2を電気化学還元することにより得られる液体状の電解生成物を採取することが可能なCO2電解装置及びCO2電解生成物の製造方法を提供することにある。
The problem to be solved by the present invention is that a CO 2 electrolysis apparatus and a CO 2 electrolysis product capable of collecting a gaseous electrolysis product obtained by electrochemical reduction of CO 2 at a relatively high concentration It is in providing the manufacturing method of.
Another object of the present invention is to provide a production of CO 2 and can be collected liquid electrolysis products obtained by electrochemical reduction of CO 2 electrolysis device and CO 2 electrolysis products It is to provide a method.
上記課題を解決するために本発明に係るCO2電解装置は、以下の構成を備えている。
(1)前記CO2電解装置は、
Kイオンを含む陽極側電解液を保持するための陽極室と、
Kイオンを含む陰極側電解液を保持するための陰極室と、
前記陰極室に供給されたCO2の電気分解により生じた電解生成物を取り出すための透過室と、
前記陽極側電解液に浸漬される対極と、
前記陽極室と前記陰極室とを隔離するイオン交換膜と、
前記陰極室と前記透過室とを隔離し、かつ、前記電解生成物を前記透過室に透過させるための作用電極と
を備えている。
(2)前記作用電極は、カーボンナノチューブ(CNT)膜からなる。
(3)前記作用電極の前記陰極室側表面には、前記CO2を電気化学的に分解することが可能な元素を含む微粒子が担持されている。
In order to solve the above problems, a CO 2 electrolysis apparatus according to the present invention has the following configuration.
(1) The CO 2 electrolyzer
An anode chamber for holding an anode-side electrolyte containing K ions;
A cathode chamber for holding a cathode side electrolyte containing K ions;
A permeation chamber for taking out electrolysis products generated by electrolysis of CO 2 supplied to the cathode chamber;
A counter electrode immersed in the anode side electrolyte,
An ion exchange membrane that separates the anode chamber and the cathode chamber;
A working electrode for separating the cathode chamber from the transmission chamber and transmitting the electrolytic product to the transmission chamber;
(2) The working electrode is made of a carbon nanotube (CNT) film.
(3) Fine particles containing an element capable of electrochemically decomposing the CO 2 are supported on the cathode chamber side surface of the working electrode.
また、本発明に係るCO2電解生成物の製造方法は、
本発明に係るCO2電解装置の陽極室及び陰極室に、それぞれ、Kイオンを含む陽極側電解液及びKイオンを含む陰極側電解液を入れ、前記陰極側電解液にCO2を供給し、作用電極を陰極として電気分解を行う電解工程を備えている。
In addition, a method for producing a CO 2 electrolysis product according to the present invention includes:
In the anode chamber and the cathode chamber of the CO 2 electrolysis apparatus according to the present invention, respectively, an anode side electrolyte containing K ions and a cathode side electrolyte containing K ions are supplied, and CO 2 is supplied to the cathode side electrolyte, The electrolysis process which electrolyzes using a working electrode as a cathode is provided.
CNT膜は、一方の面から他方の面にかけて連続的に繋がった細孔(1〜10nm)を持つ。また、CNT膜は、疎水性と導電性も併せ持つ。そのため、陰極室と透過室との間をCNT膜で隔離し、CNT膜を作用電極としてCO2を含む電解液の電気分解を行うと、電解生成物のみが作用電極を通って透過室側に排出される。そのため、電解生成物を相対的に高濃度で採取することができる。しかも、ガス状の電解生成物だけでなく、液体状の電解生成物も透過室側に排出されるので、液体状の電解生成物であっても採取することができる。 The CNT film has pores (1 to 10 nm) continuously connected from one surface to the other surface. Further, the CNT film has both hydrophobicity and conductivity. Therefore, when the cathode chamber and the permeation chamber are separated by a CNT film, and the electrolytic solution containing CO 2 is electrolyzed using the CNT film as a working electrode, only the electrolytic product passes through the working electrode to the permeation chamber side. Discharged. Therefore, the electrolytic product can be collected at a relatively high concentration. In addition, since not only the gaseous electrolytic product but also the liquid electrolytic product is discharged to the permeation chamber side, even the liquid electrolytic product can be collected.
以下、本発明の一実施の形態について詳細に説明する。
[1. CO2電解装置]
図1に、本発明の一実施の形態に係るCO2電解装置の概略構成図を示す。図1において、CO2電解装置10は、陽極室12と、陰極室14と、透過室16と、対極18と、イオン交換膜20と、作用電極22と、微粒子24とを備えている。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. CO 2 electrolyzer]
FIG. 1 shows a schematic configuration diagram of a CO 2 electrolysis apparatus according to an embodiment of the present invention. In FIG. 1, the CO 2 electrolysis apparatus 10 includes an anode chamber 12, a cathode chamber 14, a transmission chamber 16, a counter electrode 18, an ion exchange membrane 20, a working electrode 22, and fine particles 24.
[1.1. 陽極室]
陽極室12は、Kイオンを含む陽極側電解液を保持するためのものである。陽極室12は、陰極室14に隣接して設けられ、陽極室12と陰極室14の間は、イオン交換膜20により隔離されている。
CO2の電気分解を行う場合、陽極側電解液は、Kイオンを含むものであれば良い。陽極側電解液中のKイオン濃度は、特に限定されるものではなく、目的に応じて最適な濃度を選択することができる。
陽極側電解液としては、具体的には、KHCO3水溶液、KCl水溶液、KClO4水溶液、K2SO4水溶液、KHSO4水溶液、KOH水溶液、K2HPO4水溶液などがある。濃度は、0.01〜5Mが好ましく、さらに好ましくは、0.02〜2Mである。
[1.1. Anode chamber]
The anode chamber 12 is for holding an anode side electrolyte containing K ions. The anode chamber 12 is provided adjacent to the cathode chamber 14, and the anode chamber 12 and the cathode chamber 14 are isolated by an ion exchange membrane 20.
When performing electrolysis of CO 2, the anode side electrolyte is not limited as long as containing K ion. The K ion concentration in the anode side electrolyte is not particularly limited, and an optimum concentration can be selected according to the purpose.
Specific examples of the anode-side electrolyte include a KHCO 3 aqueous solution, a KCl aqueous solution, a KClO 4 aqueous solution, a K 2 SO 4 aqueous solution, a KHSO 4 aqueous solution, a KOH aqueous solution, and a K 2 HPO 4 aqueous solution. The concentration is preferably 0.01 to 5M, more preferably 0.02 to 2M.
[1.2. 陰極室]
陰極室14は、Kイオンを含む陰極側電解液を保持するためのものである。陰極室14の左側に隣接して陽極室12が設けられ、陰極室14の右側に隣接して透過室16が設けられている。陰極室14と透過室16の間は、作用電極22により隔離されている。
CO2の電気分解を行う場合、陰極側電解液は、Kイオンを含むものであればよい。陰極側電解液中のKイオン濃度は、特に限定されるものではなく、目的に応じて最適な濃度を選択することができる。
[1.2. Cathode chamber]
The cathode chamber 14 is for holding a cathode side electrolyte containing K ions. An anode chamber 12 is provided adjacent to the left side of the cathode chamber 14, and a transmission chamber 16 is provided adjacent to the right side of the cathode chamber 14. The cathode chamber 14 and the transmission chamber 16 are separated by a working electrode 22.
When performing electrolysis of CO 2, the cathode-side electrolyte may be one containing K ion. The K ion concentration in the cathode side electrolyte is not particularly limited, and an optimum concentration can be selected according to the purpose.
陰極側電解液は、Kイオンに加えて、CO2を電気化学的に分解することが可能な元素(以下、「CO2分解元素」という)のイオンを含んでいても良い。陰極側電解液中のCO2分解元素のイオン濃度は、特に限定されるものではなく、目的に応じて最適な濃度を選択することができる。
後述するように、作用電極22表面には、CO2分解元素を含む微粒子24が担持される。陰極側電解液にCO2分解元素のイオンが含まれていると、電気分解の進行に伴い、作用電極22に担持された微粒子24の上にCO2分解元素が新たに析出する。そのため、継続的、かつ、高効率でCO2の還元を行うことができる。このようなCO2分解元素としては、具体的には、Cu、Ag、Ni、これらの合金などがある。特に、Cuは、CH4などのHを含むガスを生成させる作用があるので、CO2分解元素として好適である。
Cathode electrolyte, in addition to K ion and an element capable of decomposing the CO 2 electrochemically (hereinafter, referred to as "CO 2 decomposition element") may contain ions. The ion concentration of the CO 2 decomposition element in the cathode side electrolyte is not particularly limited, and an optimum concentration can be selected according to the purpose.
As will be described later, fine particles 24 containing a CO 2 decomposition element are carried on the surface of the working electrode 22. If the cathode-side electrolyte contains CO 2 -decomposing element ions, a new CO 2 -decomposing element is deposited on the fine particles 24 carried on the working electrode 22 as the electrolysis progresses. Therefore, CO 2 can be reduced continuously and with high efficiency. Specific examples of such CO 2 decomposition elements include Cu, Ag, Ni, and alloys thereof. In particular, Cu is suitable as a CO 2 decomposition element because it has a function of generating a gas containing H such as CH 4 .
陰極側電解液としては、具体的には、
(1)0.1M KHCO3水溶液、
(2)0.1M KHCO3+5×10-4M Cu(NO3)2水溶液、
(3)0.1M KHCO3+5×10-4M AgNO3水溶液、
(4)0.1M KHCO3+5×10-4M Ni(NO3)2水溶液、
などがある。
As the cathode side electrolyte, specifically,
(1) 0.1M KHCO 3 aqueous solution,
(2) 0.1M KHCO 3 + 5 × 10 −4 M Cu (NO 3 ) 2 aqueous solution,
(3) 0.1M KHCO 3 + 5 × 10 −4 M AgNO 3 aqueous solution,
(4) 0.1M KHCO 3 + 5 × 10 −4 M Ni (NO 3 ) 2 aqueous solution,
and so on.
[1.3. 透過室]
透過室16は、陰極室14に供給されたCO2の電気分解により生じた電解生成物を取り出すためのものである。
陰極室14にCO2を供給しながら、作用電極22を陰極として電気分解を行うと、電解生成物が作用電極22を透過して、透過室16に排出される。
透過室16に排出された電解生成物を採取する方法としては、透過室16にスイープガス(例えば、Ar)を流す方法などがある。
[1.3. Transmission chamber]
The permeation chamber 16 is for taking out electrolytic products generated by electrolysis of CO 2 supplied to the cathode chamber 14.
When electrolysis is performed using the working electrode 22 as a cathode while supplying CO 2 to the cathode chamber 14, the electrolytic product permeates the working electrode 22 and is discharged into the permeation chamber 16.
As a method of collecting the electrolytic product discharged into the permeation chamber 16, there is a method of flowing a sweep gas (for example, Ar) through the permeation chamber 16.
[1.4. 対極]
対極18は、陽極側電解液に電流を供給するためのものであり、陽極側電解液に浸漬される。CO2の電気分解の場合、対極18は、電源30の+極に接続される。
対極18の材料、形状は、特に限定されるものではなく、陽極側電解液に安定して電流を流し続けることができるものであればよい。対極18としては、具体的には、Pt線、Pt板、Ptネットなどがある。
[1.4. Counter electrode]
The counter electrode 18 is for supplying an electric current to the anode side electrolyte, and is immersed in the anode side electrolyte. In the case of CO 2 electrolysis, the counter electrode 18 is connected to the + electrode of the power source 30.
The material and shape of the counter electrode 18 are not particularly limited as long as the current can stably flow through the anode-side electrolyte. Specific examples of the counter electrode 18 include a Pt line, a Pt plate, and a Pt net.
[1.5. イオン交換膜]
イオン交換膜20は、陽極室12と陰極室14とを隔離するためのものである。イオン交換膜20は、対極18で生成した酸素ガスを陰極室14側に透過させることがなく、かつ、プロトンを陽極室12から陰極室14に透過させることができるものであればよい。
イオン交換膜20としては、具体的には、パーフルオロカーボンスルホン酸膜(例えば、ナフィオン(登録商標)115膜)などがある。
[1.5. Ion exchange membrane]
The ion exchange membrane 20 is for isolating the anode chamber 12 and the cathode chamber 14. The ion exchange membrane 20 may be any material as long as it does not allow oxygen gas generated at the counter electrode 18 to permeate the cathode chamber 14 and allows protons to permeate from the anode chamber 12 to the cathode chamber 14.
Specific examples of the ion exchange membrane 20 include a perfluorocarbon sulfonic acid membrane (for example, Nafion (registered trademark) 115 membrane).
[1.6. 作用電極]
作用電極22は、陰極側電解液に電流を供給するためのものである。CO2の電気分解の場合、作用電極22は、電源30の−極に接続される。また、本発明において、作用電極22は、陰極室14と透過室16とを隔離し、かつ、電解生成物を透過室16に透過させるためのものでもある。
[1.6. Working electrode]
The working electrode 22 is for supplying a current to the cathode side electrolyte. In the case of CO 2 electrolysis, the working electrode 22 is connected to the negative pole of the power supply 30. In the present invention, the working electrode 22 also serves to isolate the cathode chamber 14 and the transmission chamber 16 and allow the electrolytic product to pass through the transmission chamber 16.
作用電極22は、陰極側電解液に電流を供給する必要があるため、導電性を有する材料である必要がある。また、陰極室14と透過室16とを隔離し、透過室16側への陰極側電解液の漏洩を防ぐ必要があるので、疎水性の材料である必要がある。
さらに、作用電極22の陰極室14側表面で生成した電解生成物を透過室16側に透過させる必要があるので、一方の面から他方の面にかけて連続的に繋がった細孔を有する材料である必要がある。
Since the working electrode 22 needs to supply a current to the cathode side electrolyte, it needs to be a conductive material. Moreover, since it is necessary to isolate the cathode chamber 14 and the permeation | transmission chamber 16 and to prevent the leakage of the cathode side electrolyte solution to the permeation | transmission chamber 16 side, it needs to be a hydrophobic material.
Furthermore, since the electrolytic product generated on the cathode chamber 14 side surface of the working electrode 22 needs to be transmitted to the permeation chamber 16 side, the material has pores continuously connected from one surface to the other surface. There is a need.
作用電極22の細孔径が小さすぎると、電解生成物の透過効率が低下する。また、圧力差によって作用電極22が破損するおそれもある。従って、作用電極22の細孔径は、0.5nm以上が好ましい。細孔径は、さらに好ましくは、1nm以上である。
一方、作用電極22の細孔径が大きすぎると、陰極側電解液が透過室16に漏洩する。従って、作用電極22の細孔径は、20nm以下が好ましい。細孔径は、さらに好ましくは、10nm以下である。
If the pore diameter of the working electrode 22 is too small, the permeation efficiency of the electrolytic product is lowered. Further, the working electrode 22 may be damaged by the pressure difference. Therefore, the pore diameter of the working electrode 22 is preferably 0.5 nm or more. The pore diameter is more preferably 1 nm or more.
On the other hand, if the pore diameter of the working electrode 22 is too large, the cathode side electrolyte leaks into the permeation chamber 16. Therefore, the pore diameter of the working electrode 22 is preferably 20 nm or less. The pore diameter is more preferably 10 nm or less.
カーボンナノチューブ(CNT)膜は、このような導電性、疎水性、及び細孔径を兼ね備えているので、作用電極22の材料として特に好適である。
ここで、「CNT膜」とは、CNTからなる多孔質の膜をいう。CNT膜としては、例えば、CNTの分散液を多孔質基板の上に塗布し、分散媒を吸引ろ過することにより得られるCNT積層体膜などがある。
CNT膜の厚さは、CO2の電解効率や電極の耐久性に影響を与える。CNT膜の厚さが薄すぎると、陰極室14と透過室16の圧力差によって膜が破損しやすくなる。従って、CNT膜の厚さは、1μm以上が好ましい。CNT膜の厚さは、さらに好ましくは、2μm以上である。
一方、CNT膜の厚さが厚すぎると、圧力損失が大きくなり、電解生成物の透過効率が低下する。従って、CNT膜の厚さは、50μm以下が好ましい。CNT膜の厚さは、さらに好ましくは、20μm以下である。
A carbon nanotube (CNT) film is particularly suitable as a material for the working electrode 22 because it has such conductivity, hydrophobicity, and pore diameter.
Here, the “CNT film” refers to a porous film made of CNT. Examples of the CNT film include a CNT laminate film obtained by applying a CNT dispersion on a porous substrate and suction-filtering the dispersion medium.
The thickness of the CNT film affects the electrolytic efficiency of CO 2 and the durability of the electrode. If the thickness of the CNT film is too thin, the film is likely to be damaged by the pressure difference between the cathode chamber 14 and the transmission chamber 16. Therefore, the thickness of the CNT film is preferably 1 μm or more. The thickness of the CNT film is more preferably 2 μm or more.
On the other hand, when the thickness of the CNT film is too thick, the pressure loss increases, and the permeation efficiency of the electrolytic product decreases. Therefore, the thickness of the CNT film is preferably 50 μm or less. The thickness of the CNT film is more preferably 20 μm or less.
[1.7. 微粒子]
作用電極22の表面には、CO2分解元素を含む微粒子24が担持される。このような微粒子24としては、具体的には、Cu微粒子、Ag微粒子、Ni微粒子、これらの合金微粒子などがある。特に、Cu微粒子は、CH4のようなHを含むガスを生成させる作用があるので、作用電極22の表面に担持させる微粒子24として好適である。
CO2の電解に伴い、微粒子24の表面にカーボンが析出するので、CO2の還元効率が低下する。一方、陰極側電解液に予めCO2分解元素のイオンを溶解させておくと、電解の進行に伴い、微粒子24の上に、新たにCO2分解元素が析出する。そのため、継続的、かつ、高効率でCO2の還元を行うことができる。
作用電極22表面への微粒子24の担持量は、特に限定されるものではなく、目的に応じて最適な担持量を選択することができる。一般に、微粒子24の担持量が多くなるほど、CO2の還元効率が向上する。一方、必要以上の担持は効果に差がなく、実益がない。
このような微粒子24は、例えば、メッキ法の他、スパッタ法、真空蒸着法などにより作用電極22上に担持させることができる。
[1.7. Fine particles]
The surface of the working electrode 22 carries fine particles 24 containing a CO 2 decomposition element. Specific examples of such fine particles 24 include Cu fine particles, Ag fine particles, Ni fine particles, and alloy fine particles thereof. In particular, the Cu fine particles are suitable as the fine particles 24 supported on the surface of the working electrode 22 because they have a function of generating a gas containing H such as CH 4 .
Along with the electrolysis of CO 2 , carbon is deposited on the surface of the fine particles 24, so that the reduction efficiency of CO 2 decreases. On the other hand, if the ions of the CO 2 decomposition element are dissolved in advance in the cathode side electrolyte solution, a new CO 2 decomposition element is deposited on the fine particles 24 as the electrolysis proceeds. Therefore, CO 2 can be reduced continuously and with high efficiency.
The carrying amount of the fine particles 24 on the surface of the working electrode 22 is not particularly limited, and an optimum carrying amount can be selected according to the purpose. In general, the greater the amount of fine particles 24 supported, the better the CO 2 reduction efficiency. On the other hand, loading more than necessary has no difference in effect and has no real benefit.
Such fine particles 24 can be supported on the working electrode 22 by, for example, a plating method, a sputtering method, a vacuum evaporation method, or the like.
[2. CO2電解生成物の製造方法]
本発明に係るCO2電解生成物の製造方法は、本発明に係るCO2電解装置の陽極室及び陰極室に、それぞれ、Kイオンを含む陽極側電解液及びKイオンを含む陰極側電解液を入れ、陰極側電解液にCO2を供給し、作用電極を陰極として電気分解を行う電解工程を備えている。
[2. Method for producing CO 2 electrolysis product]
In the method for producing a CO 2 electrolysis product according to the present invention, an anode side electrolyte solution containing K ions and a cathode side electrolyte solution containing K ions are respectively added to the anode chamber and the cathode chamber of the CO 2 electrolysis apparatus according to the present invention. And an electrolysis process in which CO 2 is supplied to the cathode side electrolyte and electrolysis is performed using the working electrode as a cathode.
「陰極側電解液にCO2を供給する」とは、陰極側電解液にCO2ガスをバブリングすること、又は、陰極側電解液にCO2を溶解させることをいう。
陽極側電解液及び陰極側電解液には、それぞれ、Kイオンを含む電解液を用いる。また、陰極側電解液は、Kイオンに加えて、CO2分解元素のイオンを含んでいても良い。陽極側電解液及び陰極側電解液に関するその他の点は、上述した通りであるので、説明を省略する。
“Supplying CO 2 to the cathode-side electrolyte” means bubbling CO 2 gas into the cathode-side electrolyte or dissolving CO 2 in the cathode-side electrolyte.
As the anode side electrolyte solution and the cathode side electrolyte solution, an electrolyte solution containing K ions is used. Further, the cathode side electrolytic solution may contain ions of a CO 2 decomposition element in addition to K ions. Since the other points regarding the anode side electrolyte solution and the cathode side electrolyte solution are as described above, description thereof will be omitted.
陰極側電解液にCO2を供給し、作用電極を陰極として電気分解を行うと、陽極室12側では、次の(1)式に従って水の電気分解が起こり、酸素が発生する。
2H2O → O2+4H++4e- ・・・(1)
一方、陰極室14側では、(2)式に従って水の電気分解が起こると同時に、(3)式に従って電極表面に吸着したCOが生成し、発生した水素と(4)式等に従ってCO2を還元する。
2H2O+4e- → 2H2+4OH- ・・・(2)
CO2+2e- → CO(吸着)+O2- ・・・(3)
CO(吸着)+3H2 → CH4+H2O ・・・(4)
作用電極22の陰極室14側表面で生成した電解生成物は、作用電極22の細孔を通って透過室16に排出される。
When CO 2 is supplied to the cathode side electrolyte and electrolysis is performed using the working electrode as a cathode, water is electrolyzed and oxygen is generated on the anode chamber 12 side according to the following equation (1).
2H 2 O → O 2 + 4H + + 4e − (1)
On the other hand, in the cathode chamber 14 side, the CO 2 in accordance with at the same time the electrolysis of water takes place, (3) adsorbed CO is generated on the electrode surface in accordance with equation generated hydrogen (4) or the like according to (2) Reduce.
2H 2 O + 4e − → 2H 2 + 4OH − (2)
CO 2 + 2e − → CO (adsorption) + O 2− (3)
CO (adsorption) + 3H 2 → CH 4 + H 2 O (4)
The electrolytic product generated on the surface of the working electrode 22 on the cathode chamber 14 side is discharged to the permeation chamber 16 through the pores of the working electrode 22.
[3. CO2電解装置及びCO2電解生成物の製造方法の作用]
図2(a)に、バブリング法を用いたCO2電解装置の概略構成図を示す。
バブリング法を用いた従来のCO2電解装置は、
陽極側電解液(例えば、0.1M KHCO3水溶液)が充填された陽極室と、
陰極側電解液(例えば、0.1M KHCO3水溶液)が充填された陰極室と、
陽極室及び陰極室を隔離するためのイオン交換膜(例えば、ナフィオン(登録商標)115膜)と、
陽極側電解液に浸漬されたPt電極と、
陰極型電解液に浸漬されたCu電極とを備えている。
[3. Action of CO 2 electrolysis apparatus and CO 2 electrolysis product manufacturing method]
FIG. 2A shows a schematic configuration diagram of a CO 2 electrolysis apparatus using a bubbling method.
The conventional CO 2 electrolyzer using the bubbling method is
An anode chamber filled with an anode side electrolyte (for example, 0.1 M KHCO 3 aqueous solution);
A cathode chamber filled with a cathode side electrolyte (for example, 0.1 M KHCO 3 aqueous solution);
An ion exchange membrane (eg, Nafion (registered trademark) 115 membrane) for isolating the anode chamber and the cathode chamber;
A Pt electrode immersed in the anode electrolyte;
And a Cu electrode immersed in the cathode electrolyte.
このような電解装置において、陰極側電解液にCO2をバブリングしながら、Cu電極を作用電極として電気分解を行うと、Cu電極表面でCO2の電気分解が起こる。
しかしながら、バブリング法の場合、ガス状の電解生成物は、バブリングしている未反応のCO2ガスと混合された状態で系外に排出される。そのため、採取されたガスに含まれるガス状の電解生成物の濃度は、相対的に低い。また、液体状の電解生成物は、そのまま電解液に陰極側溶解し、採取することはできない。
In such electrolytic apparatus, while bubbling CO 2 on the cathode side electrolyte, when the electrolysis used as a working electrode Cu electrode, electrolysis of CO 2 occurs in Cu electrode surface.
However, in the case of the bubbling method, the gaseous electrolysis product is discharged out of the system in a state of being mixed with the bubbling unreacted CO 2 gas. Therefore, the concentration of the gaseous electrolytic product contained in the collected gas is relatively low. Further, the liquid electrolytic product cannot be collected by dissolving the cathode side in the electrolytic solution as it is.
図2(b)に、ガス拡散電極法を用いたCO2電解装置の概略構成図を示す。
ガス拡散電極法を用いた従来のCO2電解装置は、
陽極側電解液(例えば、0.1M KHCO3水溶液)が充填された陽極室と、
陰極側電解液(例えば、0.1M KHCO3水溶液)が充填された陰極室と、
陽極室及び陰極室を隔離するためのイオン交換膜(例えば、ナフィオン(登録商標)115膜)と、
陽極側電解液に浸漬されたPt電極と、
陰極室の側壁に設けられたCu粒子(網)からなるガス拡散電極とを備えている。
FIG. 2B shows a schematic configuration diagram of a CO 2 electrolysis apparatus using the gas diffusion electrode method.
The conventional CO 2 electrolyzer using the gas diffusion electrode method is
An anode chamber filled with an anode side electrolyte (for example, 0.1 M KHCO 3 aqueous solution);
A cathode chamber filled with a cathode side electrolyte (for example, 0.1 M KHCO 3 aqueous solution);
An ion exchange membrane (eg, Nafion (registered trademark) 115 membrane) for isolating the anode chamber and the cathode chamber;
A Pt electrode immersed in the anode electrolyte;
And a gas diffusion electrode made of Cu particles (net) provided on the side wall of the cathode chamber.
このような電解装置において、ガス拡散電極の裏面から陰極室に向かってCO2を供給しながら、ガス拡散電極を作用電極として電気分解を行うと、ガス拡散電極の陰極室側表面においてCO2の電気分解が起こる。
しかしながら、ガス拡散電極法の場合、ガス状の電解生成物は、ガス拡散電極を素通りした未反応のCO2ガスと混合された状態で系外に排出される。そのため、採取されたガスに含まれるガス状の電解生成物の濃度は、相対的に低い。また、液体状の電解生成物は、そのまま陰極側電解液に溶解し、採取することはできない。
In such an electrolysis apparatus, when CO 2 is supplied from the back surface of the gas diffusion electrode toward the cathode chamber and electrolysis is performed using the gas diffusion electrode as a working electrode, the CO 2 concentration on the cathode chamber side surface of the gas diffusion electrode is reduced. Electrolysis occurs.
However, in the case of the gas diffusion electrode method, the gaseous electrolytic product is discharged out of the system in a state of being mixed with unreacted CO 2 gas that has passed through the gas diffusion electrode. Therefore, the concentration of the gaseous electrolytic product contained in the collected gas is relatively low. Further, the liquid electrolytic product is dissolved in the cathode side electrolytic solution as it is and cannot be collected.
これに対し、本発明に係るCO2電解装置10は、陰極室14に隣接して透過室16が設けられ、陰極室14と透過室16の間をCNT膜からなる作用電極22で隔離した構造を備えている。
CNT膜は疎水性であるため、CNT膜の陰極室14側表面でCO2の電気分解が起こると、CNT膜の最表面の細孔内にある水が容易に電解生成物に置換される。しかも、CNT膜は、直径10nm程度のCNTの絡み合いによって形成されるnmオーダーの連続した細孔が存在するため、電解生成物のみがナノ細孔内を拡散して透過室16側に排出される。その結果、電解生成物を相対的に高濃度で採取することができる。
On the other hand, the CO 2 electrolysis apparatus 10 according to the present invention has a structure in which a transmission chamber 16 is provided adjacent to the cathode chamber 14 and the cathode chamber 14 and the transmission chamber 16 are separated by a working electrode 22 made of a CNT film. It has.
Since the CNT film is hydrophobic, when CO 2 electrolysis occurs on the surface of the CNT film on the cathode chamber 14 side, water in the pores on the outermost surface of the CNT film is easily replaced with the electrolytic product. In addition, since the CNT film has continuous pores in the order of nm formed by entanglement of CNTs having a diameter of about 10 nm, only electrolytic products diffuse in the nanopores and are discharged to the permeation chamber 16 side. . As a result, the electrolytic product can be collected at a relatively high concentration.
また、Cu微粒子を作用電極22表面に担持させた状態で、CO2の電解還元を行うと、ガス状の電解生成物に加えて、エタノールなどの液体状の電解生成物も生成する。作用電極22表面で生成した液体状の電解生成物は、陰極側電解液に拡散する前にCNT膜の細孔内に取り込まれ、透過室16側に向かって拡散する。そのため、従来の方法では不可能であった液体状の電解生成物であっても、効率よく分離することができる。 In addition, when electrolytic reduction of CO 2 is performed in a state where Cu fine particles are supported on the surface of the working electrode 22, a liquid electrolytic product such as ethanol is also generated in addition to the gaseous electrolytic product. The liquid electrolytic product generated on the surface of the working electrode 22 is taken into the pores of the CNT film before diffusing into the cathode side electrolytic solution, and diffuses toward the permeation chamber 16 side. Therefore, even if it is a liquid electrolysis product which was impossible with the conventional method, it can isolate | separate efficiently.
さらに、CO2を電解する際、H2ガスも発生する。例えば、水素透過性を有する材料としてPd膜、ポリイミド炭素膜などが知られている。しかしながら、Pd膜で電解水素を透過させようとすると、室温においては水素化物の形成によって、約20%膨張するという問題がある。また、ポリイミド炭素膜は、細孔径が1nm未満であり、かつ、厚さも薄いので、相対的に多量の水素が発生する条件下で電解を行うと、発生した水素ガスの圧力によって膜が破損し、継続的な電解ができないという問題がある。
これに対し、CNT膜は、水素ガスが透過しても、大きな膨張や変形を全く伴わない。また、CNT膜の製造条件を最適化することによって、膜厚を任意に制御することができる。そのため、電解時に発生した水素ガス圧力によって膜が破損するおそれも少ない。
Furthermore, when electrolyzing CO 2 , H 2 gas is also generated. For example, as a material having hydrogen permeability, a Pd film, a polyimide carbon film, and the like are known. However, when electrolytic hydrogen is allowed to permeate through the Pd film, there is a problem that expansion takes place by about 20% at room temperature due to hydride formation. In addition, since the polyimide carbon film has a pore diameter of less than 1 nm and a small thickness, when electrolysis is performed under conditions where a relatively large amount of hydrogen is generated, the film is damaged by the pressure of the generated hydrogen gas. There is a problem that continuous electrolysis cannot be performed.
On the other hand, even if hydrogen gas permeates, the CNT film is not significantly expanded or deformed. Further, the film thickness can be arbitrarily controlled by optimizing the manufacturing conditions of the CNT film. Therefore, there is little possibility that the membrane is damaged by the hydrogen gas pressure generated during electrolysis.
また、CO2の電解還元を行うと、作用電極22表面に担持させたCO2分解元素を含む微粒子24の表面にカーボンが析出する。微粒子24の表面にカーボンが析出すると、CO2の電解を阻害し、CO2の還元効率が低下する。
これに対し、微粒子24を担持させたCNT膜を用いてCO2の還元を行う場合において、陰極側電解液にCO2分解元素のイオンを添加すると、電解中に微粒子24の表面にCO2分解元素が新たに析出する。そのため、CO2の還元を継続的、かつ、高効率で行うことができる。
When electrolytic reduction of CO 2 is performed, carbon is deposited on the surface of the fine particles 24 containing the CO 2 decomposition element supported on the surface of the working electrode 22. When carbon is deposited on the surface of the fine particles 24, CO 2 electrolysis is inhibited, and CO 2 reduction efficiency is reduced.
In contrast, in the case of performing the reduction of CO 2 using a CNT film was supported particles 24, the addition of ions of CO 2 decomposition elements on the cathode side electrolyte, CO 2 decomposition on the surface of the particles 24 in the electrolyte New elements are deposited. Therefore, CO 2 reduction can be performed continuously and with high efficiency.
(実施例1)
[1. CNT積層体膜の作製]
市販のCNT分散液(Bucky USA社、SWタイプ、直径≒1.3nm、含有量≒4.6mg/mL)を10倍に希釈した。この希釈液を多孔性セラミックス板((株)ニッカトー製、F電解隔膜、孔径≒0.1μm)で吸引ろ過した。さらに超純水による吸引ろ過を10回以上繰り返し、CNT積層体膜(厚み≒5μm)を得た。
Example 1
[1. Preparation of CNT laminate film]
A commercially available CNT dispersion (Bucky USA, SW type, diameter ≈ 1.3 nm, content ≈ 4.6 mg / mL) was diluted 10 times. This diluted solution was subjected to suction filtration with a porous ceramic plate (manufactured by Nikkato Co., Ltd., F electrolytic diaphragm, pore size ≈ 0.1 μm). Further, suction filtration with ultrapure water was repeated 10 times or more to obtain a CNT laminate film (thickness≈5 μm).
[2. CO2の電解還元]
図1に示すCO2電解装置を用いて、CO2の電解還元を行った。陽極室12と陰極室14との間にイオン交換膜20をはさんだ。イオン交換膜20には、ナフィオン(登録商標)115膜を用いた。さらに、陰極室14と透過室16との間に、[1.]で作製したCNT積層体膜(約7cm2)を配置した。0.1M KHCO3水溶液を陽極室12に、0.1M KHCO3+5×10-4MCu(NO3)2水溶液を陰極室14に、それぞれ注液した。陽極側電解液には、対極であるPt線(φ1mm、電極面積≒0.32cm2)を浸漬し、電気化学系を構成した。
[2. Electrolytic reduction of CO 2 ]
Using the CO 2 electrolysis apparatus shown in FIG. 1, electrolytic reduction of CO 2 was performed. An ion exchange membrane 20 was sandwiched between the anode chamber 12 and the cathode chamber 14. As the ion exchange membrane 20, a Nafion (registered trademark) 115 membrane was used. Furthermore, between the cathode chamber 14 and the transmission chamber 16, [1. The CNT laminate film (about 7 cm 2 ) prepared in the above was placed. A 0.1 M KHCO 3 aqueous solution was injected into the anode chamber 12, and a 0.1 M KHCO 3 + 5 × 10 −4 MCu (NO 3 ) 2 aqueous solution was injected into the cathode chamber 14. In the anode side electrolyte solution, a Pt wire (φ1 mm, electrode area≈0.32 cm 2 ) as a counter electrode was immersed to constitute an electrochemical system.
CO2をバブリング(24mL/min)しながら、ガルバノスタット(北斗電工(株)製、HA−501G)を用いて、室温にて5mAcm-2の定電流条件下で電解を30分間行った。CNT積層体膜の裏面側にスウィープガスとしてAr(24mL/min)を流し、マイクロガスクロマトグラフ(アジレント製、Micro GC M200。図1中、「GC1」と表記。)にてAr中の成分を求めた。
また、陰極室14から出てくるCO2ガスの組成についても、別のMicro GC M200(図1中、「GC2」と表記)にて分析した。
While bubbling CO 2 (24 mL / min), electrolysis was performed for 30 minutes under a constant current condition of 5 mAcm −2 at room temperature using a galvanostat (HA-501G, manufactured by Hokuto Denko Co., Ltd.). Ar (24 mL / min) was allowed to flow as a sweep gas to the back side of the CNT laminate film, and the components in Ar were obtained by a micro gas chromatograph (manufactured by Agilent, Micro GC M200, expressed as “GC1” in FIG. 1). It was.
The composition of the CO 2 gas coming out of the cathode chamber 14 was also analyzed by another Micro GC M200 (denoted as “GC2” in FIG. 1).
[3. 結果]
表1に、分析結果を示す。いずれの成分も、陰極室14側より透過室16側の方が多く、効率よく電解生成物が作用電極22を透過して分離されていることがわかる。エタノールについては、陰極室14側では生成したエタノールが電解液に溶解して蒸気圧(∝液中のモル分率)が極めて低くなったため検出できなかった。一方、透過室16側では、明瞭に検出された。表1より、本発明に係るCO2電解装置が液体状の電解生成物の分離に特に有効であることがわかる。
[3. result]
Table 1 shows the analysis results. It can be seen that any of the components is more on the permeation chamber 16 side than on the cathode chamber 14 side, and the electrolytic product permeates the working electrode 22 efficiently and is separated. Ethanol was not detected on the cathode chamber 14 side because the generated ethanol was dissolved in the electrolyte and the vapor pressure (molar fraction in the filtrate) was extremely low. On the other hand, it was clearly detected on the transmission chamber 16 side. From Table 1, it can be seen that the CO 2 electrolysis apparatus according to the present invention is particularly effective for the separation of liquid electrolysis products.
(実施例2、比較例1)
[1. 試験方法]
実施例1の[1.]で作製したCNT積層体膜、及び、特許文献1に記載の方法により作製したポリイミド炭素膜を用いて水の電気分解を行った。水の電気分解は、1M KCl水溶液にて、電解電流密度=5mAcm-2の条件で行った。電解時間は、20分又は30分とした。
(Example 2, Comparative Example 1)
[1. Test method]
[1. ] And the polyimide carbon film produced by the method described in Patent Document 1 were used for electrolysis of water. Water electrolysis was carried out in a 1M KCl aqueous solution under the condition of electrolytic current density = 5 mAcm −2 . The electrolysis time was 20 minutes or 30 minutes.
[2. 結果]
図3に、20分間水電解後のポリイミド炭素膜のSEM写真を示す。また、図4に、30分間水電解後のCNT積層体膜のSEM写真を示す。
ポリイミド炭素膜は、図3に示すように、20分間の水電解で破損が生じた.一方、CNT積層体膜は、図4に示すように、30分間の水電解後も、CNTの束が絡み合った表面状態が保たれていた。図4より、CNT積層体膜は、高電流条件で電解しても破損等が生じない耐久性の良好な電極であることがわかる。
[2. result]
FIG. 3 shows an SEM photograph of the polyimide carbon film after water electrolysis for 20 minutes. FIG. 4 shows an SEM photograph of the CNT laminate film after water electrolysis for 30 minutes.
As shown in FIG. 3, the polyimide carbon film was damaged by water electrolysis for 20 minutes. On the other hand, as shown in FIG. 4, the CNT laminate film maintained a surface state in which CNT bundles were intertwined even after 30 minutes of water electrolysis. As can be seen from FIG. 4, the CNT laminate film is an electrode having good durability that does not break even when electrolyzed under high current conditions.
以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.
本発明に係るCO2電解装置及びCO2電解生成物の製造方法は、CO、CH4、C2H5OHなどを製造するための装置及び方法として使用することができる。 The CO 2 electrolysis apparatus and the method for producing a CO 2 electrolysis product according to the present invention can be used as an apparatus and a method for producing CO, CH 4 , C 2 H 5 OH and the like.
10 電解装置
12 陽極室
14 陰極室
16 透過室
18 対極
20 イオン交換膜
22 作用電極
24 CO2分解元素を含む微粒子
DESCRIPTION OF SYMBOLS 10 Electrolysis apparatus 12 Anode chamber 14 Cathode chamber 16 Permeation chamber 18 Counter electrode 20 Ion exchange membrane 22 Working electrode 24 Fine particle containing CO 2 decomposition element
Claims (5)
(1)前記CO2電解装置は、
Kイオンを含む陽極側電解液を保持するための陽極室と、
Kイオンを含む陰極側電解液を保持するための陰極室と、
前記陰極室に供給されたCO2の電気分解により生じた電解生成物を取り出すための透過室と、
前記陽極側電解液に浸漬される対極と、
前記陽極室と前記陰極室とを隔離するイオン交換膜と、
前記陰極室と前記透過室とを隔離し、かつ、前記電解生成物を前記透過室に透過させるための作用電極と
を備えている。
(2)前記作用電極は、CNT膜からなる。
(3)前記作用電極の前記陰極室側表面には、前記CO2を電気化学的に分解することが可能な元素を含む微粒子が担持されている。 A CO 2 electrolysis apparatus having the following configuration.
(1) The CO 2 electrolyzer
An anode chamber for holding an anode-side electrolyte containing K ions;
A cathode chamber for holding a cathode side electrolyte containing K ions;
A permeation chamber for taking out electrolysis products generated by electrolysis of CO 2 supplied to the cathode chamber;
A counter electrode immersed in the anode side electrolyte,
An ion exchange membrane that separates the anode chamber and the cathode chamber;
A working electrode for separating the cathode chamber from the transmission chamber and transmitting the electrolytic product to the transmission chamber;
(2) The working electrode is made of a CNT film.
(3) Fine particles containing an element capable of electrochemically decomposing the CO 2 are supported on the cathode chamber side surface of the working electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103357A JP5321218B2 (en) | 2009-04-21 | 2009-04-21 | CO2 electrolysis apparatus and method for producing CO2 electrolysis product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009103357A JP5321218B2 (en) | 2009-04-21 | 2009-04-21 | CO2 electrolysis apparatus and method for producing CO2 electrolysis product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010255018A JP2010255018A (en) | 2010-11-11 |
JP5321218B2 true JP5321218B2 (en) | 2013-10-23 |
Family
ID=43316267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009103357A Expired - Fee Related JP5321218B2 (en) | 2009-04-21 | 2009-04-21 | CO2 electrolysis apparatus and method for producing CO2 electrolysis product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5321218B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11434575B2 (en) | 2015-09-14 | 2022-09-06 | Kabushiki Kaisha Toshiba | Reduction electrode and manufacturing method thereof, and electrolytic device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2010241865B2 (en) | 2009-04-30 | 2014-07-10 | University Of Florida Research Foundation Inc. | Single wall carbon nanotube based air cathodes |
JP5624860B2 (en) * | 2010-11-25 | 2014-11-12 | 古河電気工業株式会社 | ELECTROLYTIC CELL, ELECTROLYTIC DEVICE, AND HYDROCARBON PRODUCTION METHOD |
EP2650402A4 (en) * | 2010-12-08 | 2015-04-01 | Toyota Motor Co Ltd | Mixed gas generation device |
WO2012083209A2 (en) | 2010-12-17 | 2012-06-21 | University Of Florida Research Foundation, Inc. | Hydrogen oxidation and generation over carbon films |
JP6021074B2 (en) * | 2011-02-28 | 2016-11-02 | 国立大学法人長岡技術科学大学 | Carbon dioxide reduction and fixation system, carbon dioxide reduction and fixation method, and method for producing useful carbon resources |
WO2013157097A1 (en) * | 2012-04-18 | 2013-10-24 | トヨタ自動車株式会社 | Source gas manufacturing method, fuel manufacturing method, and device therefor |
JP5816802B2 (en) * | 2013-06-28 | 2015-11-18 | パナソニックIpマネジメント株式会社 | Methanol generating apparatus, method for generating methanol, and electrode for methanol generation |
JP5816803B2 (en) * | 2013-06-28 | 2015-11-18 | パナソニックIpマネジメント株式会社 | Methanol generating apparatus, method for generating methanol, and electrode for methanol generation |
EP3071516A4 (en) * | 2013-11-20 | 2017-06-28 | University of Florida Research Foundation, Inc. | Carbon dioxide reduction over carbon-containing materials |
WO2015177950A1 (en) | 2014-05-20 | 2015-11-26 | 株式会社 東芝 | Photoelectrochemical reaction device |
CN104087969B (en) * | 2014-07-03 | 2017-02-01 | 东南大学 | Anode for alleviating oxidation of formic acid on electrode and preparation method thereof |
JP6542079B2 (en) | 2015-09-11 | 2019-07-10 | 株式会社東芝 | Electrolyzer |
US10344388B2 (en) | 2015-09-16 | 2019-07-09 | Kabushiki Kaisha Toshiba | CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst |
US20170268118A1 (en) | 2016-03-18 | 2017-09-21 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
JP6767202B2 (en) * | 2016-08-23 | 2020-10-14 | 古河電気工業株式会社 | Metal-containing nanoparticles-supported electrode and carbon dioxide reduction device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3343601B2 (en) * | 1993-10-26 | 2002-11-11 | 関西電力株式会社 | Method for producing hydrocarbons from carbon dioxide |
JPH07284773A (en) * | 1994-04-18 | 1995-10-31 | Hoshizaki Electric Co Ltd | Electrolytic apparatus |
JP3721402B2 (en) * | 2002-10-23 | 2005-11-30 | 独立行政法人産業技術総合研究所 | Electrode material for electrolytic reduction of carbon dioxide |
JP4338615B2 (en) * | 2004-10-12 | 2009-10-07 | 富士通株式会社 | Gas detector |
-
2009
- 2009-04-21 JP JP2009103357A patent/JP5321218B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11434575B2 (en) | 2015-09-14 | 2022-09-06 | Kabushiki Kaisha Toshiba | Reduction electrode and manufacturing method thereof, and electrolytic device |
Also Published As
Publication number | Publication date |
---|---|
JP2010255018A (en) | 2010-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5321218B2 (en) | CO2 electrolysis apparatus and method for producing CO2 electrolysis product | |
US9938627B2 (en) | Gas permeable electrode and method of manufacture | |
US10577700B2 (en) | Breathable electrode structure and method for use in water splitting | |
JP5178959B2 (en) | Oxygen gas diffusion cathode, electrolytic cell using the same, chlorine gas production method, and sodium hydroxide production method | |
TW200829724A (en) | Oxygen gas diffusion cathode for sodium chloride electrolysis | |
US20230257325A1 (en) | Methods and apparatus for performing chemical and electrochemical reactions | |
JP2010144203A (en) | Cathode for hydrogen peroxide production | |
FR2803856A1 (en) | SYNTHESIS OF TETRAMETHYLAMMONIUM HYDROXIDE | |
JP5683883B2 (en) | Cathode electrode and method for producing cathode electrode | |
JP2009019278A (en) | One-step electrosynthesis of borohydride | |
JP2015224392A (en) | Oxygen-consuming electrode and method for its production | |
WO2024024709A1 (en) | Cathode electrode, composite of cathode electrode and substrate, electrolytic reduction device comprising cathode electrode, and method for producing composite of cathode electrode and substrate | |
WO2023136270A1 (en) | Cathode electrode, and composite body of cathode electrode and base material | |
JP7327422B2 (en) | Electrode for reduction reaction | |
WO2024059990A1 (en) | Methods and apparatus for indirect production of hydrogen peroxide using amyl-anthraquinone for hydrogen transport | |
US20230151501A1 (en) | Electrolytic conversion of carbon-containing ions using porous metal electrodes | |
JP2007197765A (en) | Electrolyzer and method for producing electrolysis product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130701 |
|
LAPS | Cancellation because of no payment of annual fees |