JP5315790B2 - High strength PC steel wire with excellent delayed fracture resistance - Google Patents
High strength PC steel wire with excellent delayed fracture resistance Download PDFInfo
- Publication number
- JP5315790B2 JP5315790B2 JP2008131221A JP2008131221A JP5315790B2 JP 5315790 B2 JP5315790 B2 JP 5315790B2 JP 2008131221 A JP2008131221 A JP 2008131221A JP 2008131221 A JP2008131221 A JP 2008131221A JP 5315790 B2 JP5315790 B2 JP 5315790B2
- Authority
- JP
- Japan
- Prior art keywords
- steel wire
- strength
- delayed fracture
- fracture resistance
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3025—Steel
- D07B2205/3046—Steel characterised by the carbon content
- D07B2205/3057—Steel characterised by the carbon content having a high carbon content, e.g. greater than 0,8 percent respectively SHT or UHT wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2501/00—Application field
- D07B2501/20—Application field related to ropes or cables
- D07B2501/2015—Construction industries
- D07B2501/2023—Concrete enforcements
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
本発明は、プレストレストコンクリート等に用いられているPC鋼線及びPC鋼撚り線に関するものであり、特に耐遅れ破壊特性に優れ、且つ強度が2000MPa以上の高強度PC鋼線に関するものである。 The present invention relates to a PC steel wire and a PC steel stranded wire used for prestressed concrete and the like, and particularly to a high strength PC steel wire having excellent delayed fracture resistance and a strength of 2000 MPa or more.
PC鋼線は、ピアノ線材等の高炭素鋼の線材をパーライト変態処理(パテンティング処理)した後、伸線加工、引き続き300℃前後の加熱を行うブルーイング処理の工程を経て製造されている。プレストレストコンクリートの低コスト化や高強度コンクリートの実用化に伴って、PC鋼線の高強度化の要請が高まっている。 PC steel wire is manufactured through a pearlite transformation treatment (patenting treatment) of a high carbon steel wire such as a piano wire, followed by a drawing process followed by a blueing process in which heating at about 300 ° C. is performed. With the reduction in cost of prestressed concrete and the practical application of high-strength concrete, there is an increasing demand for high-strength PC steel wires.
PC鋼線の高強度化は、パーライト変態処理後の高強度化や伸線加工歪みの増加によって達成できるものの、耐遅れ破壊特性や延性が低下する課題がある。従来、PC鋼線等の高炭素鋼線は、焼戻しマルテンサイト鋼に比べ耐遅れ破壊特性が優れている材料として知られているが、特に2000MPa以上の高強度域になると、PC鋼線でも耐遅れ破壊特性が低下し、遅れ破壊が発生する危険性が極めて増加する。 Although the strength of PC steel wire can be increased by increasing the strength after pearlite transformation and increasing the wire drawing strain, there is a problem that the delayed fracture resistance and ductility deteriorate. Conventionally, high carbon steel wires such as PC steel wires have been known as materials with superior delayed fracture resistance compared to tempered martensitic steels. Delayed fracture characteristics are reduced, and the risk of delayed fracture is greatly increased.
これに対して、PC鋼線の耐遅れ破壊特性を向上させる従来の技術として、特許文献1ではPC鋼線表層部に圧縮残留応力を付与する技術、特許文献2及び3ではPC鋼線の組織因子として板状セメンタイトの形状を規定した技術、特許文献4ではPC鋼線又はPC鋼棒の組織制御技術、が提案されている。これらの技術は、PC鋼線の耐遅れ破壊特性の向上に有効であるものの、上記特許文献の実施例から明らかなように、いずれの技術もPC鋼線の強度は2000MPa未満であり、2000MPa以上の高強度PC鋼線の耐遅れ破壊特性に関しては言及されていない。このように、従来技術では、強度が2000MPa以上の高強度PC鋼線の耐遅れ破壊特性を向上させることには限界があった。
On the other hand, as a conventional technique for improving the delayed fracture resistance of PC steel wire,
本発明は、上記実状に鑑みなされたものであって、強度が2000MPa以上の高強度PC鋼線において、耐遅れ破壊特性に優れ、実環境においても遅れ破壊が発生する危険性が極めて少ない強度が2000MPa以上の高強度PC鋼線及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above situation, and in a high-strength PC steel wire having a strength of 2000 MPa or more, it has excellent delayed fracture resistance, and has an extremely low risk of causing delayed fracture even in an actual environment. An object is to provide a high-strength PC steel wire of 2000 MPa or more and a manufacturing method thereof.
本発明は、2000MPa以上の高強度PC鋼線の耐遅れ破壊特性の向上、更には延性の向上において、PC鋼線表層部のHv硬さの低減が有効であり、且つPC鋼線の高強度化と耐遅れ破壊特性を両立化するためには、表層部Hv硬さ(Hv表)と内部Hv硬さ(Hv内)の比(Hv表/Hv内)を1.1以下に制御することが極めて有効であると言う知見に基づいてなされたものであり、その要旨は、次の通りである。
(1) 質量%で、C:0.9〜1.2%、Si:0.01〜1.5%、Mn:0.2〜1.5%、Al:0.001〜0.05%、N:0.0005〜0.010%を含有し、残部がFe及び不可避的不純物からなり、かつ90%以上の、伸線加工パーライトと10%以下のフェライト、ベイナイト組織からなり、引張強さが2000MPa以上であるPC鋼線であって、該PC鋼線の線径をDとしたときに、PC鋼線の表面から0.1Dの領域(表層部)の表層Hv硬さ(Hv表)と表層部より内側の領域(内部)の内部Hv硬さ(Hv内)の比(Hv表/Hv内)が1.1以下であることを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線。
(2) 質量%で、さらに、Cr:0.01〜2.0%、Mo:0.01〜0.5%、V:0.01〜0.5%、Ni:0.01〜1.0%、Cu:0.01〜0.5%、B:0.0001〜0.005%の1種又は2種以上を含有することを特徴とする(1)に記載の耐遅れ破壊特性に優れた高強度PC鋼線。
(3) 質量%で、さらに、Ti:0.001〜0.05%、Nb:0.001〜0.07%、Zr:0.001〜0.07%の1種又は2種以上を含有することを特徴とする(1)又は(2)に記載の耐遅れ破壊特性に優れた高強度PC鋼線。
The present invention is effective in improving the delayed fracture resistance of high-strength PC steel wire of 2000 MPa or more, and further in improving ductility, and reducing the Hv hardness of the surface portion of the PC steel wire is effective. In order to achieve both resistance and delayed fracture resistance, the ratio of the surface layer Hv hardness (Hv table) to the internal Hv hardness (within Hv) (within Hv table / Hv) must be controlled to 1.1 or less. Has been made based on the knowledge that is extremely effective, and the gist thereof is as follows.
(1) By mass%, C: 0.9-1.2%, Si: 0.01-1.5%, Mn: 0.2-1.5%, Al: 0.001-0.05%, N: 0.0005-0.010%, the balance being Fe and inevitable PC steel wire consisting of mechanical impurities, 90% or more of drawn pearlite, 10% or less of ferrite and bainite structure, and having a tensile strength of 2000 MPa or more. The ratio of the surface layer Hv hardness (Hv table) in the 0.1D region (surface layer part) to the inner Hv hardness (inside Hv) in the region (inside) inside the surface layer part from the surface of the PC steel wire High-strength PC steel wire with excellent delayed fracture resistance, characterized in that (in Hv table / Hv) is 1.1 or less.
(2) In mass%, Cr: 0.01-2.0%, Mo: 0.01-0.5%, V: 0.01-0.5%, Ni: 0.01-1.0%, Cu: 0.01-0.5%, B: 0.0001-0.005% The high strength PC steel wire excellent in delayed fracture resistance according to (1), characterized by containing one or more of the above.
(3) by mass%, further containing one or more of Ti: 0.001 to 0.05%, Nb: 0.001 to 0.07%, Zr: 0.001 to 0.07% (1) or (2 ) High strength PC steel wire with excellent delayed fracture resistance .
本発明によれば、優れた耐遅れ破壊特性と延性を有する強度が2000MPa以上の高強度鋼線及びその製造方法を提供することが可能になる。 According to the present invention, it is possible to provide a high-strength steel wire having excellent delayed fracture resistance and ductility with a strength of 2000 MPa or more and a method for producing the same.
本発明者らは、まず高強度のPC鋼線の耐遅れ破壊特性を向上させるために、鋼材成分、パーライト変態処理条件、伸線加工条件、ブルーイング条件、PC鋼線の硬度分布の影響等に関して詳細に究明した。この結果、高強度PC鋼線の耐遅れ破壊特性を向上させるためには、線径がDのPC鋼線において、表面から0.1Dの領域(表層部)の表層Hv硬さ(Hv表)と表層部の内側の領域(内部)の内部Hv硬さ(Hv内)の比(Hv表/Hv内、以下、Hv硬さ比)を1.1以下に制御することが重要であることを見出した。更に、Hv硬さ比を1.1以下にする製造方法、即ち、最適なパーライト変態処理及びブルーイング処理の技術を確立した。 First, in order to improve the delayed fracture resistance of high strength PC steel wire, the present inventors, steel material composition, pearlite transformation treatment conditions, wire drawing conditions, brewing conditions, the influence of PC steel wire hardness distribution, etc. We investigated in detail. As a result, in order to improve the delayed fracture resistance of high-strength PC steel wire, the surface Hv hardness (Hv table) in the region (surface layer part) 0.1D from the surface in the PC steel wire with a wire diameter of D It has been found that it is important to control the internal Hv hardness (inside Hv) ratio (inside Hv / Hv, hereinafter referred to as Hv hardness ratio) of the inner region (inside) of the surface layer portion to 1.1 or less. Furthermore, the manufacturing method which makes Hv hardness ratio 1.1 or less, ie, the technique of the optimal pearlite transformation process and bluing process, was established.
本発明の耐遅れ破壊特性に優れた高強度PC鋼線は、Hv硬さ比、即ち、PC鋼線の線径をDとした場合、表面から0.1Dの領域(表層部)のHv硬さ(Hv表)と表層部の内側の領域(内部)のHv硬さ(Hv内)の比(Hv表/Hv内、Hv硬さ比)が1.1以下であることを最大の特徴としている。この限定理由について、以下に述べる。 The high-strength PC steel wire excellent in delayed fracture resistance of the present invention has an Hv hardness ratio, that is, when the PC steel wire diameter is D, the Hv hardness in the region of 0.1D (surface layer part) from the surface. The greatest feature is that the ratio of Hv hardness (within Hv) (Hv table / within Hv, Hv hardness ratio) between the (Hv table) and the inner region (inside) of the surface layer portion is 1.1 or less. The reason for this limitation will be described below.
図1は、強度が2000MPa以上のPC鋼線における断面のHv硬度分布の例である。通常、PC鋼線の高強度化に伴い、伸線加工時の加工発熱量が増加する。この結果、図1中のA例(●印)のように、加工発熱による時効硬化が著しくなり、特に、PC鋼線の表層部の硬さ増加が著しくなる。A例のような硬度分布を持つPC鋼線では、耐遅れ破壊特性や延性が劣化することが判明した。一方、B例(□印)のような表層部のHv硬さの増加を抑制したPC鋼線では、同一強度であっても、耐遅れ破壊特性及び延性が極めて有効であることが判明した。耐遅れ破壊特性は、鋼材の強度が増加するほど劣化し易くなり、一方、遅れ破壊の亀裂発生は鋼線表層部付近から起きるため、鋼線の表層部のHv硬度が耐遅れ破壊特性に大きな影響を与えていると推定される。ここで、Hv硬さ比が1.1を超えると、耐遅れ破壊特性及び延性の劣化が進行するため、Hv硬さ比の上限を1.1以下に限定した。高強度PC鋼線の耐遅れ破壊特性をより向上させる観点から、より好ましいHv硬さ比は0.95以下である。本発明でのHv硬さ比は、荷重が50gf(0.49N)の条件で硬さ試験を行い、表層部、内部共に10点以上の硬さを測定し、その平均値の比を求めたものである。 FIG. 1 is an example of a cross-sectional Hv hardness distribution in a PC steel wire having a strength of 2000 MPa or more. Usually, as the strength of PC steel wire increases, the amount of heat generated during wire drawing increases. As a result, age hardening due to processing heat generation becomes remarkable as in example A (● mark) in FIG. 1, and in particular, the increase in the hardness of the surface layer portion of the PC steel wire becomes remarkable. It was found that the delayed fracture resistance and ductility of the PC steel wire with the hardness distribution as in example A deteriorated. On the other hand, it was found that the delayed fracture resistance and ductility are extremely effective even with the same strength in the PC steel wire in which the increase in Hv hardness of the surface layer portion as in Example B (□ mark) is suppressed. Delayed fracture resistance tends to deteriorate as the strength of the steel increases.On the other hand, cracking of delayed fracture occurs near the surface of the steel wire, so the Hv hardness of the surface of the steel wire is large in the delayed fracture resistance. It is estimated that it has an influence. Here, when the Hv hardness ratio exceeds 1.1, the delayed fracture resistance and ductility deteriorate, so the upper limit of the Hv hardness ratio is limited to 1.1 or less. From the viewpoint of further improving the delayed fracture resistance of the high strength PC steel wire, a more preferable Hv hardness ratio is 0.95 or less. Hv hardness ratio in the present invention is a hardness test under the condition that the load is 50 gf (0.49 N), the hardness of 10 points or more is measured on both the surface layer and inside, and the ratio of the average values is obtained. It is.
次に、本発明の対象とする鋼の成分の限定理由について述べる。以下、質量%を単に%と表記する。 Next, the reasons for limiting the components of the steel that is the subject of the present invention will be described. Hereinafter, mass% is simply expressed as%.
Cは、PC鋼線の高強度化を達成する上で必須の元素であるが、0.9%未満ではパーライト変態処理後の強度を高めることが困難であり、伸線加工歪みの増加による高強度化手段を図っても、本発明で目的とする2000MPa以上の高強度PC鋼線を実現することが困難であるため、Cの下限を0.9%に限定した。一方、1.2%を超えて添加しても、上記の効果が飽和し、更にパーライト変態処理時に伸線加工性や耐遅れ破壊特性を劣化させる初析セメンタイトが析出し易くなるため、上限を1.2%に制限した。 C is an indispensable element for achieving high strength of PC steel wire, but if it is less than 0.9%, it is difficult to increase the strength after pearlite transformation treatment. Even if measures are taken, it is difficult to realize a high strength PC steel wire of 2000 MPa or more, which is the object of the present invention, so the lower limit of C is limited to 0.9%. On the other hand, even if added over 1.2%, the above effect is saturated, and pro-eutectoid cementite that deteriorates wire drawing workability and delayed fracture resistance during pearlite transformation treatment is likely to precipitate, so the upper limit is 1.2% Restricted to.
Siは、固溶体強化作用によってパーライト変態処理後の強度を高める作用があると共に、450℃超以上での高温ブルーイング処理時のPC鋼線の強度低下を防止する効果がある。Siの添加量が0.01%未満では前記効果が発揮できず、一方、1.5%を超えても添加量に見合う効果が期待できず、更にPC鋼線表層部の脱炭が増加するため、0.01〜1.5%の範囲に制限した。PC鋼線の高強度化を図る観点から、好ましいSiの添加範囲は、0.5〜1.5%である。 Si has the effect of increasing the strength after the pearlite transformation treatment by the solid solution strengthening effect, and also has the effect of preventing the strength reduction of the PC steel wire during the high temperature blueing treatment above 450 ° C. When the addition amount of Si is less than 0.01%, the above-mentioned effect cannot be exhibited.On the other hand, even if it exceeds 1.5%, an effect commensurate with the addition amount cannot be expected, and further, decarburization of the surface portion of the PC steel wire increases. Limited to 1.5% range. From the viewpoint of increasing the strength of the PC steel wire, the preferable Si addition range is 0.5 to 1.5%.
Mnは、脱酸、脱硫のために必要であるばかりでなく、パーライト変態処理後の強度を高めるために有効な元素である。しかし、Mnの添加量が0.2%未満では上記の効果が得られず、一方、1.5%を超えて添加しても添加量に見合う効果が得られないため、0.2〜1.5%の範囲に制限した。 Mn is an element effective not only for deoxidation and desulfurization but also for increasing the strength after pearlite transformation treatment. However, if the amount of Mn added is less than 0.2%, the above effect cannot be obtained.On the other hand, even if added over 1.5%, an effect commensurate with the amount added cannot be obtained, so the range is limited to 0.2 to 1.5%. .
Alは、脱酸及びパーライト変態処理の加熱時において、AlNを形成することによりオーステナイト粒の粗大化を防止する効果がある。しかし、Alの添加量が0.001%未満では、これらの効果が不十分であり、0.05%を超えて添加しても効果が飽和するため、0.001〜0.05%の範囲に限定した。 Al has the effect of preventing austenite grains from coarsening by forming AlN during heating in deoxidation and pearlite transformation treatment. However, when the addition amount of Al is less than 0.001%, these effects are insufficient, and even if added over 0.05%, the effect is saturated, so the content is limited to a range of 0.001 to 0.05%.
Nは、Al、Ti、Nb、Zrの窒化物を生成することにより、オーステナイト粒を細粒化させる効果がある。Nの添加量が0.0005%未満であるとこの効果がやや不十分であり、0.010%を超えるとPC鋼線の延性が低下するため、0.0005〜0.010%の範囲に限定した。 N has an effect of making the austenite grains finer by forming nitrides of Al, Ti, Nb, and Zr. When the amount of N added is less than 0.0005%, this effect is slightly insufficient. When it exceeds 0.010%, the ductility of the PC steel wire is lowered, so the content is limited to the range of 0.0005 to 0.010%.
以上が、本発明の耐遅れ破壊特性に優れた高強度PC鋼線の基本成分であるが、本発明では、パーライト変態処理後の強度の増加、伸線加工での加工硬化率の増加、高温ブルーイング処理時の強度低下の防止及び耐遅れ破壊特性を向上させる観点から、Cr、Mo、V、Ni、Cu、Bの1種又は2種以上を、オーステナイト結晶粒の微細化の観点から、Ti、Nb、Zrの1種又は2種以上を含有させることができる。 The above is the basic component of the high strength PC steel wire excellent in delayed fracture resistance of the present invention.In the present invention, the strength after pearlite transformation treatment is increased, the work hardening rate in wire drawing is increased, the high temperature From the viewpoint of preventing strength reduction at the time of blueing treatment and improving delayed fracture resistance, one or more of Cr, Mo, V, Ni, Cu, B is used from the viewpoint of austenite grain refinement, One or more of Ti, Nb and Zr can be contained.
Crは、パーライト変態処理後の強度を高める効果がある。また、伸線加工時の加工硬化率を高める作用があるために、伸線加工歪みが少なくてもPC鋼線の高強度化を達成することができることから、高強度PC鋼線の高延性化の効果もある。更に、高温ブルーイング処理時の強度低下を防止する効果も有しており、耐遅れ破壊特性の向上に対しても有効な元素である。Crの添加量が0.01%未満では、上記効果がやや不十分であり、また、2.0%を超えて添加しても効果が飽和し、更にパーライト変態処理時のパーライト変態終了時間が長くなり、生産性が低下するため、0.01〜2.0%の範囲とすることが望ましい。上記作用の観点から、好ましいCr添加量の範囲は、0.1〜1.0%である。 Cr has an effect of increasing the strength after the pearlite transformation treatment. In addition, since it has the effect of increasing the work hardening rate during wire drawing, it is possible to achieve high strength of PC steel wire even if there is little wire drawing distortion. There is also the effect. Furthermore, it has the effect of preventing strength reduction during high temperature bluing treatment, and is an effective element for improving delayed fracture resistance. If the amount of Cr added is less than 0.01%, the above effect is somewhat insufficient, and even if added over 2.0%, the effect is saturated, and the pearlite transformation finish time during pearlite transformation treatment is prolonged, producing Therefore, it is desirable that the content be in the range of 0.01 to 2.0%. From the viewpoint of the above action, the preferable Cr addition amount is 0.1 to 1.0%.
Moは、焼入性を高めることによって、パーライト変態処理後の強度を増加させると共に、ブルーイング処理時の強度低下を防止する効果がある。Moが0.01%未満では前記効果が期待できず、一方、0.5%を超えて添加しても効果が飽和するため、0.01〜0.5%の範囲とすることが望ましい。 Mo increases the hardenability, thereby increasing the strength after the pearlite transformation treatment and preventing the strength from being lowered during the blueing treatment. If Mo is less than 0.01%, the above effect cannot be expected. On the other hand, even if added over 0.5%, the effect is saturated, so a range of 0.01 to 0.5% is desirable.
Vは、析出強化によって、パーライト変態処理後の強度を増加させる作用があり、また、高温ブルーイング処理の強度低下を防止する効果がある。更に、高強度PC鋼線の耐遅れ破壊特性に改善に対しても有効な元素である。Vの添加量が0.01%未満では上記効果がやや不十分であり、0.5%を超えて添加しても効果が飽和し、パーライト変態処理時間が長くなるため、0.01〜0.5%の範囲とすることが望ましい。 V has the effect of increasing the strength after the pearlite transformation treatment by precipitation strengthening, and also has the effect of preventing the strength reduction of the high temperature bluing treatment. Furthermore, it is an effective element for improving the delayed fracture resistance of high strength PC steel wires. If the addition amount of V is less than 0.01%, the above effect is slightly insufficient, and even if added over 0.5%, the effect is saturated, and the pearlite transformation treatment time becomes long. Is desirable.
Niは、焼入性を高める作用があり、パーライト変態処理後の強度増加に有効な元素である。また、プレストレストコンクリート中で環境からPC鋼線中に侵入する水素量を抑制する作用があるため、耐遅れ破壊特性の向上にも有効な元素である。Niの添加量が0.01%未満では上記効果が十分に発揮できず、1.0%を超えて添加しても効果が飽和するため、0.01〜1.0%の範囲とすることが望ましい。 Ni has an effect of improving hardenability and is an element effective in increasing the strength after pearlite transformation treatment. It is also an effective element for improving delayed fracture resistance because it has the effect of suppressing the amount of hydrogen entering the PC steel wire from the environment in prestressed concrete. If the addition amount of Ni is less than 0.01%, the above effect cannot be sufficiently exerted, and even if it is added in excess of 1.0%, the effect is saturated. Therefore, the range of 0.01 to 1.0% is desirable.
Cuは、焼入性を高める作用があり、パーライト変態処理後の強度増加に有効な元素である。更に、Niと同様にプレストレストコンクリート中で環境からPC鋼線中に侵入する水素量を抑制する作用があるため、耐遅れ破壊特性の向上にも有効な元素である。また、侵入水素の抑制効果は、NiとCuを複合添加するとその効果が更に向上する。Cuの添加量が0.01%未満では上記効果が十分に発揮できず、0.5%を超えて添加しても効果が飽和するため、0.01〜0.5%の範囲とすることが望ましい。 Cu has an effect of improving hardenability and is an effective element for increasing the strength after pearlite transformation. Furthermore, like Ni, it has the effect of suppressing the amount of hydrogen entering the PC steel wire from the environment in prestressed concrete, so it is an effective element for improving delayed fracture resistance. In addition, the effect of suppressing intrusion hydrogen is further improved by adding Ni and Cu in combination. If the addition amount of Cu is less than 0.01%, the above effect cannot be sufficiently exerted, and even if added over 0.5%, the effect is saturated. Therefore, the range of 0.01 to 0.5% is desirable.
Bは、焼入性を高める作用があり、パーライト変態処理後の強度増加に有効な元素である。Bの添加量が0.0001%未満では上記効果が発揮できず、0.005%を超えて添加するとB化合物が多量に生成し易くなりPC鋼線の延性が低下するため、0.0001〜0.005%の範囲とすることが望ましい。 B has an effect of improving hardenability and is an element effective for increasing the strength after the pearlite transformation treatment. If the addition amount of B is less than 0.0001%, the above effect cannot be exerted, and if adding over 0.005%, a large amount of B compound is easily generated and the ductility of the PC steel wire is lowered, so the range is 0.0001 to 0.005%. It is desirable.
Tiは、脱酸及びTiの炭窒化物を形成することによりオーステナイト粒の粗大化を防止する効果を有している。この結果、パーライト変態処理後の伸線加工性が向上すると共に、PC鋼線の高延性化に対しても有効な元素である。しかし、Tiの添加量が0.001%未満ではこれらの効果がやや不十分であり、0.05%を超えて添加すると粗大なTi炭窒化物となり易くなり、伸線加工性、耐遅れ破壊特性が低下するため、0.001〜0.05%の範囲とすることが望ましい。 Ti has the effect of preventing coarsening of austenite grains by deoxidizing and forming Ti carbonitride. As a result, the wire drawing workability after the pearlite transformation treatment is improved and the element is effective for increasing the ductility of the PC steel wire. However, if the amount of Ti added is less than 0.001%, these effects are slightly insufficient, and if added over 0.05%, coarse Ti carbonitride tends to be formed, and wire drawing workability and delayed fracture resistance are reduced. Therefore, it is desirable to set it as 0.001 to 0.05% of range.
Nbは、Tiと同様の効果を有する元素であり、Nbの炭窒化物を生成することによりオーステナイト粒を微細化させるために有効な元素である。また、この効果により伸線加工性、延性の向上に有効である。しかし、Nbの添加量が0.001%未満では上記効果がやや不十分であり、一方、0.07%を超えると、この効果が飽和するため、0.001〜0.07%の範囲とすることが望ましい。 Nb is an element having an effect similar to that of Ti, and is an effective element for refining austenite grains by generating Nb carbonitride. In addition, this effect is effective in improving wire drawing workability and ductility. However, if the amount of Nb added is less than 0.001%, the above effect is somewhat insufficient. On the other hand, if it exceeds 0.07%, this effect is saturated, so it is desirable that the content be in the range of 0.001 to 0.07%.
Zrは、Ti、Nbと同様の効果を有する元素である。Zrの炭窒化物によるオーステナイト粒の細粒化効果により、パーライト変態処理後の伸線加工性及びPC鋼線の延性を向上させる作用がある。Zrの添加量が0.001%未満では上記効果が十分に発揮できず、一方、0.07%を超えて添加しても、効果が飽和するため、0.001〜0.07%の範囲とすることが望ましい。 Zr is an element having the same effect as Ti and Nb. The effect of refining austenite grains by carbonitride of Zr has the effect of improving the drawing workability after pearlite transformation and the ductility of PC steel wire. If the amount of Zr added is less than 0.001%, the above effect cannot be sufficiently exerted. On the other hand, even if added over 0.07%, the effect is saturated, so it is desirable that the content be in the range of 0.001 to 0.07%.
P、Sは不可避的不純物であり、特に制限しないものの、高強度PC鋼線の耐遅れ破壊特性を向上させる観点から、それぞれ0.02%以下が好ましい範囲である。 P and S are inevitable impurities, and although not particularly limited, 0.02% or less is each preferable range from the viewpoint of improving delayed fracture resistance of a high-strength PC steel wire.
本発明の耐遅れ破壊特性に優れた高強度PC鋼線は、90%以上の伸線加工パーライトと10%以下のフェライト、ベイナイト組織からなる。強度が2000MPa以上の高強度PC鋼線において、フェライト、ベイナイト等の非パーライト組織の分率が増加すると、耐遅れ破壊特性が低下すると共に、延性の確保が困難であるため、伸線加工パーライト組織の分率は90%以上が必要である。より好ましい伸線加工パーライト組織の分率は、95%以上である。伸線加工パーライトの組織分率は、走査型電子顕微鏡で倍率が5000で10視野以上を写真撮影し、画像処理によって伸線加工パーライト組織の面積分率を測定し、その平均値を求めた値である。 The high-strength PC steel wire having excellent delayed fracture resistance according to the present invention comprises 90% or more drawn pearlite, 10% or less ferrite and bainite structure. In high-strength PC steel wires with a strength of 2000 MPa or more, if the fraction of non-pearlite structure such as ferrite and bainite increases, delayed fracture resistance deteriorates and it is difficult to ensure ductility. The fraction of 90% or more is necessary. A more preferable fraction of the drawn pearlite structure is 95% or more. The structure fraction of the drawn pearlite is a value obtained by taking a photograph of 10 fields of view or more with a scanning electron microscope at a magnification of 5000, measuring the area fraction of the drawn pearlite structure by image processing, and calculating the average value thereof. It is.
また、本発明でのPC鋼線の遅れ破壊特性は、以下の条件で評価したものである。50℃の20%NH4SCN溶液中にPC鋼線を浸漬した後、PC鋼線の引張破断荷重の70%の静的荷重を負荷し、その破断時間を求める。なお、遅れ破壊試験中は、NH4SCN溶液温度を50℃に制御している。試験時間は最大で50時間とし、破断時間が50時間以上であれば、耐遅れ破壊特性が良好であると評価した。 Further, the delayed fracture characteristics of the PC steel wire in the present invention are evaluated under the following conditions. After dipping the PC steel wire in a 20% NH 4 SCN solution at 50 ° C, a static load of 70% of the tensile breaking load of the PC steel wire is applied, and the breaking time is obtained. During the delayed fracture test, the NH 4 SCN solution temperature is controlled at 50 ° C. The test time was 50 hours at the maximum, and if the fracture time was 50 hours or more, the delayed fracture resistance was evaluated as good.
次に、本発明の製造方法について説明する。本発明のPC鋼線は、パーライト変態処理(パテンティング処理)、伸線加工、ブルーイング処理の工程で製造される。 Next, the manufacturing method of this invention is demonstrated. The PC steel wire of the present invention is manufactured by a process of pearlite transformation treatment (patenting treatment), wire drawing, and bluing treatment.
パーライト変態処理は、線材の熱間圧延後に再加熱あるいは急冷し、パーライト変態させる温度域に保持するものである。 In the pearlite transformation treatment, reheating or rapid cooling is performed after hot rolling of the wire, and the pearlite transformation is held in a temperature range where pearlite transformation is performed.
再加熱の場合は、加熱温度が900℃未満ではオーステナイト化がやや不十分であり、一方、1100℃を超えるとオーステナイト粒の粗大化が起きて伸線加工性が低下するため、加熱温度範囲を900〜1100℃に制限した。オーステナイト粒の細粒化の観点から、より好ましい条件は900〜1000℃である。再加熱後、通常の製造方法は、550〜600℃の温度範囲に急冷、保定しパーライト変態処理を行うが、本発明では、600〜650℃に保定し部分的なパーライト変態処理を施した後、引き続き、540〜600℃未満でパーライト変態を完了させる点に特徴がある。この理由は、第1段のパーライト変態処理で、表層部をラメラー間隔が粗いパーライト組織とし、第2段のパーライト変態で、内部を微細パーライト組織にするためである。 In the case of reheating, if the heating temperature is less than 900 ° C, austenitization is somewhat insufficient, while if it exceeds 1100 ° C, austenite grains become coarse and wire drawing workability decreases. Restricted to 900-1100 ° C. A more preferable condition is 900 to 1000 ° C. from the viewpoint of austenite grain refinement. After reheating, the normal manufacturing method is to quench and hold in the temperature range of 550 to 600 ° C and perform pearlite transformation treatment, but in the present invention, it is held at 600 to 650 ° C and subjected to partial pearlite transformation treatment. Subsequently, it is characterized in that the pearlite transformation is completed at 540 to less than 600 ° C. The reason for this is that in the first stage pearlite transformation treatment, the surface layer portion has a pearlite structure with a rough lamellar spacing, and in the second stage pearlite transformation, the inside has a fine pearlite structure.
第1段のパーライト変態温度が600℃未満では、伸線加工及びブルーイング処理後のPC鋼線のHv硬度比を1.1以下にすることが困難であり、650℃を超えると、ラメラー間隔が粗大化になり過ぎて、伸線加工性の低下や2000MPa以上の高強度化が困難となるため、第1段のパーライト変態処理温度の範囲を600〜650℃に限定した。また、第1段のパーライト変態処理でパーライト変態分率を10〜50%にすることが好ましい条件である。 If the first stage pearlite transformation temperature is less than 600 ° C, it is difficult to make the Hv hardness ratio of the PC steel wire after wire drawing and brewing 1.1 or less, and if it exceeds 650 ° C, the lamellar spacing is coarse. Therefore, the range of the first stage pearlite transformation treatment temperature is limited to 600 to 650 ° C., because it becomes difficult to reduce the wire drawing workability and increase the strength of 2000 MPa or more. Moreover, it is a preferable condition that the pearlite transformation fraction is 10 to 50% in the first stage pearlite transformation treatment.
第2段のパーライト変態処理温度が540℃未満では、伸線加工性及び耐遅れ破壊特性を劣化させるベイナイトが発生し易くなり、一方、600℃以上では、ラメラー間隔が粗大化するために、PC鋼線の高強度化が困難になるため、540〜600℃未満に制限した。 If the pearlite transformation temperature of the second stage is less than 540 ° C, bainite that deteriorates the wire drawing workability and delayed fracture resistance tends to occur, while at 600 ° C or more, the lamellar spacing becomes coarse. Since it was difficult to increase the strength of the steel wire, it was limited to less than 540 to 600 ° C.
パーライト変態処理を行う保定時間は、再加熱後のオーステナイト粒径、化学成分、パーライト変態温度及び鉛浴炉、ソルト浴炉、流動層炉等の熱処理炉の種類によって変化する。更に、オーステナイト粒径は、化学成分、再加熱の温度や保定時間によっても変化する。このため、パーライト変態処理の保定時間は、特に限定しないものの、パーライト変態分率を10〜50%に制御する観点から、第1段のパーライト変態処理では5〜30秒が好ましい範囲である。第2段のパーライト変態処理の保定時間は、パーライト変態を完了させる観点から、10〜120秒が好ましい範囲である。 The holding time for performing the pearlite transformation varies depending on the austenite grain size after reheating, the chemical composition, the pearlite transformation temperature, and the type of heat treatment furnace such as a lead bath furnace, a salt bath furnace, or a fluidized bed furnace. Furthermore, the austenite particle size varies depending on the chemical component, the reheating temperature, and the retention time. For this reason, the retention time of the pearlite transformation treatment is not particularly limited, but from the viewpoint of controlling the pearlite transformation fraction to 10 to 50%, 5 to 30 seconds is a preferable range in the first stage pearlite transformation treatment. The holding time of the second stage pearlite transformation treatment is preferably in the range of 10 to 120 seconds from the viewpoint of completing the pearlite transformation.
また、熱間圧延後、直ちにパーライト変態処理を行う場合は、仕上げ圧延温度を700〜950℃にすることが必要である。この理由は、仕上げ圧延温度を低温化することにより、線材表層部のオーステナイト結晶粒径を細粒化し、焼入性を低下させるためである。少なくても線材表層から1mmの領域のオーステナイト粒径を10μm以下にすることが好ましい条件である。線材内部オーステナイト粒径は粗くても差し支えがない。この結果、パーライト変態処理後の線材表層部の組織は粗いパーライト組織になり、最終的にPC鋼線のHv硬度比を1.1以下にすることが可能となる。ここで、仕上げ圧延温度700℃未満では熱間圧延時の変形抵抗が大き過ぎて熱間圧延が困難であり、一方、950℃を超えると表層のオーステナイト結晶粒の細粒化が困難になるため、仕上げ圧延温度の範囲を700〜950℃に制限した。好ましい条件は700〜850℃である。 Moreover, when performing a pearlite transformation process immediately after hot rolling, it is necessary to make finishing rolling temperature into 700-950 degreeC. The reason for this is to reduce the hardenability by reducing the austenite grain size of the wire surface layer by lowering the finish rolling temperature. It is a preferable condition that the austenite grain size in the region of 1 mm from the wire surface layer is 10 μm or less. The wire material austenite grain size may be coarse. As a result, the structure of the surface portion of the wire after the pearlite transformation treatment becomes a rough pearlite structure, and finally the Hv hardness ratio of the PC steel wire can be made 1.1 or less. Here, if the finish rolling temperature is less than 700 ° C, the deformation resistance during hot rolling is too large and hot rolling is difficult, whereas if it exceeds 950 ° C, it becomes difficult to refine the austenite crystal grains in the surface layer. The finish rolling temperature range was limited to 700-950 ° C. Preferred conditions are 700-850 ° C.
仕上げ圧延後は、熱間圧延線材を500〜600℃の温度範囲に冷却し、パーライト変態処理を施す。ここで、冷却速度が10℃/秒未満では冷却中に粗大なパーライト組織が発生し易くなり、伸線加工性が低下するため、好ましい冷却速度は10℃/秒以上である。また、パーライト変態温度が500℃未満では伸線加工性や耐遅れ破壊特性を劣化させるベイナイト組織の発生頻度が増加し、一方、600℃を超えると粗いパーライト組織となり、PC鋼線の高強度化が困難になるため、パーライト変態温度の範囲を500〜600℃に限定した。熱間圧延後の最適パーライト変態処理温度が再加熱パーライト変態処理温度と異なる理由は、熱間圧延後の場合、単線ではなく、巻き取り後にリング状でパーライト変態処理を行うためである。 After finish rolling, the hot-rolled wire is cooled to a temperature range of 500 to 600 ° C. and subjected to pearlite transformation treatment. Here, in cooling rate is less than 10 ° C. / sec coarse pearlite structure is likely to occur during cooling, for drawing workability is lowered, preferably the cooling rate is over 10 ° C. / second or more. In addition, when the pearlite transformation temperature is less than 500 ° C, the occurrence frequency of bainite structure that deteriorates wire drawing workability and delayed fracture resistance increases. On the other hand, when it exceeds 600 ° C, it becomes a coarse pearlite structure and increases the strength of PC steel wire. Therefore, the range of the pearlite transformation temperature was limited to 500 to 600 ° C. The reason why the optimum pearlite transformation temperature after hot rolling is different from the reheated pearlite transformation temperature is that, after hot rolling, the pearlite transformation treatment is performed not in a single wire but in a ring shape after winding.
本発明では、上述したパーライト変態処理を行った線材を用いて伸線加工を行う。伸線加工歪みは、パーライト変態処理後の強度、伸線加工時の加工硬化率を変化させる成分、各ダイスの減面率や伸線加工速度等の伸線加工条件で変化するが、本発明の化学成分とパーライト変態処理条件では、真歪みで1.5〜2.1の範囲である。ここで、伸線加工の真歪みとは、2×ln(伸線前の線径/伸線後の線径)で表す値である(lnは、自然対数を示す)。 In the present invention, wire drawing is performed using the wire material that has been subjected to the above-described pearlite transformation treatment. The wire drawing distortion varies depending on the wire drawing conditions such as the strength after pearlite transformation, the component that changes the work hardening rate during wire drawing, the area reduction rate of each die, and the wire drawing speed. In the chemical composition and pearlite transformation treatment conditions, the true strain is in the range of 1.5 to 2.1. Here, the true strain of wire drawing is a value represented by 2 × ln (wire diameter before wire drawing / wire diameter after wire drawing) (ln represents a natural logarithm).
本発明では、伸線加工後にブルーイング処理を施す。本発明のブルーイング処理は、2つの方法がある。250℃〜450℃のブルーイング処理は、通常行われているブルーイング処理であり、この目的は、PC鋼線の延性の向上とリラクセーション特性を向上させるためである。ブルーイング処理温度が250℃未満では前記効果が発揮できず、450℃を超えるとブルーイング処理後の強度低下量が大きくなるため、250℃〜450℃の温度範囲に制限した。ブルーイング処理時間は、炉加熱、高周波加熱、ソルト浴加熱、鉛浴加熱等の加熱方法によって変化するため特に限定しないが、2秒〜2分が好ましい条件である。 In the present invention, the blueing process is performed after the wire drawing. There are two methods for the bluing process of the present invention. The bluing treatment at 250 ° C. to 450 ° C. is a commonly used bluing treatment, and the purpose is to improve the ductility and relaxation properties of the PC steel wire. When the temperature of bluing treatment is less than 250 ° C., the above effect cannot be exhibited. When the temperature exceeds 450 ° C., the amount of strength reduction after the bluing treatment increases, so the temperature is limited to 250 ° C. to 450 ° C. The bluing treatment time is not particularly limited because it varies depending on the heating method such as furnace heating, high frequency heating, salt bath heating, lead bath heating, etc., but 2 seconds to 2 minutes is a preferable condition.
もう一つのブルーイング処理方法は、450℃超〜650℃の温度範囲に2〜30秒保持し、引き続き250〜450℃でブルーイング処理を行う方法である。この2段からなるブルーイング処理は、通常のパテンティング処理、即ち、900〜1100℃に加熱後に550〜600℃でパーライト変態処理を行うか、熱間圧延で通常の1000℃前後での仕上げ圧延後にパーライト変態処理を行い、その後、伸線加工を行う場合に対しても、耐遅れ破壊特性や延性の向上に有効である。第1段の加熱はPC鋼線表層部のHv硬さ低減を狙い、Hv硬度比を1.1以下にすることを目的としたものである。第1段の加熱が、450℃以下ではHv硬度比を1.1以下にすることが困難であり、一方、650℃を超えると強度低下量が大きくなり過ぎて、2000MPa以上の高強度化が困難であるため、450℃超〜650℃の温度範囲に制限した。また、加熱時間が2秒未満では前述した効果が十分に発揮できず、一方、30秒を超えると強度低下が著しくなるため、2〜30秒に限定した。第1段の加熱方式は、PC鋼線表層部のみを加熱することが重要なため、急速加熱が好ましい。具体的には、炉加熱ではなく、高周波加熱、ソルト浴加熱、鉛浴加熱が好ましい。 The other bluing treatment method is a method in which the bluing treatment is carried out at 250 to 450 ° C. after being kept in a temperature range of more than 450 ° C. to 650 ° C. for 2 to 30 seconds. This two-stage bluing process is a normal patenting process, that is, a pearlite transformation process is performed at 550-600 ° C after heating to 900-1100 ° C, or finish rolling at around 1000 ° C, which is normal by hot rolling. This is effective for improving delayed fracture resistance and ductility even when a pearlite transformation treatment is performed later and then wire drawing is performed. The first stage heating is aimed at reducing the Hv hardness of the PC steel wire surface layer, and the Hv hardness ratio is 1.1 or less. If the first stage heating is 450 ° C or less, it is difficult to reduce the Hv hardness ratio to 1.1 or less.On the other hand, if it exceeds 650 ° C, the amount of strength decrease becomes too large, and it is difficult to increase the strength to 2000 MPa or more. Therefore, it was limited to a temperature range of more than 450 ° C to 650 ° C. Further, when the heating time is less than 2 seconds, the above-described effects cannot be sufficiently exhibited. On the other hand, when the heating time is longer than 30 seconds, the strength is significantly reduced. The first stage heating method is preferably rapid heating because it is important to heat only the surface portion of the PC steel wire. Specifically, high-frequency heating, salt bath heating, and lead bath heating are preferable instead of furnace heating.
第1段の加熱に引き続いて行う250〜450℃の第2段の加熱は、通常のブルーイング処理と同じであり、PC鋼線の中心部まで加熱するためである。限定理由は、前述した通りである。 The second stage heating at 250 to 450 ° C. performed following the first stage heating is the same as the normal bluing treatment, and is for heating to the center of the PC steel wire. The reason for limitation is as described above.
以下、実施例により、本発明の効果をさらに具体的に説明する。 Hereinafter, the effect of the present invention will be described more specifically with reference to examples.
表1に示す化学成分を有する鋼材を用いて、熱間圧延により線径13mmに仕上げた。熱間圧延後、直ちにパーライト変態処理を行う場合は、表2、3に示す仕上げ圧延温度とパーライト変態温度で行った。パーライト変態処理は、熱間圧延後、10℃/秒以上の冷却速度でソルト浴に浸漬させて行った。また、熱間圧延後の再加熱でのパーライト変態処理は、表2、3に示す条件で行い、鉛浴を用いた。ソルト浴、鉛浴への浸漬時間は10〜135秒とした。その後、酸洗、燐酸亜鉛被膜処理を施し、乾式伸線で線径5mmに仕上げ、表2、3に示す条件でブルーイング処理を施した。ブルーイング処理は、第1段、第2段、いずれも高周波加熱で行った。 Using a steel material having the chemical components shown in Table 1, the wire diameter was finished to 13 mm by hot rolling. When the pearlite transformation treatment was performed immediately after hot rolling, the finishing rolling temperature and the pearlite transformation temperature shown in Tables 2 and 3 were used. The pearlite transformation treatment was performed by dipping in a salt bath at a cooling rate of 10 ° C./second or more after hot rolling. In addition, the pearlite transformation treatment by reheating after hot rolling was performed under the conditions shown in Tables 2 and 3, and a lead bath was used. The immersion time in the salt bath and lead bath was 10 to 135 seconds. Thereafter, pickling and zinc phosphate coating treatment were performed, the wire diameter was finished to 5 mm by dry drawing, and blueing treatment was performed under the conditions shown in Tables 2 and 3. The blueing treatment was performed by high-frequency heating in both the first stage and the second stage.
パーライト変態後及びブルーイング処理後の引張強さはJIS Z 2241に準拠して、引張試験を行い求めた。また、硬さ試験はJIS Z 2244に準拠して行った。Hv硬度比は、PC鋼線表面から0.1Dの領域(表層部)の表層硬さ(Hv表)、PC鋼線表層部の内側の領域(内部)の内部硬さ(Hv内)を試験荷重が50gf(0.49N)の条件でランダムに20点を測定し、それぞれの平均値の比(Hv表/Hv内)で求めた。ブルーイング処理後のPC鋼線の延性は、ねじり試験を用いて行い、破断までの回数で評価した。ねじり試験は、つかみ間隔が500mmの条件で行った。ねじり試験での破断まで回数が12回以上は良好(○印)、12回未満は不良(×印)と評価した。ブルーイング処理後のPC鋼線の耐遅れ破壊特性は、50℃の20%NH4SCN溶液中にPC鋼線を浸漬した後、PC鋼線の引張破断荷重の70%の静的荷重を負荷し、その破断時間で評価した。試験時間は最大で50時間とし、破断時間が50時間以上であれば耐遅れ破壊特性が良好であると評価した。 Tensile strength after pearlite transformation and after bluing treatment was determined by performing a tensile test in accordance with JIS Z 2241. The hardness test was performed according to JIS Z 2244. For the Hv hardness ratio, test load is the surface hardness (Hv table) in the 0.1D area (surface layer) from the surface of the PC steel wire, and the internal hardness (inside Hv) of the area inside the PC steel wire surface (inside) 20 points were randomly measured under the condition of 50 gf (0.49 N), and the average value ratio (within Hv table / Hv) was obtained. The ductility of the PC steel wire after the blueing treatment was evaluated using a torsion test and evaluated by the number of times until breakage. The torsion test was performed under the condition that the holding interval was 500 mm. The number of times to break in the torsion test was evaluated as good (◯ mark) when it was 12 times or more, and evaluated as poor (x mark) when less than 12 times. Delayed fracture resistance of PC steel wire after bluing treatment is as follows: PC steel wire is immersed in 20% NH 4 SCN solution at 50 ° C, and then a static load of 70% of the tensile breaking load of PC steel wire is applied. And it evaluated by the breaking time. The test time was 50 hours at maximum, and the delayed fracture resistance was evaluated as good when the fracture time was 50 hours or longer.
また、PC鋼線の組織は、走査型電子顕微鏡を用いて5000倍でそれぞれ10視野を写真撮影し、画像処理によって伸線加工パーライト組織の面積分率を測定し、その平均値を求めた。表3の試験No.29以外は、伸線加工パーライト組織の面積分率が96〜99%であり、良好であった。 In addition, as for the structure of the PC steel wire, 10 fields of view were photographed at a magnification of 5000 using a scanning electron microscope, the area fraction of the drawn pearlite structure was measured by image processing, and the average value was obtained. Except for Test No. 29 in Table 3, the area fraction of the drawn pearlite structure was 96 to 99%, which was good.
表2、3に、パーライト変態後の強度、PC鋼線の強度、HV硬度比、延性、遅れ破壊破断時間の結果を示す。表2の試験No.1〜25が本発明例で、表3の試験No.26〜39が比較例である。 Tables 2 and 3 show the results of the strength after pearlite transformation, the strength of the PC steel wire, the HV hardness ratio, the ductility, and the delayed fracture time. Test Nos. 1 to 25 in Table 2 are examples of the present invention, and Test Nos. 26 to 39 in Table 3 are comparative examples.
表2に示したように、本発明例は、いずれも、Hv硬度比が最適範囲にあると共に、PC鋼線の強度が2000MPa以上で、且つ、延性も良好で、遅れ破壊の破断時間が50時間以上となっており、耐遅れ破壊特性と延性の優れた高強度PC鋼線が実現されている。 As shown in Table 2, in all of the inventive examples, the Hv hardness ratio is in the optimum range, the strength of the PC steel wire is 2000 MPa or more, the ductility is good, and the fracture time of delayed fracture is 50. More than an hour, high strength PC steel wire with excellent delayed fracture resistance and ductility has been realized.
これに対して、比較例であるNo.26、27は化学成分が不適切な例である。即ち、No.26は、C含有量が本発明の範囲よりも少ないために、PC鋼線の強度が2000MPa以上に達していない例である。No.27は、C含有量が本発明の範囲よりも多いために、パーライト変態中に初析セメンタイトが析出し、伸線加工工程で断線した例である。 In contrast, Nos. 26 and 27, which are comparative examples, are examples of inappropriate chemical components. That is, No. 26 is an example in which the strength of the PC steel wire does not reach 2000 MPa or more because the C content is less than the range of the present invention. No. 27 is an example in which pro-eutectoid cementite precipitated during the pearlite transformation because the C content was larger than the range of the present invention, and was broken in the wire drawing process.
比較例のNo.28、31、39は、いずれも従来の製造方法を用いてPC鋼線を製造した例である。No.28は、仕上げ圧延温度が1060℃であり、線材表層部のオーステナイト粒細粒化が不十分なため、Hv硬度比が1.1を超え、この結果、良好な耐遅れ破壊特性と延性が確保できなかった例である。No.31、39は、いずれも再加熱でパーライト変態処理を行った場合であり、いずれもHv硬度比が1.1を超え、耐遅れ破壊特性と延性が低下した例である。 Comparative examples Nos. 28, 31, and 39 are examples in which a PC steel wire was manufactured using a conventional manufacturing method. No. 28 has a finish rolling temperature of 1060 ° C, and the austenite grain refinement of the wire surface layer is insufficient, so the Hv hardness ratio exceeds 1.1. As a result, good delayed fracture resistance and ductility are ensured. This is an example that could not be done. Nos. 31 and 39 are cases where pearlite transformation treatment was performed by reheating, and both are examples in which the Hv hardness ratio exceeded 1.1 and the delayed fracture resistance and ductility were reduced.
比較例のNo.29、30、32、33は、いずれもパーライト変態処理条件が不適切な例である。即ち、No.29は、熱間圧延後のパーライト変態温度が低過ぎるために、ベイナイトの生成により伸線加工パーライトの組織分率が88%と低下し、更に、Hv硬度比、耐遅れ破壊特性、延性が悪かった例である。No.30は、再加熱時の加熱温度が低過ぎたために、未固溶の炭化物が存在した例であり、この結果、耐遅れ破壊特性と延性が低下した例である。No.32は、第2段のパーライト変態温度が高過ぎ、No.33は、第1段のパーライト変態温度が高過ぎたために、いずれもPC鋼線の強度が2000MPa未満となった例である。 Comparative examples No. 29, 30, 32, and 33 are all examples in which the pearlite transformation treatment conditions are inappropriate. That is, in No. 29, since the pearlite transformation temperature after hot rolling is too low, the microstructure fraction of the drawn pearlite is reduced to 88% due to the formation of bainite, and the Hv hardness ratio, delayed fracture resistance This is an example of poor ductility. No. 30 is an example in which undissolved carbides exist because the heating temperature at the time of reheating was too low, and as a result, the delayed fracture resistance and ductility deteriorated. No. 32 is an example where the second stage pearlite transformation temperature was too high, and No. 33 was the first stage pearlite transformation temperature too high, so the strength of the PC steel wire was less than 2000 MPa in both cases. .
更に、比較例のNo.34〜38は、伸線加工後のブルーイング処理条件が不適切な例である。No.34は、第1段のブルーイング温度が低過ぎたために、Hv硬度比が1.1を越え、耐遅れ破壊特性と延性が悪かった例である。逆に、No.35は、第1段のブルーイング温度が高過ぎたために、強度低下量が大きくなり、強度が2000MPaに到達しなかった例である。No.36は、第2段のブルーイング温度が高過ぎたために、強度低下量が大となり、高強度化できなかった例である。No.36は、第2段のブルーイング温度が低過ぎたために、Hv硬度比が1.1を越え、耐遅れ破壊特性と延性の向上効果が少なかった例である。No.38は、伸線加工後のブルーイング処理を行わなかった例であり、この結果、Hv硬度比が高く、耐遅れ破壊特性が悪かった例である。 Furthermore, Nos. 34 to 38 of the comparative examples are examples in which the bluing treatment conditions after wire drawing are inappropriate. No. 34 is an example in which the Hv hardness ratio exceeded 1.1 because the first stage bluing temperature was too low, and the delayed fracture resistance and ductility were poor. On the other hand, No. 35 is an example in which the strength reduction amount increased and the strength did not reach 2000 MPa because the first stage bluing temperature was too high. No. 36 is an example where the second stage bluing temperature was too high, resulting in a large amount of strength reduction and high strength. No. 36 is an example where the Hv hardness ratio exceeded 1.1 because the bluing temperature in the second stage was too low, and the effect of improving delayed fracture resistance and ductility was small. No. 38 is an example in which the blueing treatment after wire drawing was not performed, and as a result, the Hv hardness ratio was high and the delayed fracture resistance was poor.
Claims (3)
C:0.9〜1.2%、
Si:0.01〜1.5%、
Mn:0.2〜1.5%、
Al:0.001〜0.05%、
N:0.0005〜0.010%
を含有し、残部がFe及び不可避的不純物からなり、かつ、90%以上の伸線加工パーライトと10%以下のフェライト、ベイナイト組織からなり、引張強さが2000MPa以上であるPC鋼線であって、該PC鋼線の線径をDとしたときに、PC鋼線の表面から0.1Dの領域(表層部)の表層Hv硬さ(Hv表)と表層部より内側の領域(内部)の内部Hv硬さ(Hv内)の比(Hv表/Hv内)が1.1以下であることを特徴とする耐遅れ破壊特性に優れた高強度PC鋼線。 % By mass
C: 0.9-1.2%,
Si: 0.01-1.5%,
Mn: 0.2-1.5%
Al: 0.001 to 0.05%,
N: 0.0005-0.010%
PC steel wire comprising the balance of Fe and inevitable impurities, 90% or more of drawn pearlite, 10% or less of ferrite and bainite structure, and a tensile strength of 2000 MPa or more. When the wire diameter of the PC steel wire is D, the surface Hv hardness (Hv table) in the 0.1D region (surface layer portion) from the surface of the PC steel wire and the inside of the region (inside) inside the surface layer portion High strength PC steel wire with excellent delayed fracture resistance, characterized by Hv hardness (within Hv) ratio (Hv table / within Hv) of 1.1 or less.
Cr:0.01〜2.0%、
Mo:0.01〜0.5%、
V:0.01〜0.5%、
Ni:0.01〜1.0%、
Cu:0.01〜0.5%、
B:0.0001〜0.005%
の1種又は2種以上を含有することを特徴とする請求項1に記載の耐遅れ破壊特性に優れた高強度PC鋼線。 % By mass,
Cr: 0.01-2.0%,
Mo: 0.01-0.5%,
V: 0.01-0.5%
Ni: 0.01-1.0%,
Cu: 0.01-0.5%,
B: 0.0001-0.005%
2. The high-strength PC steel wire with excellent delayed fracture resistance according to claim 1, characterized by containing one or more of the following.
Ti:0.001〜0.05%、
Nb:0.001〜0.07%、
Zr:0.001〜0.07%
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の耐遅れ破壊特性に優れた高強度PC鋼線。 % By mass,
Ti: 0.001 ~ 0.05%,
Nb: 0.001 to 0.07%,
Zr: 0.001 ~ 0.07%
The high-strength PC steel wire excellent in delayed fracture resistance according to claim 1 or 2, characterized by containing one or more of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008131221A JP5315790B2 (en) | 2008-05-19 | 2008-05-19 | High strength PC steel wire with excellent delayed fracture resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008131221A JP5315790B2 (en) | 2008-05-19 | 2008-05-19 | High strength PC steel wire with excellent delayed fracture resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009280836A JP2009280836A (en) | 2009-12-03 |
JP5315790B2 true JP5315790B2 (en) | 2013-10-16 |
Family
ID=41451599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008131221A Active JP5315790B2 (en) | 2008-05-19 | 2008-05-19 | High strength PC steel wire with excellent delayed fracture resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5315790B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101860246B1 (en) | 2014-02-06 | 2018-05-21 | 신닛테츠스미킨 카부시키카이샤 | Steel wire |
KR101861456B1 (en) * | 2014-02-06 | 2018-05-28 | 신닛테츠스미킨 카부시키카이샤 | Filament |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9403200B2 (en) | 2008-10-30 | 2016-08-02 | Bridgestone Corporation | Carbon steel wire with high strength and excellent ductility and fatigue resistance, process for producing the same, and method of evaluating the same |
WO2011126073A1 (en) | 2010-04-08 | 2011-10-13 | 新日本製鐵株式会社 | Wire material for saw wire and method for producing same |
JP5425744B2 (en) * | 2010-10-29 | 2014-02-26 | 株式会社神戸製鋼所 | High carbon steel wire rod with excellent wire drawing workability |
JP5833485B2 (en) * | 2012-03-27 | 2015-12-16 | 株式会社神戸製鋼所 | Wire rod and steel wire using the same |
JP5802162B2 (en) * | 2012-03-29 | 2015-10-28 | 株式会社神戸製鋼所 | Wire rod and steel wire using the same |
JP6115809B2 (en) * | 2013-01-17 | 2017-04-19 | 住友電工スチールワイヤー株式会社 | High-strength PC steel strand and its manufacturing method |
JP5682933B2 (en) * | 2013-01-17 | 2015-03-11 | 住友電工スチールワイヤー株式会社 | High-strength PC steel strand and its manufacturing method |
JP2014169507A (en) * | 2013-03-01 | 2014-09-18 | Bridgestone Corp | Steel wire for reinforcing rubber article and rubber article including the same |
WO2015186801A1 (en) * | 2014-06-04 | 2015-12-10 | 新日鐵住金株式会社 | Steel wire |
KR101597756B1 (en) * | 2014-10-07 | 2016-02-25 | 고려제강 주식회사 | Prestressing Strand having high stress corrosion feature |
EP3235918A4 (en) | 2014-12-15 | 2018-04-25 | Nippon Steel & Sumitomo Metal Corporation | Wire material |
JP6416708B2 (en) * | 2015-07-21 | 2018-10-31 | 新日鐵住金株式会社 | High strength PC steel wire |
JP6416709B2 (en) * | 2015-07-21 | 2018-10-31 | 新日鐵住金株式会社 | High strength PC steel wire |
CN105112807B (en) * | 2015-10-08 | 2017-02-01 | 武汉钢铁(集团)公司 | High-strength bridge cable steel with pearlite inter-lamellar spacing smaller than 150nm and production method |
CN108138285B (en) | 2015-10-23 | 2020-02-21 | 日本制铁株式会社 | Wire rod for wire drawing |
CN108350544B (en) | 2016-03-28 | 2020-07-03 | 日本制铁株式会社 | Steel wire |
JP2017179399A (en) * | 2016-03-28 | 2017-10-05 | 高周波熱錬株式会社 | Steel material for building |
EP3492616A4 (en) | 2016-07-29 | 2020-01-08 | Nippon Steel Corporation | High strength steel wire |
CN113748224B (en) * | 2019-06-19 | 2022-05-03 | 日本制铁株式会社 | wire |
JP7469642B2 (en) | 2020-05-21 | 2024-04-17 | 日本製鉄株式会社 | High-strength steel wire |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277442A (en) * | 1985-09-30 | 1987-04-09 | Nippon Steel Corp | High tensile strength steel wire with excellent ductility |
JP2742440B2 (en) * | 1989-03-30 | 1998-04-22 | 新日本製鐵株式会社 | High strength and high ductility steel wire |
JP3445674B2 (en) * | 1994-12-09 | 2003-09-08 | 新日本製鐵株式会社 | High strength steel wire with excellent twist crack resistance |
JP3130445B2 (en) * | 1995-04-26 | 2001-01-31 | 新日本製鐵株式会社 | High strength galvanized steel wire and method of manufacturing the same |
JP3429185B2 (en) * | 1998-03-25 | 2003-07-22 | 株式会社神戸製鋼所 | High strength steel wire excellent in ductility and toughness and method for producing the same |
JP4527913B2 (en) * | 2001-09-20 | 2010-08-18 | 新日本製鐵株式会社 | High-strength high-carbon steel wire and method for producing the same |
-
2008
- 2008-05-19 JP JP2008131221A patent/JP5315790B2/en active Active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101860246B1 (en) | 2014-02-06 | 2018-05-21 | 신닛테츠스미킨 카부시키카이샤 | Steel wire |
KR101861456B1 (en) * | 2014-02-06 | 2018-05-28 | 신닛테츠스미킨 카부시키카이샤 | Filament |
US10072317B2 (en) | 2014-02-06 | 2018-09-11 | Nippon Steel & Sumitomo Metal Corporation | Filament |
US10081846B2 (en) | 2014-02-06 | 2018-09-25 | Nippon Steel & Sumitomo Metal Corporation | Steel wire |
Also Published As
Publication number | Publication date |
---|---|
JP2009280836A (en) | 2009-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5315790B2 (en) | High strength PC steel wire with excellent delayed fracture resistance | |
JP4842407B2 (en) | Steel wire for low-temperature annealing and manufacturing method thereof | |
JP6599902B2 (en) | High-strength multiphase steel, manufacturing method and use | |
JP6452454B2 (en) | Rolled material for high strength spring and wire for high strength spring | |
JP5257082B2 (en) | Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability | |
JP5973903B2 (en) | High strength spring steel wire excellent in hydrogen embrittlement resistance, method for producing the same, and high strength spring | |
WO2017179372A1 (en) | High strength steel sheet and manufacturing method therefor | |
WO2013051513A1 (en) | Steel wire for bolt, bolt, and manufacturing processes therefor | |
JP3851095B2 (en) | Heat-treated steel wire for high-strength springs | |
JP5034803B2 (en) | Steel sheet for soft nitriding treatment and method for producing the same | |
JP5913214B2 (en) | Bolt steel and bolts, and methods for producing the same | |
WO2013180180A1 (en) | High strength cold-rolled steel plate and manufacturing method therefor | |
WO2016002413A1 (en) | Wire material for steel wire, and steel wire | |
JP2017179596A (en) | High carbon steel sheet and manufacturing method therefor | |
CN107849660B (en) | High strength PC steel wire | |
JP5630523B2 (en) | Steel sheet for nitriding treatment and method for producing the same | |
CN107849659B (en) | High strength PC steel wire | |
JP2010229469A (en) | High-strength wire rod excellent in cold working characteristics and method for producing the same | |
EP3020841B1 (en) | Coil spring, and method for manufacturing same | |
JP2000119805A (en) | Steel wire with excellent wire drawing workability | |
JP2019123905A (en) | Two-phase stainless steel wire for prestressed concrete tendon, two-phase stainless steel wire, and prestressed concrete tendon | |
WO2016158562A1 (en) | Heat-treated steel wire having excellent fatigue-resistance characteristics | |
JP4133515B2 (en) | Spring steel wire with excellent sag and crack resistance | |
JP2004359992A (en) | High-strength steel wire rod, high-strength steel wire, and method for producing them | |
JP2011208164A (en) | Rolled annealed steel sheet of boron steel and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120831 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130408 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130624 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5315790 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |