[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5309269B1 - Seismic isolation and control devices for structures and seismic isolation and control methods for structures. - Google Patents

Seismic isolation and control devices for structures and seismic isolation and control methods for structures. Download PDF

Info

Publication number
JP5309269B1
JP5309269B1 JP2013083535A JP2013083535A JP5309269B1 JP 5309269 B1 JP5309269 B1 JP 5309269B1 JP 2013083535 A JP2013083535 A JP 2013083535A JP 2013083535 A JP2013083535 A JP 2013083535A JP 5309269 B1 JP5309269 B1 JP 5309269B1
Authority
JP
Japan
Prior art keywords
output
input
fulcrum
inertial force
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013083535A
Other languages
Japanese (ja)
Other versions
JP2014206208A (en
Inventor
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miwa Tech Co Ltd
Original Assignee
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miwa Tech Co Ltd filed Critical Miwa Tech Co Ltd
Priority to JP2013083535A priority Critical patent/JP5309269B1/en
Application granted granted Critical
Publication of JP5309269B1 publication Critical patent/JP5309269B1/en
Publication of JP2014206208A publication Critical patent/JP2014206208A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Foundations (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

【課題】簡単な構成で地震時に構造物に作用する慣性力による下部構造及び上部構造の変位量及び速度を制御し、大きな地震時慣性力の作用による上部構造及び下部構造の負荷を軽減することが可能な構造物免震および制震装置と構造物用免震および制震方法を提供することを目的とする。
【解決手段】建築物や橋梁等の構造物の上部構造3又は下部構造2の一方に固定される弾性体6と、前記弾性体に一体に固定される内側入出力係合部10aを形成した内側入出力部材10と、前記内側入出力部材の外側に固定された複数の支持軸8と、前記支持軸に回転自在に軸支され一方の端部に前記内側入出力係合部10aに移動可能に係合する内側入出力支点9aと、他方の端部に外側入出力支点9bを有するリンク部材からなる慣性力伝達手段9と、上部構造又は下部構造の他方に固定され前記外側入出力支点が移動可能に係合する外側入出力係合部11aを形成した外側入出力部材11と、を備え、前記慣性力伝達手段の支持軸から外側入出力支点及び内側入出力支点間の距離を異なるように設定することにより地震時に作用する慣性力による上部構造及び下部構造の変位量、速度及び加速度を制御することを特徴とする。
【選択図】 図2
To control the displacement and speed of the lower structure and the upper structure due to the inertial force acting on the structure with a simple configuration, and to reduce the load on the upper structure and the lower structure due to the large inertial force during the earthquake. It aims to provide a seismic isolation and control device and a seismic isolation and control method for structures.
An elastic body 6 fixed to one of an upper structure 3 or a lower structure 2 of a structure such as a building or a bridge, and an inner input / output engagement portion 10a fixed integrally to the elastic body are formed. Inner input / output member 10, a plurality of support shafts 8 fixed to the outer side of the inner input / output member, and rotatably supported by the support shaft and moved to the inner input / output engagement portion 10a at one end. An inner input / output fulcrum 9a that can be engaged, an inertial force transmission means 9 comprising a link member having an outer input / output fulcrum 9b at the other end, and the outer input / output fulcrum fixed to the other of the upper structure or the lower structure. And an outer input / output member 11 that forms an outer input / output engaging portion 11a that is movably engaged, and the distance between the outer input / output fulcrum and the inner input / output fulcrum from the support shaft of the inertial force transmission means is different. It works at the time of earthquake by setting Displacement of the upper structure and lower structure by sex force, and controlling the velocity and acceleration.
[Selection] Figure 2

Description

本発明は、建築物や橋梁等の構造物の制震および免震装置と構造物用免震および制震方法において、地震時に構造物に作用する慣性力による下部構造又は上部構造の変位量及び速度を制御することが可能な構造物用制震および免震装置と構造物用免震および制震方法に関する。   The present invention relates to a seismic control and seismic isolation device for a structure such as a building or a bridge and a seismic isolation and seismic control method for the structure, and a displacement amount of the lower structure or the upper structure due to an inertial force acting on the structure at the time of the earthquake. The present invention relates to a structure damping and seismic isolation device and a structure seismic isolation and damping method capable of controlling speed.

兵庫県南部地震以降、高減衰ゴム系の免震支承や鉛プラグ入り積層ゴム支承等を用いて長周期化と高減衰化により地震力の低減と耐震性の向上を図る免震構造が一般的に採用されるようになってきている。   After the Hyogoken-Nanbu Earthquake, seismic isolation structures that reduce seismic force and improve seismic resistance through longer periods and higher damping using high-damping rubber-based seismic isolation bearings and laminated rubber bearings with lead plugs are common Has been adopted.

また、機能分離型の支承構造として、鉛直荷重を受け持つ鉛直荷重支持支承と水平力を受け持つ水平力分散支承を組み合わせた支承構造が採用される事例が増えつつある。   In addition, as a function-separated type support structure, a case in which a support structure combining a vertical load support bearing that handles a vertical load and a horizontal force distributed bearing that handles a horizontal force is increasing.

特開2001−140976号公報JP 2001-140976 A 特開2001−227197号公報JP 2001-227197 A

従来の支承構造は、地震時に建築物や橋梁等の構造物には下部構造に慣性力が作用し、その慣性力が積層ゴムを有する支承装置を介して上部構造3に伝達される。その際、積層ゴム下部構造の慣性力の方向と同じ方向に弾性変形する。上部構造に伝達された地震エネルギーは、加速度成分が加わり大きな地震時慣性力として上部構造に作用する。上部構造に作用する地震時慣性力は、積層ゴムを有する支承を介して下部構造に伝達される。下部構造には、上部構造の地震時慣性力と同方向の大きな慣性力が作用する。上部構造に作用する大きな慣性力により支承装置が破壊されるだけでなく、橋脚、橋台、基礎構造等の下部構造に作用する大きな慣性力により下部構造自体が損傷する恐れがある。また、上部構造には大きな水平変位が発生する。上部構造の大きな水平変位に対してはその変位を吸収するためのダンパーや変位制限装置、落橋防止装置等が必要となる。下部構造に負荷される大きな慣性力により下部構造に損傷を与えないために下部構造の設計強度を大きくする必要がある。下部構造の設計強度を大きくするためには、基礎杭の本数の増加や橋脚や橋台の各種寸法、配筋量等を増加する必要がある。そのため、既存橋梁又は既存建築物の耐震補強のケースにおいても、新設構造物の構築のケースにおいても多くの施工日数と多額の費用が必要となるという問題を有する。   In the conventional bearing structure, an inertial force acts on a lower structure in a structure such as a building or a bridge during an earthquake, and the inertial force is transmitted to the upper structure 3 via a bearing device having laminated rubber. In that case, it elastically deforms in the same direction as the direction of the inertial force of the laminated rubber substructure. The seismic energy transmitted to the superstructure acts on the superstructure as a large earthquake inertia force with an acceleration component. The inertial force during earthquake acting on the superstructure is transmitted to the substructure via a bearing having laminated rubber. A large inertial force in the same direction as the earthquake inertial force of the superstructure acts on the substructure. Not only the bearing device is destroyed by a large inertial force acting on the superstructure, but also the substructure itself may be damaged by a large inertial force acting on the substructure such as a pier, abutment, and foundation structure. In addition, a large horizontal displacement occurs in the superstructure. For a large horizontal displacement of the superstructure, a damper, a displacement limiting device, a falling bridge prevention device, etc. are required to absorb the displacement. In order not to damage the lower structure due to a large inertial force applied to the lower structure, it is necessary to increase the design strength of the lower structure. In order to increase the design strength of the substructure, it is necessary to increase the number of foundation piles and various dimensions of the piers and abutments and the amount of reinforcement. For this reason, both the case of seismic reinforcement of existing bridges or existing buildings and the case of construction of new structures have the problem that many construction days and a large amount of cost are required.

本発明は、上記従来の問題を解決するものであって、簡単な構成で地震時に構造物に作用する慣性力による下部構造及び上部構造の変位量及び速度を制御し、大きな地震時慣性力の作用による上部構造及び下部構造の負荷を軽減することが可能な構造物免震および制震装置と構造物用免震および制震方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and controls the displacement and speed of the lower structure and the upper structure due to the inertial force acting on the structure at the time of an earthquake with a simple configuration, so that the large inertial force at the time of the earthquake can be obtained. It is an object of the present invention to provide a structure seismic isolation and damping device and a structure seismic isolation and damping method capable of reducing the load on the upper and lower structures due to the action.

本発明の構造物用免震および制震装置は、前記課題を解決するために、建築物や橋梁等の構造物の上部構造又は下部構造の一方に固定される弾性体と、前記弾性体に一体に固定される内側入出力係合部を形成した内側入出力部材と、前記内側入出力部材の外側に固定された複数の支持軸と、前記支持軸に回転自在に軸支され一方の端部に前記内側入出力係合部に移動可能に係合する内側入出力支点と、他方の端部に外側入出力支点を有するリンク部材からなる慣性力伝達手段と、上部構造又は下部構造の他方に固定され前記外側入出力支点が移動可能に係合する外側入出力係合部を形成した外側入出力部材と、を備え、前記慣性力伝達手段の支持軸から外側入出力支点及び内側入出力支点間の距離を異なるように設定することにより地震時に作用する慣性力による上部構造及び下部構造の変位量、速度及び加速度を制御することを特徴とする。   In order to solve the above problems, the structure seismic isolation and vibration control device of the present invention includes an elastic body fixed to one of an upper structure or a lower structure of a structure such as a building or a bridge, and the elastic body. An inner input / output member having an inner input / output engaging portion fixed integrally, a plurality of support shafts fixed to the outside of the inner input / output member, and one end rotatably supported by the support shaft An inner input / output fulcrum that is movably engaged with the inner input / output engagement portion, an inertial force transmission means comprising a link member having an outer input / output fulcrum at the other end, and the other of the upper structure or the lower structure And an outer input / output member that forms an outer input / output engaging portion that is movably engaged with the outer input / output fulcrum, and is provided with an outer input / output fulcrum and an inner input / output from the support shaft of the inertial force transmission means. By setting different distances between the fulcrums during an earthquake Displacement of the upper structure and lower structure by inertial force that use, and controlling the velocity and acceleration.

また、本発明の構造物用免震および制震装置は、前記内側入出力係合部を前記内側入出力支点の外径とほぼ同じ幅のリング状又は円弧状溝とし、前記外側入出力係合部を前記外側入出力支点の外径とほぼ同じ間隔で平行に伸びる部材又は前記外側入出力支点の外径と同じ幅の直線状に伸びる溝とすることを特徴とする。   In the structure seismic isolation and damping device of the present invention, the inner input / output engaging portion is a ring-shaped or arc-shaped groove having substantially the same width as the outer diameter of the inner input / output fulcrum, and the outer input / output engagement The joint portion may be a member extending in parallel at substantially the same interval as the outer diameter of the outer input / output fulcrum or a linearly extending groove having the same width as the outer diameter of the outer input / output fulcrum.

また、本発明の構造物用免震および制震装置は、前記弾性体をゴム又はバネ部材とすることを特徴とする。   Moreover, the seismic isolation and damping device for a structure of the present invention is characterized in that the elastic body is a rubber or a spring member.

また、本発明の構造物用免震および制震方法は、建築物や橋梁等の構造物の上部構造又は下部構造の一方に支持軸に回動自在に軸支されるリンク部材からなる複数の慣性力伝達手段を設け、前記慣性力伝達手段の両端に内側入出力支点と外側入出力支点を配置し、前記内側入出力支点を上部構造又は下部構造の一方に固定される弾性体に一体とされた内側入出力部材に形成した内側入出力係合部に移動可能に係合し、前記外側入出力支点を上部構造又は下部構造の他方に固定され外側入出力部材に形成した外側入出力係合部に移動可能に係合し、前記慣性力伝達手段の支持軸から外側入出力支点及び内側入出力支点間の距離を異なるように設定することにより地震時に作用する慣性力による上部構造及び下部構造の変位量、速度及び加速度を制御することを特徴とする。   Further, the seismic isolation and damping method for a structure of the present invention includes a plurality of link members that are pivotally supported by a support shaft on one of an upper structure or a lower structure of a structure such as a building or a bridge. Inertial force transmission means is provided, inner input / output fulcrum and outer input / output fulcrum are arranged at both ends of the inertial force transmission means, and the inner input / output fulcrum is integrated with an elastic body fixed to one of the upper structure or the lower structure. An outer input / output member that is movably engaged with an inner input / output engaging portion formed on the inner input / output member and is formed on the outer input / output member with the outer input / output fulcrum fixed to the other of the upper structure or the lower structure. Upper structure and lower part due to inertial force acting at the time of earthquake by setting the distance between the outer input / output fulcrum and the inner input / output fulcrum differently from the support shaft of the inertial force transmission means The displacement, velocity and acceleration of the structure Characterized in that the Gosuru.

また、本発明の構造物用免震および制震方法は、前記内側入出力係合部を前記内側入出力支点の外径とほぼ同じ幅のリング状又は円弧状溝とし、前記外側入出力係合部を前記外側入出力支点の外径とほぼ同じ間隔で平行に伸びる部材又は前記外側入出力支点の外径と同じ幅の直線状に伸びる溝とすることを特徴とする。   Further, in the seismic isolation and damping method for a structure of the present invention, the inner input / output engaging portion is a ring-shaped or arc-shaped groove having substantially the same width as the outer diameter of the inner input / output fulcrum, The joint portion may be a member extending in parallel at substantially the same interval as the outer diameter of the outer input / output fulcrum or a linearly extending groove having the same width as the outer diameter of the outer input / output fulcrum.

また、本発明の構造物用免震および制震方法は、前記弾性体をゴム又はバネ部材とすることを特徴とする。   Moreover, the seismic isolation and damping method for a structure according to the present invention is characterized in that the elastic body is a rubber or a spring member.

建築物や橋梁等の構造物の上部構造又は下部構造の一方に固定される弾性体と、前記弾性体に一体に固定される内側入出力係合部を形成した内側入出力部材と、前記内側入出力部材の外側に固定された複数の支持軸と、前記支持軸に回転自在に軸支され一方の端部に前記内側入出力係合部に移動可能に係合する内側入出力支点と他方の端部に外側入出力支点を有するリンク部材からなる慣性力伝達手段と、上部構造又は下部構造の他方に固定され前記外側入出力支点が移動可能に係合する外側入出力係合部を形成した外側入出力部材と、を備え、前記慣性力伝達手段の支持軸から外側入出力支点及び内側入出力支点間の距離を異なるように設定することにより地震時に作用する慣性力による上部構造及び下部構造の変位量、速度及び加速度を制御することで、簡単な構成でみかけの剛性を高めて上部構造又は下部構造の地震力による変位量を抑え、且つ地震力による速度を低減し、地震力による加速度を抑えて上部構造又は下部構造の地震力による負荷を大幅に低減することが可能となる。
内側入出力係合部を内側入出力支点の外径とほぼ同じ幅のリング状又は円弧状溝とし、外側入出力係合部を外側入出力支点の外径とほぼ同じ間隔で平行に伸びる部材又は前記外側入出力支点の外径と同じ幅の直線状に伸びる溝とすることで、リンク部材からなる慣性力伝達手段の長さを短くすることができ構造物用免震及び制震装置を小型化することが可能となる。
弾性体をゴム又はバネ部材とすることで、入手が容易で制作コストを低減することが可能となる。
建築物や橋梁等の構造物の上部構造又は下部構造の一方に支持軸に回動自在に軸支されるリンク部材からなる複数の慣性力伝達手段を設け、前記慣性力伝達手段の両端に内側入出力支点と外側入出力支点を配置し、前記内側入出力支点を上部構造又は下部構造の一方に固定される弾性体に一体とされた内側入出力部材に形成した内側入出力係合部に移動可能に係合し、前記外側入出力支点を上部構造又は下部構造の他方に固定され外側入出力部材に形成した外側入出力係合部に移動可能に係合し、前記慣性力伝達手段の支持軸から外側入出力支点及び内側入出力支点間の距離を異なるように設定することにより地震時に作用する慣性力による上部構造及び下部構造の変位量、速度及び加速度を制御することで、みかけの剛性を高めて上部構造又は下部構造の地震力による変位量を抑え、且つ地震力による速度を低減し、地震力による加速度を抑えて上部構造又は下部構造の地震力による負荷を大幅に低減することが可能となる。
内側入出力係合部を内側入出力支点の外径とほぼ同じ幅のリング状又は円弧状溝とし、外側入出力係合部を外側入出力支点の外径とほぼ同じ間隔で平行に伸びる部材又は前記外側入出力支点の外径と同じ幅の直線状に伸びる溝とすることで、小型化した装置を用いて上部構造又は下部構造の地震力による負荷を大幅に低減することが可能になる。
弾性体をゴム又はバネ部材とすることで、入手が容易で低コストの構造物用免震及び制震方法を提供することが可能となる。
An elastic body fixed to one of an upper structure or a lower structure of a structure such as a building or a bridge; an inner input / output member formed with an inner input / output engaging portion fixed integrally to the elastic body; A plurality of support shafts fixed to the outside of the input / output member; an inner input / output fulcrum that is rotatably supported by the support shaft and is movably engaged with the inner input / output engagement portion at one end portion; Inertial force transmission means composed of a link member having an outer input / output fulcrum at the end of the upper part and an outer input / output engaging part fixed to the other of the upper structure or the lower structure and engaged with the outer input / output fulcrum movably An outer input / output member, and an upper structure and a lower part due to an inertial force acting during an earthquake by setting different distances between the outer input / output fulcrum and the inner input / output fulcrum from the support shaft of the inertial force transmission means The displacement, velocity and acceleration of the structure By controlling it, the apparent rigidity is increased with a simple structure to suppress the displacement due to the seismic force of the superstructure or the substructure, and the speed due to the seismic force is reduced, and the acceleration due to the seismic force is suppressed to suppress the superstructure or substructure. It is possible to greatly reduce the load caused by the seismic force.
The inner input / output engagement part is a ring-shaped or arcuate groove having the same width as the outer diameter of the inner input / output fulcrum, and the outer input / output engagement part extends in parallel at substantially the same interval as the outer diameter of the outer input / output fulcrum. Alternatively, the length of the inertial force transmission means composed of the link member can be shortened by using a groove extending linearly with the same width as the outer diameter of the outer input / output fulcrum. It becomes possible to reduce the size.
By making the elastic body a rubber or a spring member, it is easy to obtain and the production cost can be reduced.
A plurality of inertial force transmission means comprising link members pivotally supported by a support shaft is provided on one of the upper structure or the lower structure of a structure such as a building or a bridge, and inner sides are provided at both ends of the inertial force transmission means. An input / output fulcrum and an outer input / output fulcrum are arranged, and the inner input / output fulcrum is formed on an inner input / output engagement portion formed on an inner input / output member integrated with an elastic body fixed to one of the upper structure or the lower structure. The outer input / output fulcrum is fixed to the other of the upper structure or the lower structure and is movably engaged with an outer input / output engaging portion formed on the outer input / output member. By setting the distance between the outer input / output fulcrum and the inner input / output fulcrum to be different from the support shaft, the displacement, speed and acceleration of the superstructure and substructure due to the inertial force acting at the time of earthquake can be controlled, and the apparent Superstructure with increased rigidity Suppresses a displacement amount due to seismic forces of the lower structure and to reduce the rate by seismic forces, it is possible to remarkably reduce the load due to seismic forces of the superstructure or substructure by suppressing the acceleration due to seismic forces.
The inner input / output engagement part is a ring-shaped or arcuate groove having the same width as the outer diameter of the inner input / output fulcrum, and the outer input / output engagement part extends in parallel at substantially the same interval as the outer diameter of the outer input / output fulcrum. Or, by using a linearly extending groove having the same width as the outer diameter of the outer input / output fulcrum, it is possible to significantly reduce the load caused by the seismic force of the upper structure or lower structure using a downsized device. .
By making the elastic body a rubber or a spring member, it is possible to provide a seismic isolation and seismic control method for a structure that is easily available and low in cost.

本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. (a)(b)本発明の構造物免震方法の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of the structure seismic isolation method of this invention. (a)(b)本発明の構造物免震方法の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of the structure seismic isolation method of this invention. (a)(b)本発明の構造物免震方法の実施形態を示す図である。(A) (b) It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention. 本発明の構造物免震方法の実施形態を示す図である。It is a figure which shows embodiment of the structure seismic isolation method of this invention.

本発明の実施の形態を図により説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の構造物制震および免震装置1は、建築物や橋梁等の構造物の下部構造2と上部構造3との間に配置される。図3(a)(b)に示すように、下部構造2に固定ボルト5により固定されるベースプレート4の中央部に弾性体6が設置される。弾性体6はゴム又はバネ等である。この実施形態では、ゴムと補強鋼板を鉛直方向に複数交互に積層し加硫一体成形した積層ゴムを用いている。弾性体6上に内側入出力部材10が一体に固定される。   The structural seismic isolation and seismic isolation device 1 of the present invention is disposed between a lower structure 2 and an upper structure 3 of a structure such as a building or a bridge. As shown in FIGS. 3A and 3B, an elastic body 6 is installed at the center of the base plate 4 that is fixed to the lower structure 2 with fixing bolts 5. The elastic body 6 is rubber or a spring. In this embodiment, a laminated rubber is used in which a plurality of rubbers and reinforcing steel plates are alternately laminated in the vertical direction and vulcanized and integrally formed. The inner input / output member 10 is integrally fixed on the elastic body 6.

内側入出力部材10の表面にはリング状又は円弧状溝からなる内側入出力係合部10aが形成される。弾性体6がゴムの場合、内側入出力部材10を加硫一体成形によりゴムと一体化しても良い。ベースプレート4の弾性体6及び内側入出力部材10が設置された外側の位置に複数の支持部材7が連結ボルト又は溶接により固定する。支持部材7には支持軸8を螺着するための支持軸用雌ねじ穴7aが形成される。   On the surface of the inner input / output member 10, an inner input / output engaging portion 10a made of a ring-shaped or arc-shaped groove is formed. When the elastic body 6 is rubber, the inner input / output member 10 may be integrated with rubber by vulcanization integral molding. A plurality of support members 7 are fixed to the outer position of the base plate 4 where the elastic body 6 and the inner input / output member 10 are installed by connecting bolts or welding. The support member 7 is formed with a support shaft female screw hole 7 a for screwing the support shaft 8.

支持部材7の支持軸用雌ねじ穴7aに螺着される支持軸8にリンク部材からなる慣性力伝達手段9が回転自在に軸支される。図5(a)(b)に示すようにリンク部材からなる慣性力伝達手段9は、支持軸8に軸支するための貫通穴9cが形成され、一方の端部にピン状の内側入出力支点9aが配置され、他方の端部にピン状の外側入出力支点9bが配置される。内側入出力支点9aと外側入出力支点9bは、慣性力伝達手段9の表面側、裏面側にそれぞれ配置される。図4に示される慣性力伝達手段9は直線状のリンク部材で形成されているが、図7に示すように円弧状のリンク部材でも良く、その他の形状のリンク部材としても良い。   An inertial force transmission means 9 made of a link member is rotatably supported on a support shaft 8 screwed into a support shaft female screw hole 7a of the support member 7. As shown in FIGS. 5 (a) and 5 (b), the inertial force transmission means 9 made of a link member is formed with a through hole 9c for supporting the support shaft 8 and has a pin-shaped inner input / output at one end. A fulcrum 9a is disposed, and a pin-shaped outer input / output fulcrum 9b is disposed at the other end. The inner input / output fulcrum 9a and the outer input / output fulcrum 9b are arranged on the front surface side and the back surface side of the inertial force transmission means 9, respectively. The inertial force transmission means 9 shown in FIG. 4 is formed by a linear link member, but may be an arc-shaped link member as shown in FIG. 7, or a link member of another shape.

図4(a)(b)に示すように上部構造3にセットボルト12により固定される外側入出力部材11には、複数のセットボルト用雌ねじ穴11bが形成される。外側入出力部材11には、上部構造3との間に設置されるせん断キー13を収容するキー溝11dが形成される。外側入出力部材11の裏面側には、複数の外側入出力係合部11aが配置される。外側入出力係合部11aは、慣性力伝達手段9の外側入出力支点9bの外径とほぼ同じ間隔で平行に伸びる部材で形成される。外側入出力係合部11aを平行に伸びる部材で形成する場合、外側入出力部材11の裏面とリンク部材からなる慣性力伝達手段9との間に間隔ができるので、外側入出力部材11の裏面の中央部には、慣性力伝達手段9の内側と当接するリンク押さえ部11cが形成される。   As shown in FIGS. 4A and 4B, the outer input / output member 11 fixed to the upper structure 3 by the set bolt 12 has a plurality of female screw holes 11b for set bolts. The outer input / output member 11 is formed with a key groove 11 d that accommodates a shear key 13 installed between the outer input / output member 11 and the outer structure 3. On the back side of the outer input / output member 11, a plurality of outer input / output engaging portions 11a are arranged. The outer input / output engagement portion 11a is formed of a member that extends in parallel at substantially the same interval as the outer diameter of the outer input / output fulcrum 9b of the inertial force transmission means 9. When the outer input / output engaging portion 11a is formed of a member extending in parallel, a space can be formed between the rear surface of the outer input / output member 11 and the inertial force transmission means 9 including a link member. A link pressing portion 11c that abuts against the inside of the inertial force transmission means 9 is formed at the center portion of the.

また、外側入出力係合部11aを外側入出力部材11の裏面に形成される外側入出力支点9bの外径とほぼ同じ幅の直線状の溝としても良い、その場合は、リンク部材からなる慣性力伝達手段9と外側入出力部材11の裏面間に隙間が生じないのでリンク押さえ部11cを省略することができる。外側入出力部材11が上部構造3に予め溶接で固定されるソールプレートとする場合は、セットボルト用雌ねじ穴11bとキー溝11を省略することができる。   Further, the outer input / output engaging portion 11a may be a linear groove having a width substantially the same as the outer diameter of the outer input / output fulcrum 9b formed on the back surface of the outer input / output member 11, and in this case, it is made of a link member. Since no gap is generated between the inertia force transmission means 9 and the back surface of the outer input / output member 11, the link pressing portion 11c can be omitted. When the outer input / output member 11 is a sole plate that is fixed to the upper structure 3 by welding in advance, the female screw hole 11b for the set bolt and the key groove 11 can be omitted.

図1、図2には、複数の慣性力伝達手段9を下部構造2と上部構造3との間に設置した状態を示す。支持軸8に軸支されたリンク部材からなる慣性力伝達手段9の内側入出力支点9aがリング状又は円弧状溝からなる内側入出力係合部10aに移動可能に係合する。内側入出力支点9aの外径と内側入出力係合部10aの溝幅をほぼ同じとする。慣性力伝達手段9の外側入出力支点9bが外側入出力部材11の平行に伸びる部材で形成された外側入出力係合部11aに移動可能に係合する。リンク部材からなる慣性力伝達手段9の内側部が外側入出力部材11の裏面に形成したリンク押さえ部11cと当接し、慣性力伝達手段9の支持軸8を軸とした回動を安定して実施することができる。   1 and 2 show a state in which a plurality of inertial force transmission means 9 are installed between the lower structure 2 and the upper structure 3. The inner input / output fulcrum 9a of the inertial force transmission means 9 made of a link member pivotally supported by the support shaft 8 is movably engaged with the inner input / output engagement portion 10a made of a ring-shaped or arcuate groove. The outer diameter of the inner input / output fulcrum 9a and the groove width of the inner input / output engaging portion 10a are substantially the same. The outer input / output fulcrum 9b of the inertial force transmission means 9 is movably engaged with an outer input / output engaging portion 11a formed of a member extending in parallel with the outer input / output member 11. The inner part of the inertial force transmission means 9 made of a link member comes into contact with the link pressing part 11c formed on the back surface of the outer input / output member 11, and the rotation of the inertial force transmission means 9 about the support shaft 8 is stabilized. Can be implemented.

図6により本発明の構造物用免震及び制震装置1の作用について説明する。慣性力伝達手段9の支持軸8から内側入出力支点9a間の距離をnとし、支持軸8から外側入出力支点9b間の距離をmとする。nとmは異なる数とする。n及びmは、上部構造3の変位制限や下部構造2の耐震強度等の設計の際の各種設計要件に応じて設定する。この実施形態ではn>mとしている。地震時に下部構造2に作用する慣性力は、弾性体6に伝達され弾性体6を弾性変形させて内側入出力部材10に伝達される。内側入出力部材10に伝達された慣性力は、リング状又は円弧状溝からなる内側入出力係合部10aと係合する内側入出力支点9aを介して慣性力伝達手段9に伝達される。   The operation of the seismic isolation and damping device 1 of the present invention will be described with reference to FIG. The distance between the support shaft 8 and the inner input / output fulcrum 9a of the inertial force transmission means 9 is n, and the distance between the support shaft 8 and the outer input / output fulcrum 9b is m. n and m are different numbers. n and m are set according to various design requirements at the time of designing such as displacement restriction of the upper structure 3 and seismic strength of the lower structure 2. In this embodiment, n> m. Inertial force acting on the lower structure 2 during an earthquake is transmitted to the elastic body 6 and is elastically deformed to be transmitted to the inner input / output member 10. The inertial force transmitted to the inner input / output member 10 is transmitted to the inertial force transmission means 9 via the inner input / output fulcrum 9a that engages with the inner input / output engagement portion 10a formed of a ring-shaped or arcuate groove.

慣性力を伝達された慣性力伝達手段9は、図6の点線の位置から実線の位置に支持軸8を軸として矢印方向に回動する。内側入出力係合部10aと係合する内側入出力支点9aは速度V1で変位量δ1変位する。一方、外側入出力係合部11aと係合する外側入出力支点9bは、速度V2で変位量δ2変位する。   The inertial force transmission means 9 to which the inertial force is transmitted rotates in the direction of the arrow from the dotted line position of FIG. 6 to the solid line position with the support shaft 8 as an axis. The inner input / output fulcrum 9a engaged with the inner input / output engaging portion 10a is displaced by the displacement amount δ1 at the speed V1. On the other hand, the outer input / output fulcrum 9b engaged with the outer input / output engaging portion 11a is displaced by the displacement amount δ2 at the speed V2.

内側入出力支点9aと外側入出力支点9bは、同じ支持軸8を軸として回動する。そのため、変位量δ2=m/n×δ1、速度V2=m/n×V1となる。この実施形態では、n>mであるから、δ2<δ1、V2<V1となる。   The inner input / output fulcrum 9a and the outer input / output fulcrum 9b rotate about the same support shaft 8. Therefore, the displacement amount δ2 = m / n × δ1 and the speed V2 = m / n × V1. In this embodiment, since n> m, δ2 <δ1 and V2 <V1.

この実施形態では、内側入出力支点9aは、下部構造2に固定された弾性体6と一体化された内側入出力部材10の内側入出力係合部10aに係合し、外側入出力支点9bは、上部構造3に固定された外側入出力部材11の外側入出力係合部11aに係合している。その結果、地震時に下部構造2から伝達された慣性力は、外側入出力支点9bを介して上部構造3に伝達される。   In this embodiment, the inner input / output fulcrum 9a engages with the inner input / output engaging portion 10a of the inner input / output member 10 integrated with the elastic body 6 fixed to the lower structure 2, and the outer input / output fulcrum 9b. Is engaged with the outer input / output engaging portion 11 a of the outer input / output member 11 fixed to the upper structure 3. As a result, the inertial force transmitted from the lower structure 2 during the earthquake is transmitted to the upper structure 3 via the outer input / output fulcrum 9b.

リンク部材からなる慣性力伝達手段9の回転軸からの距離がn>mと設定されているため、上部構造3側に係合している外側入出力支点9bの変位量δ2と速度V2は、下部構造2側に係合している内側入出力支点9aの変位量δ1と速度V1に比較し、m/nだけ小さくなる。   Since the distance from the rotation axis of the inertial force transmission means 9 made of a link member is set as n> m, the displacement δ2 and the speed V2 of the outer input / output fulcrum 9b engaged with the upper structure 3 side are: Compared to the displacement amount δ1 and the velocity V1 of the inner input / output fulcrum 9a engaged with the lower structure 2 side, it becomes smaller by m / n.

一般的に地震力によって発生する慣性力は、質量と剛性によって変位量と速度が決定する。変位量を抑えるには剛性を高めれば良いが、剛性を高めると加速度が増加する。加速度が増加すると上部構造3の地震時慣性力が増加し、下部構造2の負荷が増加し、下部構造の耐震強度の増加が必要である。加速度を抑えるには速度を抑えることが有効である。   In general, an inertial force generated by a seismic force has a displacement amount and a speed determined by mass and rigidity. In order to suppress the amount of displacement, it is sufficient to increase the rigidity. However, if the rigidity is increased, the acceleration increases. When the acceleration increases, the inertial force during the earthquake of the upper structure 3 increases, the load of the lower structure 2 increases, and the seismic strength of the lower structure needs to be increased. In order to suppress the acceleration, it is effective to suppress the speed.

図に示される実施形態では、n>mとすることにより、上部構造3の変位量δ2=m/n×δ1と減少し、速度V2=m/n×V1と減少する。速度が減少することにより上部構造3の加速度も減少する。上部構造3の変位量が減少することにより、構造物が橋梁の場合、伸縮装置間を狭くすることができる。また、上部構造3の速度を減少することにより、上部構造3の加速度も減少し、上部構造3の地震時慣性力による下部構造2の負荷を軽減することが可能となる。   In the embodiment shown in the figure, by setting n> m, the displacement amount δ2 = m / n × δ1 of the upper structure 3 is reduced and the velocity V2 = m / n × V1 is reduced. As the speed decreases, the acceleration of the superstructure 3 also decreases. When the displacement amount of the upper structure 3 is reduced, when the structure is a bridge, the space between the telescopic devices can be narrowed. Further, by reducing the speed of the upper structure 3, the acceleration of the upper structure 3 is also reduced, and the load on the lower structure 2 due to the inertial force during the earthquake of the upper structure 3 can be reduced.

図に示される実施形態では、内側入出力部材10を下部構造2側に配置し、外側入出力部材11を上部構造3側に配置しているが、内側入出力部材10を上部構造3側に配置し、外側入出力部材11を下部構造2側に配置しても良い。また、下部構造2の負荷を軽減するために、n<mと図に示される実施形態の逆に設定しても良い。   In the embodiment shown in the figure, the inner input / output member 10 is disposed on the lower structure 2 side and the outer input / output member 11 is disposed on the upper structure 3 side. However, the inner input / output member 10 is disposed on the upper structure 3 side. The outer input / output member 11 may be disposed on the lower structure 2 side. Further, in order to reduce the load on the lower structure 2, n <m may be set as the reverse of the embodiment shown in the figure.

以上のように、本発明の構造物用免震及び制震装置1と構造物用免震及び制震方法によれば、リンク部材からなる慣性力伝達手段9の支持軸8から下部構造側の入出力係合部及び上部構造側入出力係合部間の距離を異なるように設定することにより、みかけの剛性を高めて上部構造3又は下部構造2の地震力による変位量を抑え、且つ地震力による速度を低減し、地震力による加速度を抑えて上部構造3又は下部構造2の地震力による負荷を大幅に低減することが可能となる。   As described above, according to the seismic isolation and damping device 1 for a structure and the seismic isolation and damping method for a structure of the present invention, the support shaft 8 of the inertial force transmission means 9 made of a link member is connected to the lower structure side. By setting the distance between the input / output engagement portion and the upper structure side input / output engagement portion to be different, the apparent rigidity is increased, and the displacement amount due to the seismic force of the upper structure 3 or the lower structure 2 is suppressed. It is possible to reduce the load due to the seismic force of the upper structure 3 or the lower structure 2 by reducing the speed due to the force and suppressing the acceleration due to the seismic force.

1:構造物用免震及び制震装置、2:下部構造、3:上部構造、4:ベースプレート、5: 固定ボルト、6:弾性体、7:支持部材、7a:支持軸用雌ねじ穴,8:支持軸、9:慣性力伝達手段、9a:内側入出力支点、9b:外側入出力支点、9c:貫通穴、10:内側入出力部材、10a:内側入出力係合部、11:外側入出力部材、11a:外側入出力係合部、11b:セットボルト用雌ねじ穴、11c:リンク押さえ部、11d:キー溝、12:セットボルト、13:せん断キー   1: seismic isolation and vibration control device for structure, 2: lower structure, 3: upper structure, 4: base plate, 5: fixing bolt, 6: elastic body, 7: support member, 7a: female screw hole for support shaft, 8 : Support shaft, 9: Inertial force transmission means, 9a: Inner input / output fulcrum, 9b: Outer input / output fulcrum, 9c: Through hole, 10: Inner input / output member, 10a: Inner input / output engaging portion, 11: Outer input Output member, 11a: outer input / output engaging portion, 11b: female screw hole for set bolt, 11c: link pressing portion, 11d: key groove, 12: set bolt, 13: shear key

Claims (6)

建築物や橋梁等の構造物の上部構造又は下部構造の一方に固定される弾性体と、
前記弾性体に一体に固定され内側入出力係合部を形成した内側入出力部材と、
前記内側入出力部材の外側に固定された複数の支持軸と、
前記支持軸に回転自在に軸支され一方の端部に前記内側入出力係合部に移動可能に係合する内側入出力支点と他方の端部に外側入出力支点を有するリンク部材からなる慣性力伝達手段と、
上部構造又は下部構造の他方に固定され前記外側入出力支点が移動可能に係合する外側入出力係合部を形成した外側入出力部材と、
を備え、
前記慣性力伝達手段の支持軸から外側入出力支点及び内側入出力支点間の距離を異なるように設定することにより地震時に作用する慣性力による上部構造及び下部構造の変位量、速度及び加速度を制御することを特徴とする構造物用免震及び制震装置。
An elastic body fixed to one of the upper structure or the lower structure of a structure such as a building or a bridge;
An inner input / output member integrally formed with the elastic body and forming an inner input / output engaging portion;
A plurality of support shafts fixed to the outside of the inner input / output member;
Inertia comprising a link member rotatably supported by the support shaft and having an inner input / output fulcrum at one end movably engaged with the inner input / output engaging portion and an outer input / output fulcrum at the other end. Force transmission means;
An outer input / output member that is fixed to the other of the upper structure or the lower structure and that forms an outer input / output engaging portion that the outer input / output fulcrum engages with movement;
With
By controlling the distance between the outer input / output fulcrum and the inner input / output fulcrum from the support shaft of the inertial force transmission means, the displacement, speed and acceleration of the superstructure and substructure due to the inertial force acting during an earthquake are controlled. A seismic isolation and damping device for a structure.
前記内側入出力係合部を前記内側入出力支点の外径とほぼ同じ幅のリング状又は円弧状溝と、前記外側入出力係合部を前記外側入出力支点の外径とほぼ同じ間隔で平行に伸びる部材又は前記外側入出力支点の外径と同じ幅の直線状に伸びる溝とすることを特徴とする請求項1に記載の構造物用免震及び制震装置。   The inner input / output engagement portion is a ring-shaped or arc-shaped groove having the same width as the outer diameter of the inner input / output fulcrum, and the outer input / output engagement portion is substantially the same as the outer diameter of the outer input / output fulcrum. 2. The seismic isolation and damping device for a structure according to claim 1, wherein the structure is a member extending in parallel or a linearly extending groove having the same width as the outer diameter of the outer input / output fulcrum. 前記弾性体をゴム又はバネ部材とすることを特徴とする請求項1又は2に記載の構造物用免震及び制震装置。   The seismic isolation and damping device for a structure according to claim 1 or 2, wherein the elastic body is a rubber or a spring member. 建築物や橋梁等の構造物の上部構造又は下部構造の一方に支持軸に回動自在に軸支されるリンク部材からなる複数の慣性力伝達手段を設け、前記慣性力伝達手段の両端に内側入出力支点と外側入出力支点を配置し、前記内側入出力支点を上部構造又は下部構造の一方に固定される弾性体に一体とされた内側入出力部材に形成した内側入出力係合部に移動可能に係合し、前記外側入出力支点を上部構造又は下部構造の他方に固定され外側入出力部材に形成した外側入出力係合部に移動可能に係合し、前記慣性力伝達手段の支持軸から外側入出力支点及び内側入出力支点間の距離を異なるように設定することにより地震時に作用する慣性力による上部構造及び下部構造の変位量、速度及び加速度を制御することを特徴とする構造物用免震及び制震方法。   A plurality of inertial force transmission means comprising link members pivotally supported by a support shaft is provided on one of the upper structure or the lower structure of a structure such as a building or a bridge, and inner sides are provided at both ends of the inertial force transmission means. An input / output fulcrum and an outer input / output fulcrum are arranged, and the inner input / output fulcrum is formed on an inner input / output engagement portion formed on an inner input / output member integrated with an elastic body fixed to one of the upper structure or the lower structure. The outer input / output fulcrum is fixed to the other of the upper structure or the lower structure and is movably engaged with an outer input / output engaging portion formed on the outer input / output member. By setting the distance between the outer input / output fulcrum and the inner input / output fulcrum different from the support shaft, the displacement, speed and acceleration of the superstructure and substructure due to the inertial force acting at the time of earthquake are controlled. Seismic isolation and control for structures Law. 前記内側入出力係合部を前記内側入出力支点の外径とほぼ同じ幅のリング状又は円弧状溝とし、前記外側入出力係合部を前記外側入出力支点の外径とほぼ同じ間隔で平行に伸びる部材又は前記外側入出力支点の外径と同じ幅の直線状に伸びる溝とすることを特徴とする請求項4に記載の構造物用免震及び制震方法。   The inner input / output engagement portion is a ring-shaped or arcuate groove having the same width as the outer diameter of the inner input / output fulcrum, and the outer input / output engagement portion is spaced at substantially the same interval as the outer diameter of the outer input / output fulcrum. 5. The seismic isolation and seismic control method for a structure according to claim 4, wherein the member is a parallel extending member or a linearly extending groove having the same width as the outer diameter of the outer input / output fulcrum. 前記弾性体をゴム又はバネ部材とすることを特徴とする請求項4又は5に記載の構造物用免震及び制震方法。   6. The seismic isolation and damping method for a structure according to claim 4, wherein the elastic body is a rubber or a spring member.
JP2013083535A 2013-04-12 2013-04-12 Seismic isolation and control devices for structures and seismic isolation and control methods for structures. Expired - Fee Related JP5309269B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083535A JP5309269B1 (en) 2013-04-12 2013-04-12 Seismic isolation and control devices for structures and seismic isolation and control methods for structures.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083535A JP5309269B1 (en) 2013-04-12 2013-04-12 Seismic isolation and control devices for structures and seismic isolation and control methods for structures.

Publications (2)

Publication Number Publication Date
JP5309269B1 true JP5309269B1 (en) 2013-10-09
JP2014206208A JP2014206208A (en) 2014-10-30

Family

ID=49529530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083535A Expired - Fee Related JP5309269B1 (en) 2013-04-12 2013-04-12 Seismic isolation and control devices for structures and seismic isolation and control methods for structures.

Country Status (1)

Country Link
JP (1) JP5309269B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114232458A (en) * 2021-11-17 2022-03-25 洛阳双瑞特种装备有限公司 Combined movement type damping tenon structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235270A (en) * 1992-10-12 1994-08-23 Tatsuji Ishimaru Damping device for structure
JP2001140976A (en) * 1999-11-09 2001-05-22 Bridgestone Corp Base isolation system for lightweight structure
JP2001227197A (en) * 2000-02-21 2001-08-24 Toyo Tire & Rubber Co Ltd Sliding-type vibration isolation apparatus for detached house
JP2007285364A (en) * 2006-04-13 2007-11-01 Seiji Yoshioka Base isolation table

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235270A (en) * 1992-10-12 1994-08-23 Tatsuji Ishimaru Damping device for structure
JP2001140976A (en) * 1999-11-09 2001-05-22 Bridgestone Corp Base isolation system for lightweight structure
JP2001227197A (en) * 2000-02-21 2001-08-24 Toyo Tire & Rubber Co Ltd Sliding-type vibration isolation apparatus for detached house
JP2007285364A (en) * 2006-04-13 2007-11-01 Seiji Yoshioka Base isolation table

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114232458A (en) * 2021-11-17 2022-03-25 洛阳双瑞特种装备有限公司 Combined movement type damping tenon structure
CN114232458B (en) * 2021-11-17 2024-01-30 中船双瑞(洛阳)特种装备股份有限公司 Combined movement type damping tenon structure

Also Published As

Publication number Publication date
JP2014206208A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
WO2013105480A1 (en) Seismic isolation mechanism
JP6075125B2 (en) Vibration damper device
JP2014510204A (en) Displacement amplification type vibration control system and its construction method
JP4608002B2 (en) Friction damper
JP6440243B2 (en) Setting method of bridge damping structure
JP5638762B2 (en) Building
JP5985927B2 (en) Sliding bearings for structures
CN109025451B (en) Double-torsion anti-destabilization method
JP5309269B1 (en) Seismic isolation and control devices for structures and seismic isolation and control methods for structures.
JP7148679B2 (en) Damper mechanism for seismic isolation structure, arrangement structure of damper mechanism for seismic isolation structure, trigger mechanism for seismic isolation structure, arrangement structure of trigger mechanism for seismic isolation structure, slide bearing mechanism for seismic isolation structure, and building
JP6267457B2 (en) Three-sided slide support device for structures
KR20090058430A (en) Semi active tuned mass damper with lead-rubber bearing and auto brake
JP2016023444A (en) Vibration control structure for bridge, and setting method for the same
JP6148045B2 (en) Double-sided slide support device for structures
JP2007297792A (en) Locking structure of side block in bridge bearing
JP7071897B2 (en) Multi-sided slide bearing device for structures
CN115538835B (en) Self-resetting rotary amplifying friction energy dissipation damper
KR102498283B1 (en) Base isolation device having ball type motion parts
JP6726381B2 (en) Installation structure of rotary mass damper
JP5252227B2 (en) Seismic isolation system
JP5841889B2 (en) Column base pin structure
JP4191687B2 (en) Damping damper connector, damping damper, and building damping structure
JP2013092009A (en) Structure vibration damping device and structure vibration damping method
JP2017043988A (en) Vibration control building
JP2017160652A (en) Buckling restraint type damper for bridge

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5309269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees