[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5317519B2 - In-mold transfer film - Google Patents

In-mold transfer film Download PDF

Info

Publication number
JP5317519B2
JP5317519B2 JP2008109815A JP2008109815A JP5317519B2 JP 5317519 B2 JP5317519 B2 JP 5317519B2 JP 2008109815 A JP2008109815 A JP 2008109815A JP 2008109815 A JP2008109815 A JP 2008109815A JP 5317519 B2 JP5317519 B2 JP 5317519B2
Authority
JP
Japan
Prior art keywords
meth
layer
resin
mold
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008109815A
Other languages
Japanese (ja)
Other versions
JP2009255467A (en
Inventor
淳 曽我部
正和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujicopian Co Ltd
Original Assignee
Fujicopian Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujicopian Co Ltd filed Critical Fujicopian Co Ltd
Priority to JP2008109815A priority Critical patent/JP5317519B2/en
Publication of JP2009255467A publication Critical patent/JP2009255467A/en
Application granted granted Critical
Publication of JP5317519B2 publication Critical patent/JP5317519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

近年、携帯電話、ノートパソコンなどの機器でデザインの差別化を図る傾向がある。この加飾工法として、成型同時加飾の採用が増えてきている。成型同時加飾の工法としては、インモールド転写、インモールド成型、インサートモールドがある。この中で、本発明は、インモールド転写に用いられる転写フィルムに関するものである。さらに絵柄層の印刷を熱転写プリンターで行うことのできるインモールド用転写フィルムに関する。 In recent years, there is a tendency to differentiate the design of devices such as mobile phones and notebook computers. As this decoration method, adoption of simultaneous molding is increasing. As a method of simultaneous molding decoration, there are in-mold transfer, in-mold molding, and insert molding. Among these, the present invention relates to a transfer film used for in-mold transfer. Furthermore, it is related with the transfer film for in-mold which can print a pattern layer with a thermal transfer printer.

インモールド転写は、射出成型金型内に転写フィルムを送り込み、フィルムの接着側に溶融樹脂を注入することで樹脂の溶融温度と射出圧力を利用して成型と同時に絵柄を転写する技術である。成型と加飾の2つの工程を一括しておこなえるうえに成型後のトリミング等も不要であるなど生産性が高い特徴がある。さらに、従来インモールド用転写フィルムへの絵柄層の印刷は、従来グラビア印刷、シルクスクリーン印刷等を用いていたが、デザインの差別化から小ロット印刷が可能な方法として、熱転写プリンターにより、絵柄を形成の可能なインモールド用転写フィルムが望まれてきた。 In-mold transfer is a technique in which a transfer film is fed into an injection mold and a molten resin is injected onto the adhesive side of the film to transfer a pattern simultaneously with molding using the melting temperature and injection pressure of the resin. The two processes of molding and decoration can be performed at once, and trimming after molding is unnecessary, and it is characterized by high productivity. Furthermore, conventionally, the gravure printing, silk screen printing, etc. have been used for printing the image layer on the transfer film for in-mold, but as a method that enables small lot printing due to design differentiation, the image can be printed with a thermal transfer printer. An in-mold transfer film that can be formed has been desired.

インモールド転写により加飾された成型物の用途によっては、擦過性、耐薬品性などの堅牢性が要求されるものがある。この場合、インモールド用転写フィルムの転写層に保護層を設け、成型物の表面に保護層が転写されるようにしていた。保護層の堅牢性を上げるためには、硬化性樹脂を主成分とする保護層にする必要がある。しかし、インモールド転写を行う前に保護層を硬化すると成型物の3次元への追従性が低下する傾向がある。この為、インモールド転写後に、成型物表面の保護層を硬化する必要があり、硬化タイプの樹脂としては、電離放射線硬化タイプが適切である。熱硬化タイプでは、硬化による熱処理で成型物の変形を与えてしまう。しかし、インモールド用転写フィルムの転写層に電離放射線硬化性樹脂を主成分とする保護層を未硬化状態でインモールド転写を行うと射出成型時の加熱樹脂の注入により、金型の樹脂注入ゲート近傍で絵柄層が、流れる不具合を生じていた。(特許文献1)
特開平6−155518号
Depending on the use of the molded product decorated by in-mold transfer, there are some which require fastness such as scratch resistance and chemical resistance. In this case, a protective layer is provided on the transfer layer of the in-mold transfer film so that the protective layer is transferred to the surface of the molded product. In order to increase the robustness of the protective layer, it is necessary to form a protective layer containing a curable resin as a main component. However, if the protective layer is cured before performing in-mold transfer, the three-dimensional followability of the molded product tends to decrease. For this reason, it is necessary to harden the protective layer on the surface of the molded product after in-mold transfer, and an ionizing radiation curing type is suitable as the curing type resin. In the thermosetting type, the molded product is deformed by heat treatment by curing. However, if an in-mold transfer is performed in an uncured protective layer mainly composed of ionizing radiation curable resin on the transfer layer of the transfer film for in-mold, the resin injection gate of the mold is injected by the injection of the heating resin at the time of injection molding. There was a problem that the pattern layer flowed nearby. (Patent Document 1)
JP-A-6-155518

本発明は、熱転写プリンターで印刷した絵柄層がインモールド転写時に流れないようにし、且つ耐傷性、耐溶剤性等の堅牢性を与えることのできるインモールド用転写フィルムを提供するものである。 The present invention provides an in-mold transfer film that prevents a pattern layer printed by a thermal transfer printer from flowing during in-mold transfer, and can provide fastness such as scratch resistance and solvent resistance.

(1)基材上に少なくとも電離放射線硬化性樹脂を主成分とする保護層、熱硬化性樹脂を含有する耐熱層、受像層兼接着層、熱転写プリンターで印刷される絵柄層をこの順に積層したものであり、前記絵柄層のバインダが熱可塑性樹脂を主成分とするインモールド用転写フィルムを用いる。
(2)さらに、上記耐熱層中にポリイソシアネートを30重量%以上含有する(1)項記載のインモールド用転写フィルムを用いる。
(3)さらに、保護層と耐熱層の間に、軟化点が50〜130℃である熱可塑性樹脂を主成分とする中間接着層を設けた(1)、(2)項記載のインモールド用転写フィルムを用いる。

(1) A protective layer containing at least an ionizing radiation curable resin as a main component, a heat-resistant layer containing a thermosetting resin, an image receiving layer / adhesive layer , and a pattern layer printed by a thermal transfer printer are laminated in this order on the substrate. A transfer film for in-mold that uses a thermoplastic resin as a main component is used for the binder of the pattern layer .
(2) Furthermore, the in-mold transfer film according to the item (1), wherein the heat-resistant layer contains 30% by weight or more of polyisocyanate.
(3) Further, an intermediate adhesive layer mainly comprising a thermoplastic resin having a softening point of 50 to 130 ° C. is provided between the protective layer and the heat-resistant layer. Use a transfer film.

熱転写プリンターで印刷した絵柄層がインモールド転写時に流れないようになり、且つ耐傷性、耐溶剤性等の堅牢性を与えることのできるインモールド用転写フィルムを提供することができる。 It is possible to provide an in-mold transfer film in which a pattern layer printed by a thermal transfer printer does not flow during in-mold transfer and can provide fastness such as scratch resistance and solvent resistance.

本発明に用いるインモールド用転写フィルムは、基材上に少なくとも電離放射線硬化性樹脂を主成分とする保護層、熱硬化性樹脂を含有する耐熱層、受像層兼接着層をこの順に積層したものである。   The in-mold transfer film used in the present invention is obtained by laminating a protective layer containing at least an ionizing radiation curable resin as a main component, a heat-resistant layer containing a thermosetting resin, and an image receiving layer / adhesive layer in this order on a substrate. It is.

基材としては、例えば、ポリエチレンテレフタレートを始めとするポリエステル、ポリカーボネート、ポリアミド、ポリイミド、酢酸セルロース、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリスチレン、フッ素樹脂、ポリプロピレン、ポリエチレン、アイオノマー等のプラスチックフィルム、及びグラシン紙、コンデンサー紙、パラフィン紙等の紙類、セロファン等があり、また、これらの2種以上を積層した複合フィルムなども使用できる。さらに、プラスチック成形物への転写を考慮する場合には、転写フィルムが成形物の形に添うように熱変形することが好ましく、易成形PETフィルムやアクリルフィルム等、熱変形が容易な基材を使用するのが良い。これらの基材の厚さは、その強度及び耐熱性が適切になるように材料に応じて適宜変更しているが、通常は10〜100μm程度が好ましい。   Examples of the base material include polyethylene terephthalate and other polyester, polycarbonate, polyamide, polyimide, cellulose acetate, polyvinylidene chloride, polyvinyl chloride, polystyrene, fluororesin, polypropylene, polyethylene, ionomer plastic films, and glassine paper. In addition, there are papers such as condenser paper and paraffin paper, cellophane, etc., and composite films in which two or more of these are laminated can also be used. Furthermore, when considering transfer to a plastic molded product, it is preferable that the transfer film is thermally deformed so as to conform to the shape of the molded product, and a substrate that can be easily thermally deformed, such as an easily molded PET film or an acrylic film, is used. Good to use. Although the thickness of these base materials is suitably changed according to the material so that the strength and heat resistance are appropriate, it is usually preferably about 10 to 100 μm.

上記保護層に用いられる、電離放射線硬化性樹脂としては、例えば、分子中にラジカル重合性不飽和基を有するプレポリマー又はモノマーの、単体又は混合物からなる組成物を使用できる。或いは、カチオン重合性官能基を有するプレポリマーやモノマーからなる組成物も電離放射線硬化性樹脂として使用できる。   As the ionizing radiation curable resin used for the protective layer, for example, a composition comprising a single polymer or a mixture of a prepolymer or a monomer having a radical polymerizable unsaturated group in the molecule can be used. Alternatively, a composition comprising a prepolymer or a monomer having a cationic polymerizable functional group can also be used as the ionizing radiation curable resin.

ラジカル重合性不飽和基を有するプレポリマーの例としては、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、トリアジン(メタ)アクリレートなどである。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートの意味である。ラジカル重合性不飽和基を有するモノマーの例としては、単官能モノマーとして、メチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどがある。また、多官能モノマーとして、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリメチールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイドトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどがある。   Examples of the prepolymer having a radically polymerizable unsaturated group include polyester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, melamine (meth) acrylate, and triazine (meth) acrylate. (Meth) acrylate means acrylate or methacrylate. Examples of the monomer having a radical polymerizable unsaturated group include, as monofunctional monomers, methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenoxyethyl (meth) acrylate, and the like. In addition, as polyfunctional monomers, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide tri (meth) acrylate, dipentaerythritol penta (meth) acrylate And dipentaerythritol hexa (meth) acrylate.

更に好ましい電離放射線硬化性樹脂としては、電離放射線硬化可能なアクリル−シリカハイブリッド樹脂である。アクリル−シリカハイブリッド樹脂は、そのシリカ成分が15〜60重量%であることが好ましく、さらに好ましくは20〜30重量%であることが好ましい。上記範囲以外では膜強度が低下し、保護層としての機能が劣化することがある。   A more preferable ionizing radiation curable resin is an ionizing radiation curable acrylic-silica hybrid resin. The acrylic-silica hybrid resin preferably has a silica component of 15 to 60% by weight, more preferably 20 to 30% by weight. Outside the above range, the film strength is lowered, and the function as a protective layer may be deteriorated.

また、該アクリル−シリカハイブリッド樹脂は硬化前には常温でタックがないことが好ましい。タックがなければ、基材上に保護層を塗布乾燥して設けたものを一旦巻物にした場合に、保護層が基材の反対側の面に貼りついて基材からはがれてしまう、いわゆるブロッキングと呼ばれる不具合が起こりにくくなるだけでなく、保護層の上にさらに耐熱層を積層する場合においても、積層しやすくなるなど、フィルム設計が容易になるメリットがある。また、該アクリル−シリカハイブリッド樹脂の硬化前のTgは30℃以上であることが好ましい。30℃未満では常温でタックが出やすくなる傾向がある。   The acrylic-silica hybrid resin preferably has no tack at room temperature before curing. If there is no tack, so-called blocking, where the protective layer is applied and dried on the base material, once it is rolled up, the protective layer sticks to the opposite surface of the base material and peels off from the base material. Not only does the problem called “occurrence” hardly occur, but also in the case of further laminating a heat-resistant layer on the protective layer, there is an advantage that the film design is facilitated such as easy lamination. Moreover, it is preferable that Tg before hardening of this acrylic-silica hybrid resin is 30 degreeC or more. If it is less than 30 degreeC, there exists a tendency for tack to come out easily at normal temperature.

カチオン重合性官能基を有するプレポリマーの例としては、ビスフェノール型エポキシ系樹脂、ノボラック型エポキシ化合物等のエポキシ系樹脂、脂肪酸系ビニルエーテル、芳香族系ビニルエーテル等のビニルエーテル系樹脂のプレポリマーがある。   Examples of the prepolymer having a cationic polymerizable functional group include prepolymers of bisphenol type epoxy resins, epoxy resins such as novolac type epoxy compounds, and vinyl ether resins such as fatty acid vinyl ethers and aromatic vinyl ethers.

また上記電離放射線硬化樹脂以外にも熱可塑性樹脂を添加することができる。熱可塑性樹脂としては、例えば、アクリル系樹脂、セルロース系樹脂、ポリエステル系樹脂、熱可塑性ウレタン系樹脂、或いは、酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ブチラール樹脂等のビニル系樹脂を、1種又は2種以上混合使用することができる。上記アクリル系樹脂は、そのモノマーとして、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−n−アミル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸ラウリル等の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸−2−クロルエチル、(メタ)アクリル酸−3−クロルプロピル等の(メタ)アクリル酸ハロゲン化アルキル、(メタ)アクルル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル等の水酸基を持つ(メタ)アクリル酸エステル、α−クロル(メタ)アクリル酸メチル、α−クロル(メタ)アクリル酸エチルなどのハロゲン化(メタ)アクリル酸エステル、(メタ)アクルル酸−1−クロル−2−ヒドロキシエチルなどの水酸基を持つα−アルキル(メタ)アクリル酸エステル、及び(メタ)アクリル酸グリシジル等の(メタ)アクリル系モノマーの1種又は2種以上からなる単独重合体又は共重合体である。なお、(メタ)アクリルとはアクリル又はメタクリルを意味する。   In addition to the ionizing radiation curable resin, a thermoplastic resin can be added. Examples of the thermoplastic resin include acrylic resins, cellulose resins, polyester resins, thermoplastic urethane resins, or vinyl resins such as vinyl acetate resins, vinyl chloride-vinyl acetate copolymers, and butyral resins. One kind or a mixture of two or more kinds can be used. The acrylic resin has (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, isopropyl (meth) acrylate, (meth) as the monomer. Acrylic acid-n-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid-n-amyl, (meth) acrylic acid-n-hexyl, (meth) acrylic acid-n-octyl, (meth) acrylic acid lauryl (Meth) acrylic acid alkyl ester such as (meth) acrylic acid-2-chloroethyl, (meth) acrylic acid alkyl halide such as 3-chloropropyl, (meth) acrylic acid-2-hydroxy (Meth) acrylic acid ester having a hydroxyl group such as ethyl, (meth) acrylic acid-2-hydroxypropyl, α-chloro ( A) Halogenated (meth) acrylic acid esters such as methyl acrylate, α-chloro (meth) ethyl acrylate, and α-alkyls having a hydroxyl group such as (meth) acrylic acid-1-chloro-2-hydroxyethyl (meth) ) A homopolymer or copolymer composed of one or more of (meth) acrylic monomers such as acrylate esters and glycidyl (meth) acrylate. In addition, (meth) acryl means acryl or methacryl.

電離放射線硬化性樹脂を、紫外線又は可視光線にて硬化させる場合には、該混合物に更に光重合開始剤を添加する。ラジカル重合性不飽和基を有する樹脂系の場合は、光重合開始剤として、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル類を単独又は混合して用いることができる。また、カチオン重合性官能基を有する樹脂系の場合は、光重合開始剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることができる。なお、これらの光重合開始剤の添加量としては、電離放射線硬化性樹脂分100重量部に対して、0.1〜10重量部程度である。   When the ionizing radiation curable resin is cured with ultraviolet rays or visible rays, a photopolymerization initiator is further added to the mixture. In the case of a resin system having a radically polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, and benzoin methyl ethers can be used alone or in combination as a photopolymerization initiator. In the case of a resin system having a cationic polymerizable functional group, an aromatic diazonium salt, an aromatic sulfonium salt, an aromatic iodonium salt, a metallocene compound, a benzoin sulfonic acid ester or the like is used alone or as a mixture as a photopolymerization initiator. be able to. The addition amount of these photopolymerization initiators is about 0.1 to 10 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin.

更に必要に応じて、各種添加剤を添加しても良い。これらの添加剤としては、例えば、炭酸カルシウム、硫酸バリウムの粉末等の体質顔料(充填剤)、アルミナ、シリカ等の粉末からなる減磨剤、ワックス等の滑剤、着色剤、紫外線吸収剤等がある。   Furthermore, you may add various additives as needed. Examples of these additives include extender pigments (fillers) such as calcium carbonate and barium sulfate powders, lubricants made of powders such as alumina and silica, lubricants such as waxes, colorants, and UV absorbers. is there.

なお、電離放射線としては、電離放射線硬化性樹脂中の分子を架橋させ得るエネルギーを有する電磁波又は荷電粒子が用いられる。通常用いられるものは、紫外線又は電子線であるが、この他、可視光線、X線、イオン線等を用いる事も可能である。紫外線源としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト、メタルハライドランプ等の光源が使用される。紫外線の波長としては通常190〜380nmの波長域が主として用いられる。電子線源としては、コッククロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、或いは、直線型、ダイナミトロン型、高周波型等の各種電子線加速器を用い、100〜1000keV、好ましくは、100〜300keVのエネルギーをもつ電子を照射するものが使用される。   As the ionizing radiation, electromagnetic waves or charged particles having energy capable of cross-linking molecules in the ionizing radiation curable resin are used. Usually used are ultraviolet rays or electron beams, but in addition, visible light, X-rays, ion rays and the like can also be used. As the ultraviolet light source, a light source such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light, a metal halide lamp or the like is used. As a wavelength of ultraviolet rays, a wavelength range of 190 to 380 nm is mainly used. As the electron beam source, various electron beam accelerators such as a cockcroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, a high frequency type, etc. are used, preferably 100 to 1000 keV, preferably That irradiates electrons having energy of 100 to 300 keV is used.

保護層の厚みとしては、絵柄の転写される成型物の耐摩耗性や耐薬品性の要求に応じて適宜調整可能であり、3〜20μmが適当である。さらに好ましくは、4〜15μmの範囲とする。   The thickness of the protective layer can be appropriately adjusted according to the requirements of the abrasion resistance and chemical resistance of the molded product to which the pattern is transferred, and 3 to 20 μm is appropriate. More preferably, it is in the range of 4 to 15 μm.

耐熱層としては、熱硬化性樹脂を含有するものである。さらに、熱硬化性樹脂と熱可塑性樹脂の混合物を主成分とすることが好ましく、熱硬化性樹脂としては、ポリイソシアネートを用いることが好ましい。耐熱層には、ポリイソシアネートを30〜90重量%の範囲で用いることが好ましい。反応基を有する熱可塑性樹脂とポリイソシアネートとの反応硬化物としてもよいし、反応基を有さない熱可塑性樹脂とポリイソシアネートとの混合物としてもよい。反応基を有する熱可塑性樹脂とポリイソシアネートの混合物において、耐熱層が全て硬化層となると、インモールド転写時に成型物の3次元形状への追従性が劣り、クラックが発生する可能性があるので、耐熱層には、反応基のない熱可塑性樹脂を一部含有するのが好ましい。耐熱層中に反応基のない熱可塑性樹脂の含有率は、20〜90重量%の範囲が好ましい。さらに好ましくは、30〜70重量%の範囲とする。   The heat-resistant layer contains a thermosetting resin. Furthermore, it is preferable to use a mixture of a thermosetting resin and a thermoplastic resin as a main component, and it is preferable to use polyisocyanate as the thermosetting resin. It is preferable to use polyisocyanate in the range of 30 to 90% by weight for the heat-resistant layer. A reaction cured product of a thermoplastic resin having a reactive group and a polyisocyanate may be used, or a mixture of a thermoplastic resin having no reactive group and a polyisocyanate may be used. In a mixture of a thermoplastic resin having a reactive group and a polyisocyanate, if the heat-resistant layer is all a cured layer, the followability to the three-dimensional shape of the molded product is inferior during in-mold transfer, and cracks may occur. The heat-resistant layer preferably contains a part of a thermoplastic resin having no reactive group. The content of the thermoplastic resin having no reactive group in the heat-resistant layer is preferably in the range of 20 to 90% by weight. More preferably, it is in the range of 30 to 70% by weight.

熱可塑性樹脂としては、例えば、エポキシ樹脂、アクリル系樹脂、セルロース系樹脂、ポリエステル系樹脂、熱可塑性ウレタン系樹脂、或いは、塩素化ポリエチレン、塩素化ポリプロピレン、等の変性オレフィン系樹脂、或いは、酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ブチラール樹脂等のビニル系樹脂を、1種又は2種以上混合使用することができる。上記アクリル系樹脂は、そのモノマーとして、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−n−アミル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸ラウリル等の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸−2−クロルエチル、(メタ)アクリル酸−3−クロルプロピル等の(メタ)アクリル酸ハロゲン化アルキル、(メタ)アクルル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル等の水酸基を持つ(メタ)アクリル酸エステル、α−クロル(メタ)アクリル酸メチル、α−クロル(メタ)アクリル酸エチルなどのハロゲン化(メタ)アクリル酸エステル、(メタ)アクルル酸−1−クロル−2−ヒドロキシエチルなどの水酸基を持つα−アルキル(メタ)アクリル酸エステル、及び(メタ)アクリル酸グリシジル等の(メタ)アクリル系モノマーの1種又は2種以上からなる単独重合体又は共重合体である。   Examples of the thermoplastic resin include epoxy resins, acrylic resins, cellulose resins, polyester resins, thermoplastic urethane resins, modified olefin resins such as chlorinated polyethylene and chlorinated polypropylene, or vinyl acetate. One or a mixture of two or more vinyl resins such as a resin, vinyl chloride-vinyl acetate copolymer, butyral resin can be used. The acrylic resin has (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid-n-propyl, isopropyl (meth) acrylate, (meth) as the monomer. Acrylic acid-n-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid-n-amyl, (meth) acrylic acid-n-hexyl, (meth) acrylic acid-n-octyl, (meth) acrylic acid lauryl (Meth) acrylic acid alkyl ester such as (meth) acrylic acid-2-chloroethyl, (meth) acrylic acid alkyl halide such as 3-chloropropyl, (meth) acrylic acid-2-hydroxy (Meth) acrylic acid ester having a hydroxyl group such as ethyl, (meth) acrylic acid-2-hydroxypropyl, α-chloro ( A) Halogenated (meth) acrylic acid esters such as methyl acrylate, α-chloro (meth) ethyl acrylate, and α-alkyls having a hydroxyl group such as (meth) acrylic acid-1-chloro-2-hydroxyethyl (meth) ) A homopolymer or copolymer composed of one or more of (meth) acrylic monomers such as acrylate esters and glycidyl (meth) acrylate.

上記耐熱層の厚みは、0.3〜5.0μmが好ましい。さらに好ましくは、0.5〜2.0μmの範囲とする。0.3μm以下では、印刷された絵柄層がインモールド転写時に流れないようにすることが難しくなる。5.0μm以上では、成型性が損なわれる傾向がある。   The thickness of the heat resistant layer is preferably 0.3 to 5.0 μm. More preferably, it is in the range of 0.5 to 2.0 μm. If it is 0.3 μm or less, it is difficult to prevent the printed pattern layer from flowing during in-mold transfer. If it is 5.0 μm or more, moldability tends to be impaired.

耐熱層と保護層の密着性を向上させる為、2つの層の間に中間接着層を適宜設けても良い。中間接着層としては、軟化点が50〜130℃の熱可塑性樹脂が用いることが出来る。軟化点が前記範囲未満であると保存安定性にかける。前記範囲を超えると密着性が低下する傾向になる。熱可塑性樹脂としては、例えば、エポキシ樹脂、アクリル系樹脂、セルロース系樹脂、ポリエステル系樹脂、熱可塑性ウレタン系樹脂、或いは、塩素化ポリエチレン、塩素化ポリプロピレン、等の変性オレフィン系樹脂、或いは、酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ブチラール樹脂等のビニル系樹脂を、1種又は2種以上混合使用することができる。   In order to improve the adhesion between the heat-resistant layer and the protective layer, an intermediate adhesive layer may be appropriately provided between the two layers. As the intermediate adhesive layer, a thermoplastic resin having a softening point of 50 to 130 ° C. can be used. When the softening point is less than the above range, storage stability is applied. If it exceeds the above range, the adhesion tends to decrease. Examples of the thermoplastic resin include epoxy resins, acrylic resins, cellulose resins, polyester resins, thermoplastic urethane resins, modified olefin resins such as chlorinated polyethylene and chlorinated polypropylene, or vinyl acetate. One or a mixture of two or more vinyl resins such as a resin, vinyl chloride-vinyl acetate copolymer, butyral resin can be used.

中間接着層の厚みは、0.1〜5.0μmが好ましい。さらに好ましくは、0.3〜1.0μmの範囲とする。厚みが前記範囲未満であると密着性が低下する傾向になる。前記範囲を超えると強度低下をまねく。   The thickness of the intermediate adhesive layer is preferably 0.1 to 5.0 μm. More preferably, it is in the range of 0.3 to 1.0 μm. If the thickness is less than the above range, the adhesion tends to decrease. If the above range is exceeded, the strength will decrease.

受像層兼接着層としては、熱可塑性樹脂が用いられる。熱可塑性樹脂としては、例えば、エポキシ樹脂、アクリル系樹脂、セルロース系樹脂、ポリエステル系樹脂、熱可塑性ウレタン系樹脂、或いは、塩素化ポリエチレン、塩素化ポリプロピレン、等の変性オレフィン系樹脂、或いは、酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ブチラール樹脂等のビニル系樹脂を、1種又は2種以上混合使用することができる。また、特に好ましくは、アクリル変性ポリエステルウレタン樹脂を使用するとよい。   A thermoplastic resin is used as the image receiving layer / adhesive layer. Examples of the thermoplastic resin include epoxy resins, acrylic resins, cellulose resins, polyester resins, thermoplastic urethane resins, modified olefin resins such as chlorinated polyethylene and chlorinated polypropylene, or vinyl acetate. One or a mixture of two or more vinyl resins such as a resin, vinyl chloride-vinyl acetate copolymer, butyral resin can be used. Moreover, it is particularly preferable to use an acrylic-modified polyester urethane resin.

また、ブロッキング、タック防止の意味で各種フィラを添加することが可能である。たとえば、フッ素樹脂系粒子、メラミン樹脂粒子、シリコン系粒子、タルク、カオリン、炭酸マグネシュウム、炭酸カリウム、酸化チタン、シリカ、デンプン等があげられる。   Various fillers can be added to prevent blocking and tack. Examples thereof include fluororesin-based particles, melamine resin particles, silicon-based particles, talc, kaolin, magnesium carbonate, potassium carbonate, titanium oxide, silica, starch and the like.

受像層兼接着層の厚みは、0.1〜5.0μmが好ましい。さらに好ましくは、0.1〜1.0μmの範囲とする。前記範囲未満であると受像性、接着性が得られない。前記範囲を超えると耐熱性が低下する傾向になる。   The thickness of the image receiving layer / adhesive layer is preferably 0.1 to 5.0 μm. More preferably, it is set as the range of 0.1-1.0 micrometer. If it is less than the above range, image receiving property and adhesiveness cannot be obtained. If it exceeds the above range, the heat resistance tends to decrease.

各層には、製膜助剤、塗液安定剤、レベリング剤、消泡剤等の添加剤を添加することもできる。各層は、構成材料を適切な溶剤に溶解して塗工液を作り、各種のコーティング方法で基材上に塗布、乾燥することで形成することができる。耐熱層中の熱硬化性樹脂は、塗布乾燥時に加熱して硬化させておく。   Additives such as a film-forming aid, a coating solution stabilizer, a leveling agent, and an antifoaming agent can be added to each layer. Each layer can be formed by dissolving a constituent material in an appropriate solvent to form a coating solution, and applying and drying the substrate on a substrate by various coating methods. The thermosetting resin in the heat-resistant layer is heated and cured at the time of coating and drying.

熱転写シートは、基材上に少なくとも熱溶融性の着色インク層が設けられたものである。基材としては、厚み1〜10μmのPETフィルムを好適に用いる。着色インク層は、着色剤と主にバインダからなるものである。バインダとしては、熱可塑性樹脂やワックス類から選択される。絵柄層がインモールド転写時に流れにくくするためには、バインダは熱可塑性樹脂を主成分とする。バインダ中の熱可塑性樹脂の割合は、50〜90重量%とするのが好ましい。着色インク層の厚みとしては、0.2〜3μm程度のものとする。好ましくは、0.4〜1.0μmの範囲とする。厚みが前記範囲未満であると着色濃度がでにくくなる。前記範囲を超えるとインサート転写時に絵柄層が流れやすくなる。特に、着色インク層をイエロー、マゼンタ、シアン等の3色以上の着色インク層を用いて、重ね熱転写することによりフルカラーの絵柄層を形成する場合の各着色インク層の厚みは、0.2〜2.0μmの範囲とする。基材上に着色インク層を設ける方法は、従来熱転写記録媒体の分野で用いられる方法で形成すればよい。   The thermal transfer sheet is one in which at least a heat-meltable colored ink layer is provided on a substrate. As the substrate, a PET film having a thickness of 1 to 10 μm is suitably used. The colored ink layer is composed of a colorant and mainly a binder. The binder is selected from thermoplastic resins and waxes. In order to make the pattern layer difficult to flow during in-mold transfer, the binder contains a thermoplastic resin as a main component. The ratio of the thermoplastic resin in the binder is preferably 50 to 90% by weight. The thickness of the colored ink layer is about 0.2 to 3 μm. Preferably, it is set as the range of 0.4-1.0 micrometer. When the thickness is less than the above range, the color density is difficult to be obtained. If the range is exceeded, the pattern layer tends to flow during the insert transfer. In particular, the thickness of each colored ink layer in the case of forming a full color pattern layer by superimposing and transferring by using three or more colored ink layers such as yellow, magenta, and cyan as the colored ink layer is 0.2 to The range is 2.0 μm. The method for providing the colored ink layer on the substrate may be formed by a method conventionally used in the field of thermal transfer recording media.

(実施例1)
1.熱転写シートの作製
裏面に耐熱処理を施した厚さ4.5μmのPETフィルム上に、イエロー、マゼンタ、シアンの顔料を溶剤と共に塩化ビニル酢酸ビニル共重合樹脂に分散し、3色の着色インキとし、グラビアコートにより、塗布厚み0.5μmにて塗布し、3色の溶融型熱転写シートをそれぞれ作製した。
Example 1
1. Preparation of heat transfer sheet On the back surface of 4.5 μm thick heat-treated PET film, yellow, magenta and cyan pigments are dispersed in a vinyl chloride / vinyl acetate copolymer resin together with a solvent to give three colored inks, A gravure coat was applied at a coating thickness of 0.5 μm to prepare three color thermal transfer sheets.

2.インモールド用転写フィルムの作製
厚さ38μmのPETフィルムの表面に下記の保護層用塗工液1を、乾燥厚みが5μmとなるようバーコーターにて塗工した。続いて、保護層の上に下記の耐熱層用塗工液1を乾燥厚みが、2μmとなるようにバーコーターにて塗工した、さらにその上に下記の受像層兼接着層用塗工液1を乾燥厚みが0.1μmとなるようにバーコーターにて塗工してインモールド用転写フィルム1を作製した。
さらに、上記の熱転写シートと熱転写プリンター(ヘッド解像度600dpi)を用いて、インモールド用転写フィルム1の受像層兼接着層面にフルカラーの絵付けをおこなった。
2. Preparation of transfer film for in-mold The following protective layer coating solution 1 was applied to the surface of a PET film having a thickness of 38 μm with a bar coater so that the dry thickness was 5 μm. Subsequently, the following heat-resistant layer coating solution 1 was coated on the protective layer with a bar coater so that the dry thickness was 2 μm, and the following image-receiving layer / adhesive layer coating solution was further formed thereon. 1 was applied with a bar coater so that the dry thickness was 0.1 μm, and an in-mold transfer film 1 was prepared.
Furthermore, full-color painting was performed on the image receiving layer / adhesive layer surface of the transfer film 1 for in-mold using the thermal transfer sheet and the thermal transfer printer (head resolution: 600 dpi).

保護層用塗工液1
UV硬化性アクリル−シリカハイブリッド樹脂 70重量部(固形分30%、シリカ成分23%、Tg45℃、重量平均分子量20,000)
光開始剤 1.0重量部(ダロキュア1173、チバスペシャリティケミカル製)
MEK 30重量部
Coating liquid for protective layer 1
70 parts by weight of UV curable acrylic-silica hybrid resin (solid content 30%, silica component 23%, Tg 45 ° C., weight average molecular weight 20,000)
1.0 parts by weight of photoinitiator (Darocur 1173, manufactured by Ciba Specialty Chemicals)
MEK 30 parts by weight

耐熱層用塗工液1
アクリル樹脂 15重量部(分子量300,000 Tg105℃)
ポリイソシアネート 10重量部(タケネートD−204、固形分50%、武田薬品製)
MEK 75重量部
Coating solution for heat-resistant layer 1
15 parts by weight of acrylic resin (molecular weight 300,000 Tg 105 ° C.)
10 parts by weight of polyisocyanate (Takenate D-204, solid content 50%, manufactured by Takeda Pharmaceutical)
MEK 75 parts by weight

受像層兼接着層用塗工液1
ポリエステル樹脂 15重量部(分子量30,000、Tg68℃)
MEK 45重量部
トルエン 40重量部
Coating solution for image-receiving layer / adhesive layer 1
15 parts by weight of polyester resin (molecular weight 30,000, Tg 68 ° C.)
MEK 45 parts by weight Toluene 40 parts by weight

(実施例2)
実施例1のインモールド用転写フィルムの作製において保護層と耐熱層の間に中間接着層を下記の中間接着層塗工液1を乾燥厚みが、0.5μmとなるようにバーコーターにて塗工して設けた以外は、実施例1と同様にインモールド用転写フィルム2を作製した。
中間接着層用塗工液1
アクリル変性ポリエステルウレタン樹脂 50重量部(サンプレンIB582、固形分42%、軟化点120℃、三洋化成製)
トルエン 40重量部
IPA 10重量部
(Example 2)
In the production of the in-mold transfer film of Example 1, an intermediate adhesive layer was applied between the protective layer and the heat-resistant layer by applying the following intermediate adhesive layer coating solution 1 with a bar coater so that the dry thickness was 0.5 μm. An in-mold transfer film 2 was produced in the same manner as in Example 1 except that it was provided by processing.
Intermediate adhesive layer coating solution 1
50 parts by weight of acrylic-modified polyester urethane resin (Samprene IB582, solid content 42%, softening point 120 ° C., manufactured by Sanyo Chemical)
Toluene 40 parts by weight IPA 10 parts by weight

(比較例1)
実施例1の耐熱層塗工液を下記の耐熱層塗工液2にて乾燥厚みが、2μmとなるようにバーコーターにて塗工し、作製した以外は、同様にインモールド用転写フィルム3を作製した。
耐熱層塗工液2
アクリル樹脂 15重量部(分子量300,000、Tg105℃)
MEK 45重量部
トルエン 40重量部
(Comparative Example 1)
In-mold transfer film 3 was similarly prepared except that the heat-resistant layer coating solution of Example 1 was coated with a bar coater so that the dry thickness was 2 μm with the following heat-resistant layer coating solution 2. Was made.
Heat-resistant layer coating solution 2
15 parts by weight of acrylic resin (molecular weight 300,000, Tg 105 ° C.)
MEK 45 parts by weight Toluene 40 parts by weight

以上のようにして得られた絵付け済みのインモールド用転写フィルムをインモールド用成型金型にいれ、アクリル樹脂を注入し、インモールド転写による成型同時加飾を行い、加飾の施された成型品を作成した。つづいて、コンベア式UV照射装置(GS製CS30)にて、200mj/cmの積算光量のUV光を照射して保護層を硬化した。 The painted in-mold transfer film obtained as described above was put into an in-mold molding die, injected with acrylic resin, and simultaneously decorated by in-mold transfer, and decorated. A molded product was created. Subsequently, the protective layer was cured by irradiating UV light with an integrated light amount of 200 mj / cm 2 with a conveyor-type UV irradiation device (CS30 manufactured by GS).

評価方法
(1)成型樹脂注入ゲート近傍の絵柄流れ
○:流れ無し、△:やや流れが見られる、×:流れる
(2)箔切れ性
○:箔切れ性良好、△:面状剥離傾向あり、×:面状剥離大
(3)耐水・耐溶剤性
試料に水、エタノール、MEK、トルエンをそれぞれ1滴滴下し、30分後に拭き取り試料の様子を観察する。
○:変化無し、△:若干侵される、×:完全に侵される
(4)耐傷性
試料を250g/cmの荷重をかけたスチールウール(ボンスター#0000)で10回擦る。
○:変化無し、△:若干の傷あり、×:キズ大
(5)密着性
碁盤目テスト:JIS K5400に準ずる。
Evaluation method (1) Pattern flow in the vicinity of the molded resin injection gate ○: No flow, Δ: Slight flow is observed, X: Flow (2) Foil cut property ○: Foil cut property is good, Δ: Plane peeling tendency, X: Large exfoliation of the surface (3) One drop of water, ethanol, MEK, and toluene is dropped on each of the water / solvent resistant sample, and the state of the sample is observed after 30 minutes.
◯: No change, Δ: Slightly eroded, X: Completely eroded (4) The scratch-resistant sample is rubbed 10 times with steel wool (Bonster # 0000) loaded with a load of 250 g / cm 2 .
○: No change, Δ: Some scratches, ×: Large scratches (5) Adhesive cross-cut test: According to JIS K5400.

以上の評価結果は表1の通りである。
表1

Figure 0005317519
The above evaluation results are shown in Table 1.
Table 1
Figure 0005317519

Claims (3)

基材上に少なくとも電離放射線硬化性樹脂を主成分とする保護層、熱硬化性樹脂を含有する耐熱層、受像層兼接着層、熱転写プリンターで印刷される絵柄層をこの順に積層したものであり、前記絵柄層のバインダが熱可塑性樹脂を主成分とすることを特徴とするインモールド用転写フィルム A protective layer containing at least an ionizing radiation curable resin as a main component, a heat-resistant layer containing a thermosetting resin, an image receiving layer / adhesive layer , and a pattern layer printed by a thermal transfer printer are laminated in this order on the substrate . A transfer film for in-mold , wherein the binder of the pattern layer is mainly composed of a thermoplastic resin. 前記耐熱層中にポリイソシアネートを30重量%以上含有することを特徴とする請求項1記載のインモールド用転写フィルム。 The in-mold transfer film according to claim 1, wherein the heat-resistant layer contains 30% by weight or more of polyisocyanate. 前記保護層と耐熱層の間に、軟化点が50〜130℃である熱可塑性樹脂を主成分とする中間接着層を設けることを特徴とする請求項1または2記載のインモールド用転写フィルム。 The transfer film for in-mold according to claim 1, wherein an intermediate adhesive layer mainly comprising a thermoplastic resin having a softening point of 50 to 130 ° C. is provided between the protective layer and the heat-resistant layer.
JP2008109815A 2008-04-21 2008-04-21 In-mold transfer film Active JP5317519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109815A JP5317519B2 (en) 2008-04-21 2008-04-21 In-mold transfer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109815A JP5317519B2 (en) 2008-04-21 2008-04-21 In-mold transfer film

Publications (2)

Publication Number Publication Date
JP2009255467A JP2009255467A (en) 2009-11-05
JP5317519B2 true JP5317519B2 (en) 2013-10-16

Family

ID=41383531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109815A Active JP5317519B2 (en) 2008-04-21 2008-04-21 In-mold transfer film

Country Status (1)

Country Link
JP (1) JP5317519B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071519A (en) * 2010-09-29 2012-04-12 Nissha Printing Co Ltd Resin molding, and die for manufacturing resin molding
JP5741995B2 (en) * 2010-10-29 2015-07-01 大日本印刷株式会社 Transfer foil and manufacturing method thereof
JP5903942B2 (en) * 2012-03-12 2016-04-13 凸版印刷株式会社 Decorative transfer film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261614A (en) * 1989-04-03 1990-10-24 Dainippon Printing Co Ltd In-mold transfer foil
JPH0811420A (en) * 1994-06-30 1996-01-16 Dainippon Printing Co Ltd Transfer sheet
JP3637623B2 (en) * 1995-03-03 2005-04-13 シーアイ化成株式会社 Method of manufacturing a decorative board with a wooden mouthpiece

Also Published As

Publication number Publication date
JP2009255467A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
US10265895B2 (en) Decorative sheet for three-dimensional molding and method for producing same, and decorative molded article using decorative sheet and method for producing same
CN103826849B (en) Transfer sheet and method for producing transfer sheet
US10538119B2 (en) Transfer film
JP2013512305A (en) Hard coating forming resin composition
JP2012206439A (en) Thermal transfer film, and decorative molding
CN111372766A (en) Method for producing release film and laminate
KR20060081710A (en) Film for hydraulic transfer and hydraulically transferred body
JP5317519B2 (en) In-mold transfer film
JP5312283B2 (en) Hard coat layer transfer sheet
US11912053B2 (en) Thermal transfer sheet, coating liquid for release layer, and method for producing thermal transfer sheet
JP2012011712A (en) Interference pattern preventing transfer foil, method for producing the same, and transfer material
JP5312289B2 (en) Hard coat layer transfer sheet
JP4771110B2 (en) Protective layer forming sheet and protective layer forming method
JP5868120B2 (en) Partial mat transfer sheet and manufacturing method thereof
JP4561977B2 (en) Photocurable resin composition and method for producing laminate using the same
JP2014159128A (en) Method for manufacturing thermal transfer film, and method for manufacturing decorative product using the same
JP5741995B2 (en) Transfer foil and manufacturing method thereof
JP5312280B2 (en) Hard coat layer transfer sheet
JP4402227B2 (en) Transfer sheet
JP2019183108A (en) Method for production of laminate, and roll-like laminate
JP2020082657A (en) Mold releasing film
JP2006123392A (en) Method for manufacturing hydraulic transfer film
JP2017177782A (en) Transfer foil
JP2006181791A (en) Transfer material and laminate
JP2005022227A (en) Method for manufacturing matte transfer sheet and matte decorative material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250