[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5314264B2 - Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery - Google Patents

Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery Download PDF

Info

Publication number
JP5314264B2
JP5314264B2 JP2007248441A JP2007248441A JP5314264B2 JP 5314264 B2 JP5314264 B2 JP 5314264B2 JP 2007248441 A JP2007248441 A JP 2007248441A JP 2007248441 A JP2007248441 A JP 2007248441A JP 5314264 B2 JP5314264 B2 JP 5314264B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007248441A
Other languages
Japanese (ja)
Other versions
JP2009081002A (en
Inventor
英俊 阿部
智統 鈴木
聖志 金村
薫 獨古
光正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Sumitomo Osaka Cement Co Ltd
Tokyo Metropolitan Public University Corp
Original Assignee
Furukawa Battery Co Ltd
Sumitomo Osaka Cement Co Ltd
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, Sumitomo Osaka Cement Co Ltd, Tokyo Metropolitan Public University Corp filed Critical Furukawa Battery Co Ltd
Priority to JP2007248441A priority Critical patent/JP5314264B2/en
Publication of JP2009081002A publication Critical patent/JP2009081002A/en
Application granted granted Critical
Publication of JP5314264B2 publication Critical patent/JP5314264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用正極活物質の製造法、正極活物質及びリチウム二次電池に関する。   The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery, a positive electrode active material, and a lithium secondary battery.

従来、正極活物質として、オリビン型リン酸Mリチウム(Mは2価の金属)を用いて作製した正極と、負極活物質として炭素系材料などリチウム金属、リチウム合金或いはリチウムイオンを吸蔵、放出可能な物質を用いた負極とを組み合わせ、電解液として非水電解液を用いたリチウムイオン二次電池(以下、単にリチウム二次電池と称する)は、従来の鉛二次電池やニッケル−カドミウム二次電池などに比し、軽量で放電容量も大きいことから、各種の電子機器に広く用いられている。この場合、2価の金属のうち、特に、産出量が多く安価で安定した鉄を原料として用いて製造したオリビン型リン酸鉄リチウム(LiFePO4)系を正極活物質を用いて製造した正極を具備したリチウム二次電池が好ましく使用されている。オリビン型燐酸Mリチウム及びこれを用いたリチウム二次電池に関する発明に係る特許文献1〜7を以下に例示する。
特許文献1には、アルカリ金属元素と遷移金属元素と燐酸化合物とを焼成してオリビン型燐酸Mリチウムから成る正極活物質を製造することと、これを正極として用いて、放電電圧が高く、充放電特性の優れたリチウム二次電池を提供する発明が開示されている。
特許文献2には、アルカリ金属元素と周期表第IV族〜第VII族の元素とアルカリ金属含有鉄複酸化物を窒素ガス中で或いは鉄が3価の場合は還元雰囲気下で焼成してLiFePO4などオリビン型燐酸Mリチウムを含む正極活物質を製造することと、これを正極として用いて、充放電特性に優れた低コストのリチウム二次電池を提供する発明が開示されている。
特許文献3には、一般式LiFeXPO4で与えられるオリビン型リン酸化合物(但し、Xはリン酸化合物を構成している状態では、リチウム金属の標準電位に対し3〜4Vの電位領域で電気化学的に安定なコバルト、ニッケルなどの金属元素)から成る正極活物質を焼成により製造することと、これを正極として用い、安価で4V以下の電圧で充放電可能なリチウム二次電池が開示されている。
特許文献4には、オリビン型リン酸鉄リチウム系材料粉末上に、導電性で、且つ該リン酸鉄リチウム系材料の正極活物質としての酸化還元電位よりも貴な金属粒子を担持せしめた一般式LiFeXPO4(但し、Xはマグネシウム、コバルト、ニッケル、亜鉛の少なくとも1種)で表される正極活物質を焼成により製造することと、これを正極として用いて安価なリチウム二次電池を提供する発明が開示されている。
特許文献5には、リチウム塩と鉄塩とを含有するリン酸水溶液に水溶性有機還元剤を混合して混合水溶液を調整し、当該混合水溶液にアルカリ溶液を混合してリチウムと鉄との複合リン酸化物の共沈体を生成させ、次いで、該共沈体を焼成することにより、LiFePO4から成る正極活物質を合成する方法とこれを正極として用いて、製造コスト安価で且つ簡便なリチウム二次電池を提供する発明が開示されている。
特許文献6には、LiFePO4の粒子表面を炭素質物質で被覆して成り且つ平均粒径を0.5μmとしたリチウム系鉄リン系複合酸化物炭素複合体から成る正極活物質の製造法とこれを正極として用いて、特に放電容量が高いリチウム二次電池を提供する発明が開示されている。
特許文献7には、LiFe(II)PO4から成る正極活物質を、その成分原料であるLi源、Fe源、P源、C源、O源を含有する溶液、分散液又は懸濁液を高温雰囲気中に噴霧して前駆体とし、この前駆体を還元性雰囲気又は不活性雰囲気中で80〜1000℃で熱処理して製造すること、これを正極として用いて高い充放電容量(特に放電容量)、安定した充放電サイクル性能を有し、高出力のリチウム二次電池を提供する発明が開示されている。
特開平9-134724号公報 特開平9-134725号公報 特開2001-85010号公報 特開2001-110414号公報 特開2002-117831号公報 特開2003-292309号公報 特開2005-116392号公報
Conventionally, a positive electrode made using olivine-type lithium M phosphate (M is a divalent metal) as a positive electrode active material, and a lithium metal such as a carbon-based material, a lithium alloy, or lithium ions can be occluded and released as a negative electrode active material. Lithium ion secondary batteries (hereinafter simply referred to as lithium secondary batteries) using a non-aqueous electrolyte as the electrolyte in combination with negative electrodes using various materials are conventional lead secondary batteries and nickel-cadmium secondary batteries. Since it is lighter and has a larger discharge capacity than batteries, it is widely used in various electronic devices. In this case, among divalent metals, in particular, a positive electrode manufactured using a positive electrode active material of an olivine-type lithium iron phosphate (LiFePO 4 ) system manufactured using low-cost, stable iron as a raw material. The provided lithium secondary battery is preferably used. Patent Documents 1 to 7 relating to the invention relating to olivine-type lithium M phosphate and a lithium secondary battery using the same are exemplified below.
In Patent Document 1, an alkali metal element, a transition metal element, and a phosphoric acid compound are baked to produce a positive electrode active material composed of olivine-type M lithium phosphate. An invention that provides a lithium secondary battery having excellent discharge characteristics is disclosed.
In Patent Document 2, an alkali metal element, an element of Group IV to VII of the periodic table, and an alkali metal-containing iron complex oxide are baked in nitrogen gas or in a reducing atmosphere when iron is trivalent, and LiFePO An invention is disclosed in which a positive electrode active material containing olivine-type lithium M phosphate such as 4 is produced, and using this as a positive electrode, a low-cost lithium secondary battery excellent in charge / discharge characteristics is provided.
Patent Document 3 describes an olivine-type phosphate compound given by the general formula LiFeXPO 4 (where X is a phosphate compound in the state where the electrochemical potential is 3 to 4 V with respect to the standard potential of lithium metal). And a lithium secondary battery that can be charged and discharged at a low voltage of 4 V or less using the positive electrode active material composed of a metal element such as cobalt and nickel) Yes.
In Patent Document 4, a metal particle that is conductive and has noble metal particles that are more precious than the redox potential as the positive electrode active material of the lithium iron phosphate material is supported on the olivine type lithium iron phosphate material powder. Producing a positive electrode active material represented by the formula LiFeXPO 4 (where X is at least one of magnesium, cobalt, nickel, and zinc) by firing, and providing an inexpensive lithium secondary battery using this as a positive electrode The invention is disclosed.
In Patent Document 5, a water-soluble organic reducing agent is mixed with a phosphoric acid aqueous solution containing a lithium salt and an iron salt to prepare a mixed aqueous solution, and an alkaline solution is mixed with the mixed aqueous solution to combine lithium and iron. A method of synthesizing a positive electrode active material comprising LiFePO 4 by forming a coprecipitate of phosphorous oxide and then firing the coprecipitate, and using this as the positive electrode An invention for providing a secondary battery is disclosed.
Patent Document 6 discloses a method for producing a positive electrode active material comprising a lithium-based iron-phosphorus-based composite oxide carbon composite comprising a LiFePO 4 particle surface coated with a carbonaceous material and having an average particle size of 0.5 μm. An invention is disclosed that provides a lithium secondary battery having a particularly high discharge capacity by using as a positive electrode.
Patent Document 7 discloses a positive electrode active material composed of LiFe (II) PO 4 , a solution, dispersion or suspension containing Li source, Fe source, P source, C source, and O source as its component raw materials. Sprayed into a high-temperature atmosphere to make a precursor, and this precursor is heat-treated at 80 to 1000 ° C. in a reducing atmosphere or an inert atmosphere. ), An invention for providing a high-power lithium secondary battery having stable charge / discharge cycle performance is disclosed.
Japanese Patent Laid-Open No. 9-13724 Japanese Laid-Open Patent Publication No. 9-13725 JP 2001-85010 A JP 2001-110414 A JP 2002-117831 A JP 2003-292309 A JP 2005-116392 A

しかし乍ら、特許文献1〜3に開示のオリビン型リン酸Mリチウムから成る正極活物質は、従来正極活物質として用いられてきたLiCoO2などのリチウム金属酸化物に比べて電気抵抗が非常に大きいため、充放電を行った場合に抵抗分極が増大し、充分な放電容量が得られない。また、充電受け入れ性が悪いなどの問題がある。
このような問題を解決する方法として、オリビン型リン酸Mリチウムの粉末粒子を微細化し、反応面積を増やし、リチウムイオン拡散を容易にすること、正極作製に当たり、該正極活物質粉末にカーボンブラックなどの導電剤粉を混合すること、電子がリン酸Mリチウムの粉末粒子内部を流れる距離を短くすることなどが考えられている。
しかし乍ら、オリビン型リン酸Mリチウム系材料の微細な一次粒子は、正極作製時にカーボンブラック等の導電剤粉と混合する際に二次凝集を起こし易い。凝集粒の内部では、充分な集電効果が得られずに電気抵抗が非常に大きくなる。その結果、凝集粒の中央部の活物質は電池の充放電を行っても電子伝導が起こらず、充放電容量が低下する。一方、微細な一次粒子は大きな表面積となるため、正極作製のスラリー調製では必要な分散媒の量が多くなり、集電基材に対し必要な塗工量が得られ難いこと、乾燥時にひび割れが生じ易いこと、充分な圧縮が困難なために高容量の正極が得られない、電解液に正極活物質の金属の溶出が増大し、リチウム二次電池の寿命が短くなる等の問題がある。
また一般に、オリビン型リン酸Mリチウム系材料の粒子表面はバルクと比較して、結晶性が低いためにアモルファス状になっていると考えられている。このために空気中での放置により二価の金属が酸化され、より抵抗の大きな3価のリン酸塩に変化する。これにより、初充電時に大きな分極を発生するので、放置条件が厳しいことや、活性化が煩雑になることや、抵抗成分が残留する問題もある。
また、上記の特許文献4〜7の特有の課題に言及すれば、特許文献4では、酸化還元電位よりも貴な金属粒子は酸化還元を伴う化学的な変性を受け易く、リチウム二次電池として安定性に問題がある。
特許文献5では、LiFePO4炭素複合体から成る正極活物質は、リチウム塩と鉄塩とを含有するリン酸水溶液にカーボン源として、カーボンブラックまた他は水溶性有機還元剤を混合した混合水溶液にアルカリ溶液を混合してリチウムと鉄との複合リン酸化物の共沈体を焼成して製造するため、LiFePO4粒子の表面に対するカーボン粒子の分散効果は不充分であり、充分な集電効果が得られない。
特許文献6及び7では、正極活物質としての粒度制御は困難である。
本発明は、上記従来の発明の課題を解消したオリビン型リン酸Mリチウムから成る正極活物質を製造すること、これを正極として、優れた放電容量維持特性や長期安定性が確保されたリチウム二次電池を提供することを目的とする。
However, the positive electrode active material composed of olivine-type M lithium phosphate disclosed in Patent Documents 1 to 3 has a much higher electric resistance than lithium metal oxides such as LiCoO 2 that have been conventionally used as a positive electrode active material. Since it is large, resistance polarization increases when charging and discharging are performed, and a sufficient discharge capacity cannot be obtained. There are also problems such as poor charge acceptance.
As a method for solving such a problem, the powder particles of olivine-type lithium M phosphate are made finer, the reaction area is increased, the lithium ion diffusion is facilitated, and the positive electrode active material powder is carbon black, etc. It is conceivable to mix the conductive agent powder, and to shorten the distance that electrons flow inside the powder particles of lithium M phosphate.
However, the fine primary particles of the olivine-type M lithium phosphate-based material are liable to cause secondary aggregation when mixed with a conductive agent powder such as carbon black during the production of the positive electrode. Inside the agglomerated particles, a sufficient current collecting effect cannot be obtained and the electric resistance becomes very large. As a result, the active material in the central part of the aggregated particles does not cause electron conduction even when the battery is charged / discharged, and the charge / discharge capacity decreases. On the other hand, since the fine primary particles have a large surface area, the amount of the dispersion medium required in the preparation of the slurry for producing the positive electrode is increased, and it is difficult to obtain the required coating amount for the current collecting base material, and cracking occurs during drying. There are problems such as being easy to occur, a high capacity positive electrode cannot be obtained because sufficient compression is difficult, elution of the metal of the positive electrode active material in the electrolyte increases, and the life of the lithium secondary battery is shortened.
In general, it is considered that the particle surface of the olivine-type M lithium phosphate-based material is amorphous because of its lower crystallinity than the bulk. For this reason, the divalent metal is oxidized by being left in the air, and converted to a trivalent phosphate having a higher resistance. As a result, a large polarization is generated at the time of initial charge, so that there are problems that the leaving condition is severe, activation becomes complicated, and resistance components remain.
In addition, referring to the specific problems of Patent Documents 4 to 7, in Patent Document 4, noble metal particles that are more precious than the oxidation-reduction potential are susceptible to chemical modification accompanied by oxidation-reduction, and as a lithium secondary battery. There is a problem with stability.
In Patent Document 5, a positive electrode active material composed of a LiFePO 4 carbon composite is mixed into a mixed aqueous solution in which carbon black or other water-soluble organic reducing agent is mixed as a carbon source in a phosphoric acid aqueous solution containing a lithium salt and an iron salt. Since the co-precipitate of lithium and iron composite phosphate is mixed and mixed with an alkaline solution, the dispersion effect of the carbon particles on the surface of the LiFePO 4 particles is insufficient, and a sufficient current collecting effect is obtained. I can't get it.
In Patent Documents 6 and 7, it is difficult to control the particle size as the positive electrode active material.
The present invention manufactures a positive electrode active material comprising olivine-type lithium M phosphate that has solved the above-mentioned problems of the conventional invention, and uses this as a positive electrode for lithium secondary batteries having excellent discharge capacity maintenance characteristics and long-term stability. An object is to provide a secondary battery.

本発明は、請求項1に記載の通り、一次粒子の粒子径1ミクロン未満のオリビン型リン酸Mリチウム(Mは2価の金属)の粉末のみを原料とし、これを真空下又は不活性雰囲気下で加熱により焼結し、得られた焼結体の塊を粉砕することを特徴とするオリビン型リン酸Mリチウムの粉末から成るリチウム二次電池用正極活物質の製造法に存する。
更に本発明は、請求項2に記載の通り、一次粒子の粒子径1ミクロン未満のオリビン型リン酸Mリチウム(Mは2価の金属)の粉末のみを原料とし、これに炭素源を添加混合して成る混合物を真空下又は不活性雰囲気下で加熱により焼結し、得られた焼結体の塊を粉砕することを特徴とするオリビン型リン酸Mリチウムと炭素の複合体の粉末から成るリチウム二次電池用正極活物質の製造法に存する。
更に本発明は、請求項3に記載の通り、Mは、鉄、ニッケル、コバルト又はマンガンである。
更に本発明は、請求項4に記載の通り、上記の発明の製造法において製造したリチウム二次電池用正極活物質。
更に本発明は、請求項5に記載の通り、上記の発明に係るリチウム二次電池用正極活物質を用いて作製した正極を具備したことを特徴とするリチウム二次電池に存する。
更に本発明は、請求項6に記載の通り、20ミクロン以下の粒子から成るリチウム二次電池用正極活物質を用いて作成した正極を具備したことを特徴とする請求項5に記載のリチウム二次電池に存する。
The present invention, as described in claim 1, using only the powder of olivine-type lithium M phosphate (M is a divalent metal) having a primary particle size of less than 1 micron as a raw material, which is used in a vacuum or in an inert atmosphere. The present invention resides in a method for producing a positive electrode active material for a lithium secondary battery comprising a powder of olivine-type lithium M phosphate, characterized by sintering under heating and crushing a mass of the obtained sintered body .
The present invention, as set forth in claim 2, only the powder of the olivine-type phosphate M lithium particles having a particle size of less than 1 micron primary particles (M is a divalent metal) as a raw material, adding and mixing a carbon source to made were made by mixture was sintered by heating under vacuum or under an inert atmosphere, the olivine-type phosphate M lithium powder of the complex of the carbon, characterized by pulverizing a lump of sintered bodies obtained It exists in the manufacturing method of the positive electrode active material for lithium secondary batteries.
Further, according to the present invention, as defined in claim 3, M is iron, nickel, cobalt or manganese.
Furthermore, the present invention provides a positive electrode active material for a lithium secondary battery produced by the production method of the invention as described in claim 4.
Furthermore, as described in claim 5, the present invention resides in a lithium secondary battery comprising a positive electrode manufactured using the positive electrode active material for a lithium secondary battery according to the above invention.
The present invention further comprises a positive electrode prepared using a positive electrode active material for a lithium secondary battery comprising particles of 20 microns or less, as described in claim 6. Next battery.

請求項1に係る発明によれば、焼結により、二次凝集を起こさない、従って、集電効果が向上するばかりでなく、結晶成長した、更には、焼結前の正極活物質に比し、導電性や到達密度が著しく向上した正極をもたらすオリビン型リン酸Mリチウムから成る正極活物質が得られる。請求項2に係る発明により製造されたオリビン型リン酸Mリチウムと炭素源との焼結型複合体から成る安定堅牢な正極活物質が得られる。
請求項3に係る発明によれば、上記の請求項1又は2に係るリチウム二次電池の製造法において、鉄、ニッケルなどの2価の金属を用いることが好ましい。
請求項4に係る発明の正極活物質を用いて作製した請求項5に係る正極を具備したリチウム二次電池は、該正極に用いた本発明の該正極活物質は、焼結前の正極活物質を用いて作製した正極を具備したリチウム二次電池に比しフロート充電や放置による電解液への正極活物質の金属の溶出性を著しく減少でき、従って、充放電における容量維持率の向上をもたらし、長期に亘り安定良好なリチウム二次電池をもたらす。
また、請求項6に係る発明によれば、20ミクロン以下の正極活物質を用いた正極作製時のそのスラリーの調製において分散媒の量が少なくて済み、所要の塗工量で済み、乾燥時にひび割れを生ずることなく、而も高密度に圧縮された高容量の正極を製造することができる。
According to the invention of claim 1, sintering does not cause secondary agglomeration. Therefore, not only the current collection effect is improved, but also crystal growth has occurred, as compared with the positive electrode active material before sintering. Thus, a positive electrode active material composed of olivine-type lithium M phosphate that yields a positive electrode with significantly improved conductivity and ultimate density can be obtained. A stable and robust positive electrode active material comprising a sintered composite of an olivine type lithium M phosphate and a carbon source produced by the invention according to claim 2 is obtained.
According to the invention of claim 3, in the method for producing a lithium secondary battery according to claim 1 or 2, it is preferable to use a divalent metal such as iron or nickel.
A lithium secondary battery comprising the positive electrode according to claim 5 produced using the positive electrode active material according to the invention according to claim 4, wherein the positive electrode active material according to the present invention used for the positive electrode is a positive electrode active material before sintering. Compared to lithium secondary batteries equipped with a positive electrode made of a material, the elution of the metal of the positive electrode active material into the electrolyte solution can be significantly reduced by float charging or standing, thus improving the capacity retention rate during charge and discharge. Resulting in a lithium secondary battery that is stable over a long period of time.
Further, according to the invention according to claim 6, the amount of the dispersion medium is small in the preparation of the slurry at the time of producing the positive electrode using the positive electrode active material of 20 microns or less, the required coating amount is sufficient, and at the time of drying It is possible to produce a high-capacity positive electrode that is highly densely compressed without causing cracks.

本発明の実施の形態例を以下詳述する。
本発明は、従来公知の任意の方法である液相反応又は固相反応法を用いて合成したオリビン型リン酸Mリチウムから成る正極活物質粉体(但し、Mは2価の金属)を本発明の正極活物質製造法の原料とする。
即ち、従来の所望の合成法に従い、目的とするオリビン型リン酸Mリチウムを合成するが、例えば、その組成成分素材として、例えば、リン酸リチウム、2価又は3価の遷移金属の少なくとも1種の金属化合物とを所望の溶液を添加し、或いは添加することなく混合し、その混合物を大気中やアルゴンなどの不活性雰囲気下で焼成することにより合成する。合成されたオリビン型リン酸Mリチウム(Mは2価の金属)から成る正極活物質が得られる。
Mで表した2価の金属は、Co、Ni、Fe、Mn、Cu、Mg、Zn、Ca、Cd、Sr、Baから成る群から選んだ少なくとも1種である。特に、オリビン型リン酸Mリチウム合成用素材として、3価の遷移金属を用いた場合は、前記の加熱反応時には、水素ガスなどの還元雰囲気下で焼成し、これを2価の金属とする。
また、炭素源としては、例えば、アセチレンブラック、ケッチェンブラック、グラファイトカーボン、カーボンブラックなどの粉末やアスコルビン酸、フェノール、ピロガロールなどのフェノール誘導体などの水溶性有機還元剤などが用いられる。
Embodiments of the present invention will be described in detail below.
The present invention relates to a positive electrode active material powder composed of olivine-type M lithium phosphate (where M is a divalent metal) synthesized using a liquid phase reaction or solid phase reaction method, which is a conventionally known arbitrary method. It is used as a raw material for the positive electrode active material manufacturing method of the invention.
That is, according to the conventional desired synthesis method, the target olivine-type lithium M phosphate is synthesized. For example, as the composition component material, for example, at least one of lithium phosphate, divalent or trivalent transition metal A desired solution is added to or mixed with the metal compound, and the mixture is synthesized by firing in the atmosphere or an inert atmosphere such as argon. A positive electrode active material composed of synthesized olivine-type lithium M phosphate (M is a divalent metal) is obtained.
The divalent metal represented by M is at least one selected from the group consisting of Co, Ni, Fe, Mn, Cu, Mg, Zn, Ca, Cd, Sr, and Ba. In particular, when a trivalent transition metal is used as a material for synthesizing olivine-type lithium M phosphate, during the heating reaction, it is baked in a reducing atmosphere such as hydrogen gas to obtain a divalent metal.
Examples of the carbon source include powders such as acetylene black, ketjen black, graphite carbon, and carbon black, and water-soluble organic reducing agents such as phenol derivatives such as ascorbic acid, phenol, and pyrogallol.

本発明は、上記のように従来の所望の合成法により合成したオリビン型リン酸Mリチウムから成る該正極活物質粉末を原料とし、これを不活性雰囲気下又は真空中で焼結することにより、正極活物質を製造し、これを用いて作製した正極を具備したリチウム二次電池は、焼結前の該正極活物質粉末を用いて作製した正極を具備したリチウム二次電池に比し、長期安定性、放電容量などが改善されたリチウム二次電池を得ることができることを確認した。この正極活物質の製造法において、本願の発明者等は、該正極活物質を構成する粒子は、1ミクロン未満の粒子に限り焼結が可能であるが、1ミクロン以上のオリビン型リン酸Mリチウムの正極活物質の粒子は、焼結現象を起こさないことを知見したことである。この知見に基づき、従って、本発明の特に特徴とするところは、1ミクロン未満の上記の正極活物質粒子を焼結することに在る。その焼結温度は400℃〜900℃の範囲、好ましくは500℃〜800℃の範囲である。
従って、従来の所望の合成法で合成した該正極活物質粉末の全てが1ミクロン未満の粒子であれば、これをそのまま原料として用い、或いは1ミクロン以上の粒子と混在している場合は、該粉末を篩分けして1ミクロン未満の粉末のみを分取してこれを原料として用い、その残余の1ミクロン以上の粒子のものはボールミルなどにより1ミクロン未満の粒子になるまで粉砕して原料とし、該粉末の全てが1ミクロン以上の粒子から成るときは、その全てをミリングして1ミクロン未満の粒子に粉砕して、これを原料とする。また、固相反応法で合成した場合は、通常団塊状で合成されるので、これをボールミルなどで1ミクロン未満になるまで粉砕して原料とする。
The present invention uses, as a raw material, the positive electrode active material powder composed of olivine-type lithium M phosphate synthesized by the conventional desired synthesis method as described above, and sintering this in an inert atmosphere or in vacuum, A lithium secondary battery including a positive electrode produced using the positive electrode active material produced and using the positive electrode active material powder before sintering is manufactured for a longer time than a lithium secondary battery including a positive electrode produced using the positive electrode active material powder before sintering. It was confirmed that a lithium secondary battery with improved stability, discharge capacity and the like can be obtained. In this method for producing a positive electrode active material, the inventors of the present application can sinter the particles constituting the positive electrode active material only to particles smaller than 1 micron, but olivine-type phosphoric acid M having a size of 1 micron or more. It has been found that the positive electrode active material particles of lithium do not cause a sintering phenomenon. Based on this finding, a particular feature of the present invention therefore resides in sintering the positive electrode active material particles of less than 1 micron. The sintering temperature is in the range of 400 ° C to 900 ° C, preferably in the range of 500 ° C to 800 ° C.
Therefore, if all of the positive electrode active material powder synthesized by the conventional desired synthesis method is a particle of less than 1 micron, if it is used as a raw material as it is or mixed with particles of 1 micron or more, The powder is sieved and only the powder of less than 1 micron is collected and used as a raw material, and the remaining particles of 1 micron or more are pulverized by a ball mill etc. until they become particles of less than 1 micron. When all of the powder consists of particles of 1 micron or more, all of the powder is milled and pulverized into particles of less than 1 micron, which is used as a raw material. In addition, when synthesized by a solid phase reaction method, it is usually synthesized in the form of a nodule, so this is pulverized with a ball mill or the like until it becomes less than 1 micron to obtain a raw material.

以下は、本発明の更に詳細な実施の形態例として、オリビン型リン酸MリチウムのMとして、特に、資源豊富で且つ安価な鉄を用いて合成されるオリビン型リン酸鉄リチウム(LiFePO4)を原料として本発明の正極活物質を製造する方法などにつき説明する。 The following is a more detailed embodiment of the present invention, as olivine-type M lithium phosphate M, especially olivine-type lithium iron phosphate (LiFePO 4 ) synthesized using resource-rich and inexpensive iron. A method for producing the positive electrode active material of the present invention using as a raw material will be described.

リン酸鉄リチウムから成る正極活物質原料の作製:
先ず、本発明を実施する前に、例えば、水熱法により比較的高純度で且つナノオーダーの粒子のみから成るリン酸鉄リチウムから成る正極活物質を合成した。即ち、その合成素材として、リン酸リチウム463g及び2価の鉄化合物として、例えば、2価の塩化鉄4水和物795gを、蒸留水2000mlと共に、耐圧容器(オートクレープ)内に投入し、撹拌混合し、次いで、該容器内をアルゴンガスで置換した後密閉した。この耐圧密閉容器を180℃のオイルバス中で、48時間反応させた。次いで、室温まで放冷した後、反応物を取り出し、100℃で乾燥させて粉末を得た。得られた粉末はX線回折パターンにより、リン酸鉄リチウムであることを確認した。また、走査型電子顕微鏡(SEM)観察から、その粉末は20nm〜200nmの範囲の粒径を有することを確認した。
実施例1
上記に合成したリン酸鉄リチウム粉末10gを原料とし、これをルツボに入れた後、これを真空ガス置換炉に入れた。該炉内を窒素ガス置換後に真空状態とし、300℃で3時間の焼成処理を行った後、800℃で3時間の焼結処理を行った。次いで、室温まで放冷後に、炉からルツボを取り出して中の該正極活物質の焼結試料を採取した。該試料は深緑色の塊であった。これをコーヒーミルで粉砕した。次いで、これを篩分けにより20ミクロン以下の粒子から成る正極活物質粉末を得た。この粉末にアセチレンブラックを全体の5%投入し、ボール径10mmのボールミルで1時間の混合を実施した。かくして、リン酸鉄リチウム粉末と炭素の混合型複合体から成る正極活物質を製造した。以下この試料粉体を実施品1と称する。
Preparation of cathode active material raw material consisting of lithium iron phosphate:
First, before carrying out the present invention, for example, a positive electrode active material composed of lithium iron phosphate composed of only nano-order particles having a relatively high purity was synthesized by a hydrothermal method. That is, as its synthetic material, 463 g of lithium phosphate and 795 g of divalent iron chloride tetrahydrate, for example, as divalent iron compound, are put into a pressure vessel (autoclave) together with 2000 ml of distilled water, and stirred. After mixing, the inside of the vessel was replaced with argon gas and sealed. This pressure-resistant airtight container was reacted in an oil bath at 180 ° C. for 48 hours. Subsequently, after cooling to room temperature, the reaction product was taken out and dried at 100 ° C. to obtain a powder. The obtained powder was confirmed to be lithium iron phosphate by an X-ray diffraction pattern. Further, it was confirmed by scanning electron microscope (SEM) observation that the powder had a particle size in the range of 20 nm to 200 nm.
Example 1
10 g of the lithium iron phosphate powder synthesized above was used as a raw material, put in a crucible, and then put in a vacuum gas replacement furnace. The inside of the furnace was evacuated after nitrogen gas substitution, subjected to a baking treatment at 300 ° C. for 3 hours, and then a sintering treatment at 800 ° C. for 3 hours. Next, after cooling to room temperature, the crucible was taken out of the furnace, and a sintered sample of the positive electrode active material therein was collected. The sample was a dark green mass. This was pulverized with a coffee mill. Next, this was sieved to obtain a positive electrode active material powder composed of particles of 20 microns or less. The powder was charged with 5% of acetylene black and mixed for 1 hour in a ball mill having a ball diameter of 10 mm. Thus, a positive electrode active material composed of a mixed composite of lithium iron phosphate powder and carbon was produced. Hereinafter, this sample powder is referred to as an implementation product 1.

図1は、焼結前の原料である正極活物質粉末の倍率10,000の走査電子顕微鏡(SEM)写真、図2は、図1に示す正極活物質の焼結後の図1と同じ倍率の走査電子顕微鏡(SEM)写真を示す。
図1に示す焼結前の粉末のナノ粒子は、焼結後は図2に示すように、ミクロンオーダーに成長し、丸みを帯び且つ平滑な大きな粒子結晶になることが確認された。
図3は、焼結前の粉末及び焼結後の粉末の夫々のX線回折パターンを示す。これから明らかなように、焼結の前後で、基本回折パターンは変化しないことが確認できた。焼結による結晶子サイズは、例えば、(020)では413Åから524Åに増大した。
このような焼結処理により、粒子の表面積の減少と結晶性向上をもたらし、その結果、下記に明らかにするように、正極活物質中の金属の電解液への溶出量の減少効果をもたらし、正極製造時に集電金属基板にペースト状で塗工する場合の正極活物質かさ密度の増大と塗膜層の高密度化による高容量化などの効果をもたらす。
実施例2
上記の合成したリン酸鉄リチウム粉末10gを原料とし、これと炭素源としてショ糖を主成分として転化糖が添加された市販の砂糖1gとを混合し、該混合物に蒸留水を10ml投入してよく撹拌混合後、100℃で2時間乾燥した。次いで、これをルツボに入れた後、これを真空ガス置換炉内に入れ、窒素ガスで置換後に真空状態にして、300℃で5時間の焼成を行った後、800℃で5時間の焼結処理を行った。次いで、これを室温まで放冷後、炉からルツボを取り出して中の焼結体を採取した。該焼結体は黒色の塊であった。これをコーヒーミルで粉砕後、篩分けにより20ミクロン以下の粒子から成る本発明の正極活物質と炭素との焼結複合体から成る粉末を得た。以下この試料粉体を実施品2と称する。尚、熱重量分析によるこの試料粉体中に含有する炭素量は1.5%であった。
比較例1
上記の合成したリン酸鉄リチウム粉末10gに、アセチレンブラックを全体の5%投入し、ボール径10mmのボールミルで1時間の混合、粉砕を行って、リン酸鉄リチウムと炭素との混合型複合体から成る正極活物質粉末を得た。以下この試料粉体を比較品1と称する。
比較例2
リン酸第一鉄含水塩(Fe3(PO4)2・8H2O)10gと前記のリン酸リチウム(Li3PO4)2.4gをミキサーで充分乾式混合した。次いで蒸留水10mlにポリエチレングリコール3g溶解した溶液に撹拌下に1時間浸漬し、次いで、減圧下に乾燥して溶媒を除去した。この混合物を粒径8mmのアルミナビーズで乾式ビーズミル装置を用いて粉砕処理し、反応前躯体を得た。次に、この反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、この圧縮成形品を窒素雰囲気下で600℃で5時間焼成し、冷却後、粉砕、分級して燐酸鉄リチウム粒子表面に炭素が被覆された焼成型複合体から成る正極活物質粉末を得た。以下この試料粉体を比較品2と称する。この試料粉末の主体であるリン酸鉄リチウムの粒径は、0.2〜2ミクロン程度と、前記の水熱法で合成されたリン酸鉄リチウム原料のナノ粒径に比して著しく大きいことが判明した。尚、熱重量分析により、該比較品の炭素含有量は5.3%であることを確認した。
Fig. 1 is a scanning electron microscope (SEM) photograph of a positive electrode active material powder that is a raw material before sintering at a magnification of 10,000, and Fig. 2 is a scan at the same magnification as Fig. 1 after sintering of the positive electrode active material shown in Fig. 1. An electron microscope (SEM) photograph is shown.
As shown in FIG. 2, the nano particles of the powder before sintering shown in FIG. 1 grew to a micron order as shown in FIG. 2, and were confirmed to be round and smooth large particle crystals.
FIG. 3 shows respective X-ray diffraction patterns of the powder before sintering and the powder after sintering. As is clear from this, it was confirmed that the basic diffraction pattern did not change before and after sintering. For example, the crystallite size by sintering increased from 413 to 524 mm in (020).
By such a sintering process, the surface area of the particles is reduced and the crystallinity is improved. As a result, as shown below, the effect of reducing the elution amount of the metal in the positive electrode active material into the electrolyte is brought about. When the paste is applied to the current-collecting metal substrate during the production of the positive electrode, the positive electrode active material has an increased bulk density and an effect of increasing the capacity by increasing the density of the coating layer.
Example 2
Using 10 g of the synthesized lithium iron phosphate powder as a raw material and mixing it with 1 g of commercially available sugar containing sucrose as a main ingredient and invert sugar added as a carbon source, and adding 10 ml of distilled water to the mixture After thoroughly stirring and mixing, it was dried at 100 ° C. for 2 hours. Next, after putting this in a crucible, this was put in a vacuum gas replacement furnace, replaced with nitrogen gas, and then evacuated, fired at 300 ° C. for 5 hours, and then sintered at 800 ° C. for 5 hours. Processed. Subsequently, after cooling this to room temperature, the crucible was taken out from the furnace and the sintered body inside was collected. The sintered body was a black lump. The powder was pulverized with a coffee mill and sieved to obtain a powder comprising a sintered composite of the positive electrode active material of the present invention and carbon comprising particles of 20 microns or less. Hereinafter, this sample powder is referred to as an implementation product 2. The amount of carbon contained in the sample powder by thermogravimetric analysis was 1.5%.
Comparative Example 1
5% of acetylene black is added to 10 g of the synthesized lithium iron phosphate powder, mixed for 1 hour in a ball mill with a ball diameter of 10 mm, and pulverized to form a mixed composite of lithium iron phosphate and carbon A positive electrode active material powder was obtained. Hereinafter, this sample powder is referred to as Comparative Product 1.
Comparative Example 2
10 g of ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) and 2.4 g of the above lithium phosphate (Li 3 PO 4 ) were sufficiently dry mixed with a mixer. Subsequently, it was immersed in a solution of 3 g of polyethylene glycol in 10 ml of distilled water for 1 hour with stirring, and then dried under reduced pressure to remove the solvent. This mixture was pulverized with alumina beads having a particle diameter of 8 mm using a dry bead mill apparatus to obtain a pre-reaction body. Next, 10 g of this reaction precursor was press-molded at 44 MPa by a hand press. Next, the compression molded product was calcined at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized and classified to obtain a positive electrode active material powder composed of a calcined composite in which the surface of lithium iron phosphate particles was coated with carbon. It was. Hereinafter, this sample powder is referred to as Comparative Product 2. The particle size of lithium iron phosphate, the main component of this sample powder, was found to be about 0.2 to 2 microns, which is significantly larger than the nano particle size of the lithium iron phosphate raw material synthesized by the hydrothermal method. did. The carbon content of the comparative product was confirmed to be 5.3% by thermogravimetric analysis.

次に、上記で得た実施品1、実施品2、比較品1及び比較品2の炭素含有量の他、X線回折による(020)結晶子長、粉体抵抗計による20kN加圧時の到達密度と導電率を測定した。即ち、秤量した粉体試料をシリンダに入れて、設定荷重でピストンで試料圧縮したときの直流抵抗を粉体抵抗計により測定することで導電率、圧縮時の変位により到達密度を測定した。尚、比較のために、焼結前の前記の合成し、且つ原料として使用したリン酸鉄リチウムについても上記の各測定項目について測定した。その結果を下記表1に示す。   Next, in addition to the carbon content of Example 1, Example 2, Comparative Example 1 and Comparative Example 2 obtained above, (020) crystallite length by X-ray diffraction, 20 kN pressurization by powder resistance meter The reached density and conductivity were measured. That is, the weighed powder sample was put in a cylinder, and the direct current resistance when the sample was compressed with a piston with a set load was measured with a powder resistance meter, whereby the conductivity and the density reached were measured by the displacement during compression. For comparison, the above-mentioned measurement items were also measured for the lithium iron phosphate synthesized and used as a raw material before sintering. The results are shown in Table 1 below.

Figure 0005314264
Figure 0005314264

表1から明らかなように、本発明の実施例1及び2により夫々得られる実施品1及び2を、比較例1及び2より夫々得られる比較品1及び2と対比すると、焼結に伴う結晶成長(Å)が(020)結晶子の成長が認められた。また、到達密度(g/cc)は、比較品1及び2のそれに比し著しく大きな2.4以上が得られた。また、導電率については、特に実施品2は、炭素含有量1.5%と実施品1、比較品1及び2の炭素含有率5%に比し著しく少ないにも拘らず、桁違いに導電率が増大することが確認された。これは、砂糖の焼結により生成した炭素粒子がオリビン型リン酸鉄リチウムの粒子の表面を効率良く被覆するからであると推定される。
尚、本発明の製造法による焼結処理効果は、その製造法の原料として使用する焼結前の合成されたリン酸鉄リチウムについての上記と同じ測定項目の夫々の数値と比較すると更に明らかである。
As can be seen from Table 1, when Examples 1 and 2 obtained according to Examples 1 and 2 of the present invention are compared with Comparative Examples 1 and 2 obtained from Comparative Examples 1 and 2, respectively, crystals accompanying sintering are obtained. Growth (Å) was observed for (020) crystallite growth. In addition, the ultimate density (g / cc) was 2.4 or more, which was significantly higher than that of Comparative Products 1 and 2. Regarding conductivity, in particular, the product 2 has a carbon content of 1.5%, which is significantly lower than the carbon content of the product 1, the comparison product 1 and 2, and the carbon content of 5%. It was confirmed that it increased. This is presumably because the carbon particles produced by sugar sintering efficiently coat the surfaces of the olivine type lithium iron phosphate particles.
The effect of the sintering treatment by the production method of the present invention is further apparent when compared with the respective numerical values of the same measurement items as above for the synthesized lithium iron phosphate before sintering used as the raw material of the production method. is there.

次に、実施品1、実施品2、比較品1、比較品2及び原料リン酸鉄リチウムにつき、高温の電解液に対するFe溶出量を試験するべく、夫々の粉末中のリン酸鉄リチウムが5gになるように、80℃の非水電解液(EC:EMCが3:7の割合の溶媒20gに溶質としてLiPF61モルを溶解したもの)に投入し、同温度で10日間放置した後、夫々の電解液中に溶出したFeの濃度を原子吸光分析法により測定した。その結果を下記表2に示す。 Next, in order to test the amount of Fe elution with respect to the high-temperature electrolyte solution, 5 g of lithium iron phosphate in each powder was obtained for Example Product 1, Example Product 2, Comparative Product 1, Comparative Product 2 and raw material lithium iron phosphate. Into a nonaqueous electrolyte solution at 80 ° C. (EC: EMC was dissolved in 1 mol of LiPF 6 as a solute in 20 g of a solvent in a ratio of 3: 7) and left at the same temperature for 10 days, The concentration of Fe eluted in each electrolyte was measured by atomic absorption spectrometry. The results are shown in Table 2 below.

Figure 0005314264
Figure 0005314264

上記表2から明らかなように、本発明の製造法により製造した実施品1及び2ではリン酸鉄リチウム粉末の粒子が焼結によりその表面積が著しく減少したために、電解液への鉄の溶出を比較品1及び2に比し、大きく抑制することができたと推察される。このことは、本発明により製造した正極活物質をリチウム二次電池の正極として用いた場合に、長期間に亘り安定な電池が得られる効果をもたらす。   As apparent from Table 2 above, in the products 1 and 2 produced by the production method of the present invention, the surface area of the lithium iron phosphate powder particles was significantly reduced by sintering, so iron was eluted into the electrolyte. Compared to comparative products 1 and 2, it is presumed that they could be greatly suppressed. This brings about the effect that a stable battery can be obtained over a long period of time when the positive electrode active material produced according to the present invention is used as the positive electrode of a lithium secondary battery.

実施品1,2及び比較品1,2の4種類を夫々用いて、次のように正極を夫々作製した。
即ち、上記4種類の夫々の粉末に、導電剤としてアセチレンブラックを全炭素量として10%となるように添加、混合した。その夫々の混合粉末と結着剤としてポリフッ化ビニリデン(PVdF)とを、重量比95:5の割合で混合し、更に、これにN-メチル-2-ピロリドン(NMP)を添加し、充分混練して、夫々の正極スラリーを調製した。次いで、その夫々の正極スラリーを厚さ15μmのアルミニウム箔から成る集電体に100g/m2の塗工量で塗布し、次いで、120℃で30分間乾燥した。その後、これをロールプレスで2.0g/ccの密度になるように圧延加工した後、2cm2の円盤状に打ち抜いて夫々の正極を作製した。
このようにして得られた4種類の正極は、使用した上記の4種類の正極活物質のかさ密度が異なるため、その夫々の塗工厚が異なり、表1に示す到達密度が高いほど、塗工厚の薄い正極が得られた。即ち、実施品1及び2を用いて作製した正極の塗工厚は、比較品1及び2の塗工厚よりは肉薄の正極が得られた。一方、比較品1及び2を用いて作製した正極の密度の上昇が困難であり、所定密度に達するが、その塗工膜は一部で集電体からの剥離が観察された。下記する電池試験には剥離がない部分を選択して用いた。
また、一般に、オリビン型リン酸鉄リチウムから成る正極活物質は他種の正極活物質と比較して真密度が2/3程度しかないので、実用上の正極として、更に厚く充填密度が高い正極が求められるので、本発明に係る実施例1及び実施例2のような製造法により製造した実施品1や2のような正極活物質を正極として用いることにより容易にその要求に応じた正極の工業生産が実現できることになる。尚また、正極スラリー調整や塗工性を考慮すると、20ミクロン以下に粉砕した本発明の正極活物質を用いることが好ましいことが判った。
The positive electrodes were produced as follows using the four kinds of the working products 1 and 2 and the comparative products 1 and 2, respectively.
That is, acetylene black as a conductive agent was added and mixed with each of the above four types of powders so that the total carbon amount was 10%. Each of the mixed powders and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 95: 5, and N-methyl-2-pyrrolidone (NMP) was added to this, and kneaded thoroughly. Thus, each positive electrode slurry was prepared. Next, each positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 15 μm at a coating amount of 100 g / m 2 , and then dried at 120 ° C. for 30 minutes. Thereafter, this was rolled to a density of 2.0 g / cc with a roll press, and then punched into a 2 cm 2 disk shape to produce each positive electrode.
The four types of positive electrodes thus obtained differ in the bulk density of the four types of positive electrode active materials used above, and therefore the coating thicknesses thereof differ, and the higher the reaching density shown in Table 1, the higher the coating density. A thin positive electrode was obtained. That is, the positive electrode produced using the working products 1 and 2 was thinner than the coating thickness of the comparative products 1 and 2. On the other hand, it was difficult to increase the density of the positive electrode produced using the comparative products 1 and 2, and reached a predetermined density, but peeling of the coated film from the current collector was observed in part. In the battery test described below, a portion having no separation was selected and used.
In general, a positive electrode active material made of olivine-type lithium iron phosphate has a true density of only about 2/3 as compared with other types of positive electrode active materials. Therefore, a positive electrode having a thicker and higher packing density as a practical positive electrode. Therefore, by using a positive electrode active material such as Examples 1 and 2 produced by the production method such as Example 1 and Example 2 according to the present invention as the positive electrode, it is possible to easily meet the requirements of the positive electrode. Industrial production can be realized. In addition, it was found that it is preferable to use the positive electrode active material of the present invention pulverized to 20 microns or less in consideration of positive electrode slurry adjustment and coating properties.

次に、このようにして作製した4種類の正極と下記する負極とセパレータと非水電解液とから成る構成部材を用いて、次のように4種類のリチウム二次電池を製造した。
即ち、負極材料として人造黒鉛(平均粒径5μm、d002=0.337nm、Lc=58nm)を用い、これとポリフッ化ビニリデン(PVdF)を重量比95:5の割合で混合し、更に、N-メチル-2-ピロリドン(NMP)を加えて充分混練し、負極ペーストを調製した。次いで、前記負極ペーストを厚さ15μmの銅箔の集電体上に塗布し、25℃の常温中で自然乾燥後、更に減圧下130℃で12時間乾燥した。その後、ロールプレスで圧延加工し、正極と同じ2cm2の円盤状に打ち抜いて負極を作製した。
電解液としては、エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6を1Mの濃度で溶解して電解液を作製した。電解液中の水分量は15ppmとした。
上記の4種類の正極、負極、電解液を用いて4種類のコイン型リチウム二次電池を製造した。この場合、正,負極間に介在させるセパレータは、ポリプロピレンなどの高分子多孔フィルムとその他公知のものが選択使用される。尚、その製造時の雰囲気は露点が-50℃以下とした。正,負の各極は集電体の付いた電槽缶に圧着して用いた。かくして、直径25mm、厚さ1.6mmの4種類のコイン型リチウム二次電池を製造した。上記の実施品1、実施品2、比較品1、比較品2を用いて製造した電池を以下実施品1の電池、実施品2の電池、比較品1の電池、比較品2の電池と夫々称する。
Next, four types of lithium secondary batteries were manufactured as follows using the four types of positive electrodes thus prepared, the negative electrode described below, a separator, and a non-aqueous electrolyte.
That is, artificial graphite (average particle size 5 μm, d 002 = 0.337 nm, Lc = 58 nm) was used as the negative electrode material, and this was mixed with polyvinylidene fluoride (PVdF) at a weight ratio of 95: 5. Methyl-2-pyrrolidone (NMP) was added and sufficiently kneaded to prepare a negative electrode paste. Next, the negative electrode paste was applied onto a current collector of copper foil having a thickness of 15 μm, naturally dried at room temperature of 25 ° C., and further dried at 130 ° C. under reduced pressure for 12 hours. Thereafter, it was rolled with a roll press and punched into a disk shape of 2 cm 2 which was the same as the positive electrode to produce a negative electrode.
As the electrolytic solution, LiPF 6 was dissolved at a concentration of 1M in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 to prepare an electrolytic solution. The amount of water in the electrolyte was 15 ppm.
Four types of coin-type lithium secondary batteries were manufactured using the above four types of positive electrode, negative electrode, and electrolyte. In this case, as the separator interposed between the positive and negative electrodes, a polymer porous film such as polypropylene and other known ones are selectively used. Note that the atmosphere during the production was a dew point of −50 ° C. or lower. The positive and negative electrodes were used by being crimped to a battery case with a current collector. Thus, four types of coin-type lithium secondary batteries having a diameter of 25 mm and a thickness of 1.6 mm were manufactured. The batteries manufactured using the above-mentioned implementation product 1, implementation product 2, comparison product 1 and comparison product 2 are referred to as implementation product 1 battery, implementation product 2 battery, comparison product 1 battery, and comparison product 2 battery, respectively. Called.

リチウム二次電池の放電容量試験:
上記4種類の各電池を夫々多数個用意し、低率での充放電を10サイクル行った。このときの充電条件は、電流0.1CA、電圧4.1Vの定電流定電圧充電とし、放電条件は、電流0.1CA、終止電圧2.0Vの定電流放電とした。温度は全て25℃とした。10サイクル目の放電容量を夫々測定した。11サイクル目は高率放電試験を実施し、5CAの高率放電容量を測定した。容量は充填したリン酸鉄リチウムの1g当たりの容量とした。尚、試験温度は全て25℃とした。上記の夫々の測定結果を下記表3に示す。
Lithium secondary battery discharge capacity test:
A large number of each of the above four types of batteries were prepared, and 10 cycles of charging / discharging at a low rate were performed. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA and a voltage of 4.1 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 2.0 V. All temperatures were 25 ° C. The discharge capacity at the 10th cycle was measured. In the 11th cycle, a high rate discharge test was performed and a high rate discharge capacity of 5 CA was measured. The capacity was the capacity per gram of filled lithium iron phosphate. All test temperatures were 25 ° C. The measurement results for each of the above are shown in Table 3 below.

Figure 0005314264
Figure 0005314264

表3が示すように、実施品1,2の電池は、比較品1,2の電池に比し、放電容量は僅かに低下しているが、実用上、遜色のない率別放電特性等を示すことを確認した。   As shown in Table 3, the batteries of the working products 1 and 2 have a slightly lower discharge capacity than the batteries of the comparative products 1 and 2, but practically comparable rate-specific discharge characteristics, etc. Confirmed to show.

リチウム電池の高温フロート充電特性試験:
上記4種類の各電池につき、次のように試験を行った。即ち、充電設定電圧4.1Vにして、60℃で3ヶ月の高温フロート充電特性試験を行った。試験後に常温に戻してから0.1CAで放電して容量を測定した。
その結果を下記表4に示す。
High temperature float charge characteristics test of lithium battery:
Each of the above four types of batteries was tested as follows. That is, a high temperature float charge characteristic test was conducted at 60 ° C. for 3 months with a charge setting voltage of 4.1V. After returning to room temperature after the test, the capacity was measured by discharging at 0.1 CA.
The results are shown in Table 4 below.

Figure 0005314264
Figure 0005314264

表4から明らかなように、実施品1の電池と実施品2の電池は、比較品1及び比較品2の電池に比し著しく優れた容量維持率を示した。これは本発明の焼結処理によるFe溶出抑制効果のために、負極へのFe移動量が減少してSEIの機能障害を抑制したためと推察される。
以上説明したように、本発明により製造されたオリビン型リン酸Mリチウムは、これと導電剤炭素との複合体から成る正極活物質とするときは、正極作製時のスラリー塗工性が改善されると共に充填密度向上の効果をもたらし、更にこれを正極として用いたリチウム二次電池は、長期間安定した電池をもたらす。
As is clear from Table 4, the battery of Example Product 1 and the battery of Example Product 2 showed significantly superior capacity retention ratios as compared with the batteries of Comparative Product 1 and Comparative Product 2. This is presumed to be because the amount of Fe transferred to the negative electrode was reduced to suppress the functional failure of SEI due to the Fe elution suppression effect of the sintering treatment of the present invention.
As described above, when the olivine-type M lithium phosphate produced according to the present invention is used as a positive electrode active material composed of a composite of this and the conductive agent carbon, the slurry coatability during the production of the positive electrode is improved. In addition, the effect of improving the packing density is achieved, and a lithium secondary battery using this as a positive electrode provides a stable battery for a long period of time.

尚また、本発明の焼結時は、真空下での焼結に代えて、アルゴンガスなどの不活性雰囲気下で焼結しても、同様の正極活物質が得られることは言うまでもない。
尚また、上記の実施例では、オリビン型リン酸MリチウムのMがFeである1ミクロン未満の粒子から成る正極活物質を原料としたが、Feより製造コストが高価であり、資源も乏しいが、Ni、Co、Mnなど2価の金属をFeに代えた夫々の正極活物質を原料としてもFeを用いた場合と同様の特性と効果をもたらす正極活物質が得られ、これと炭素との混合又は焼結型複合体から成る正極活物質、これを用いて製造した正極を具備したリチウム二次電池が得られる。
In addition, it goes without saying that the same positive electrode active material can be obtained by sintering in an inert atmosphere such as argon gas instead of sintering under vacuum.
Further, in the above examples, the positive electrode active material composed of particles of less than 1 micron in which M of the olivine-type lithium lithium M is Fe is used as a raw material, but the production cost is higher than that of Fe and the resources are scarce. , Ni, Co, Mn, and other positive electrode active materials obtained by replacing Fe with a positive electrode active material having the same characteristics and effects as those obtained using Fe can be obtained. A lithium secondary battery including a positive electrode active material composed of a mixed or sintered composite and a positive electrode produced using the positive electrode active material is obtained.

更に、本発明の1ミクロン未満の粒子から成るオリビン型Mリン酸リチウムに炭素粉末などの炭素源との混合物を真空下又は不活性雰囲気下で焼結し、得られた焼結体を粉砕して本発明のオリビン型リン酸Mリチウム粒子と炭素とから成る焼結型複合体から成る正極活物質の製造法の実施例につき説明する。
以下の実施例3〜5の製造法を行うに当たり、実施例1に用いたと同じ20nm〜200nmの粒径から成る上記の水熱法で合成されたオリビン型リン酸鉄リチウム粉末を原料として用意する。
実施例3
上記に合成したリン酸鉄リチウム粉末10gを原料とし、これと炭素源としてアセチレンブラックを全体の5%をボール径10mmのボールミルで1時間混合粉砕し、黒色の粉末を得た。これをルツボに入れ、これを炉内に入れ、窒素雰囲気下で300℃で5時間焼成後、800℃で5時間焼結処理を行った。次いで、室温まで放冷後に、ルツボを取り出して中の試料を採取した。これをコーヒーミルで粉砕した。次いで、これを篩分けにより20ミクロン以下の粒子から成る本発明のリン酸鉄リチウム粉末と炭素との焼結複合体から成る正極活物質粉末を製造した。この試料粉体を実施品3と称する。
Further, the olivine-type M lithium phosphate comprising particles of less than 1 micron according to the present invention is sintered with a mixture of a carbon source such as carbon powder in a vacuum or under an inert atmosphere, and the resulting sintered body is pulverized. An example of a method for producing a positive electrode active material composed of a sintered composite comprising olivine-type lithium M phosphate particles and carbon according to the present invention will be described.
In carrying out the production methods of Examples 3 to 5 below, olivine type lithium iron phosphate powder synthesized by the above hydrothermal method having the same particle size of 20 nm to 200 nm as used in Example 1 is prepared as a raw material. .
Example 3
Using 10 g of the lithium iron phosphate powder synthesized above as a raw material, 5% of the total acetylene black as a carbon source was mixed and ground in a ball mill with a ball diameter of 10 mm for 1 hour to obtain a black powder. This was put in a crucible, placed in a furnace, fired at 300 ° C. for 5 hours in a nitrogen atmosphere, and then sintered at 800 ° C. for 5 hours. Next, after cooling to room temperature, the crucible was taken out and a sample inside was collected. This was pulverized with a coffee mill. Subsequently, a positive electrode active material powder comprising a sintered composite of lithium iron phosphate powder of the present invention and carbon comprising particles of 20 microns or less was produced by sieving. This sample powder is referred to as an implementation product 3.

図4は、実施品3の倍率10,000の走査電子顕微鏡(SEM)写真を示す。これにより、この焼結後の正極活物質粉末の粒子は、図2の実施品1と同様、ミクロンオーダーに成長し、大きな粒子結晶になることが確認された。
また、実施品3の粉末のX線回折パターンより、基本パターンは焼結によっても変化しないことを確認した。焼結による結晶子サイズは、例えば、(020)では415Å〜615Åに増大した。
FIG. 4 shows a scanning electron microscope (SEM) photograph of Example Product 3 at a magnification of 10,000. As a result, it was confirmed that the particles of the positive electrode active material powder after sintering grew to a micron order and became large particle crystals as in the case of Example 1 in FIG.
Further, it was confirmed from the X-ray diffraction pattern of the powder of Example Product 3 that the basic pattern was not changed by sintering. The crystallite size by sintering increased to, for example, 415 to 615 mm at (020).

実施例4
上記に合成したリン酸鉄リチウム粉末10gを原料とし、これと炭素源としてアセチレンブラックを全体の5%をアセトン中で湿式分散し均一な混合液とし、これをルツボに入れた後乾燥処理し、黒色の混合粉末を得た。次いで、これを炉内に入れ、窒素雰囲気下で300℃で5時間焼成後、800℃で5時間焼結処理を行った。次いで、室温まで放冷後に、ルツボを取り出して中の試料を採取した。これをコーヒーミルで粉砕した。次いで、これを篩分けにより20ミクロン以下の粒子から成る本発明のリン酸鉄リチウム粉末と炭素との焼結複合体から成る正極活物質粉末を製造した。この試料粉体を以下実施品4と称する。
実施例5
上記に合成したリン酸鉄リチウム粉末10gを原料とし、これと炭素源としてアセチレンブラックを全体の5%とショ糖を全体の10%とを混合し、これを蒸留水中で湿式分散し均一な混合液とし、これをルツボに入れた後乾燥処理し、黒色の混合粉末を得た。次いで、これを炉内に入れ、窒素雰囲気下で300℃で5時間焼成後、800℃で5時間焼結処理を行った。次いで、室温まで放冷後に、ルツボを取り出して中の試料を採取した。これをコーヒーミルで粉砕した。次いで、これを篩分けにより20ミクロン以下の粒子から成る本発明のリン酸鉄リチウム粉末と炭素との焼結複合体から成る正極活物質粉末を製造した。この試料粉体を以下実施品5と称する。
Example 4
Using 10 g of the lithium iron phosphate powder synthesized above as a raw material, and 5% of the total acetylene black as a carbon source in wet dispersion in acetone to form a uniform mixed solution, this was placed in a crucible and then dried. A black mixed powder was obtained. Next, this was put in a furnace, fired at 300 ° C. for 5 hours in a nitrogen atmosphere, and then sintered at 800 ° C. for 5 hours. Next, after cooling to room temperature, the crucible was taken out and a sample inside was collected. This was pulverized with a coffee mill. Subsequently, a positive electrode active material powder comprising a sintered composite of lithium iron phosphate powder of the present invention and carbon comprising particles of 20 microns or less was produced by sieving. This sample powder is hereinafter referred to as Example Product 4.
Example 5
Using 10 g of the lithium iron phosphate powder synthesized above as a raw material, mixing this with 5% of the total acetylene black and 10% of the total sucrose as a carbon source, wet-dispersing this in distilled water and mixing uniformly The resulting mixture was put into a crucible and then dried to obtain a black mixed powder. Next, this was put in a furnace, fired at 300 ° C. for 5 hours in a nitrogen atmosphere, and then sintered at 800 ° C. for 5 hours. Next, after cooling to room temperature, the crucible was taken out and a sample inside was collected. This was pulverized with a coffee mill. Subsequently, a positive electrode active material powder comprising a sintered composite of lithium iron phosphate powder of the present invention and carbon comprising particles of 20 microns or less was produced by sieving. This sample powder is hereinafter referred to as Example Product 5.

次に、上記で得た実施品3、実施品4及び実施品5の炭素含有量、X線回折による(020)結晶子長、粉体抵抗計による20kN加圧時の到達密度と導電率を測定した。即ち、秤量した粉体試料をシリンダに入れて、設定荷重でピストンで試料圧縮したときの直流抵抗を粉体抵抗計により測定することで導電率、圧縮時の変位により到達密度を測定した。その結果を下記表5に示す。   Next, the carbon content of the product 3, the product 4 and the product 5 obtained above, (020) crystallite length by X-ray diffraction, reached density and conductivity at 20 kN pressurization by a powder resistance meter It was measured. That is, the weighed powder sample was put in a cylinder, and the direct current resistance when the sample was compressed with a piston with a set load was measured with a powder resistance meter, whereby the conductivity and the density reached were measured by the displacement during compression. The results are shown in Table 5 below.

Figure 0005314264
Figure 0005314264

表5から明らかなように、本発明の実施例3,4及び5により得られる実施品3,4及び5を、前記の比較例1及び2より得られる比較品1及び2と対比すると、焼結に伴う結晶成長(Å)が(020)結晶子の成長が認められた。また、表1に示す実施品1,2よりも大きな成長が認められた。また、到達密度(g/cc)は、比較品1及び2のそれに比し著しく大きな2.4以上が得られ、また、実施品3及び4の導電率は、炭素含有率が比較品1及び2及び実施品1に比し少ないに拘らず、導電率の増大が確認された。   As can be seen from Table 5, when Examples 3, 4 and 5 obtained by Examples 3, 4 and 5 of the present invention were compared with Comparative Examples 1 and 2 obtained from Comparative Examples 1 and 2, the results were as follows. The crystal growth (Å) associated with crystallization was observed as (020) crystallite growth. In addition, greater growth was observed than the products 1 and 2 shown in Table 1. In addition, the ultimate density (g / cc) is 2.4 or more, which is significantly higher than that of the comparative products 1 and 2, and the conductivity of the implementation products 3 and 4 is the carbon content of the comparative products 1 and 2 and Although the amount was smaller than that of the product 1, the increase in conductivity was confirmed.

次に、実施品3、実施品4、実施品5につき、高温の電解液に対するFe溶出量を試験するべく、夫々の粉末中のリン酸鉄リチウムが5gになるように、80℃の非水電解液(EC:EMCが3:7の割合の溶媒20gに溶質としてLiPF61モルを溶解したもの)に投入し、同温度で10日間放置した後、夫々の電解液中に溶出したFeの濃度を原子吸光分析法により測定した。その結果を下記表6に示す。 Next, in order to test the amount of Fe elution with respect to the high-temperature electrolyte solution for each of Example 3, Example 4, and Example 5, the non-aqueous solution at 80 ° C. was adjusted so that the amount of lithium iron phosphate in each powder was 5 g. Electrolyte solution (EC: EMC was dissolved in 20 g of solvent in a ratio of 3: 7 and 1 mol of LiPF 6 was dissolved as a solute) and left at the same temperature for 10 days, and then the Fe eluted in each electrolyte solution The concentration was measured by atomic absorption spectrometry. The results are shown in Table 6 below.

Figure 0005314264
Figure 0005314264

上記表2から明らかなように、本発明の製造法により製造した実施品3,4及び5
ではリン酸鉄リチウム粒子が焼結によりその表面積が著しく減少したために、電解液への鉄溶出を加圧焼成した比較例2に比し、大きく抑制することができたと推察される。このことは、本発明により製造した正極活物質をリチウム電池の正極として用いた場合に、長期間に亘り安定な電池が得られることを示唆する。
As is clear from Table 2 above, the products 3, 4 and 5 produced by the production method of the present invention.
Then, since the surface area of lithium iron phosphate particles was significantly reduced by sintering, it is presumed that iron elution into the electrolytic solution could be greatly suppressed as compared with Comparative Example 2 in which pressure firing was performed. This suggests that when the positive electrode active material produced according to the present invention is used as the positive electrode of a lithium battery, a stable battery can be obtained for a long period of time.

実施品3,4及び5の3種類の粉末を夫々用いて、前記の実施品1,2の粉末を夫々用いて作製したと同じ製法で、夫々の正極を作製した。
このようにして得られた3種類の正極は、実施品1及び2を用いて作成した正極の場合と同様に、比較品1及び2の塗工厚より肉薄の塗工厚の正極として得られた。
Each positive electrode was produced by the same manufacturing method as that produced using the powders of Examples 1 and 2 using the three types of powders of Examples 3, 4 and 5, respectively.
The three types of positive electrodes obtained in this way were obtained as positive electrodes having a coating thickness thinner than the coating thicknesses of comparative products 1 and 2, as in the case of the positive electrodes prepared using Examples 1 and 2. It was.

次に、このようにして実施品3,4,5を用いて作製した3種類の正極と下記する前期の実施品1,2を用いて電池を製造した場合に用いたと同じ共通の負極と非水電解液とを用いて、実施品3の電池、実施品4の電池及び実施品5の電池から成る3種類のリチウム二次電池を製造した。   Next, the three types of positive electrodes produced using the working products 3, 4 and 5 in this way, and the same negative electrode and non-same as those used in the case of manufacturing a battery using the working products 1 and 2 of the previous period described below. Using the water electrolyte, three types of lithium secondary batteries including the battery of Example Product 3, the battery of Example Product 4, and the battery of Example Product 5 were manufactured.

リチウム二次電池の放電容量試験:
上記3種類の各電池を夫々多数個用意し、低率での充放電を10サイクル行った。このときの充電条件は、電流0.1CA、電圧4.1Vの定電流定電圧充電とし、放電条件は、電流0.1CA、終止電圧2.0Vの定電流放電とした。温度は全て25℃とした。10サイクル目の放電容量を夫々測定した。11サイクル目は高率放電試験を実施し、5CAの高率放電容量を測定した。容量は充填したリン酸鉄リチウムの1g当たりの容量とした。尚、試験温度は全て25℃とした。上記の夫々の測定結果を下記表7に示す。
Lithium secondary battery discharge capacity test:
A large number of each of the above three types of batteries were prepared, and 10 cycles of charging / discharging at a low rate were performed. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA and a voltage of 4.1 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 2.0 V. All temperatures were 25 ° C. The discharge capacity at the 10th cycle was measured. In the 11th cycle, a high rate discharge test was performed and a high rate discharge capacity of 5 CA was measured. The capacity was the capacity per gram of filled lithium iron phosphate. All test temperatures were 25 ° C. The measurement results for each of the above are shown in Table 7 below.

Figure 0005314264
Figure 0005314264

表7から明らかなように、実施品3,4,5の電池の放電容量は、比較品1,2の電池と略同等かそれ以上となる。   As is clear from Table 7, the discharge capacities of the batteries of the implementation products 3, 4, and 5 are substantially equal to or greater than those of the comparative products 1 and 2.

リチウム電池の高温フロート充電特性試験:
上記4種類の各電池につき、次のように試験を行った。即ち、充電設定電圧4.1Vにして、60℃で3ヶ月の高温フロート充電特性試験を行った。試験後に常温に戻してから0.1CAで放電して容量を測定した。
その結果を下記表8に示す。
High temperature float charge characteristics test of lithium battery:
Each of the above four types of batteries was tested as follows. That is, a high temperature float charge characteristic test was conducted at 60 ° C. for 3 months with a charge setting voltage of 4.1V. After returning to room temperature after the test, the capacity was measured by discharging at 0.1 CA.
The results are shown in Table 8 below.

Figure 0005314264
Figure 0005314264

表8から明らかなように、実施品3の電池、実施品4の電池及び実施品5の電池は、比較品1及び比較品2の電池に比し著しく優れた容量維持率を示した。これは本発明の焼結処理によるFe溶出抑制効果のために、負極へのFe移動量が減少してSEIの機能障害を抑制したためと推察される。   As is clear from Table 8, the battery of Example Product 3, the battery of Example Product 4, and the battery of Example Product 5 showed significantly superior capacity retention ratios as compared with the batteries of Comparative Product 1 and Comparative Product 2. This is presumed to be because the amount of Fe transferred to the negative electrode was reduced to suppress the functional failure of SEI due to the Fe elution suppression effect of the sintering treatment of the present invention.

本発明の正極活物質の製造法の原料として用いる正極活物質粉末の焼結前の図面代用走査型電子顕微鏡(SEM)写真。FIG. 5 is a scanning electron microscope (SEM) photograph, which substitutes for a drawing, of a positive electrode active material powder used as a raw material in the method for producing a positive electrode active material of the present invention before sintering. 上記の正極活物質粉末の焼結後の図面代用走査型電子顕微鏡(SEM)写真。The drawing substitute scanning electron microscope (SEM) photograph after sintering of said positive electrode active material powder. 上記の正極活物質の焼結前と焼結後のX線回折パターンを示す比較図。The comparison figure which shows the X-ray-diffraction pattern before sintering after sintering of said positive electrode active material. 本発明の正極活物質の製造法の他の実施例で製造した焼結処理後の正極活物質粉末の図面代用走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph which substitutes for drawing of the positive electrode active material powder after the sintering process manufactured in the other Example of the manufacturing method of the positive electrode active material of this invention.

Claims (6)

一次粒子の粒子径1ミクロン未満のオリビン型リン酸Mリチウム(Mは2価の金属)の粉末のみを原料とし、これを真空下又は不活性雰囲気下で加熱により焼結し、得られた焼結体の塊を粉砕することを特徴とするオリビン型リン酸Mリチウムの粉末から成るリチウム二次電池用正極活物質の製造法。 Baked olivine phosphate M lithium particle size less than 1 micron primary particles (M is a divalent metal) only powder as a raw material, which was sintered by heating under vacuum or inert atmosphere, the resulting A method for producing a positive electrode active material for a lithium secondary battery, comprising a powder of olivine-type lithium M phosphate, characterized by crushing a lump of ligated body. 一次粒子の粒子径1ミクロン未満のオリビン型リン酸Mリチウム(Mは2価の金属)の粉末のみを原料とし、これに炭素源を添加混合して成る混合物を真空下又は不活性雰囲気下で加熱により焼結し、得られた焼結体の塊を粉砕することを特徴とするオリビン型リン酸Mリチウムと炭素の複合体から成るリチウム二次電池用正極活物質の製造法。 Only powder olivine phosphate M lithium particle size less than 1 micron primary particles (M is a divalent metal) as a raw material, which under vacuum the mixture formed by adding and mixing a carbon source or under an inert atmosphere A method for producing a positive electrode active material for a lithium secondary battery comprising a composite of olivine-type lithium M phosphate and carbon, which comprises sintering by heating and crushing the mass of the obtained sintered body. Mは、鉄、ニッケル、コバルト又はマンガンである請求項1又は2に記載のリチウム二次電池用正極活物質の製造法。   3. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein M is iron, nickel, cobalt, or manganese. 請求項1,2又は3に記載の製造法で得られたリチウム二次電池用正極活物質。   A positive electrode active material for a lithium secondary battery obtained by the production method according to claim 1, 2 or 3. 請求項4に記載のリチウム二次電池用正極活物質を用いて作製した正極を具備したことを特徴とするリチウム二次電池。   5. A lithium secondary battery comprising a positive electrode produced using the positive electrode active material for a lithium secondary battery according to claim 4. 20ミクロン以下の粒子から成るリチウム二次電池用正極活物質を用いて作製した正極を具備したことを特徴とする請求項5に記載のリチウム二次電池。   6. The lithium secondary battery according to claim 5, comprising a positive electrode produced using a positive electrode active material for a lithium secondary battery comprising particles of 20 microns or less.
JP2007248441A 2007-09-26 2007-09-26 Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery Active JP5314264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248441A JP5314264B2 (en) 2007-09-26 2007-09-26 Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248441A JP5314264B2 (en) 2007-09-26 2007-09-26 Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009081002A JP2009081002A (en) 2009-04-16
JP5314264B2 true JP5314264B2 (en) 2013-10-16

Family

ID=40655599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248441A Active JP5314264B2 (en) 2007-09-26 2007-09-26 Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5314264B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121625B2 (en) * 2008-08-11 2013-01-16 古河電池株式会社 Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP5396942B2 (en) * 2009-03-16 2014-01-22 Tdk株式会社 Manufacturing method of active material, active material, electrode using the active material, and lithium ion secondary battery including the electrode
KR101384197B1 (en) 2009-10-01 2014-04-11 한양대학교 산학협력단 Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery comprising same
JP5446017B2 (en) * 2009-10-06 2014-03-19 国立大学法人長岡技術科学大学 Positive electrode material for lithium ion secondary battery and method for producing the same
EP2355214B1 (en) * 2010-01-28 2013-12-25 Prayon Lithium accumulators based on lithiated iron phosphate and carbon
JP2011216233A (en) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd Electrode material and film
JP5851707B2 (en) 2011-04-01 2016-02-03 三井造船株式会社 Lithium iron phosphate positive electrode material and method for producing the same
JP5963398B2 (en) * 2011-04-08 2016-08-03 株式会社半導体エネルギー研究所 Method for producing positive electrode active material for secondary battery
JP6216965B2 (en) * 2012-01-31 2017-10-25 住友大阪セメント株式会社 Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP6307133B2 (en) * 2016-09-27 2018-04-04 太平洋セメント株式会社 Polyanionic positive electrode active material and method for producing the same
WO2023248769A1 (en) * 2022-06-22 2023-12-28 株式会社Gsユアサ Active material particles, electrode, power storage element and power storage device
JP2024037609A (en) * 2022-09-07 2024-03-19 株式会社Gsユアサ Electrode and power storage element
JP2024043618A (en) * 2022-09-20 2024-04-02 株式会社Gsユアサ Electrode and power storage element
CN116947001A (en) * 2023-06-21 2023-10-27 湖北金泉新材料有限公司 High compaction density lithium iron phosphate and its preparation method, lithium ion battery cathode material
CN119873776A (en) * 2023-10-23 2025-04-25 南通瑞翔新材料有限公司 Lithium iron manganese phosphate positive electrode material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4264513B2 (en) * 2003-10-30 2009-05-20 独立行政法人産業技術総合研究所 Composite powder for electrode and method for producing the same
CN100563047C (en) * 2006-04-25 2009-11-25 立凯电能科技股份有限公司 Composite material suitable for manufacturing anode of secondary battery and battery manufactured by composite material
JP5164477B2 (en) * 2007-08-23 2013-03-21 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2009081002A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP5314264B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
KR101300304B1 (en) Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
JP5651937B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5127179B2 (en) Method for producing positive electrode active material for lithium secondary battery
US9601772B2 (en) Cathode active material for a nonaqueous electrolyte secondary battery and manufacturing method thereof, and a nonaqueous electrolyte secondary battery that uses cathode active material
JP6216965B2 (en) Electrode material, electrode plate, lithium ion battery, method for producing electrode material, and method for producing electrode plate
JP6090085B2 (en) Positive electrode active material, method for producing positive electrode active material, and lithium battery
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP5165515B2 (en) Lithium ion secondary battery
JP5365126B2 (en) Active material for positive electrode of lithium ion secondary battery and method for producing active material for positive electrode of lithium ion secondary battery
KR20140047044A (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR20110007112A (en) Method for producing lithium iron phosphate particle powder, lithium iron phosphate particle powder of olivine-type structure, positive electrode material sheet and nonaqueous solvent secondary battery using the lithium iron phosphate particle powder
JP6724361B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5365125B2 (en) Active material for positive electrode of lithium ion secondary battery
US9620775B2 (en) Method for producing carbon-coated metal-doped zinc oxide articles and the use thereof
JP4963675B2 (en) Lithium secondary battery, positive electrode active material thereof, and method of manufacturing the same
CN109768228A (en) Electrode for lithium ion secondary battery material, electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2013038517A1 (en) Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
WO2020230424A1 (en) Positive electrode active substance for non-aqueous electrolyte secondary battery, and positive electrode for non-aqueous electrolyte secondary battery
JP6374348B2 (en) Lithium phosphorus-based vanadium composite oxide carbon composite, method for producing the same, lithium ion secondary battery, and electrochemical device
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP6362033B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN101355157A (en) Method for producing lithium-iron-phosphorus composite oxide-carbon complex and method for producing coprecipitate containing lithium, iron and phosphorus
JP2018147696A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP2016186877A (en) Olivine-type positive electrode active material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120802

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350