JP5301372B2 - Liquefied gas vaporizer - Google Patents
Liquefied gas vaporizer Download PDFInfo
- Publication number
- JP5301372B2 JP5301372B2 JP2009154898A JP2009154898A JP5301372B2 JP 5301372 B2 JP5301372 B2 JP 5301372B2 JP 2009154898 A JP2009154898 A JP 2009154898A JP 2009154898 A JP2009154898 A JP 2009154898A JP 5301372 B2 JP5301372 B2 JP 5301372B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- thermoelectric conversion
- transfer tube
- conversion module
- liquefied gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D3/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
- F28D3/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D3/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
- F28D3/04—Distributing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
- F28D2021/0064—Vaporizers, e.g. evaporators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
本発明は、液化されたガス例えば液化天然ガス (LNG)、液体水素、液体酸素、液体窒素などを海水や真水などの加熱流体で気化させる気化器に関する。さらに詳述すると、本発明は、気化器の伝熱管の周囲を流れる冷媒の流れを制御する技術に関する。 The present invention relates to a vaporizer that vaporizes liquefied gas such as liquefied natural gas (LNG), liquid hydrogen, liquid oxygen, liquid nitrogen and the like with a heating fluid such as seawater and fresh water. More specifically, the present invention relates to a technique for controlling the flow of refrigerant flowing around the heat transfer tube of a vaporizer.
液化ガス気化器として一般的な従来のLNG気化器は、多数のアルミニウム合金製のフィン付き伝熱管を垂直に配置して並べたものの上下端を上ヘッダーと下ヘッダーとでそれぞれ連結し、下ヘッダーから供給されるLNGを各伝熱管に分配して伝熱管の内部を上向きに流す一方、伝熱管の外部では伝熱管表面に沿って流れ落ちるように海水を連続供給する構造とされている(特許文献1,2)。多数の伝熱管は、隣接する伝熱管との間に互いに一定の間隔を空けて一直線上に横に並べられ、伝熱管の外周面に沿って流れ落ちる海水の幕によって覆われる。これにより、伝熱管下端に入る時点で約−160℃のLNGは、伝熱管内を上昇する間に伝熱管の外面に沿って流れ落ちる海水の温度によって気化され、伝熱管の上端の上ヘッダーに集められる時点でほぼ気化している。 A conventional LNG vaporizer, which is generally used as a liquefied gas vaporizer, has a structure in which a plurality of finned heat transfer tubes made of aluminum alloy are arranged vertically and the upper and lower ends are connected to each other by an upper header and a lower header. Is distributed to each heat transfer tube, and the inside of the heat transfer tube flows upward, while the outside of the heat transfer tube is configured to continuously supply seawater so as to flow down along the surface of the heat transfer tube (Patent Document) 1, 2). A large number of heat transfer tubes are arranged in a straight line with a certain distance from each other between adjacent heat transfer tubes, and are covered with a curtain of seawater that flows down along the outer peripheral surface of the heat transfer tubes. As a result, the LNG of about −160 ° C. at the time of entering the lower end of the heat transfer tube is vaporized by the temperature of the seawater flowing down along the outer surface of the heat transfer tube while rising in the heat transfer tube, and is collected in the upper header of the upper end of the heat transfer tube. It is almost vaporized at the time.
一方、海水温度は季節により大きく変動する。例えば、夏季では約25℃であるのに対し、冬季では約10℃となる。このため、冬季においては伝熱管下端部の約1m程度の範囲で海水が凍結することがある。このとき、アルミニウム合金製の伝熱管 (熱伝導率:約190W/mK)) に比べて氷 (熱伝導率:約2.2W/mK) は熱伝導率が低いため、LNGの気化性能が低下する。 On the other hand, seawater temperature varies greatly depending on the season. For example, the temperature is about 25 ° C. in summer and about 10 ° C. in winter. For this reason, in winter, seawater may freeze in the range of about 1 m at the lower end of the heat transfer tube. At this time, ice (heat conductivity: about 2.2 W / mK) is lower in heat conductivity than heat transfer tubes made of aluminum alloy (heat conductivity: about 190 W / mK), so the vaporization performance of LNG is reduced. To do.
また、特許文献1及び2に示す冷却水式気化器の場合には、海水の温度を利用してLNGを気化させるのであるが、LNGと海水の温度差を有効利用せずに、大量の冷熱が無駄に海洋中に投棄されることとなり、未利用エネルギーの有効利用の観点から好ましくないし、熱経済的にも不経済である。 Moreover, in the case of the cooling water vaporizers shown in Patent Documents 1 and 2, LNG is vaporized using the temperature of seawater, but a large amount of cold heat is used without effectively utilizing the temperature difference between LNG and seawater. Is unnecessarily dumped into the ocean, which is not preferable from the viewpoint of effective use of unused energy, and is also uneconomical in terms of heat economy.
そこで、本発明者等は、海水や水などの液体を加熱媒体とする液化ガス気化器において、伝熱管下端部での水の凍結を防ぐこと並びに液化ガスと加熱流体との温度差を電力に変換して有効利用することを目的として、フィン付き伝熱管の下端寄りの一部例えば伝熱管下端部の約1m程度の範囲の伝熱管表面に熱電変換モジュールを備え、液化ガスと海水との温度差により発電すると共に海水の氷結を未然に防ぐことを先に提案した(出願番号2008−062949、2008年3月12日出願)。ここで、熱電変換モジュールを取り付けるため矩形断面とされる伝熱管部位とそれよりも上のフィン付き伝熱管との接続部では、急激な形状変化を伴うため、伝熱管の表面に沿って勢いよく落下する水が伝熱管の表面から剥離して外側に飛散する。この水の流れの飛散を防ぐため、熱電変換モジュール付き伝熱管部位とそれよりも上のフィン付き伝熱管との接続部に、双方の両輪郭形状を段差無く連続的に繋ぐ流線形の遷移部(流線型遷移部と呼ぶ)を介在させることを提案している。 Therefore, the present inventors, in a liquefied gas vaporizer using a liquid such as seawater or water as a heating medium, prevent freezing of water at the lower end of the heat transfer tube and use the temperature difference between the liquefied gas and the heating fluid as electric power. For the purpose of conversion and effective use, a part near the lower end of the finned heat transfer tube, for example, a thermoelectric conversion module is provided on the surface of the heat transfer tube in the range of about 1 m at the lower end of the heat transfer tube, and the temperature of the liquefied gas and seawater It was previously proposed to generate power due to the difference and prevent freezing of seawater (application number 2008-062949, filed on March 12, 2008). Here, the connection part between the heat transfer tube portion having a rectangular cross section for attaching the thermoelectric conversion module and the finned heat transfer tube above it has a sudden shape change, so it vigorously moves along the surface of the heat transfer tube. The falling water peels off from the surface of the heat transfer tube and scatters outside. In order to prevent this water flow from scattering, a streamlined transition part that continuously connects both contour shapes without any step to the connection part of the heat transfer tube part with the thermoelectric conversion module and the heat transfer pipe with fins above it. It is proposed to intervene (called a streamlined transition).
しかしながら、実際のLNG気化器では、設備の大型化を抑えるために、垂直に配置された多数の伝熱管が互いに隣接する伝熱管の間の間隙を可能な限り狭めて並べることが要求されるため、フィン付き伝熱管よりも更に直径方向に膨らんだ熱電変換モジュール付き伝熱管部分においては隣接する伝熱管の間の隙間が一層狭くなる傾向にある。このため、図1に示すように実際の液化ガス気化器の配列ピッチで2個の流線型遷移部を並べた場合、隣接する伝熱管の間の間隔は狭く、隣接する伝熱管の間を流れ落ちる水は流線型遷移部の下端まで到達した時点、即ち熱電変換モジュール付き伝熱管部分に到達した時点で逃げ場を失い、水平方向に飛散することが本発明者等の実験・研究により判明した。つまり、隣接する伝熱管の間の間隙を流れ落ちる海水が流線型遷移部に沿って流れ落ちるときに、隣接する伝熱管の間の間隙よりも間隔が狭くなる流線型遷移部の下端では、流線型遷移部の対向する面に沿って流れる海水の流れが互いに衝突して隣接する流線型遷移部の間から外へ飛び出るように飛散することが明らかとなった。そして、隣接する伝熱管の間を流れる海水が飛散することにより、互いに隣り合う熱電変換モジュール付き伝熱管のそれぞれの表面から剥離してしまうだけでなく、それらと隣り合う他の面を流れ落ちる海水においても、飛散する海水の流れに誘導されて伝熱管の表面から剥離してしまうこととなる。このことにより、海水で加熱される熱電変換モジュール付き伝熱管の面が少なくなってしまう。しかも、このため熱電変換モジュールに与える温度差が低減して発電効率が下がると共にLNGの冷熱を有効に利用できなくなる問題を含んでいる。 However, in an actual LNG vaporizer, in order to suppress an increase in equipment size, a large number of vertically arranged heat transfer tubes are required to be arranged with the gap between adjacent heat transfer tubes as narrow as possible. In the heat transfer tube portion with the thermoelectric conversion module that swells further in the diameter direction than the heat transfer tube with fins, the gap between adjacent heat transfer tubes tends to be narrower. For this reason, as shown in FIG. 1, when two streamlined transition parts are arranged at an arrangement pitch of an actual liquefied gas vaporizer, the interval between adjacent heat transfer tubes is narrow, and the water flowing between adjacent heat transfer tubes It has been proved by experiments and research by the present inventors that when the flow reaches the lower end of the streamlined transition portion, that is, when it reaches the heat transfer tube portion with the thermoelectric conversion module, it loses the escape place and scatters in the horizontal direction. In other words, when seawater flowing down the gap between adjacent heat transfer tubes flows down along the streamlined transition part, the lower end of the streamlined transition part becomes narrower than the gap between adjacent heat transfer pipes. It became clear that the flow of the seawater flowing along the surface that collides with each other and scattered so as to jump out between the adjacent streamlined transitions. And in the sea water which not only peels from each surface of the heat exchanger tube with a thermoelectric conversion module adjacent to each other but also the other surface adjacent to them by the sea water flowing between the adjacent heat transfer tubes splashes However, it will be peeled off from the surface of the heat transfer tube by being guided by the flow of scattered seawater. By this, the surface of the heat exchanger tube with a thermoelectric conversion module heated with seawater will decrease. In addition, for this reason, there is a problem that the temperature difference given to the thermoelectric conversion module is reduced, the power generation efficiency is lowered, and the cold heat of LNG cannot be effectively used.
そこで本発明は、海水や水などの液体を加熱媒体とする液化ガス気化器において、隣接する伝熱管の間を流れる海水が飛散するのを防ぐことを目的とする。 Accordingly, an object of the present invention is to prevent seawater flowing between adjacent heat transfer tubes from being scattered in a liquefied gas vaporizer using a liquid such as seawater or water as a heating medium.
かかる目的を達成するために請求項1記載の発明は、鉛直に設置され互いに近接して配列される複数の伝熱管の内部を下端から導入された液化ガスが上昇させられる一方、前記伝熱管の外部では前記伝熱管の外面に沿って加熱流体が流れ落ちる構造の気化器において、前記伝熱管の少なくとも下端寄りの一部または全体に前記伝熱管の外部の前記加熱流体と内部の前記液化ガスとの温度差を利用して前記液化ガスの気化を行うと同時に前記熱電変換モジュールで発電を行う熱電変換モジュールを設置する一方、伝熱面が全面的に露出した前記伝熱管と熱電変換モジュール付き前記伝熱管との接続部に、両伝熱管の輪郭形状を段差無く連続的に繋ぐ流線型遷移部を配置すると共に隣接する前記流線型遷移部の間にナイフエッジを設けるようにしている。 In order to achieve such an object, according to the first aspect of the present invention, the liquefied gas introduced from the lower end of the plurality of heat transfer tubes installed vertically and arranged close to each other is raised, while the heat transfer tube In the carburetor having a structure in which the heating fluid flows down along the outer surface of the heat transfer tube on the outside, the heating fluid outside the heat transfer tube and the liquefied gas inside the heat transfer tube are partially or entirely near the lower end of the heat transfer tube. While installing the thermoelectric conversion module that performs the vaporization of the liquefied gas using the temperature difference and at the same time generates power with the thermoelectric conversion module, the heat transfer tube with the heat transfer surface exposed entirely and the heat transfer with the thermoelectric conversion module A streamlined transition part that continuously connects the contour shapes of the two heat transfer tubes without any step is arranged at the connection part with the heat pipe, and a knife edge is provided between the adjacent streamlined transition parts. There.
ここで、ナイフエッジは流れに平行なフィンを表面に備えることが好ましい。 Here, the knife edge is preferably provided with fins on the surface parallel to the flow.
請求項1記載の発明によると、フィン付き伝熱管と熱電変換モジュール付き伝熱管の接続部に設置した流線型遷移部および隣接する流線型遷移部の間に設置したナイフエッジの作用により、隣接する伝熱管の間の間隙を流れ落ちる海水が流線型遷移部に沿って流れ落ちると同時に、ナイフエッジにより隣接する流線型遷移部の間から外側へ案内されるため、流線型遷移部の対向する面に沿って流れる海水の流れが互いに衝突することがなくなり、外側に飛散することがなくなることから、各熱電変換モジュール付き伝熱管の表面に沿って流れ落ちる。 According to the first aspect of the present invention, the adjacent heat transfer tubes are formed by the action of the knife edge installed between the streamlined transition portion installed at the connection portion between the finned heat transfer tube and the heat transfer tube with the thermoelectric conversion module and the adjacent streamlined transition portion. The seawater that flows through the gap between the two flows along the streamlined transition, and at the same time is guided outward from between adjacent streamlined transitions by the knife edge, so the flow of seawater that flows along the opposite surface of the streamlined transition Will not collide with each other and will not scatter to the outside, and will flow down along the surface of each heat transfer tube with a thermoelectric conversion module.
したがって、伝熱管の内部を流れる液化ガスと外部を流れる加熱流体との間の温度差が熱電変換モジュールに印加されるので、液化ガスの気化と同時に発電が可能である。そして、熱電変換モジュールの存在が氷結し易い伝熱管の下端付近での加熱流体が流れる表面の温度低下を防ぐため、氷結を防止できる。つまり、本発明の液化ガス気化器によれば、気化器の性能を損なうことなく発電が可能である。 Therefore, since the temperature difference between the liquefied gas flowing inside the heat transfer tube and the heated fluid flowing outside is applied to the thermoelectric conversion module, power generation is possible simultaneously with vaporization of the liquefied gas. And since the temperature fall of the surface through which the heating fluid flows in the vicinity of the lower end of the heat exchanger tube where the presence of the thermoelectric conversion module is likely to freeze is prevented, freezing can be prevented. That is, according to the liquefied gas vaporizer of the present invention, it is possible to generate power without impairing the performance of the vaporizer.
また、ナイフエッジの表面に流れに平行なフィンが設けられる場合には、ナイフエッジの表面に沿って流れ落ちる水を左右に分配するので一方の熱電変換モジュール付き伝熱管に著しく偏って流れ落ちることが少なくなる。 In addition, when fins parallel to the flow are provided on the surface of the knife edge, the water flowing down along the surface of the knife edge is distributed to the left and right, so that it is less likely to flow significantly biased to one of the heat transfer tubes with a thermoelectric conversion module. Become.
以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。なお以下の説明では簡略化のため、加熱流体(海水や水など)を代表して水のみを表記するが、これに限定されるものではなく、その温度が液化ガスよりも高ければよく、海水、温水その他の液体および水蒸気と温水の二層流なども含むものとする。勿論、取水したままの海水、河川の水や水道水でもよいが、加熱流体の温度が高いほど気化性能および発電性能は向上することから、何らかの廃熱などによって前記流体を人為的に加熱したものでもよい。 Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings. In the following description, for the sake of simplification, only water is shown as a representative of a heated fluid (seawater, water, etc.), but the present invention is not limited to this, as long as the temperature is higher than that of the liquefied gas. , Hot water and other liquids, and two-layer flow of water vapor and hot water. Of course, it may be freshly taken seawater, river water or tap water, but the higher the temperature of the heated fluid, the better the vaporization performance and power generation performance. But you can.
図1から図4及び図13から図17に本発明の液化ガス気化器をLNG(液化天然ガス)の気化器に適用した実施の一形態を示す。この液化ガス気化器は、鉛直に設置した伝熱管1の少なくとも下端寄り(符号5で示す領域)の一部の面あるいは全ての面(軸方向にあるいは面)に熱電変換モジュール7を設置し、伝熱管1の外部の加熱流体27と内部の液化ガス26との温度差を利用して液化ガス26の気化を行うと同時に熱電変換モジュール7で発電を行うようにしている。ここで、熱電変換モジュール7は、液化ガスの気化と発電との両立を考慮すると、少なくとも水の凍結の起こり易い伝熱管1の下端寄りの領域5に設けることが好ましい。しかしながら、このことは直ちに熱電変換モジュール7を伝熱管1の下端から設置しなければならないことを意味するものではない。そして、伝熱管1の下端寄りの領域5では、その管軸方向の全域に熱電変換モジュール7を設けるようにしても良いが、場合によっては熱電変換モジュール7を設ける領域と熱電変換モジュール7を設けずに伝熱管1を直に露出させる領域とを設けるようにしても良い。熱電変換モジュール7は、例えば横断面矩形の伝熱管の隣接する他の伝熱管と向かい合う面を除く面、具体的には列を成す伝熱管群の前面側と背面側となる相対向する2面(管列の両端の管においては3面)、場合によっては前面と背面のいずれか一方の面に設けられることが好ましい。勿論、熱電変換モジュール7としては円弧状の構成することも可能であり、その場合には、円筒形の伝熱管の隣接する他の伝熱管と向かい合う面を除く面に設けられることが好ましい。また、熱電変換モジュール7は場合によっては伝熱管1の下端寄り領域5よりも上の中間領域などに設置されることもある。即ち、熱電変換モジュール7は伝熱管1の少なくとも下端寄り領域5の一部または全体に設置されることが好ましいが、これに特に限られるものではない。尚、実際の液化ガス気化器においては、多数の伝熱管が横に配列され上下端のヘッダ2,3で連結されているが、本実施形態の説明では説明の便宜上1本ないし2本を図示する。また、加熱流体27の供給方式としては、給水樋28をオーバーフローすることで伝熱管1の上端付近から外面に沿って流れ落ちる例を説明の便宜上挙げた。また、符号29は流れ落ちた海水である。 FIGS. 1 to 4 and FIGS. 13 to 17 show an embodiment in which the liquefied gas vaporizer of the present invention is applied to a LNG (liquefied natural gas) vaporizer. In this liquefied gas vaporizer, a thermoelectric conversion module 7 is installed on a part or all surfaces (in the axial direction or surface) near at least the lower end (region indicated by reference numeral 5) of the heat transfer tube 1 installed vertically, The temperature difference between the heating fluid 27 outside the heat transfer tube 1 and the inside liquefied gas 26 is utilized to vaporize the liquefied gas 26 and at the same time, the thermoelectric conversion module 7 generates power. Here, the thermoelectric conversion module 7 is preferably provided at least in the region 5 near the lower end of the heat transfer tube 1 where water is likely to freeze, considering the coexistence of vaporization of liquefied gas and power generation. However, this does not mean that the thermoelectric conversion module 7 must be installed immediately from the lower end of the heat transfer tube 1. And in the area | region 5 near the lower end of the heat exchanger tube 1, you may make it provide the thermoelectric conversion module 7 in the whole region of the pipe-axis direction, but depending on the case, the area | region which provides the thermoelectric conversion module 7, and the thermoelectric conversion module 7 are provided. Instead, a region where the heat transfer tube 1 is directly exposed may be provided. The thermoelectric conversion module 7 is, for example, a surface excluding a surface facing a heat transfer tube adjacent to a heat transfer tube having a rectangular cross section, specifically two surfaces facing each other on the front side and the back side of the heat transfer tube group forming a row. (Three surfaces in the tubes at both ends of the tube row), and in some cases, it is preferably provided on either the front surface or the back surface. Of course, the thermoelectric conversion module 7 may be formed in an arc shape, and in that case, it is preferably provided on a surface excluding the surface facing the other adjacent heat transfer tube of the cylindrical heat transfer tube. In some cases, the thermoelectric conversion module 7 may be installed in an intermediate region above the lower end region 5 of the heat transfer tube 1 or the like. That is, the thermoelectric conversion module 7 is preferably installed in at least a part or the whole of the region 5 near the lower end of the heat transfer tube 1, but is not particularly limited thereto. In an actual liquefied gas vaporizer, a large number of heat transfer tubes are arranged horizontally and connected by upper and lower headers 2 and 3, but in the description of this embodiment, one or two tubes are shown for convenience of explanation. To do. In addition, as a method for supplying the heating fluid 27, an example in which the heating fluid 27 flows down from the vicinity of the upper end of the heat transfer tube 1 along the outer surface by overflowing the water supply rod 28 is described for convenience of explanation. Moreover, the code | symbol 29 is the seawater which fell.
本発明者等の解析によると、アルミニウム合金製のフィン付き伝熱管の内部をLNG26が上向きに流れ、外部を海水27が伝熱管表面に沿って流れ落ちる構造の気化器(オープンラック型気化器と呼ばれることもある)の伝熱管では、冬季には、例えば6mのフィン付き伝熱管の下端部約1〜2mに着氷し、着氷最大厚さは約9mmになることがわかった。この着氷は気化能力を損なう原因となっている。そこで、実際に実用に供されている従来のLNG用気化器は、全長6〜8mのアルミニウム合金製のフィン付き伝熱管4が一般的であることから、その下端の一部例えば1〜2m程度を矩形断面の熱電変換モジュール付き伝熱管5に置き換えて直列に接続することが好ましい。この場合、伝熱管としての全長は変わらないが、勿論、伝熱管としての全長を変えても構わない。 According to the analysis by the present inventors, the LNG 26 flows upward inside the finned heat transfer tube made of aluminum alloy and the seawater 27 flows outside along the heat transfer tube surface (called an open rack type vaporizer). In the winter, for example, in the winter season, it was found that the bottom end portion of the 6-m finned heat transfer tube is about 1 to 2 m, and the maximum icing thickness is about 9 mm. This icing causes the ability to vaporize to be impaired. Therefore, a conventional LNG vaporizer that is actually in practical use is generally a finned heat transfer tube 4 made of an aluminum alloy having a total length of 6 to 8 m, and therefore a part of the lower end thereof, for example, about 1 to 2 m. Is preferably replaced in series with a heat transfer tube 5 with a thermoelectric conversion module having a rectangular cross section. In this case, the total length as the heat transfer tube does not change, but of course, the total length as the heat transfer tube may be changed.
本実施形態において、伝熱管1は、管の外周面に伝熱フィン4aを放射状に備える横断面円形のフィン付き伝熱管4と、図15及び16に示すように外周面に熱電変換モジュールを備えた横断面矩形の熱電変換モジュール付き伝熱管5とを直列に接続したものである。このフィン付き伝熱管4と熱電変換モジュール付き伝熱管5とは、特定の材質に限られるものではないが、熱伝導性や耐腐食性などを考慮すればアルミニウム合金などの使用が好適であることから、その接続には例えばイナートガスアーク溶接(TIG溶接)などが用いられ、段差無く溶接される。 In the present embodiment, the heat transfer tube 1 includes a finned heat transfer tube 4 having a circular cross section provided radially with heat transfer fins 4a on the outer peripheral surface of the tube, and a thermoelectric conversion module on the outer peripheral surface as shown in FIGS. A heat transfer tube 5 with a thermoelectric conversion module having a rectangular cross section is connected in series. The finned heat transfer tube 4 and the thermoelectric conversion module-equipped heat transfer tube 5 are not limited to specific materials, but it is preferable to use an aluminum alloy or the like in consideration of thermal conductivity, corrosion resistance, and the like. Therefore, for example, inert gas arc welding (TIG welding) is used for the connection, and welding is performed without a step.
熱電変換モジュール付き伝熱管5は、横断面外輪郭形状が矩形状であり、いずれかの面に熱電変換モジュール7が備えられると共に、各熱電変換モジュール7の周りに断熱材8が配置されて凹凸の無い表面を形成するように設けられている。各熱電変換モジュール7の間に断熱材8が充填されるように配置されることで表面に凹凸がなくなり、熱電変換モジュール7の表面に沿って水が剥離されることなく流れ落ちるようにすることができる。本実施形態の場合、図15及び16に示すように、輪郭形状が矩形の伝熱管5のうち、相対向する2面に熱電変換モジュール7を備え、残る2面には断熱材8が張り付けられて伝熱管5の内外の温度差を熱電変換モジュール7に主に与えて発電させるように設けられている。熱電変換モジュール7は伝熱管5に対しビス9で固定され両者が密着している。 The heat transfer tube 5 with a thermoelectric conversion module has a rectangular outer cross-sectional shape, and is provided with a thermoelectric conversion module 7 on any surface, and a heat insulating material 8 is disposed around each thermoelectric conversion module 7 to provide unevenness. It is provided so as to form a surface having no surface. By arranging the heat insulating material 8 so as to be filled between the thermoelectric conversion modules 7, there is no unevenness on the surface, and water can flow down along the surface of the thermoelectric conversion module 7 without being peeled off. it can. In the case of this embodiment, as shown in FIGS. 15 and 16, among the heat transfer tubes 5 having a rectangular contour shape, the thermoelectric conversion modules 7 are provided on the two opposite surfaces, and the heat insulating material 8 is attached to the remaining two surfaces. Thus, the temperature difference between the inside and outside of the heat transfer tube 5 is mainly provided to the thermoelectric conversion module 7 to generate power. The thermoelectric conversion module 7 is fixed to the heat transfer tube 5 with screws 9 and both are in close contact with each other.
また、熱電変換モジュール7と熱電変換モジュール7との間の軸方向(長手方向)の隙間にも、図16に示すように、熱の短絡を防ぐ断熱材8が設置されている。これにより、液化天然ガス26の冷熱が無駄に海水27に流出しないようにして、伝熱管5の内外の温度差を熱電変換モジュール7に効果的に与えるようにしている。また、この断熱材8は、断熱性能の他に、液化ガスの極低温に対する耐久性、海水などの加熱流体に対する耐食性および耐水性などが要求される。そこで、防水処理を施した木材、樹脂などの使用が好適である。さらに、断熱材8は、熱電変換モジュール7の表面との段差を無くし、水の剥離を防ぐ役割をもつと同時に熱電変換モジュール7のケーブルを収納する役割を有する。 Moreover, as shown in FIG. 16, the heat insulating material 8 which prevents the short circuit of heat is installed also in the axial direction (longitudinal direction) gap between the thermoelectric conversion module 7 and the thermoelectric conversion module 7. Thereby, the temperature difference between the inside and outside of the heat transfer tube 5 is effectively given to the thermoelectric conversion module 7 so that the cold heat of the liquefied natural gas 26 does not wastefully flow into the seawater 27. In addition to the heat insulating performance, the heat insulating material 8 is required to have durability against the extremely low temperature of the liquefied gas, corrosion resistance against water and other heating fluids, water resistance, and the like. Therefore, it is preferable to use wood or resin that has been subjected to waterproofing treatment. Further, the heat insulating material 8 has a role of eliminating a step from the surface of the thermoelectric conversion module 7 and preventing separation of water, and simultaneously holding a cable of the thermoelectric conversion module 7.
また、熱電変換モジュール7は水の侵入を防ぐため、接触する加熱流体27例えば海水などに対する耐食性を有する材料あるいは耐食コーティングを施して成るケースや樹脂などに密閉された構造であることが望ましい。このような熱電変換モジュール7としては、例えば、特開2006−49872に開示されているケース密封型の熱電変換モジュールで容易に実現される。この熱電変換モジュール7は、例えば図17に示すように、少なくとも一対の熱電半導体15を気密のケース20に密封し、加熱側電極部16と、冷熱側電極部17並びに各電極部16,17をそれぞれ覆って受熱部を構成する加熱板20a並びに冷却板19とを備え、加熱板20a並びに冷却板19を各々介して熱電半導体15の加熱側の受熱面と冷熱側の放熱面との間にかけられる温度差により発電するものである。この熱電変換モジュール7は、少なくとも加熱板20aと加熱側電極部16の間には、低摩擦係数の材質からなる熱伝導性を有するシート材あるいは熱伝導性のグリースなどの滑り材18が備えられ、滑り材18を介在させて加熱板20aと加熱側電極部16との間の熱的連結が図られている。冷熱側電極部17は電気絶縁性接着剤21で冷却板19に接着され、導電性接着剤22で半導体15に接着されている。また、加熱側電極部16は、電極層と電気絶縁層を有する傾斜機能材料(FGMコンプライアント・パッド)を用いることにより、滑り材18を介して加熱板20aと接触し、導電性接着剤22で半導体15に接着されているものもある。ただし熱電変換モジュールの構造としてはこれに限定されるものではない。なお、各熱電変換モジュールからは2本の電極が出ている。そして、気密のケース20は、熱伝導性に優れかつ耐食性にも優れる材料例えばアルミニウム合金などで構成され、剛性の高い冷却板19に対して溶接あるいは接着剤、ロウ付けで接合することにより一体化されている。また、ケース20には、例えばその側面部に電気絶縁体23を介して一対の導電部24が貫通するように設けられ、ケース内部の電極部とリード線25を介して接続されている。そして、この電極により各モジュールを互いに直列に接続することにより電気回路が構成される。勿論、電極と電線の接続部は水で濡れないように防水対策が必要である。また電線自体にも防水処理が必要である。尚、ケースに封入された熱電変換モジュールを用いる本実施形態では、電気的に絶縁された状態にあることから、前述の断熱材には特に電気絶縁性は要求されない。 Further, the thermoelectric conversion module 7 is preferably sealed in a case made of a corrosion-resistant material or a corrosion-resistant coating with respect to the heating fluid 27 to be contacted, such as seawater, or a resin, in order to prevent water from entering. Such a thermoelectric conversion module 7 can be easily realized by, for example, a case-sealed thermoelectric conversion module disclosed in JP-A-2006-49872. For example, as shown in FIG. 17, the thermoelectric conversion module 7 seals at least a pair of thermoelectric semiconductors 15 in an airtight case 20, and includes a heating side electrode part 16, a cooling side electrode part 17, and each electrode part 16, 17. A heating plate 20a and a cooling plate 19 that respectively cover the heat receiving portion are provided, and are placed between the heating side heat receiving surface and the cooling side heat radiation surface of the thermoelectric semiconductor 15 through the heating plate 20a and the cooling plate 19, respectively. It generates electricity by temperature difference. This thermoelectric conversion module 7 is provided at least between the heating plate 20a and the heating side electrode portion 16 with a sliding material 18 such as a thermal conductive sheet material or a thermal conductive grease made of a material having a low friction coefficient. The thermal connection between the heating plate 20a and the heating side electrode portion 16 is achieved with the sliding member 18 interposed therebetween. The cold-side electrode portion 17 is bonded to the cooling plate 19 with an electrically insulating adhesive 21 and bonded to the semiconductor 15 with a conductive adhesive 22. Moreover, the heating side electrode part 16 contacts the heating plate 20a through the sliding material 18 by using a functionally gradient material (FGM compliant pad) having an electrode layer and an electrical insulating layer, and the conductive adhesive 22 Some of them are bonded to the semiconductor 15. However, the structure of the thermoelectric conversion module is not limited to this. In addition, two electrodes protrude from each thermoelectric conversion module. The airtight case 20 is made of a material having excellent thermal conductivity and excellent corrosion resistance, such as an aluminum alloy, and is integrated by joining the high-rigidity cooling plate 19 by welding, an adhesive, or brazing. Has been. Further, the case 20 is provided with a pair of conductive portions 24 penetrating through, for example, the side surface thereof via an electrical insulator 23, and is connected to an electrode portion inside the case via a lead wire 25. An electrical circuit is configured by connecting the modules in series with each other using this electrode. Of course, the connection part of an electrode and an electric wire needs waterproofing measures so that it may not get wet with water. Also, the wire itself needs to be waterproofed. In the present embodiment that uses the thermoelectric conversion module enclosed in the case, the above-described heat insulating material is not particularly required to be electrically insulating because it is in an electrically insulated state.
フィン付き伝熱管4と熱電変換モジュール付き伝熱管5との接続部10には、フィン付き伝熱管4と熱電変換モジュール付き伝熱管5との輪郭形状を段差無く連続的に繋ぐ流線型遷移部14が配置されている。本実施形態の場合、流線型遷移部14は、図1に示すように、下端側が熱電変換モジュール付き伝熱管5の輪郭形状に合わせて矩形断面を成す角筒形状とされると共に、上端側がフィン付き伝熱管4と同じ直径並びにフィン形状を備える円筒形状とされ、両端の間の形状が段差無く連続的に繋げられるほぼ裁頭角錐形の流線形に構成されている。ここで、上端側に形成されためフィン14aは、円形の輪郭からより大きな形状の矩形の輪郭へと輪郭形状が変化することに伴って次第に溝を浅くして矩形断面の角筒形状部分ではフィンが消滅するように設けられている。そして、フィン付き伝熱管4の下端と熱電変換モジュール付き伝熱管5の上端とがそれぞれ流線型遷移部14に対して嵌合させられた状態(印籠継ぎ)で溶接あるいはビス止めにより接合されている。この流線型遷移部14は、熱伝導性・耐食性に優れる材質例えばアルミニウム合金などで形成することが好ましい。 The connecting portion 10 between the finned heat transfer tube 4 and the thermoelectric conversion module-attached heat transfer tube 5 has a streamlined transition portion 14 that continuously connects the contour shapes of the finned heat transfer tube 4 and the thermoelectric conversion module-equipped heat transfer tube 5 without a step. Has been placed. In the case of this embodiment, as shown in FIG. 1, the streamlined transition portion 14 has a rectangular tube shape in which the lower end side forms a rectangular cross section according to the contour shape of the heat transfer tube 5 with the thermoelectric conversion module, and the upper end side has fins. It has a cylindrical shape with the same diameter and fin shape as the heat transfer tube 4, and is configured in a substantially truncated pyramid streamline shape in which the shape between both ends is continuously connected without a step. Here, since the fin 14a is formed on the upper end side, the groove gradually becomes shallower as the contour shape changes from a circular contour to a larger rectangular contour, and the fin 14a has a fin in the rectangular tube-shaped portion of the rectangular cross section. Is provided to disappear. And the lower end of the heat exchanger tube 4 with a fin and the upper end of the heat exchanger tube 5 with a thermoelectric conversion module are joined by welding or screwing in the state fitted to the streamlined transition part 14 (joint joint), respectively. The streamlined transition portion 14 is preferably formed of a material having excellent thermal conductivity and corrosion resistance, such as an aluminum alloy.
上述の流線型遷移部14は、フィン付き伝熱管4の外面に沿って流れ落ちる水の流れを外側に飛散させることなく、あるいは剥離することなく流れ落ちさせ、熱電変換モジュール付き伝熱管5の外面に沿って流れ落ちるように導く。これにより、フィン付き伝熱管4の外面に沿って勢いよく流れ落ちる加熱流体・海水27は、フィン付き伝熱管4と矩形断面の熱電変換モジュール付き伝熱管5との接続部10における急激な形状変化のために外側に飛散したり、あるいは外面から剥離することなく、熱電変換モジュール付き伝熱管5の外面に沿って流れ落ちるように案内され、熱電変換モジュール7の表面に沿って流れる。 The above-mentioned streamlined transition section 14 causes the flow of water flowing down along the outer surface of the finned heat transfer tube 4 to flow outside without being scattered or separated, and along the outer surface of the heat transfer tube 5 with the thermoelectric conversion module. Guide it to flow down. As a result, the heated fluid / seawater 27 flowing down vigorously along the outer surface of the finned heat transfer tube 4 undergoes a sudden shape change in the connection portion 10 between the finned heat transfer tube 4 and the heat transfer tube 5 with the thermoelectric conversion module having a rectangular cross section. Therefore, it is guided to flow down along the outer surface of the heat transfer tube 5 with the thermoelectric conversion module without being scattered outside or separated from the outer surface, and flows along the surface of the thermoelectric conversion module 7.
また、図3並びに図4に示すように、実際の配列ピッチで複数列に並べた状況の流線型遷移部14の間には、隣接する流線型遷移部14の間の間隙を充填するナイフエッジ11が設置される。ナイフエッジ11の一例を図2に示す。LNG気化器として実施する本実施形態の場合、ナイフエッジ11は、液化ガスの極低温に対する耐久性、海水などに対する耐食性および耐水性などが必要であり、例えばアルミニウム合金、耐寒製プラスチック、防水処理を施した木材および樹脂などの使用が適している。このナイフエッジ11は、上端が隣接する流線型遷移部14の間を横切る分水嶺となる線状の尖端11aを成し、下端11bが隣接された流線型遷移部14の間の間隔を充填しかつ流線型遷移部14の表側並びに裏側の表面の縁を僅かに覆うI型の形状を成し、これら上端11aと下端11bとの間が流線型遷移部14を側方からみた輪郭形状とほぼ同じ形状の斜面11cを形成している。本実施形態の場合、流線型遷移部14の奥行き方向の中程に分水嶺となる尖端11aが存在し、それを中心に前面側と背面側とに分岐する同じ幅の斜面11cが形成されている。そして、前面側と背面側の各斜面11cの間は流線型遷移部の下端の位置において隣接する流線型遷移部14の間の間隙を充填する肉厚の隔壁11dによって支持されている。したがって、隣接する流線型遷移部14の間を流れ落ちてくる海水がナイフエッジ11の尖端11aで前後に二分され、隣接する流線型遷移部14の相対する面並びにそれらの間のナイフエッジ11の各斜面11cに案内されて流れ落ちることによって、熱電変換モジュール付き伝熱管5の表側あるいは裏側の表面まで導かれ、熱電変換モジュール付き伝熱管5の表面に沿って流れ落ちるようにされる。 Also, as shown in FIGS. 3 and 4, there is a knife edge 11 that fills the gap between the adjacent streamlined transition parts 14 between the streamlined transition parts 14 arranged in a plurality of rows at an actual arrangement pitch. Installed. An example of the knife edge 11 is shown in FIG. In the case of the present embodiment implemented as an LNG vaporizer, the knife edge 11 needs durability of the liquefied gas to extremely low temperatures, corrosion resistance and water resistance against seawater, etc., for example, aluminum alloy, cold-resistant plastic, waterproof treatment Use of applied wood and resin is suitable. The knife edge 11 forms a linear tip 11a serving as a diversion trough across between the adjacent streamlined transitions 14 at the upper end, and fills the space between the adjacent streamlined transitions 14 at the lower end 11b and is a streamlined transition. An inclined surface 11c having an I-shape that slightly covers the edges of the front and back surfaces of the portion 14, and a shape between the upper end 11a and the lower end 11b that is substantially the same as the contour shape of the streamlined transition portion 14 viewed from the side. Is forming. In the case of the present embodiment, there is a tip 11a serving as a water divide in the middle of the streamlined transition portion 14 in the depth direction, and an inclined surface 11c having the same width that branches from the front side to the back side is formed. And between each slope 11c of a front side and a back side is supported by the thick partition 11d which fills the gap | interval between the adjacent streamlined transition parts 14 in the position of the lower end of a streamlined transition part. Accordingly, the seawater flowing down between the adjacent streamlined transition portions 14 is divided into two parts in the front and rear at the tip 11a of the knife edge 11, and the opposing surfaces of the adjacent streamlined transition portions 14 and the inclined surfaces 11c of the knife edge 11 therebetween. Is guided to the surface of the heat transfer tube 5 with the thermoelectric conversion module, and then flows down along the surface of the heat transfer tube 5 with the thermoelectric conversion module.
また、ナイフエッジ11は流れに平行なフィン13を下部領域に有している。このフィン13は、ナイフエッジの表面に沿って流れ落ちる水を左右に分配して一方の熱電変換モジュール付き伝熱管に著しく偏って流れ落ちることを防ぐものである。したがって、伝熱管ピッチが広かったり隣接する流線型遷移部14の間の間隙を流れ落ちる水量が少ない場合などには、偏った流れが発生し難いのでフィン13を設ける必要がない場合もある。 The knife edge 11 has fins 13 in the lower region parallel to the flow. The fin 13 distributes the water flowing down along the surface of the knife edge to the left and right to prevent the water from flowing significantly biased to one of the heat transfer tubes with the thermoelectric conversion module. Therefore, when the heat transfer tube pitch is wide or the amount of water flowing down the gap between the adjacent streamlined transition portions 14 is small, there is a case where it is not necessary to provide the fins 13 because a biased flow hardly occurs.
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、熱電変換モジュール付き伝熱管5の外形状は、平板形状の熱電変換モジュール7を密着して取り付けるために適したものとして選定されたものであって、熱電変換モジュール付き伝熱管5としての形状が当該矩形状に限定される必然性はない。例えば湾曲した板状の熱電変換モジュールを用いる場合には、これに適合した断面形状即ち円管状に形成することも可能である。この場合には、熱電変換モジュールの外観に応じて流線型遷移部14の形状もほぼ裁頭円錐形の流線形に構成される。そして、ナイフエッジ11の形状も、それに応じたカーブを成す斜面を備え、隣接する流線型遷移部14の間を流れ落ちてくる海水がナイフエッジ11の尖端11aで前後に二分され、隣接する流線型遷移部14の相対する面並びにそれらの間のナイフエッジ11の各斜面11cに案内されて流れ落ちることによって、熱電変換モジュール付き伝熱管5の表側あるいは裏側の表面まで導かれ、熱電変換モジュール付き伝熱管5の表面に沿って流れ落ちるようにされる。 The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, the outer shape of the heat transfer tube 5 with the thermoelectric conversion module is selected as one suitable for closely attaching the plate-shaped thermoelectric conversion module 7, and the shape as the heat transfer tube 5 with the thermoelectric conversion module 7 Is not necessarily limited to the rectangular shape. For example, in the case of using a curved plate-like thermoelectric conversion module, it is possible to form a cross-sectional shape adapted to this, that is, a circular tube. In this case, according to the external appearance of the thermoelectric conversion module, the shape of the streamlined transition portion 14 is also configured in a substantially truncated cone streamline. The shape of the knife edge 11 is also provided with a slope that forms a curve corresponding thereto, and the seawater flowing down between the adjacent streamlined transition portions 14 is divided into two at the front and rear at the tip 11a of the knife edge 11, and the adjacent streamlined transition portion 14 are guided to the front surface or the back surface of the heat transfer tube 5 with the thermoelectric conversion module by being guided by the respective inclined surfaces 11c of the knife edge 11 between them and flowing down to the surface of the heat transfer tube 5 with the thermoelectric conversion module. It is allowed to flow down along the surface.
また、本実施形態では、伝熱管の下部に矩形断面の伝熱管が並んで配置され、それを円形のフィン付き伝熱管に接続するための流線型遷移部を介在させる実施形態について主に説明したが、これに特に限られるものではなく、場所を問わず段差を伴う矩形断面の伝熱管が並んで配置されている場合に効果的である。 In the present embodiment, the heat transfer tubes having a rectangular cross section are arranged in the lower part of the heat transfer tube, and the streamlined transition portion for connecting the heat transfer tubes to the circular finned heat transfer tubes is mainly described. However, the present invention is not particularly limited to this, and is effective when heat transfer tubes having a rectangular cross section with a step are arranged side by side regardless of location.
伝熱管に沿って落下する水の流線型遷移部での挙動を確認するため、フィン付き伝熱管4と熱電変換モジュール付き伝熱管5との接続部に図1に示す流線型遷移部14を配置した伝熱管1を実際の配列ピッチで2本並べた状況と、この2本の伝熱管の流線型遷移部14の間にナイフエッジを設けた状況とについて流体実験を行い対比した。尚、実験においては、海水の代わりに水道水を使用し、ロート状給水ホースを介して供給される水6が室内に飛散しないように透明のパイプ12を被せてから水6を落とした。 In order to confirm the behavior in the streamlined transition part of water falling along the heat transfer tube, the streamlined transition part 14 shown in FIG. 1 is arranged at the connection between the heat transfer tube 4 with fins and the heat transfer tube 5 with thermoelectric conversion module. A fluid experiment was performed to compare the situation in which two heat tubes 1 were arranged at an actual arrangement pitch and the situation in which a knife edge was provided between the streamlined transition portions 14 of the two heat transfer tubes. In the experiment, tap water was used instead of seawater, and the water 6 was dropped after covering the transparent pipe 12 so that the water 6 supplied via the funnel-shaped water supply hose would not scatter.
ここで、実験に用いたフィン付き伝熱管4は、外径35mm、内径23mm、肉厚6mmの円形を成し、付け根部分の厚み約4mm、高さ8mmのフィンを平行に10枚設けたものを使用した(特許第3439644号)。他方、熱電変換モジュール付き伝熱管5には、50mm角の矩形伝熱管(内径23mm)を用いた。これには約50mm角の熱電変換モジュール7を本実験では片面に6個のみ設置し、残りの他の2面には断熱材8として防水処理を施した木材をビス止めにより張り付けた。また、上下の熱電変換モジュール7の間にも防水処理を施した木材8をビス止めにより張り付けた。これにより、断熱材8としての木片の間に熱電変換モジュールが面一となるように埋め込まれた構造とした。さらに、伝熱管の配列ピッチは60mm、流線型遷移部11の高さは200mmとした。そして、流線型遷移部14を長さ3mのアルミニウム合金製のフィン付き伝熱管4と長さ1mのアルミニウム合金製の熱電変換モジュール付き伝熱管5とにそれぞれ連結したもの(比較例1)と、同じ構成の伝熱管にナイフエッジ11を介在させたもの(実施例1)とを比較した。尚、本実験ではLNGを流さずに伝熱管の外に水を流すだけであるので、ナイフエッジ11としてはプラスチック製の図2に示す構成のものを採用し、図3および図4に示すように流線型遷移部14の間に取り付けた。 Here, the finned heat transfer tube 4 used in the experiment has a circular shape with an outer diameter of 35 mm, an inner diameter of 23 mm, and a wall thickness of 6 mm, and is provided with 10 fins in parallel with a base portion thickness of about 4 mm and a height of 8 mm. (Patent No. 3439644). On the other hand, a 50 mm square rectangular heat transfer tube (inner diameter 23 mm) was used for the heat transfer tube 5 with the thermoelectric conversion module. In this experiment, only six thermoelectric conversion modules 7 of about 50 mm square were installed on one side in this experiment, and the remaining two surfaces were attached with waterproofing wood as a heat insulating material 8 with screws. Further, a waterproofed wood 8 was also stuck between the upper and lower thermoelectric conversion modules 7 with screws. Thereby, it was set as the structure where the thermoelectric conversion module was embedded so that it might become flush | planar between the wooden pieces as the heat insulating material 8. FIG. Furthermore, the arrangement pitch of the heat transfer tubes was 60 mm, and the height of the streamlined transition portion 11 was 200 mm. The same as the one (comparative example 1) in which the streamlined transition portion 14 is connected to the heat transfer tube 4 with fins made of aluminum alloy having a length of 3 m and the heat transfer tube 5 with thermoelectric conversion modules made of aluminum alloy having a length of 1 m. A configuration (Example 1) in which a knife edge 11 was interposed in a heat transfer tube having a configuration was compared. In this experiment, since only water is allowed to flow out of the heat transfer tube without flowing LNG, the knife edge 11 having the structure shown in FIG. 2 is adopted, as shown in FIG. 3 and FIG. Attached between the streamlined transitions 14.
この実験の結果、図5〜図8に示すように、流線型遷移部14のみでは、2個の流線型遷移部14に挟まれた空間に落下してきた水6は、流線型遷移部14の下端付近にて逃げ場を失い、横方向に飛散している状況が確認できた。 As a result of this experiment, as shown in FIGS. 5 to 8, with only the streamlined transition part 14, the water 6 that has fallen into the space between the two streamlined transition parts 14 is near the lower end of the streamlined transition part 14. I lost the escape and confirmed that it was scattered laterally.
他方、流線型遷移部14の間にナイフエッジ11を設置した場合には、図9〜図12に示すように、2個の流線型遷移部14に挟まれた空間に落下してきた水6は、ナイフエッジ11の整流効果により剥離せずに矩形状の熱電変換モジュール付き伝熱管5に密着して流れ落ちることが確認された。 On the other hand, when the knife edge 11 is installed between the streamlined transition parts 14, as shown in FIGS. 9 to 12, the water 6 that has fallen into the space between the two streamlined transition parts 14 is a knife. It was confirmed that due to the rectification effect of the edge 11, it flowed down in close contact with the rectangular heat transfer tube with thermoelectric conversion module 5 without peeling.
1 伝熱管
4 フィン付き伝熱管
5 熱電変換モジュール付き伝熱管
7 熱電変換モジュール
8 断熱材
10 フィン付き伝熱管と熱電変換モジュール付き伝熱管との接続部
11 ナイフエッジ
14 流線型遷移部
26 液化ガス(液化天然ガス)
27 加熱流体(海水)
DESCRIPTION OF SYMBOLS 1 Heat transfer tube 4 Heat transfer tube with fin 5 Heat transfer tube with thermoelectric conversion module 7 Thermoelectric conversion module 8 Heat insulating material 10 Connection part of heat transfer tube with fin and thermoelectric conversion module 11 Knife edge 14 Streamlined transition part 26 Liquefied gas (liquefaction) Natural gas)
27 Heating fluid (seawater)
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009154898A JP5301372B2 (en) | 2009-06-30 | 2009-06-30 | Liquefied gas vaporizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009154898A JP5301372B2 (en) | 2009-06-30 | 2009-06-30 | Liquefied gas vaporizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011012694A JP2011012694A (en) | 2011-01-20 |
JP5301372B2 true JP5301372B2 (en) | 2013-09-25 |
Family
ID=43591810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009154898A Expired - Fee Related JP5301372B2 (en) | 2009-06-30 | 2009-06-30 | Liquefied gas vaporizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5301372B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020012629A (en) * | 2019-07-05 | 2020-01-23 | サムスン ヘビー インダストリーズ カンパニー リミテッド | Anti-icing vaporization device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55119919U (en) * | 1979-02-20 | 1980-08-25 | ||
JPS6043083A (en) * | 1983-08-19 | 1985-03-07 | Ishikawajima Harima Heavy Ind Co Ltd | Direct generating evaporator of lng |
JP3571390B2 (en) * | 1994-12-01 | 2004-09-29 | 関西電力株式会社 | LNG cold heat power generation system |
-
2009
- 2009-06-30 JP JP2009154898A patent/JP5301372B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011012694A (en) | 2011-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7638735B2 (en) | Pulse electrothermal and heat-storage ice detachment apparatus and methods | |
CA2835271C (en) | Pipeline for carrying a molten salt | |
Hsieh et al. | Experimental study of microrectangular groove structure covered with multi mesh layers on performance of flat plate heat pipe for LED lighting module | |
EP2857787B1 (en) | Thermal conduction principle and device for intercrossed structure having different thermal characteristics | |
CN103206805B (en) | Semiconductor refrigerating device | |
CN110044076A (en) | Solar converter | |
CN101120217B (en) | Pulse electrothermal and heat-storage ice detachment apparatus and methods | |
JP5149659B2 (en) | Liquefied gas vaporizer | |
CN203859970U (en) | Cooling-used double-layer cooling plate and electronic component cooling device | |
FR2831954A1 (en) | METHOD AND APPARATUS FOR CONDUCTING THERMAL ENERGY AND THERMAL CONDUCTOR | |
JP2010136507A (en) | Heat exchanger incorporating cold thermal power generation element | |
ES2549141T3 (en) | Device and method for heating a medium | |
JP5301372B2 (en) | Liquefied gas vaporizer | |
CN206040903U (en) | Electric automobile cylindricality group battery water cooling jacket | |
CA2969042A1 (en) | Heat exchange system, defrosting device, fan, heat exchanger, housing, and use of a heating varnish | |
JP2006136188A (en) | Thermoelectric generator and thermoelectric generation system | |
CN105651104A (en) | Anti-frosting LNG air-heated nanofluid heat exchange pipe | |
US20120292303A1 (en) | Pipeline for carrying a molten salt | |
JP2010135643A (en) | Thermoelectric conversion device, thermoelectric power generation system, and thermoelectric power generation method | |
JPH11215867A (en) | Thermoelectric power generation element structure and system thereof | |
US6857425B2 (en) | Solar energy collector system | |
CN106136828A (en) | Juice extractor | |
JPWO2006019091A1 (en) | Solar cell hybrid module | |
FR2970562A1 (en) | Hybrid solar collector, has heat exchanger with lower plate that is deformed so as to be inserted into channels extending over surface of plate, and upper plate tightly covering channels of lower plate fixed on lower side of panel | |
JPWO2010070704A1 (en) | Heat storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130619 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |