JP5319463B2 - Silicon nitride substrate with improved positioning and semiconductor device using the same - Google Patents
Silicon nitride substrate with improved positioning and semiconductor device using the same Download PDFInfo
- Publication number
- JP5319463B2 JP5319463B2 JP2009204107A JP2009204107A JP5319463B2 JP 5319463 B2 JP5319463 B2 JP 5319463B2 JP 2009204107 A JP2009204107 A JP 2009204107A JP 2009204107 A JP2009204107 A JP 2009204107A JP 5319463 B2 JP5319463 B2 JP 5319463B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- substrate
- nitride substrate
- semiconductor device
- improved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Structure Of Printed Boards (AREA)
Description
本発明は、位置決め性を向上した窒化珪素基板及びそれを用いた半導体装置に関するものである。 The present invention relates to a silicon nitride substrate with improved positioning properties and a semiconductor device using the same.
半導体素子を搭載する基板には、アルミナ基板、AlN基板が主に使われている。しかしながら、アルミナ基板は熱伝導率が20W/m・K程度と低いため放熱性が悪い。AlN基板は熱伝導率170W/m・K以上と高いため放熱性は良いが強度が300〜400MPa程度と低いため、ねじ止めなどの応力を負荷する分野には向かない。
熱伝導率と強度の両方を満足するセラミックス基板として窒化珪素基板が注目されている。例えば、特開2002−201075号公報(特許文献1)には、熱伝導率50W/m・K以上かつ三点曲げ強度500MPa以上の窒化珪素基板が開示されている。窒化珪素基板は強度が高いため基板厚さを薄くすることができ、その結果、熱伝導率が50〜100W/m・K程度であっても基板としての熱抵抗を下げることができる。基板としての熱抵抗を下げることにより、放熱性を向上させることができる。
このような窒化珪素基板は、回路部を設け、様々な半導体素子を搭載し、半導体装置を形成することができる。
半導体素子は、パワー素子、発光ダイオード(LED)、太陽電池素子など様々なものが挙げられる。例えば、パワー素子についてはIGBT等のパワー素子を搭載した後、その上に放熱フィンを搭載する。発光ダイオードは発光ダイオードを搭載した後、レンズ部材を被せる。太陽電池素子についても太陽電池素子を搭載した後、レンズ部材を搭載する。
このように近年の半導体装置は、半導体素子搭載後に、さらに別の部材を搭載するものが多い。
一般的に、セラミックス基板は長方形であるため、半導体素子を搭載する際、もしくは放熱フィンやレンズ部材を搭載する際は四隅を固定して実装工程を行っていた。
For substrates on which semiconductor elements are mounted, alumina substrates and AlN substrates are mainly used. However, since the alumina substrate has a low thermal conductivity of about 20 W / m · K, the heat dissipation is poor. Since the AlN substrate has a heat conductivity as high as 170 W / m · K or higher, it has good heat dissipation, but its strength is as low as about 300 to 400 MPa, so it is not suitable for the field where stress such as screwing is applied.
Silicon nitride substrates are attracting attention as ceramic substrates that satisfy both thermal conductivity and strength. For example, Japanese Unexamined Patent Application Publication No. 2002-201075 (Patent Document 1) discloses a silicon nitride substrate having a thermal conductivity of 50 W / m · K or more and a three-point bending strength of 500 MPa or more. Since the silicon nitride substrate has high strength, the thickness of the substrate can be reduced. As a result, even when the thermal conductivity is about 50 to 100 W / m · K, the thermal resistance as the substrate can be lowered. The heat dissipation can be improved by reducing the thermal resistance of the substrate.
Such a silicon nitride substrate can be provided with a circuit portion and mounted with various semiconductor elements to form a semiconductor device.
Examples of the semiconductor element include various elements such as a power element, a light emitting diode (LED), and a solar cell element. For example, after a power element such as an IGBT is mounted on the power element, a heat radiating fin is mounted thereon. After mounting the light emitting diode, the light emitting diode is covered with a lens member. Also about a solar cell element, after mounting a solar cell element, a lens member is mounted.
As described above, many recent semiconductor devices have another member mounted after the semiconductor element is mounted.
In general, since a ceramic substrate is rectangular, when mounting a semiconductor element, or mounting a radiating fin or a lens member, the mounting process is performed with the four corners fixed.
しかしながら、四隅を固定する方法では、固定作業の手間が多く、また固定の際の位置ずれが多く発生していた。位置ずれが発生すると直す作業が必要になる。また、半導体素子が位置ずれしたまま搭載されると、その後に搭載される部材(放熱フィン、レンズ部材など)も位置ずれしてしまい半導体装置として機能が低下する。
本発明は、半導体素子の位置合わせが容易で、かつ強度の高い位置決め性を向上した窒化珪素基板と、それを用いた半導体装置を提供しようとするものである。
However, in the method of fixing the four corners, a lot of labor is required for fixing work, and a large amount of displacement occurs during fixing. When the position shift occurs, it is necessary to correct it. Further, when the semiconductor element is mounted with its position shifted, members (heat radiating fins, lens members, and the like) mounted thereafter are also displaced and the function of the semiconductor device is degraded.
An object of the present invention is to provide a silicon nitride substrate in which positioning of semiconductor elements is easy and the positioning performance is high and a semiconductor device using the silicon nitride substrate.
本発明の位置決め性を向上した窒化珪素基板は、貫通孔と、少なくとも1辺に面した凹部とを有することを特徴とするものである。
また、前記窒化珪素基板の板厚は、0.2mm以上、1mm以下であることが好ましい。また、前記窒化珪素基板は、熱伝導率が60W/m・K以上、かつ室温での3点曲げ強度が600MPa以上であることが好ましい。
また、前記貫通孔の直径が1mm以上、5mm以下であることが好ましい。また、前記凹部は、幅が1mm以上、5mm以下で、かつ奥行が1mm以上、5mm以下であることが好ましい。また、前記貫通孔と基板一辺との最短距離が1mm以上であることが好ましい。また、前記凹部と基板一辺との最短距離が1mm以上であることが好ましい。
また、このような位置決め性を向上した窒化珪素基板は、前記位置決め性を向上した窒化珪素基板に搭載された半導体素子を備えた半導体装置に好適である。
The silicon nitride substrate having improved positioning properties according to the present invention is characterized by having a through hole and a recess facing at least one side.
The thickness of the silicon nitride substrate is preferably 0.2 mm or more and 1 mm or less. The silicon nitride substrate preferably has a thermal conductivity of 60 W / m · K or more and a three-point bending strength at room temperature of 600 MPa or more.
Moreover, it is preferable that the diameter of the said through-hole is 1 mm or more and 5 mm or less. Moreover, it is preferable that the said recessed part is 1 mm or more and 5 mm or less in width, and 1 mm or more and 5 mm or less in depth. The shortest distance between the through hole and one side of the substrate is preferably 1 mm or more. The shortest distance between the recess and one side of the substrate is preferably 1 mm or more.
Such a silicon nitride substrate with improved positioning is suitable for a semiconductor device including a semiconductor element mounted on the silicon nitride substrate with improved positioning.
本発明によれば、半導体素子の位置合わせが容易で、かつ強度の高い位置決め性を向上した窒化珪素基板を提供することができる。また、これら窒化珪素基板を用いることにより信頼性の高い半導体装置を提供することができる。特に、半導体素子を搭載後にさらに別の部材を搭載しなければならない半導体装置において効果的である。 According to the present invention, it is possible to provide a silicon nitride substrate in which positioning of semiconductor elements is easy and the positioning property with high strength is improved. Further, by using these silicon nitride substrates, a highly reliable semiconductor device can be provided. In particular, this is effective in a semiconductor device in which another member must be mounted after mounting a semiconductor element.
貫通孔と、少なくとも1辺に面した凹部とを有する窒化珪素基板によると、半導体素子を搭載する際に、貫通孔と凹部に固定ジグを差し込んで固定することにより窒化珪素基板の位置ずれが発生しないので半導体素子の位置ずれを防ぐことができる。また、半導体素子搭載後も、貫通孔および凹部に固定ジグを差し込んで固定することにより、基板のずれを防ぐことができるので放熱フィンやレンズ部材等の半導体素子搭載後に取り付ける部材の位置ずれを防ぐことができる。
また、半導体装置を実装基板(実装部材)に固定する際、貫通孔および凹部を実装基板に設けられた凸部(例えば、ねじ部)に嵌めこむことで位置決めを行うことができるため、基板の位置決めが容易になる。
According to the silicon nitride substrate having a through hole and a recess facing at least one side, the silicon nitride substrate is displaced by inserting a fixing jig into the through hole and the recess when the semiconductor element is mounted. Therefore, the positional deviation of the semiconductor element can be prevented. In addition, even after mounting the semiconductor element, it is possible to prevent displacement of the substrate by inserting and fixing a fixing jig into the through hole and the concave portion, so that displacement of the member to be attached after mounting the semiconductor element such as a heat radiation fin or a lens member is prevented. be able to.
In addition, when fixing the semiconductor device to the mounting substrate (mounting member), positioning can be performed by fitting the through hole and the concave portion into a convex portion (for example, a screw portion) provided in the mounting substrate. Positioning becomes easy.
また、当該窒化珪素基板は、機械的強度が高いため、例えば半導体装置を実装基板にねじ止めする際や、半導体装置に振動が加わった際の基板の割れを防止することができる。 In addition, since the silicon nitride substrate has high mechanical strength, for example, the substrate can be prevented from cracking when the semiconductor device is screwed to the mounting substrate or when vibration is applied to the semiconductor device.
窒化珪素基板は、破壊靭性6MPa・m1/2以上と靭性が高いのでねじ止めの際に割れ難い。また、振動により割れるといった不具合が他のセラミックス基板(AlN基板など)に比して少ない。よって、基板の板厚を薄くしても基板の割れを回避することが可能となるため、窒化珪素基板の熱抵抗を下げることができるため放熱性を向上させることができる。 Since the silicon nitride substrate has a high toughness of fracture toughness of 6 MPa · m 1/2 or more, it is difficult to crack when screwing. In addition, there are fewer defects such as cracks due to vibration compared to other ceramic substrates (such as AlN substrates). Therefore, even if the thickness of the substrate is reduced, it is possible to avoid cracking of the substrate, so that the thermal resistance of the silicon nitride substrate can be lowered, so that heat dissipation can be improved.
なお、破壊靭性は、下記(1)式に示す新原の式を用いる新原法により求める。
新原の式=0.0114E0.4P0.6a-0.7(C/a−1)-0.5 (1)
但し、Pは荷重(Kgf)、dは圧痕の対角線長(mm)、Eはヤング率(Kgf/mm2)、Cは圧痕の中心点から亀裂の長さ(mm)、aは圧痕の対角線長の1/2(mm)である。
Fracture toughness is obtained by the new original method using the new original equation shown in the following equation (1).
Niihara formula = 0.0114E 0.4 P 0.6 a -0.7 (C / a-1) -0.5 (1)
Where P is the load (Kgf), d is the diagonal length of the indentation (mm), E is the Young's modulus (Kgf / mm 2), C is the length of the crack from the center point of the indentation (mm), and a is the diagonal length of the
窒化珪素基板は、三点曲げ強度が室温で500MPa以上の機械的特性を有することが望ましい。これにより、ねじ止めの際の割れを防止できる。さらに好ましい範囲は、600MPa以上である。 The silicon nitride substrate desirably has a mechanical property of a three-point bending strength of 500 MPa or more at room temperature. Thereby, the crack at the time of screwing can be prevented. A more preferable range is 600 MPa or more.
セラミックス基板として窒化珪素基板を使用する際、窒化珪素基板の板厚は、0.2mm以上、1mm以下であることが好ましい。板厚を0.2mm以上にすることにより、ねじ止めの際の割れを防止できる。また、板厚を1mm以下にすることにより、高い放熱性を得ることが可能となる。また、好ましくは0.2〜0.5mmである。 When a silicon nitride substrate is used as the ceramic substrate, the thickness of the silicon nitride substrate is preferably 0.2 mm or more and 1 mm or less. By making the plate thickness 0.2 mm or more, it is possible to prevent cracking when screwing. Moreover, high heat dissipation can be obtained by setting the plate thickness to 1 mm or less. Moreover, Preferably it is 0.2-0.5 mm.
窒化珪素基板は、熱伝導率が60W/m・K以上、かつ3点曲げ強度が室温で600MPa以上であることが好ましい。このような基板は、ねじ止めの際に割れ難く、かつ放熱性にも優れている。熱伝導率、強度および破壊靭性の優れた窒化珪素基板としては特開2002−201075号公報(特許文献1)に示された窒化珪素基板がある。 The silicon nitride substrate preferably has a thermal conductivity of 60 W / m · K or more and a three-point bending strength of 600 MPa or more at room temperature. Such a substrate is difficult to break when screwed and has excellent heat dissipation. As a silicon nitride substrate having excellent thermal conductivity, strength, and fracture toughness, there is a silicon nitride substrate disclosed in Japanese Patent Application Laid-Open No. 2002-201075 (Patent Document 1).
位置決め性を向上した窒化珪素基板には、回路部を設けることができる。回路部に半導体素子が実装される。回路部は、例えば、銅板あるいはAl板を接合した金属回路板、金属薄膜を設けた薄膜回路層から形成することが可能である。銅回路板が接合された窒化珪素基板は、振動に対する強度に優れている。銅回路板は、例えば、活性金属接合法、直接接合法(DBC法)により接合可能である。また、タングステンやモリブデン等の高融点金属ペーストを使ったメタライズ法により回路部を設けることも可能である。 A circuit portion can be provided on the silicon nitride substrate with improved positioning. A semiconductor element is mounted on the circuit portion. The circuit portion can be formed from, for example, a metal circuit board obtained by bonding a copper plate or an Al plate, or a thin film circuit layer provided with a metal thin film. The silicon nitride substrate to which the copper circuit board is bonded has excellent strength against vibration. The copper circuit board can be bonded by, for example, an active metal bonding method or a direct bonding method (DBC method). Further, the circuit portion can be provided by a metallization method using a high melting point metal paste such as tungsten or molybdenum.
次いで、本発明の実施形態を図1〜図5を参照して説明する。
図1は、本発明の実施形態に係る位置決め性を向上した窒化珪素基板の平面図である。位置決め性を向上した窒化珪素基板1(以下、基板1と称す)は、一方の長辺に面した1個の凹部2と、他方の長辺付近に位置する1個の貫通孔3とを有する。
Next, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a plan view of a silicon nitride substrate with improved positioning according to an embodiment of the present invention. A
基板1のサイズは、特に限定されるものではないが、一辺の長さが10mm以上、300mm以下であることが望ましい。各辺の長さは、図1に例示されるように長辺L1と短辺L2それぞれの長さが10mm以上、300mm以下であっても良いが、全ての辺が10mm以上、300mm以下の範囲で同じ長さであっても良い。
The size of the
貫通孔3の直径φは、ねじ止めに用いるねじサイズに応じて変わるものではあるが、回路部の設置面積を確保するために1mm以上、5mm以下であることが望ましい。
The diameter φ of the through
凹部2のサイズは、ねじ止めに用いるねじサイズに応じて変わるものではあるが、回路部の設置面積を確保するために幅W1が1mm以上、5mm以下で、かつ奥行W2が1mm以上、5mm以下であることが望ましい。ここで、幅W1とは、基板一辺と平行な凹部2の長さのうち最大長さで、奥行W2とは、基板一辺から凹部2の内壁までの距離のうち最大距離である。
貫通孔3と基板一辺との最短距離L3、凹部2と基板一辺との最短距離L4が1mm以上であることが望ましい。これにより、ねじ止めの際の基板の割れ等の破損を回避することができる。
The size of the
It is desirable that the shortest distance L3 between the through
基板1に設ける凹部2、貫通孔3の数は、1個もしくは複数個にすることができる。複数設ける場合、基板1の一辺に複数個設けても、各辺に1個ずつ設けても良い。例えば図2に例示されるように、複数の凹部2を基板1の長辺一辺に設けても良い。
The number of the
本実施形態の位置決め性を向上した窒化珪素基板に半導体素子を搭載した半導体装置の実施形態を図3に示す。なお、図1で説明したのと同様な部材については、同符号を付して説明を省略する。
図3に示すように、半導体装置は、位置決め性を向上した窒化珪素基板1と、窒化珪素基板上設けられた回路部5、回路部5上に設けられた半導体素子4を有している。
FIG. 3 shows an embodiment of a semiconductor device in which a semiconductor element is mounted on a silicon nitride substrate with improved positioning performance according to this embodiment. In addition, about the member similar to having demonstrated in FIG. 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
As shown in FIG. 3, the semiconductor device includes a
この半導体装置を実装部材(筐体、台座など)にねじ6で固定して半導体モジュールとする。また、ねじ止めの際は必要に応じ、ワッシャーをかましてもよい。なお、図3,図4中では、ねじ止め構造を示したが本発明はねじ止めに限定されるものではなく、凹部および貫通孔に固定部材を挿入して実装することもできる。
また、図3では太陽電池素子を1つ載せた構造を示したが、図4に示したように窒化珪素基板上に2個以上の半導体素子を載せた構造をとってもよい。
This semiconductor device is fixed to a mounting member (housing, pedestal, etc.) with
3 shows a structure in which one solar cell element is mounted, but a structure in which two or more semiconductor elements are mounted on a silicon nitride substrate as shown in FIG. 4 may be adopted.
また、半導体素子としてパワー素子を用いる場合は放熱フィン、発光ダイオードまたは太陽電池素子を用いる場合はレンズ部材などをさらに搭載することも可能である。 Further, when a power element is used as the semiconductor element, a heat dissipating fin, a light emitting diode, or a solar cell element can be used, and a lens member or the like can be further mounted.
このような位置決め性を向上した窒化珪素基板は、貫通孔および凹部で基板を固定できるので、半導体素子を搭載するとき、放熱フィンやレンズ部材を搭載するとき、半導体装置を実装するとき、などのいずれの場合も位置ずれを防ぐことができる。このため、半導体素子の搭載から半導体装置の実装まで、複数の工程において位置決め性を向上させることができる。 Such a silicon nitride substrate with improved positioning can fix the substrate with through holes and recesses, so when mounting a semiconductor element, mounting a radiating fin or lens member, mounting a semiconductor device, etc. In either case, misalignment can be prevented. For this reason, the positioning can be improved in a plurality of steps from mounting of the semiconductor element to mounting of the semiconductor device.
また、窒化珪素基板は強度が高いことから、ねじ止めトルクを10N・m以上、さらには20N・m以上と強くできる。このため、強固な固定が必要なヘッドライト用基板に好適である。特に窒化珪素基板は貫通孔や凹部を具備していても600MPa以上の強度を維持できるので好ましい。なお、ねじ止めトルクの上限は実装部材の強度にも影響を受けるが、40N・m以下が好ましい。 Further, since the silicon nitride substrate has high strength, the screwing torque can be increased to 10 N · m or more, and further to 20 N · m or more. For this reason, it is suitable for a headlight substrate that needs to be firmly fixed. In particular, a silicon nitride substrate is preferable because it can maintain a strength of 600 MPa or more even if it has through holes and recesses. The upper limit of the screwing torque is affected by the strength of the mounting member, but is preferably 40 N · m or less.
(実施例1〜5)
窒化珪素基板1に、図1に示す凹部2および貫通孔3をパンチング加工により形成した。貫通孔の直径(φ)、貫通孔3と基板一辺との最短距離L3(mm)、凹部2の幅W1及び深さ(奥行)W2(mm)、凹部2と基板一辺との最短距離L4(mm)を下記表1に示す。
(比較例1〜2)
凹部及び貫通孔のいずれも形成していないセラミックス基板を用意した。
(Examples 1-5)
The
(Comparative Examples 1-2)
A ceramic substrate in which neither a recess nor a through hole was formed was prepared.
上記実施例及び比較例で用いるセラミックス基板の材質、室温での三点曲げ強度(MPa)、熱伝導率(W/m・K)、破壊靭性(MPa・m1/2)、サイズ(縦(L2)×横(L1)×厚さ(mm))を下記表1に示す。三点曲げ強度はJIS−R−1601に準じて測定した。また、熱伝導率はレーザーフラッシュ法を用いた。破壊靭性はJIS−R−1607のマイクロインディケーション法に準じて前記新原の式により求めた。 Materials of ceramic substrates used in the above examples and comparative examples, three-point bending strength (MPa) at room temperature, thermal conductivity (W / m · K), fracture toughness (MPa · m 1/2 ), size (longitudinal ( L2) × width (L1) × thickness (mm)) is shown in Table 1 below. The three-point bending strength was measured according to JIS-R-1601. In addition, the laser conductivity was used for the thermal conductivity. Fracture toughness was determined by the Niihara equation according to the microindication method of JIS-R-1607.
実施例1〜5、比較例1〜2に係るセラミックス基板にAg−Cu−Ti活性金属ろう材を用いて表2に示した銅回路板を接合した。反り防止のための裏銅板を接合した。
各回路基板用いて銅回路板所定の位置に半導体素子の実装工程を行い半導体装置とした。実装工程は、半導体素子を半田により銅板上に接合した。
The copper circuit board shown in Table 2 was joined to the ceramic substrate which concerns on Examples 1-5 and Comparative Examples 1-2 using the Ag-Cu-Ti active metal brazing material. A back copper plate for warpage prevention was joined.
Using each circuit board, a semiconductor circuit was mounted at a predetermined position on the copper circuit board to obtain a semiconductor device. In the mounting process, the semiconductor element was joined on the copper plate with solder.
次に、実施例1〜5の半導体装置をねじ止めにより実装部材に固定した。ねじ止め工程は直径1.9mmのねじと外径3mmのワッシャーを介して、貫通孔および凹部の2か所でねじ止めを行った。ねじ止めのトルクは25〜30N・mとした。 Next, the semiconductor devices of Examples 1 to 5 were fixed to the mounting member by screwing. In the screwing step, screwing was performed at two locations of the through hole and the recess through a screw having a diameter of 1.9 mm and a washer having an outer diameter of 3 mm. The torque for screwing was 25 to 30 N · m.
一方、比較例1,2の半導体装置は、図6に示すように基板20の四隅を抑え冶具21を介してねじ22を用いて固定した。ねじ止め時のトルクは実施例と同様の値とした。
各基板のねじ止めの際に割れた基板の割合を測定した。また、位置ずれの発生割合は、半導体素子の位置が目的とする場所に搭載されなかった確立を測定した。その結果を表2に示す。
On the other hand, as shown in FIG. 6, the semiconductor devices of Comparative Examples 1 and 2 were fixed using
The ratio of the substrate that was broken when each substrate was screwed was measured. In addition, the occurrence rate of misalignment was measured when the position of the semiconductor element was not mounted at the target location. The results are shown in Table 2.
表2から明らかな通りに、実施例1〜5に係る基板は基板が割れることはなかった。これは強度が600MPa以上と窒化珪素基板を使っているためである。また位置ずれの発生も少なかった。これは、凹部と貫通孔で基板を固定しているため、ずれが生じ難いためである。
一方、比較例1,2は四隅を固定するタイプのため、位置ずれの発生が大きかった。また、割れについても4か所にトルクがかかると割れる確率が上がった。
As is apparent from Table 2, the substrates according to Examples 1 to 5 were not cracked. This is because the silicon nitride substrate having a strength of 600 MPa or more is used. Also, there was little occurrence of misalignment. This is because the substrate is fixed by the recess and the through-hole, so that it is difficult for deviation to occur.
On the other hand, since Comparative Examples 1 and 2 are of the type in which the four corners are fixed, the occurrence of positional deviation was large. Also, the probability of cracking increased when torque was applied to four locations.
(実施例6〜10)
L3、L4を表3のように変えた以外は実施例2または実施例4と同じ基板を用意し、同様の測定を行った結果を以下に示す。
(Examples 6 to 10)
The same substrate as Example 2 or Example 4 was prepared except that L3 and L4 were changed as shown in Table 3, and the results of the same measurement are shown below.
窒化珪素基板のように強度および靭性の高い窒化珪素基板であれば貫通孔および凹部が端辺から1mm以上(L3およびL4が1mm以上)であれば割れの防止が可能であることが分かる。そのため、窒化珪素基板の方が貫通孔および凹部を端に付けることができるので銅板を接合する面積を大きくすることまたは自由度を上げることができる。銅板を大きくすることまたは銅板の接合位置に自由度が上がれば、窒化珪素基板上に複数個の半導体素子を搭載することも可能である。
また、今回、位置ずれの確立に関しては「半導体素子の搭載時の位置ずれ」だけを測定したが、その後の放熱フィンやレンズ部材の搭載時、実装部材へのねじ止め時にも同様の位置ずれは発生する。そのため、本実施例のように位置ずれが生じないものが望ましい。つまり、貫通孔と凹部という形状の違う固定部で固定できることが効果的である。
In the case of a silicon nitride substrate having high strength and toughness such as a silicon nitride substrate, it can be seen that cracks can be prevented if the through holes and the recesses are 1 mm or more from the edge (L3 and L4 are 1 mm or more). Therefore, the silicon nitride substrate can be provided with through holes and recesses at the ends, so that the area for joining the copper plates can be increased or the degree of freedom can be increased. It is possible to mount a plurality of semiconductor elements on a silicon nitride substrate if the copper plate is enlarged or if the degree of freedom increases in the bonding position of the copper plate.
In addition, regarding the establishment of misalignment, only the misalignment at the time of mounting the semiconductor element was measured this time. However, the same misalignment is also observed when mounting the heat dissipating fin or lens member and screwing to the mounting member. Occur. For this reason, it is desirable that no positional deviation occurs as in this embodiment. In other words, it is effective to be able to fix with fixing portions having different shapes such as through holes and concave portions.
1…位置決め性を向上した窒化珪素基板
2…凹部
3…貫通孔
4…半導体素子
5…回路部
6…ねじ
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009204107A JP5319463B2 (en) | 2009-09-03 | 2009-09-03 | Silicon nitride substrate with improved positioning and semiconductor device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009204107A JP5319463B2 (en) | 2009-09-03 | 2009-09-03 | Silicon nitride substrate with improved positioning and semiconductor device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011054853A JP2011054853A (en) | 2011-03-17 |
JP5319463B2 true JP5319463B2 (en) | 2013-10-16 |
Family
ID=43943549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009204107A Active JP5319463B2 (en) | 2009-09-03 | 2009-09-03 | Silicon nitride substrate with improved positioning and semiconductor device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5319463B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5976678B2 (en) * | 2011-12-20 | 2016-08-24 | 株式会社東芝 | Ceramic copper circuit board |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3427031B2 (en) * | 2000-01-31 | 2003-07-14 | 京セラ株式会社 | Method of manufacturing multi-cavity array board for wiring board |
JP2005150316A (en) * | 2003-11-13 | 2005-06-09 | Ngk Spark Plug Co Ltd | Heat dissipation member, and circuit board and semiconductor component |
-
2009
- 2009-09-03 JP JP2009204107A patent/JP5319463B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011054853A (en) | 2011-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5326278B2 (en) | Circuit board, semiconductor module using the same, and circuit board manufacturing method | |
JP5839992B2 (en) | LED lamp and headlight | |
US8198540B2 (en) | Power element mounting substrate, method of manufacturing the same, power element mounting unit, method of manufacturing the same, and power module | |
KR20170026557A (en) | Substrate unit for power modules, and power module | |
KR20120032497A (en) | Semiconductor device and method for producing the same | |
JP2010219524A (en) | Millichannel substrate, cooling device using the same, and method of manufacturing device | |
JP2008270609A (en) | Heat radiating apparatus for electronic component | |
JP5884291B2 (en) | Power module board unit with heat sink | |
JP4124040B2 (en) | Semiconductor device | |
JP6560121B2 (en) | Ceramic circuit board and electronic device | |
JP5319463B2 (en) | Silicon nitride substrate with improved positioning and semiconductor device using the same | |
JP2016058595A (en) | Semiconductor device | |
US9488344B2 (en) | Method for producing a lighting device and lighting device | |
JP5282075B2 (en) | Heat dissipation device | |
JP2017183533A (en) | Heat sink with circuit board and manufacturing method therefor | |
JP7192469B2 (en) | Mounting structure of insulated circuit board with heat sink to housing | |
JP2010027953A (en) | Semiconductor device | |
JP2006140402A (en) | Semiconductor integrated circuit device | |
JP2004343035A (en) | Heat radiating component, circuit board, and semiconductor device | |
JP4656126B2 (en) | Semiconductor device | |
JP2007088272A (en) | Ceramic circuit board and module using the same | |
JP4786302B2 (en) | Power module base manufacturing method | |
JP2006286897A (en) | Metal-ceramic bonding substrate | |
KR101938126B1 (en) | Manufacturing process power semiconductor module | |
JP2009164413A (en) | Power module substrate and power module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111128 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111206 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120703 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5319463 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |