[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5300360B2 - Image forming method - Google Patents

Image forming method Download PDF

Info

Publication number
JP5300360B2
JP5300360B2 JP2008191952A JP2008191952A JP5300360B2 JP 5300360 B2 JP5300360 B2 JP 5300360B2 JP 2008191952 A JP2008191952 A JP 2008191952A JP 2008191952 A JP2008191952 A JP 2008191952A JP 5300360 B2 JP5300360 B2 JP 5300360B2
Authority
JP
Japan
Prior art keywords
toner
image
fine powder
inorganic fine
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008191952A
Other languages
Japanese (ja)
Other versions
JP2010032598A5 (en
JP2010032598A (en
Inventor
浩二 竹中
尚邦 小堀
真明 田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008191952A priority Critical patent/JP5300360B2/en
Publication of JP2010032598A publication Critical patent/JP2010032598A/en
Publication of JP2010032598A5 publication Critical patent/JP2010032598A5/ja
Application granted granted Critical
Publication of JP5300360B2 publication Critical patent/JP5300360B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide toner that prevents abnormal sounds by noises or vibrations of a photoreceptor or image defects for a long period of time, even in a combination of longer service life of a photoreceptor and power-saving of a charging device. <P>SOLUTION: The toner is used in an image forming method including an electrostatic latent image forming step of forming an electrostatic latent image on a charged electrostatic charge image carrier, a developing step of transferring toner carried by a toner carrier onto the electrostatic latent image to visualize the image, and a transfer step of transferring the toner image formed on the electrostatic charge image carrier onto a recording medium. The toner is characterized in that: the electrostatic charge image carrier is a photoreceptor having a photoconductive layer and a surface layer formed of hydrogenated amorphous silicon carbide successively layered; the sum of atomic density of silicon atoms and atomic density of carbon atoms in the surface layer of the photoreceptor is not less than 6.60&times;10<SP>22</SP>atoms/cm<SP>3</SP>; the toner comprises toner particles containing a binder resin and a colorant, and inorganic fine powder; and the inorganic fine powder shows Mohs hardness of from 4.0 to 7.0. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は電子写真法、静電記録法、磁気記録法などを利用した記録方法に用いられるトナー及び画像形成方法に関するものである。   The present invention relates to a toner and an image forming method used in a recording method using an electrophotographic method, an electrostatic recording method, a magnetic recording method, or the like.

詳しくは、本発明は、感光体上にトナー像を形成後、トナー像を転写材上に転写して画像形成する、複写機、プリンター、ファックスの如き画像形成方法に用いられるトナー及び画像形成方法に関する。   More specifically, the present invention relates to a toner and an image forming method used in an image forming method such as a copying machine, a printer, and a fax machine in which a toner image is formed on a photosensitive member and then the toner image is transferred onto a transfer material to form an image. About.

従来、電子写真法として多数の方法が知られている。   Conventionally, many methods are known as electrophotographic methods.

一般的な電子写真法には、光導電性物質を利用して、種々の手段により像担持体(感光体)上に電気的な潜像を形成し、次いで、該潜像にトナーを現像して可視化し、トナー画像を得る、さらに必要に応じて紙などの転写材にトナー画像を転写した後に、熱/圧力により転写材上のトナー画像を定着して複写物を得る方法が知られている。   In general electrophotography, a photoconductive substance is used to form an electrical latent image on an image carrier (photoconductor) by various means, and then toner is developed on the latent image. It is known that a toner image is obtained by visualizing the toner image, and if necessary, the toner image is transferred to a transfer material such as paper and then the toner image on the transfer material is fixed by heat / pressure to obtain a copy. Yes.

これら電子写真法を用いた画像形成装置は、複写機以外にプリンターやファクシミリとして適用されている。   These image forming apparatuses using electrophotography are applied as printers and facsimiles in addition to copying machines.

また近年では、情報産業の発達と環境意識の高まりに伴い、産業上またはオフィス用途として、高画質、長寿命、低ランニングコスト、さらに小型で低電力な画像形成装置が望まれてきている。これらの要望に対して電子写真本体、感光体、現像剤、各種機能部材の各方面からのアプローチがなされている。   In recent years, with the development of the information industry and increasing environmental awareness, there has been a demand for an image forming apparatus with high image quality, long life, low running cost, small size, and low power for industrial or office use. In response to these demands, approaches from various directions of the electrophotographic main body, the photoreceptor, the developer, and various functional members have been made.

例えば感光体においては、耐摩耗性が低く耐久性に劣る低分子有機光導電性材料を使用した感光体に代えて、耐摩耗性が高いa−Si感光体を用いることで感光体を長寿命化し、ランニングコストを抑える方法が知られている。   For example, in a photoconductor, a long-life photoconductor is obtained by using an a-Si photoconductor having high wear resistance instead of a photoconductor using a low molecular organic photoconductive material having low wear resistance and poor durability. A method for reducing the running cost is known.

また、潜像を形成する前に感光体を所定の電位に帯電させる帯電装置としては、高電圧が必要な従来のスコロトロン方式などのコロナ帯電に代えて、感光体と接触する帯電装置を用いることで帯電装置の小型化、低オゾン、低電力化を達成できる。例えば、帯電部材と被帯電体との微小な隙間に近接放電を発生させて帯電をおこなう接触帯電方式や、放電を伴わず直接電荷を注入する注入帯電方式などがあり、感光体と接触する帯電部材としてはローラ型(帯電ローラ)、ファーブラシ型、磁気ブラシ型、ブレード型等が知られている。   In addition, as a charging device that charges the photosensitive member to a predetermined potential before forming a latent image, a charging device that contacts the photosensitive member is used instead of a conventional scorotron method that requires a high voltage. Thus, the charging device can be downsized, low ozone, and low power. For example, there is a contact charging method in which charging is performed by generating a proximity discharge in a minute gap between a charging member and a member to be charged, and an injection charging method in which electric charge is directly injected without discharging, and charging in contact with a photosensitive member. As a member, a roller type (charging roller), a fur brush type, a magnetic brush type, a blade type and the like are known.

これらの接触帯電装置は、感光体と接触している構造上、トナーやトナーに含まれる無機微粉体等が感光体上に残っていた場合に、帯電装置が転写残トナー等により汚染され、帯電が阻害される、また均一な帯電ができなくなるといった問題が起きやすい。   These contact charging devices have a structure in contact with the photosensitive member, and when the toner or inorganic fine powder contained in the toner remains on the photosensitive member, the charging device is contaminated with residual transfer toner and the like. This is likely to cause problems such as hindrance to the light and inability to perform uniform charging.

感光体上に残るトナーや無機微粉体を減少させるためには、感光体に現像されたトナー画像を転写する際の転写効率を向上させることが肝要であるが、それでも転写されなかったトナーはクリーニング工程でクリーニングすることが行われる。   In order to reduce the toner and inorganic fine powder remaining on the photoreceptor, it is important to improve the transfer efficiency when the developed toner image is transferred to the photoreceptor. Cleaning is performed in the process.

クリーニング工程としては、例えばファーブラシやウエブを使った方式が知られているが、低コストでクリーニング性能の高いブレード方式が好ましく用いられる。例えばゴムなどの弾性体でつくられたブレード状のクリーニング部材を感光体に押し当て、感光体上の転写残トナー等をせき止めて回収する方法である。   As a cleaning process, for example, a method using a fur brush or a web is known, but a blade method with a low cost and a high cleaning performance is preferably used. For example, a blade-like cleaning member made of an elastic material such as rubber is pressed against the photoconductor, and residual transfer toner on the photoconductor is damped and collected.

接触帯電装置を使用する場合には、転写残トナーなどによる帯電装置の汚染を防ぐため、非接触帯電装置の場合よりもより精密にクリーニングすることが必要な場合があり、クリーニング部材を感光体に強い圧力で押し当てることが必要になる場合がある。   When using a contact charging device, it may be necessary to clean the charging device more precisely than with a non-contact charging device in order to prevent contamination of the charging device with transfer residual toner or the like. It may be necessary to press with strong pressure.

耐摩耗性の高いa−Si感光体においては、クリーニング部材を強く押し当てた際に摩擦抵抗が高くなることがあり、特に低温低湿度の環境において、クリーニング部材の鳴きやびびりといった現象や、回転トルクが上昇するといった問題が起きやすい。   In a high-abrasion a-Si photosensitive member, the frictional resistance may be increased when the cleaning member is strongly pressed. In particular, in a low-temperature and low-humidity environment, the cleaning member may squeal or chatter, Problems such as increased torque are likely to occur.

鳴きやびびりの対策としては、a−Si感光体であっても、表面層の原子密度を低く抑えることで表面層を摩耗しやすくし、表面層が摩耗していくことで画像流れなど画像欠陥を防止(例えば特許文献1)するとともに摩擦抵抗を抑えることが出来る。   As countermeasures against squeal and chatter, even with an a-Si photoconductor, it is easy to wear the surface layer by keeping the atomic density of the surface layer low, and image defects such as image flow due to wear of the surface layer. (For example, Patent Document 1) and frictional resistance can be suppressed.

また、トナーに含まれる無機微粉体と感光体との関係においては、感光体表面層と同等以上の硬度をもつ無機微粉体を選択する(例えば特許文献2乃至3)ことで感光体表面の研磨を促進し、画像欠陥を抑制する方法が知られている。しかし、感光体表面層の原子密度を低く抑えたり研磨性の高い研磨剤をトナーに添加するなど、これら感光体表面の摩耗を促進する方法は、感光体を消耗させ感光体の寿命を縮めてしまうことになる。   As for the relationship between the inorganic fine powder contained in the toner and the photoconductor, the surface of the photoconductor is polished by selecting an inorganic fine powder having a hardness equal to or higher than that of the photoconductor surface layer (for example, Patent Documents 2 to 3). There are known methods for promoting image quality and suppressing image defects. However, these methods of promoting the abrasion of the surface of the photoconductor, such as suppressing the atomic density of the surface layer of the photoconductor to a low level or adding a highly abrasive abrasive to the toner, reduce the life of the photoconductor by depleting the photoconductor. Will end up.

さらに、感光体を摩耗させ続けることにより性能を維持するこれらの方法では、たとえば無地に近い低印字原稿を出力し続けた場合には、感光体を研磨する無機微粉体の供給が減少するために画像流れやブレードめくれを起こすことがある。   Further, in these methods of maintaining the performance by continuing to wear the photoconductor, for example, when the output of a low-print original close to a plain color is continued, the supply of inorganic fine powder for polishing the photoconductor decreases. It may cause image flow and blade turning.

以上のように、従来の技術ではクリーニング部材の鳴きやびびりを抑え画像流れ等の画像欠陥を抑制するために、感光体の表面を摩耗させる必要があった。a−Si感光体では、表面を摩耗させてもある程度の長寿命を期待できるが、しかし、さらなる長寿命化のためには、感光体表面の摩耗は抑制したほうが好ましい。   As described above, in the conventional technique, it is necessary to wear the surface of the photosensitive member in order to suppress the noise and chatter of the cleaning member and to suppress image defects such as image flow. With an a-Si photoconductor, a certain long life can be expected even if the surface is worn. However, for further long life, it is preferable to suppress the wear on the surface of the photoconductor.

表面層の原子密度が高く摩耗の少ない感光体と消費電力の低い接触帯電装置を組み合わせても、前述のようなクリーニング部材の鳴きやびびりが発生せず、また感光体の摩耗を促進させることなく画像流れ等の画像欠陥を抑制でき、幅広い使用環境において高画質を達成する長寿命で低電力な画像形成装置を得ることは、従来の技術では困難であった。   Even if a photoconductor with a high atomic density of the surface layer and low wear is combined with a contact charging device with low power consumption, the above-mentioned squealing and chattering of the cleaning member does not occur, and wear of the photoconductor is not promoted. It has been difficult to obtain a long-life and low-power image forming apparatus that can suppress image defects such as image flow and achieve high image quality in a wide range of usage environments.

特許第3124841号公報Japanese Patent No. 3124841 特開平05−181306号公報Japanese Patent Laid-Open No. 05-181306 特開2004−163560号公報JP 2004-163560 A

本発明の目的は、上記従来技術の問題点を解決するトナーおよび画像形成方法を提供することにある。即ち、本発明の目的は、長寿命を達成する表面層の原子密度の高い感光体を用いても、クリーニング部材を強い圧力で押し当てた際の鳴きやびびりを抑えるとともに画像欠陥を起こさないトナーを提供し、長寿命感光体と省電力化のための接触帯電装置を組み合わせることを可能とするものである。   An object of the present invention is to provide a toner and an image forming method that solve the above-mentioned problems of the prior art. That is, an object of the present invention is to suppress the noise and chatter when pressing the cleaning member with a strong pressure and cause no image defect even when using a photoconductor with a high atomic density of the surface layer that achieves a long life. It is possible to combine a long-life photoreceptor and a contact charging device for power saving.

上記目標を達成するための、本出願に関わる発明は以下のとおりである。   The invention relating to the present application for achieving the above-mentioned object is as follows.

(1)本発明は、静電荷像担持体を帯電部材により帯電させる工程と、帯電された静電荷像担持体に静電潜像を形成させる静電潜像形成工程と、トナー担持体上に担持させたトナーを該静電潜像に転移させて可視化する現像工程と、該静電荷像担持体上に形成されたトナー画像を記録媒体上に転写する転写工程と、転写工程後の静電荷像担持体表面をクリーニング部材でクリーニングするクリーニング工程とを有する画像形成方法において、
該静電荷像担持体は、少なくとも光導電層と、水素化アモルファス炭化珪素で形成されている表面層とを順次積層した電子写真感光体であり、該表面層の珪素原子の原子密度と炭素原子の原子密度の和が6.60×1022原子/cm3以上であり、
該トナーは少なくとも結着樹脂および着色剤を含有するトナー粒子と無機微粉体を有するトナーであり、該無機微粉体は、チタン酸ストロンチウムであり、該無機微粉体のモース硬度が4.0以上7.0以下であることを特徴とする。
(1) The present invention includes a step of charging an electrostatic charge image carrier with a charging member, an electrostatic latent image forming step of forming an electrostatic latent image on the charged electrostatic image carrier, and a toner carrier. A developing step for transferring the carried toner to the electrostatic latent image for visualization, a transfer step for transferring the toner image formed on the electrostatic charge image carrier onto a recording medium, and an electrostatic charge after the transfer step Oite the imaging how and a cleaning step for cleaning the surface of the image bearing member by a cleaning member,
The electrostatic image bearing member is an electrophotographic photosensitive member in which at least a photoconductive layer and a surface layer formed of hydrogenated amorphous silicon carbide are sequentially stacked, and the atomic density of silicon atoms and carbon atoms in the surface layer The sum of the atomic densities of 6.60 × 10 22 atoms / cm 3 or more,
The toner is a toner having toner particles containing at least a binder resin and a colorant and an inorganic fine powder, the inorganic fine powder is strontium titanate, and the inorganic fine powder has a Mohs hardness of 4.0 or more and 7 0.0 or less.

(2)本発明は、該無機微粉体が、一次粒子の個数平均粒径が30nm以上800nm以下であることを特徴とする。   (2) The present invention is characterized in that the inorganic fine powder has a number average particle size of primary particles of 30 nm to 800 nm.

)本発明は、該無機微粉体が、6個の四角形で囲まれた凸多面体である六面体の粒子形状を有する粒子を50個数%以上含有していることを特徴とする。 ( 3 ) The present invention is characterized in that the inorganic fine powder contains 50% by number or more of particles having a hexahedral particle shape which is a convex polyhedron surrounded by six squares.

)本発明は、該電子写真感光体の表面層における、珪素原子の原子数と炭素原子の原子数の和に対する炭素原子の原子数の比が0.61以上0.75以下であることを特徴とする。 ( 4 ) In the present invention, the ratio of the number of carbon atoms to the sum of the number of silicon atoms and the number of carbon atoms in the surface layer of the electrophotographic photosensitive member is 0.61 or more and 0.75 or less. It is characterized by.

)本発明は、該電子写真感光体の表面層における、珪素原子の原子数、炭素原子の原子数、および水素原子の原子数の和に対する水素原子の原子数の比が0.30以上0.45以下であることを特徴とする。 ( 5 ) In the present invention, the ratio of the number of hydrogen atoms to the sum of the number of silicon atoms, the number of carbon atoms, and the number of hydrogen atoms in the surface layer of the electrophotographic photosensitive member is 0.30 or more. It is 0.45 or less.

本発明の、電子写真感光体表面層が水素化アモルファス炭化珪素で形成されており、珪素原子と炭素原子の原子密度の和が6.60×1022原子/cm3以上である原子密度が高い表面層を形成することにより、膜構造の骨格を形成する珪素原子および炭素原子の原子同士の結合力が向上し切れにくくなると考えられ、耐摩耗性に優れた感光体が得られる。 The surface layer of the electrophotographic photosensitive member of the present invention is formed of hydrogenated amorphous silicon carbide, and the sum of the atomic densities of silicon atoms and carbon atoms is 6.60 × 10 22 atoms / cm 3 or higher. By forming the surface layer, it is considered that the bonding force between silicon atoms and carbon atoms forming the skeleton of the film structure is unlikely to be improved and it becomes difficult to obtain a photoconductor excellent in wear resistance.

耐摩耗性に優れることにより長寿命化が図れるほか、摩耗ムラやキズなどの発生が抑えられ長期にわたり平滑な表面を維持できる。これにより、感光体とクリーニングブレードの接触部において、本発明の無機微粉体を長期にわたりムラなく保持することができ、長期にわたり適度な潤滑効果を維持することができる。   In addition to being able to extend the service life due to its excellent wear resistance, it is possible to suppress uneven wear and scratches and maintain a smooth surface over a long period of time. As a result, the inorganic fine powder of the present invention can be held uniformly over a long period of time at the contact portion between the photoreceptor and the cleaning blade, and an appropriate lubricating effect can be maintained over a long period of time.

同時に、感光体表面層の骨格原子の結合力が高く空間率が低いことから、炭素原子と酸化物質の反応確率が低減し、帯電手段による感光体表面の酸化反応を抑制する効果が現れる。酸化反応が抑制されたことから、感光体表面での極性基の生成が抑制され、水分や帯電生成物等の吸着が低減され、これまで感光体の表面を摩耗させることで解消していた画像流れを、摩耗に依らず抑制することが可能となり、感光体の長寿命化を達成できる。   At the same time, since the bonding force of the skeleton atoms on the surface layer of the photoreceptor is high and the space ratio is low, the reaction probability between the carbon atom and the oxidizing substance is reduced, and the effect of suppressing the oxidation reaction on the surface of the photoreceptor by the charging means appears. Since the oxidation reaction is suppressed, the generation of polar groups on the surface of the photoconductor is suppressed, the adsorption of moisture and charged products is reduced, and the image that has been eliminated by wearing the surface of the photoconductor until now The flow can be suppressed regardless of wear, and the life of the photoreceptor can be extended.

本発明のトナーに含まれる無機微粉体が、モース硬度4.0以上7.0以下である物質より選択されることにより、低温度低湿度の環境においてもクリーニング部材の鳴きやびびりを抑制でき、感光体の摩耗を抑制し画像欠陥を発生させることなく長寿命を達成できる。   By selecting the inorganic fine powder contained in the toner of the present invention from a substance having a Mohs hardness of 4.0 or more and 7.0 or less, the noise and chatter of the cleaning member can be suppressed even in a low temperature and low humidity environment. Long life can be achieved without suppressing photoconductor wear and without causing image defects.

トナー表面の無機微粉体は、現像工程や転写工程においてその一部がトナーから離れて遊離状態にあることが知られている。トナーから遊離した無機微粉体には、クリーニング部材と感光体が当接するニップ部において、クリーニング部材と感光体との潤滑剤となったり、トナーを堰き止めてすり抜けを防止する効果を発揮させることができる。   It is known that a part of the inorganic fine powder on the toner surface is separated from the toner in the development process and the transfer process. The inorganic fine powder released from the toner can act as a lubricant between the cleaning member and the photosensitive member at the nip where the cleaning member and the photosensitive member contact each other, and can exert an effect of blocking the toner to prevent slipping out. it can.

本発明の耐摩耗性に優れた感光体表面層に、さらに接触帯電装置を採用するためクリーニング部材を強く押し当てたとき、モース硬度が4.0未満の無機微粉体であると、無機微粉体が摩滅してしまい、潤滑剤の働きができなくなって感光体の鳴きやびびりが発生したり、または摩滅した無機微粉体がクリーニング部材をすり抜け、潤滑剤の働きができなくなるほか、帯電器を汚染したり、感光体表面を覆ってしまい画像の濃度低下を起こすことがある。   When the cleaning member is strongly pressed against the surface layer of the photoreceptor excellent in wear resistance of the present invention in order to employ a contact charging device, the inorganic fine powder has a Mohs hardness of less than 4.0. Wears out and the lubricant can no longer function, causing the photoreceptor to squeal or chatter, or the worn inorganic fine powder slips through the cleaning member, making the lubricant unable to function and contaminating the charger. Or may cover the surface of the photoreceptor and cause a decrease in image density.

また、モース硬度が7.0を超える物質であると、感光体を研磨する力が強くなるため感光体の摩耗が進み、膜厚が薄くなることや周方向のキズの発生により寿命を縮めてしまう。   Further, if the material has a Mohs hardness of more than 7.0, the force to polish the photoconductor becomes stronger, so that the photoconductor is abraded, and the life is shortened due to the thinning of the film thickness and the occurrence of scratches in the circumferential direction. End up.

本発明のトナーに含まれる無機微粉体が、さらに一次粒子の個数平均粒径が30nm以上800nm以下であると、クリーニング部材の鳴きやびびりがさらに抑制され、トナーすり抜けなどのクリーニング不良も抑制されて好ましく、80nm以上300nm以下であるとさらに好ましい。   When the inorganic fine powder contained in the toner of the present invention has a primary particle number average particle size of 30 nm to 800 nm, the cleaning member is further prevented from squealing and chattering, and cleaning defects such as toner slipping are also suppressed. Preferably, it is 80 nm or more and 300 nm or less.

個数平均粒径が30nm未満であると、クリーニング部材からすり抜けやすく、潤滑剤の働きができずに感光体の鳴きやびびりを起こしたり、帯電器を汚染することがある。個数平均粒径が800nmを超える場合は、ニップ部でのトナー堰き止め効果が小さくトナーすり抜けを起こしやすくなる。   If the number average particle diameter is less than 30 nm, the cleaning member may easily slip through, and the function of the lubricant may not be achieved, causing the photoreceptor to squeal or chatter, or may contaminate the charger. When the number average particle diameter exceeds 800 nm, the toner damming effect at the nip portion is small, and the toner slips easily.

本発明のトナーに含まれる無機微粉体が、さらにチタン酸ストロンチウムを主成分とする物質であることが好ましい。クリーニング部材の鳴きやびびりの抑制がさらに良好となり、帯電器の汚染も良好となる。理由は定かではないが、弱正帯電の帯電特性を持つチタン酸ストロンチウムが感光体に対して弱い反発力を持ち、クリーニング部材からすり抜けにくく潤滑効果を好適に発揮しているものと考えている。   It is preferable that the inorganic fine powder contained in the toner of the present invention is a substance further containing strontium titanate as a main component. The suppression of noise and chatter of the cleaning member is further improved, and the contamination of the charger is also improved. Although the reason is not clear, it is considered that strontium titanate having a weakly positive charging characteristic has a weak repulsive force against the photosensitive member, and does not easily slip through the cleaning member, and preferably exhibits a lubricating effect.

本発明のトナーに含まれる無機微粉体が、さらに稜線や頂点を持つ六面体状の粒子形状を有する粒子を50個数%以上含有することにより、感光体表面のかき取り効果が好適に発揮されクリーニング性がさらに良好となり、さらに好ましい。   The inorganic fine powder contained in the toner of the present invention further contains 50% by number or more of hexahedral particles having ridges and vertices, whereby the effect of scraping off the surface of the photoreceptor is suitably exhibited and the cleaning property. Is further preferable.

本発明の電子写真感光体の表面層の珪素数と炭素原子の原子数の和に対する炭素原子の原子数の比が0.61以上0.75以下であることにより、より高画質な画像を得られ、さらに好ましい。   When the ratio of the number of carbon atoms to the sum of the number of silicon atoms and the number of carbon atoms in the surface layer of the electrophotographic photoreceptor of the present invention is 0.61 or more and 0.75 or less, a higher quality image can be obtained. And more preferred.

珪素原子と炭素原子の原子数の和に対する炭素原子の原子数の比が0.61より小さいと、特に、原子密度の高い水素化アモルファス炭化珪素を作成した場合、炭化珪素の抵抗値が低下する場合がある。抵抗値が低下すると静電潜像の横流れが起き、特に低濃度側の画像濃度が低下してしまい、階調性が低下してしまう。また、この比が0.75より大きいと、特に、原子密度の高い水素化アモルファス炭化珪素を作成した場合、表面層での光吸収が急激に増加する場合がある。表面層の光吸収が増加すると感光体の光感度が低下し、静電潜像形成時に必要な像露光光量を大きくする必要がある。このような場合、製造時や摩耗による感光体表面層の厚みの僅かなムラに対し光感度が敏感に変化して、画像の濃度ムラを生じやすくなる。   When the ratio of the number of carbon atoms to the sum of the number of silicon atoms and carbon atoms is less than 0.61, particularly when hydrogenated amorphous silicon carbide having a high atomic density is formed, the resistance value of silicon carbide decreases. There is a case. When the resistance value is lowered, a lateral flow of the electrostatic latent image occurs. In particular, the image density on the low density side is lowered, and the gradation is lowered. Moreover, when this ratio is larger than 0.75, especially when hydrogenated amorphous silicon carbide having a high atomic density is formed, light absorption in the surface layer may increase rapidly. When the light absorption of the surface layer increases, the photosensitivity of the photoreceptor decreases, and it is necessary to increase the amount of image exposure necessary for forming an electrostatic latent image. In such a case, the photosensitivity changes sensitively to slight variations in the thickness of the surface layer of the photoconductor due to manufacturing or wear, and image density unevenness tends to occur.

本発明の電子写真感光体の表面層が、珪素原子の原子数、炭素原子の原子数、および水素原子の原子数の和に対する水素原子の原子数の比が0.30以上0.45以下であることにより、さらに高画質な画像を得られ、さらに好ましい。   The surface layer of the electrophotographic photosensitive member of the present invention has a ratio of the number of hydrogen atoms to the sum of the number of silicon atoms, the number of carbon atoms, and the number of hydrogen atoms of 0.30 or more and 0.45 or less. In some cases, a higher quality image can be obtained, which is more preferable.

珪素原子、炭素原子、および水素原子の原子数の和に対する水素原子の原子数の比が0.30より小さいと、特に、原子密度の高い水素化アモルファス炭化珪素を作成した場合に、光学的バンドギャップが狭くなり、光吸収が増加することにより感度が低下する場合がある。また、この比が0.45より大きいと、表面層中にメチル基のような水素原子の多い終端基が増加する傾向が見られる。これら複数の水素原子を有する終端基が多く存在すると、原子構造中に大きな空間を形成するとともに、周囲に存在する原子間の結合にひずみを生じさせる。このような構造上弱い部分は耐摩耗性に劣るだけでなく、酸化に対して非常に弱い部分となり、水分や帯電生成物が吸着して画像流れを起こしてしまう。   When the ratio of the number of hydrogen atoms to the sum of the number of silicon atoms, carbon atoms, and hydrogen atoms is less than 0.30, an optical band is formed particularly when hydrogenated amorphous silicon carbide having a high atomic density is formed. The sensitivity may decrease due to the narrowing of the gap and increased light absorption. On the other hand, when this ratio is larger than 0.45, there is a tendency that the number of terminal groups having many hydrogen atoms such as methyl groups increases in the surface layer. When a large number of terminal groups having a plurality of hydrogen atoms are present, a large space is formed in the atomic structure, and a bond is generated in a bond between atoms existing around. Such a structurally weak portion is not only inferior in wear resistance, but also becomes a very weak portion against oxidation, and moisture and charged products are adsorbed to cause image flow.

本発明は、静電荷像担持体を帯電部材により帯電させる工程と、帯電された静電荷像担持体に静電潜像を形成させる静電潜像形成工程と、トナー担持体上に担持させたトナーを該静電潜像に転移させて可視化する現像工程と、該静電荷像担持体上に形成されたトナー画像を記録媒体上に転写する転写工程と、転写後の静電荷像担持体表面をクリーニング部材でクリーニングするクリーニング工程とを有する画像形成方法を前提としている。   The present invention includes a step of charging an electrostatic image carrier with a charging member, an electrostatic latent image forming step of forming an electrostatic latent image on the charged electrostatic image carrier, and a toner carrier. A developing process for transferring the toner to the electrostatic latent image for visualization, a transfer process for transferring the toner image formed on the electrostatic charge image carrier onto a recording medium, and a surface of the electrostatic charge image carrier after the transfer And an image forming method having a cleaning step of cleaning the substrate with a cleaning member.

まず、本発明の静電荷像担持体は、少なくとも光導電層と、水素化アモルファス炭化珪素で形成されている表面層とを順次積層した電子写真感光体であり、該表面層の珪素原子の原子密度と炭素原子の原子密度の和が6.60×1022原子/cm3以上であることを特徴とする。 First, the electrostatic image bearing member of the present invention is an electrophotographic photosensitive member in which at least a photoconductive layer and a surface layer formed of hydrogenated amorphous silicon carbide are sequentially laminated, and an atom of silicon atoms in the surface layer. The sum of the density and the atomic density of carbon atoms is 6.60 × 10 22 atoms / cm 3 or more.

図1は本発明のa−Si系感光体を作製するための高周波電源を用いたRFプラズマCVD法による感光体の堆積装置の一例を模式的に示した図である。   FIG. 1 is a view schematically showing an example of an apparatus for depositing a photoconductor by an RF plasma CVD method using a high-frequency power source for producing an a-Si photoconductor of the present invention.

この装置は大別すると、反応容器1110を有する堆積装置1100、原料ガス供給装置1200、および、反応容器1110内を減圧する為の排気装置(図示せず)から構成されている。   This apparatus is roughly composed of a deposition apparatus 1100 having a reaction vessel 1110, a raw material gas supply apparatus 1200, and an exhaust device (not shown) for depressurizing the inside of the reaction container 1110.

堆積装置1100中の反応容器1110内にはアースに接続された導電性基体1112、導電性基体加熱用ヒータ1113、および、原料ガス導入管1114が設置されている。さらにカソード電極1111には高周波マッチングボックス1115を介して高周波電源1120が接続されている。   A conductive substrate 1112, a conductive substrate heating heater 1113, and a source gas introduction pipe 1114 connected to the ground are installed in the reaction vessel 1110 in the deposition apparatus 1100. Further, a high frequency power source 1120 is connected to the cathode electrode 1111 via a high frequency matching box 1115.

原料ガス供給装置1200は、SiH4、H2、CH4、NO、B26等の原料ガスボンベ1221乃至1225、バルブ1231乃至1235、圧力調整器1261乃至1265、流入バルブ1241乃至1245、流出バルブ1251乃至1255およびマスフローコントローラ1211乃至1215から構成されている。各原料ガスを封入したガスのボンベは補助バルブ1260を介して反応容器1110内の原料ガス導入管1114に接続されている。 The source gas supply device 1200 includes source gas cylinders 1221 to 1225 such as SiH 4 , H 2 , CH 4 , NO, and B 2 H 6 , valves 1231 to 1235, pressure regulators 1261 to 1265, inflow valves 1241 to 1245, and outflow valves. 1251 to 1255 and mass flow controllers 1211 to 1215. A gas cylinder filled with each source gas is connected to a source gas introduction pipe 1114 in the reaction vessel 1110 via an auxiliary valve 1260.

次にこの装置を使った堆積膜の形成方法について説明する。まず、あらかじめ脱脂洗浄した導電性基体1112を反応容器1110に受け台1123を介して設置する。次に、排気装置(図示せず)を運転し、反応容器1110内を排気する。真空計1119の表示を見ながら、反応容器1110内の圧力が例えば1Pa以下の所定の圧力になったところで、基体加熱用ヒータ1113に電力を供給し、導電性基体1112を例えば50℃から350℃の所望の温度に加熱する。このとき、ガス供給装置1200より、Ar、He等の不活性ガスを反応容器1110に供給して、不活性ガス雰囲気中で加熱をおこなうこともできる。   Next, a method for forming a deposited film using this apparatus will be described. First, the conductive substrate 1112 that has been degreased and washed in advance is placed in the reaction vessel 1110 via a cradle 1123. Next, an exhaust device (not shown) is operated to exhaust the reaction vessel 1110. While viewing the display of the vacuum gauge 1119, when the pressure in the reaction vessel 1110 reaches a predetermined pressure of, for example, 1 Pa or less, power is supplied to the substrate heating heater 1113, and the conductive substrate 1112 is set to, for example, 50 ° C to 350 ° C. To the desired temperature. At this time, an inert gas such as Ar or He can be supplied from the gas supply apparatus 1200 to the reaction vessel 1110 and heated in an inert gas atmosphere.

次に、ガス供給装置1200より堆積膜形成に用いるガスを反応容器1110に供給する。すなわち、必要に応じバルブ1231乃至1235、流入バルブ1241乃至1245、流出バルブ1251乃至1255を開き、マスフローコントローラ1211乃至1215に流量設定をおこなう。各マスフローコントローラの流量が安定したところで、真空計1119の表示を見ながらメインバルブ1118を操作し、反応容器1110内の圧力が所望の圧力になるように調整する。所望の圧力が得られたところで高周波電源1120より高周波電力を印加すると同時に高周波マッチングボックス1115を操作し、反応容器1110内にプラズマ放電を生起する。その後、速やかに高周波電力を所望の電力に調整し、堆積膜の形成をおこなう。   Next, a gas used to form a deposited film is supplied from the gas supply device 1200 to the reaction vessel 1110. That is, if necessary, the valves 1231 to 1235, the inflow valves 1241 to 1245, and the outflow valves 1251 to 1255 are opened, and the flow rate is set in the mass flow controllers 1211 to 1215. When the flow rate of each mass flow controller is stabilized, the main valve 1118 is operated while viewing the display of the vacuum gauge 1119 to adjust the pressure in the reaction vessel 1110 to a desired pressure. When a desired pressure is obtained, high frequency power is applied from the high frequency power source 1120 and at the same time, the high frequency matching box 1115 is operated to generate plasma discharge in the reaction vessel 1110. Thereafter, the high frequency power is quickly adjusted to a desired power to form a deposited film.

所定の堆積膜の形成が終わったところで、高周波電力の印加を停止し、バルブ1231乃至1235、流入バルブ1241乃至1245、流出バルブ1251乃至1255、および補助バルブ1260を閉じ、原料ガスの供給を終える。同時に、メインバルブ1118を全開にし、反応容器1110内を1Pa以下の圧力まで排気する。   When the formation of the predetermined deposited film is finished, the application of high-frequency power is stopped, the valves 1231 to 1235, the inflow valves 1241 to 1245, the outflow valves 1251 to 1255, and the auxiliary valve 1260 are closed, and the supply of the source gas is finished. At the same time, the main valve 1118 is fully opened, and the reaction vessel 1110 is evacuated to a pressure of 1 Pa or less.

以上で、堆積層の形成を終えるが、複数の堆積層を形成する場合、再び上記の手順をくり返してそれぞれの層を形成すれば良い。原料ガス流量や、圧力等を光導電層形成用の条件に一定の時間で変化させて、接合領域の形成をおこなうこともできる。   The formation of the deposited layer is completed as described above. When a plurality of deposited layers are formed, the above procedure is repeated again to form each layer. The bonding region can also be formed by changing the raw material gas flow rate, pressure, and the like to the conditions for forming the photoconductive layer in a certain time.

すべての堆積膜形成が終わったのち、メインバルブ1118を閉じ、反応容器1110内に不活性ガスを導入し大気圧に戻した後、導電性基体1112を取り出す。   After all the deposited films are formed, the main valve 1118 is closed, an inert gas is introduced into the reaction vessel 1110 to return to atmospheric pressure, and then the conductive substrate 1112 is taken out.

本発明の電子写真感光体は、従来周知の電子写真感光体の表面層に比べてa−SiCを構成している珪素原子及び炭素原子の原子密度を上げて、原子密度の高い膜構造の表面層を形成している。   The electrophotographic photosensitive member of the present invention has a film structure having a high atomic density by increasing the atomic density of silicon atoms and carbon atoms constituting a-SiC as compared with the surface layer of a conventionally known electrophotographic photosensitive member. Forming a layer.

本発明の原子密度の高いa−SiC表面層を作製する場合には、表面層作成時の条件にもよるが、一般的に、反応容器に供給するガス量が少ない方が良く、高周波電力は高い方が良く、反応容器内の圧力が高い方が良く、さらに、導電性基板の温度が高い方が良い。   When producing an a-SiC surface layer having a high atomic density according to the present invention, it is generally better that the amount of gas supplied to the reaction vessel is smaller, although high-frequency power is higher, depending on the conditions at the time of creating the surface layer. The higher one is better, the higher the pressure in the reaction vessel is, and the higher the temperature of the conductive substrate is.

まず、反応容器内に供給するガス量を減らし、且つ高周波電力を上げることにより、ガスの分解を促進させることができる。これにより、珪素原子供給源(例えば、SiH4)よりも分解し難い炭素原子供給源(例えば、CH4)を効率良く分解することができる。その結果、水素原子の少ない活性種が生成され、基体上に堆積した膜中の水素原子が減少するため原子密度の高いa−SiC表面層が形成可能となる。 First, the gas decomposition can be promoted by reducing the amount of gas supplied into the reaction vessel and increasing the high-frequency power. Thereby, a carbon atom supply source (for example, CH 4 ) that is harder to decompose than a silicon atom supply source (for example, SiH 4 ) can be efficiently decomposed. As a result, active species having a small number of hydrogen atoms are generated, and the number of hydrogen atoms in the film deposited on the substrate is reduced, so that an a-SiC surface layer having a high atomic density can be formed.

また、反応容器内の圧力を高めることで、反応容器内に供給された原料ガスの滞留時間が長くなり、また、原料ガスの分解により生じた水素原子により弱結合水素の引き抜き反応が生じるため、珪素原子と炭素原子のネットワーク化が促進される。   In addition, by increasing the pressure in the reaction vessel, the residence time of the source gas supplied into the reaction vessel becomes longer, and a weakly bonded hydrogen abstraction reaction occurs due to hydrogen atoms generated by the decomposition of the source gas. Networking of silicon atoms and carbon atoms is promoted.

さらに、導電性基板の温度を上げることにより、導電性基板に到達した活性種の表面移動距離が長くなり、より安定した結合をつくることができる。その結果、a−SiC表面層として、より構造的に安定した配置に各原子が結合される。   Furthermore, by increasing the temperature of the conductive substrate, the surface movement distance of the active species that has reached the conductive substrate becomes longer, and a more stable bond can be created. As a result, the atoms are bonded in a more structurally stable arrangement as the a-SiC surface layer.

本発明のトナーは少なくとも結着樹脂および着色剤を含有するトナー粒子と無機微粉体を有するトナーであり、該無機微粉体は、モース硬度が4.0以上7.0以下であることを特徴とする。   The toner of the present invention is a toner having toner particles containing at least a binder resin and a colorant and inorganic fine powder, and the inorganic fine powder has a Mohs hardness of 4.0 or more and 7.0 or less. To do.

トナー粒子の製造方法は特に限定されず、懸濁重合法、乳化重合法、会合重合法、混練粉砕法など、公知の何れの方法で製造されてもよい。   The method for producing the toner particles is not particularly limited, and the toner particles may be produced by any known method such as suspension polymerization method, emulsion polymerization method, associative polymerization method, kneading and pulverizing method.

一例として、混練粉砕法における本発明のトナーの製造方法について説明する。   As an example, a method for producing the toner of the present invention in the kneading and pulverizing method will be described.

本発明のトナーは、結着樹脂、着色剤、その他の添加剤等を、ヘンシェルミキサー、ボールミル等の混合機により十分混合してから加熱ロール、ニーダー、エクストルーダーのような熱混練機を用いて溶融混練し、冷却固化後粉砕及び分級をおこなう。   In the toner of the present invention, a binder resin, a colorant, other additives and the like are sufficiently mixed by a mixer such as a Henschel mixer or a ball mill, and then a heat kneader such as a heating roll, a kneader, or an extruder is used. Melt-knead, cool and solidify, then pulverize and classify.

特に、粗大粒子の形状を制御したトナーの製造方法に使用される粉砕手段としては機械式粉砕機を用いることが好ましい。前記機械式粉砕機の例には、ホソカワミクロン(株)製粉砕機イノマイザー、川崎重工業(株)製粉砕機KTM、ターボ工業(株)製ターボミルなどが含まれる。これらの装置をそのまま、あるいは適宜改良して使用することが好ましい。   In particular, it is preferable to use a mechanical pulverizer as the pulverizing means used in the toner manufacturing method in which the shape of coarse particles is controlled. Examples of the mechanical pulverizer include a pulverizer inomizer manufactured by Hosokawa Micron Corporation, a pulverizer KTM manufactured by Kawasaki Heavy Industries, Ltd., and a turbo mill manufactured by Turbo Industry Co., Ltd. It is preferable to use these apparatuses as they are or after being appropriately modified.

さらにモース硬度が4.0以上7.0以下である無機微粉体と、必要に応じて所望の添加剤をヘンシェルミキサー等の混合機により十分混合し、作製される。または、混合はトナー粒子の製造後における任意の時点で外添することもできる。例えばトナー粒子の分級や球形化をおこなう工程でトナーに外添することもできる。   Further, the inorganic fine powder having a Mohs hardness of 4.0 or more and 7.0 or less and, if necessary, a desired additive are sufficiently mixed by a mixer such as a Henschel mixer to produce the powder. Alternatively, mixing can be externally added at any time after the production of the toner particles. For example, it can be externally added to the toner in the step of classifying or spheroidizing the toner particles.

別の例として、懸濁重合法における本発明のトナーの製造方法について説明する。   As another example, a method for producing the toner of the present invention in the suspension polymerization method will be described.

まず重合性単量体中に、低軟化点物質、極性樹脂、着色剤、荷電制御剤、重合開始剤、その他の添加剤を加え、ホモジナイザー、超音波分散機等によって均一に溶解または分散せしめた単量体系を、分散安定剤を含有する水相中に通常の撹拌機またはホモジナイザー、ホモミキサー等により分散せしめる。   First, a low softening point substance, a polar resin, a colorant, a charge control agent, a polymerization initiator, and other additives were added to the polymerizable monomer and dissolved or dispersed uniformly by a homogenizer, an ultrasonic disperser, or the like. The monomer system is dispersed in an aqueous phase containing a dispersion stabilizer by a usual stirrer, homogenizer, homomixer or the like.

この際、好ましくは単量体液滴が所望のトナー粒子のサイズを有するように、撹拌速度、時間を調整し造粒する。その後は、分散安定剤の作用により、粒子状態が維持され、且つ粒子の沈降が防止される程度の撹拌をおこなえばよい。   At this time, granulation is preferably performed by adjusting the stirring speed and time so that the monomer droplets have a desired toner particle size. Thereafter, stirring may be carried out to such an extent that the particle state is maintained and the sedimentation of the particles is prevented by the action of the dispersion stabilizer.

重合温度は40℃以上、一般的には50℃以上90℃以下の温度に設定しておこなうのがよい。また、重合反応後半に昇温してもよく、さらに、トナー定着時の臭いの原因等になる未反応重合性単量体、副生成物等を除去するために、反応後半または反応終了時に一部水系媒体を留去してもよい。   The polymerization temperature is preferably set to 40 ° C. or higher, and generally 50 ° C. or higher and 90 ° C. or lower. In addition, the temperature may be raised in the latter half of the polymerization reaction, and in order to remove unreacted polymerizable monomers, by-products and the like that cause odors during toner fixing, the temperature may be increased in the latter half of the reaction or at the end of the reaction. The partial aqueous medium may be distilled off.

反応終了後、生成したトナー粒子を洗浄、濾過により回収し乾燥する。懸濁重合法においては、通常単量体系100質量部に対して水300質量部乃至3000質量部を分散媒として使用するのが好ましい。   After completion of the reaction, the produced toner particles are washed, collected by filtration and dried. In the suspension polymerization method, it is usually preferable to use 300 to 3000 parts by mass of water as a dispersion medium with respect to 100 parts by mass of the monomer system.

トナー粒子の粒度分布制御や粒径の制御は、造粒時の系のpH調整、難水溶性の無機塩や保護コロイド作用をする分散剤の種類や添加量を変える方法や、機械的装置条件、例えばロータの周速、パス回数、撹拌羽根形状等の撹拌条件や、容器形状または水溶液中での固形分濃度等を制御することによりおこなえる。   Toner particle size distribution control and particle size control are carried out by adjusting the pH of the system during granulation, by changing the type and amount of a sparingly water-soluble inorganic salt and a dispersant that acts as a protective colloid, and mechanical equipment conditions. For example, it can be performed by controlling the stirring conditions such as the peripheral speed of the rotor, the number of passes, the shape of the stirring blade, the shape of the container or the solid content concentration in the aqueous solution.

上記方法によって作成されたトナー粒子は、必要に応じて分級を行い、以下、混練粉砕法と同様にモース硬度が4.0以上7.0以下である無機微粉体と、必要に応じて所望の添加剤をヘンシェルミキサー等の混合機により十分混合し作製される。   The toner particles prepared by the above method are classified as necessary. Hereinafter, similarly to the kneading and pulverizing method, the inorganic fine powder having a Mohs hardness of 4.0 or more and 7.0 or less, and a desired particle if necessary. The additive is prepared by sufficiently mixing with a mixer such as a Henschel mixer.

本発明のトナーは、上述の方法によらず何れの方法を用いて製造しても構わないが、モース硬度が4.0以上7.0以下である無機微粉体を少なくとも有する。   The toner of the present invention may be produced by any method regardless of the method described above, but has at least an inorganic fine powder having a Mohs hardness of 4.0 or more and 7.0 or less.

前記無機微粉体には、例えば酸化亜鉛(モース硬度、以下同じ:4乃至5)、酸化セリウム(6乃至7)、酸化鉄(6)、酸化ジルコニウム(7)、二酸化クロム(6乃至7)、四三酸化マンガン(4)、酸化スズ(6乃至7)、等の金属酸化物、チタン酸ストロンチウム(5乃至6)等の複合金属酸化物、炭酸マグネシウム(4)等の金属塩、アパタイト(5)等のリン酸化合物、シリカ(7)等のケイ酸化合物などが挙げられる。   Examples of the inorganic fine powder include zinc oxide (Mohs hardness, hereinafter the same: 4 to 5), cerium oxide (6 to 7), iron oxide (6), zirconium oxide (7), chromium dioxide (6 to 7), Metal oxides such as trimanganese tetraoxide (4) and tin oxide (6 to 7), composite metal oxides such as strontium titanate (5 to 6), metal salts such as magnesium carbonate (4), apatite (5 ) And the like, and silicic acid compounds such as silica (7) and the like.

無機微粉体の選択および調整法は、本発明の範囲であればとくに制限を受けない。2種以上の異なる物質をあわせて選択してもよいし、粒径を違えた同じ物質をあわせて選択しても構わない。同じ物質でも形状が異なるものを混合してもよいし、調整法が異なるものを混合してもよい。   The method for selecting and adjusting the inorganic fine powder is not particularly limited as long as it is within the scope of the present invention. Two or more different substances may be selected together, or the same substances with different particle sizes may be selected together. The same substances with different shapes may be mixed, or those with different adjustment methods may be mixed.

本発明のトナーに含まれる前記無機微粉体の好ましい粒径は、個数平均粒子径が30nm以上800nm以下である。   The inorganic fine powder contained in the toner of the present invention preferably has a number average particle diameter of 30 nm to 800 nm.

本発明における無機微粉体の個数平均粒子径については、電子顕微鏡にて5万倍の倍率で撮影した写真から無作為に100個のサンプルを取り出し、球状粒子に関してはその直径、楕円形球状、または直方体状粒子に関しては短径と長径の平均値、板状粒子に関しては面方向から見た長辺と短辺の平均値をもって、前記粒子の粒径とし、それらの平均の値を求め個数平均粒径として、その平均を求めた。   As for the number average particle diameter of the inorganic fine powder in the present invention, 100 samples are randomly taken from a photograph taken with an electron microscope at a magnification of 50,000 times, and for spherical particles, the diameter, elliptical sphere, or For rectangular parallelepiped particles, the average value of the short diameter and the long diameter, and for the plate-shaped particles, the average value of the long side and the short side as viewed from the plane direction is used as the particle diameter of the particles, and the average value of them is determined. The average was obtained as the diameter.

本発明のトナーに含まれる前記無機微粉体の好ましい含有量は、トナー粒子100質量部に対して0.01質量部以上5.0以下質量部であり、より好ましくは0.05質量部以上3.0以下質量部である。   A preferable content of the inorganic fine powder contained in the toner of the present invention is 0.01 part by mass or more and 5.0 part by mass or less, more preferably 0.05 part by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the toner particles. 0.0 parts by mass or less.

無機微粉体の含有量を、上記範囲に設定することにより、無機微粉体のトナーから遊離した遊離量が、本発明の効果を発現するための好ましい範囲となる。   By setting the content of the inorganic fine powder within the above range, the liberated amount of the inorganic fine powder released from the toner becomes a preferable range for expressing the effects of the present invention.

無機微粉体の粒子形状は、球状やぶどう状、針状、多面体、板状など、何れであっても構わないが、6個の四角形で囲まれた凸多面体である六面体の粒子形状を有する粒子を含有していると、その頂点や稜線がクリーニング性を向上させていると考えられ、より好ましい。   The particle shape of the inorganic fine powder may be any of spherical shape, grape shape, needle shape, polyhedron, plate shape, etc., but particles having a hexahedral particle shape that is a convex polyhedron surrounded by six squares When it contains, it is thought that the vertex and the ridgeline are improving the cleaning property, and it is more preferable.

該無機微粉体のうち50個数%以上が六面体の粒子形状を有することにより、クリーニング性能に特に優れ、本発明の効果をより好適に発揮する。   Since 50% by number or more of the inorganic fine powder has a hexahedral particle shape, the cleaning performance is particularly excellent, and the effects of the present invention are more suitably exhibited.

前記無機微粉体粒子には、さらに疎水化処理を施してもよい。無機微粉体粒子に疎水化処理を施すことにより、環境による摩擦帯電量の変動を抑制することができる場合がある。疎水化処理剤としては、カップリング剤やシリコーンオイル、脂肪酸金属塩などの処理剤が挙げられる。   The inorganic fine powder particles may be further hydrophobized. By subjecting the inorganic fine powder particles to a hydrophobization treatment, it may be possible to suppress fluctuations in the triboelectric charge amount due to the environment. Examples of the hydrophobic treatment agent include a treatment agent such as a coupling agent, silicone oil, and fatty acid metal salt.

例えば、親水基と疎水基を有する化合物であるカップリング剤の場合、親水基側が無機微粉体表面を覆うことで疎水基側が外側になり、無機微粉体の疎水化がなされる。   For example, in the case of a coupling agent which is a compound having a hydrophilic group and a hydrophobic group, the hydrophilic group side covers the surface of the inorganic fine powder so that the hydrophobic group side becomes the outside, and the inorganic fine powder is hydrophobized.

また、上述のような疎水化処理剤の場合には分子レベルでの表面処理のために、該無機微粉体の形状がほとんど変化せず、立方体状、直方体状の形状による効果が維持されるのでより好ましい。   In addition, in the case of the hydrophobizing agent as described above, the shape of the inorganic fine powder is hardly changed due to the surface treatment at the molecular level, and the effect of the cubic or cuboid shape is maintained. More preferred.

カップリング剤としてはチタネート系、アルミニウム系、シラン系カップリング剤等が挙げられ、脂肪酸金属塩としてはステアリン酸亜鉛、ステアリン酸ナトリウム、ステアリン酸カルシウム、ラウリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸マグネシウムなどが挙げられ、また脂肪酸であるステアリン酸などでも同様の効果が得られる。   Examples of coupling agents include titanate, aluminum, and silane coupling agents. Examples of fatty acid metal salts include zinc stearate, sodium stearate, calcium stearate, zinc laurate, aluminum stearate, and magnesium stearate. The same effect can be obtained with stearic acid, which is a fatty acid.

処理の方法としては、疎水化処理剤などを溶媒中に溶解、分散させ、その中に無機微粉体を添加し、撹拌しながら溶媒を除去して処理する湿式方法や、カップリング剤、脂肪酸金属塩と無機微粉体を直接混合して撹拌しながら処理をおこなう乾式方法などが挙げられる。   As a treatment method, a hydrophobization treatment agent or the like is dissolved and dispersed in a solvent, an inorganic fine powder is added therein, and the solvent is removed while stirring. Examples thereof include a dry method in which a salt and an inorganic fine powder are directly mixed and treated with stirring.

また、疎水化処理については無機微粉体を完全に処理、被覆する必要は無く、効果が得られる範囲で無機微粉体が露出していても構わない。つまり表面の処理が不連続に形成されていても良い。   Further, regarding the hydrophobization treatment, it is not necessary to completely treat and coat the inorganic fine powder, and the inorganic fine powder may be exposed as long as the effect is obtained. That is, the surface treatment may be formed discontinuously.

本発明のトナーに含まれる無機微粉体以外に、その他の外添剤として、シリカ、アルミナ、酸化チタン等の無機酸化物、カーボンブラック、フッ化カーボン等の微粒径の無機微粉体をトナー粒子に外添混合してもよい。これらは、トナーに流動性および帯電性などを付与する。   In addition to the inorganic fine powder contained in the toner of the present invention, as other external additives, inorganic oxides such as silica, alumina and titanium oxide, inorganic fine powder having a fine particle size such as carbon black and carbon fluoride are used as toner particles. It may be added externally. These impart fluidity and chargeability to the toner.

トナー粒子表面に分散されたシリカ微粉体、アルミナ微粉体または酸化チタン微粉体が細かい粒子であると、これら微粉体は高い流動性付与効果を有するので、これら微粉体は細かい粒子であることが好ましい。これら微粉体の好ましい個数平均粒径は5nm以上100nm以下であり、さらに好ましくは5nm以上50nm以下である。   If the silica fine powder, alumina fine powder or titanium oxide fine powder dispersed on the surface of the toner particles are fine particles, these fine powders have a high fluidity-imparting effect. Therefore, these fine powders are preferably fine particles. . The number average particle diameter of these fine powders is preferably 5 nm or more and 100 nm or less, and more preferably 5 nm or more and 50 nm or less.

これら無機微粉体の好ましい添加量は、トナー粒子100質量部に対して、0.03質量部以上5質量部以下である。該無機微粉体の添加量が0.03質量部未満の場合は、十分な流動性付与効果を得ることができないことが多い。また、5質量部超の場合は、トナーが締まり易くなるとともに、過剰な外添剤が多量に遊離し、悪影響を及ぼし易い。   A preferable addition amount of these inorganic fine powders is 0.03 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the toner particles. When the added amount of the inorganic fine powder is less than 0.03 parts by mass, sufficient fluidity imparting effect cannot often be obtained. On the other hand, when the amount exceeds 5 parts by mass, the toner is easily tightened, and a large amount of excess external additive is liberated, which tends to have an adverse effect.

本発明のトナーおよび電子写真感光体を搭載する電子写真装置に関しては特に制限はなく、図2に示す従来の電子写真装置であっても、高湿流れ抑制、耐磨耗性において、従来のトナーおよび電子写真感光体よりも好ましい効果が得られる。   There is no particular limitation on the electrophotographic apparatus on which the toner of the present invention and the electrophotographic photosensitive member are mounted. Even in the conventional electrophotographic apparatus shown in FIG. 2, the conventional toner has high humidity control and wear resistance. In addition, a better effect than that of the electrophotographic photosensitive member can be obtained.

さらに本発明は、たとえば図3に示すように接触帯電部材を採用し、転写残トナーによる帯電部材の汚染を防ぐためクリーニング部材を感光体に強く押しつける条件であっても、クリーニング部材の鳴きやびびりを起こすことがなく、帯電部材や電力供給部の小型化が可能である。したがって従来の電子写真装置よりもさらに長寿命で低電力な画像形成装置を提供することができる。   Furthermore, the present invention employs a contact charging member as shown in FIG. 3, for example. Even if the cleaning member is strongly pressed against the photosensitive member to prevent contamination of the charging member with residual transfer toner, the cleaning member squeals and chatters. Thus, the charging member and the power supply unit can be downsized. Therefore, it is possible to provide an image forming apparatus having a longer life and lower power than the conventional electrophotographic apparatus.

以下、本発明の具体的実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Specific examples of the present invention will be described below, but the present invention is not limited to these examples.

(感光体の製造例D1乃至11)
図1に示す、周波数としてRF帯の高周波電源を用いたプラズマ処理装置を用いて、円筒状基体(直径84mm、長さ381mm、厚さ3mmの鏡面加工を施した円筒状のアルミニウム基体)上にプラス帯電a−Si感光体を作製した。その際、電荷注入阻止層、光導電層、表面層の順に成膜を行い、各層作製時のガス種および流量、内圧、高周波電力、基体温度、膜厚を表1に示す条件として、電子写真感光体D1乃至11を作製した。また、電子写真感光体の作製本数は、各成膜条件で2本ずつ作製した。
(Photoconductor Production Examples D1 to 11)
Using a plasma processing apparatus using a high-frequency power source in the RF band as shown in FIG. 1, on a cylindrical substrate (cylindrical aluminum substrate with a diameter of 84 mm, a length of 381 mm, and a thickness of 3 mm). A positively charged a-Si photoreceptor was prepared. At that time, the charge injection blocking layer, the photoconductive layer, and the surface layer are formed in this order, and the gas type and flow rate, internal pressure, high-frequency power, substrate temperature, and film thickness at the time of forming each layer are set as the conditions shown in Table 1. Photoconductors D1 to D11 were produced. Two electrophotographic photoreceptors were produced under each film forming condition.

作製した各成膜条件2本ずつの電子写真感光体について、1本の電子写真感光体を用いて、珪素原子の原子数と炭素原子の原子数の和に対する炭素原子の原子数の比(以下、C/(Si+C)と称する)、珪素原子の原子密度(Si原子密度と称する)、炭素原子の原子密度(C原子密度と称する)、前記Si原子密度と前記C原子密度の和(以下、Si+C原子密度と称する)、珪素原子の原子数と炭素原子の原子数と水素原子の原子数の和に対する水素原子の原子数の比(以下、「H原子比」と称する)水素原子の原子密度(H原子密度と称する)を、後述の分析方法により求めた。   For each of the two electrophotographic photosensitive members produced under the respective film formation conditions, the ratio of the number of carbon atoms to the sum of the number of silicon atoms and the number of carbon atoms (hereinafter referred to as the number of carbon atoms) , C / (Si + C)), atomic density of silicon atoms (referred to as Si atom density), atomic density of carbon atoms (referred to as C atom density), and sum of Si atom density and C atom density (hereinafter referred to as C atom density) The ratio of the number of hydrogen atoms to the sum of the number of silicon atoms, the number of carbon atoms and the number of hydrogen atoms (hereinafter referred to as the “H atom ratio”). (Referred to as H atom density) was determined by the analysis method described below.

そして、もう1本の電子写真感光体により、後述の評価条件にて、階調性、感度、鳴き/びびりの評価1、クリーニング性、画像流れ、耐摩耗性、鳴き/びびりの評価2、の評価をおこなった。これらの結果を表2に示す。   Then, with another electrophotographic photosensitive member, evaluation of gradation property, sensitivity, squeal / chatter 1, cleaning property, image flow, abrasion resistance, squeeze / chatter evaluation 2 under the evaluation conditions described later. Evaluation was performed. These results are shown in Table 2.

(C/(Si+C)の測定、Si+C原子密度、H原子比の測定)
まず、表1の電荷注入阻止層及び光導電層のみを積層させたリファレンス電子写真感光体を作製し、任意の周方向における長手方向の中央部を15mm□で切り出し、リファレンス試料を作製した。次に、電荷注入阻止層、光導電層及び表面層を積層させた電子写真感光体を同様に切り出し、測定用試料を作製した。リファレンス試料と測定用試料を分光エリプソメトリー(J.A.Woollam社製:高速分光エリプソメトリー M−2000)により測定し、表面層の膜厚を求めた。
(Measurement of C / (Si + C), Si + C atom density, H atom ratio)
First, a reference electrophotographic photosensitive member in which only the charge injection blocking layer and the photoconductive layer shown in Table 1 were laminated was prepared, and a central portion in the longitudinal direction in an arbitrary circumferential direction was cut out by 15 mm □ to prepare a reference sample. Next, an electrophotographic photosensitive member in which the charge injection blocking layer, the photoconductive layer, and the surface layer were laminated was similarly cut out to prepare a measurement sample. The reference sample and the measurement sample were measured by spectroscopic ellipsometry (manufactured by JA Woollam: high-speed spectroscopic ellipsometry M-2000) to determine the film thickness of the surface layer.

分光エリプソメトリーの具体的な測定条件は、入射角:60°、65°、70°、測定波長:195nmから700nm、ビーム径:1mm×2mmである。   Specific measurement conditions of spectroscopic ellipsometry are incident angles: 60 °, 65 °, 70 °, measurement wavelengths: 195 nm to 700 nm, and beam diameter: 1 mm × 2 mm.

まず、リファレンス試料を分光エリプソメトリーにより各入射角で波長と振幅比Ψ及び位相差Δの関係を求めた。   First, the relationship between the wavelength, the amplitude ratio Ψ, and the phase difference Δ was determined for each reference angle of the reference sample by spectroscopic ellipsometry.

次に、リファレンス試料の測定結果をリファレンスとして、測定用試料をリファレンス試料と同様に分光エリプソメトリーにより各入射角で波長と振幅比Ψ及び位相差Δの関係を求めた。   Next, using the measurement result of the reference sample as a reference, the relationship between the wavelength, the amplitude ratio Ψ, and the phase difference Δ was determined at each incident angle by spectroscopic ellipsometry, similarly to the reference sample.

そして、電荷注入阻止層および光導電層、表面層を順次積層し、最表面に表面層と空気層嚥体積比が8:2となる粗さ層を有する層構成を計算モデルとして用いて、解析ソフト:WVASE32により各入射角における波長とΨ及びΔの関係を計算により求めた。さらに、この計算によりもとめた波長とΨ及びΔの関係と、測定用試料を測定して求めた波長とΨ及びΔの関係の平均二乗誤差が最小となるときの表面層の膜厚を算出し、この値を表面層の膜厚とした。   Then, a charge injection blocking layer, a photoconductive layer, and a surface layer are sequentially laminated, and a layer structure having a roughness layer with a surface layer and an air layer swallowing volume ratio of 8: 2 on the outermost surface is used as a calculation model. Software: The relationship between the wavelength at each incident angle and Ψ and Δ was calculated by WVASE 32. Furthermore, the film thickness of the surface layer when the mean square error of the relationship between the wavelength, Ψ and Δ obtained by measuring the measurement sample and the relationship between the wavelength, Ψ and Δ obtained by this calculation is minimized is calculated. This value was taken as the film thickness of the surface layer.

分光エリプソメトリーによる測定が終了した後、上記測定用試料をRBS(ラザフォード後方散乱法)(日新ハイボルテージ(株)製:後方散乱測定装置 AN−2500)により表面層中の珪素原子及び炭素原子の原子数を測定し、C/(Si+C)を求めた。次に、測定した珪素原子及び炭素原子の原子数、RBS測定面積及び分光エリプソメトリーにより求めた表面層の膜厚を用いて、珪素原子の原子密度、炭素原子の原子密度及びSi+C原子密度を求めた。   After the measurement by spectroscopic ellipsometry is completed, the above measurement sample is subjected to RBS (Rutherford backscattering method) (manufactured by Nissin High Voltage Co., Ltd .: backscattering measuring device AN-2500) and silicon atoms and carbon atoms in the surface layer. The number of atoms was measured, and C / (Si + C) was determined. Next, the atomic density of silicon atoms, the atomic density of carbon atoms, and the Si + C atomic density are determined using the measured number of atoms of silicon and carbon atoms, RBS measurement area, and the thickness of the surface layer determined by spectroscopic ellipsometry. It was.

RBSと同時に、上記測定用試料をHFS(水素前方散乱法)(日新ハイボルテージ(株)製:後方散乱測定装置 AN−2500)により表面層中の水素原子の原子数を測定した。HFSにより求められた水素原子の原子数と、RBSにより求められた珪素原子の原子数及び炭素原子の原子数により、H原子比を求めた。次に、測定した水素原子の原子数、HFS測定面積および分光エリプソメトリーにより求めた表面層の膜厚を用いて、水素原子の原子密度を求めた。   Simultaneously with RBS, the number of hydrogen atoms in the surface layer of the measurement sample was measured by HFS (hydrogen forward scattering method) (manufactured by Nisshin High Voltage Co., Ltd .: backscattering measurement device AN-2500). The H atom ratio was determined from the number of hydrogen atoms determined by HFS, the number of silicon atoms and the number of carbon atoms determined by RBS. Next, the atomic density of hydrogen atoms was determined using the number of hydrogen atoms measured, the HFS measurement area, and the surface layer thickness determined by spectroscopic ellipsometry.

RBS及びHFSの具体的な測定条件は、入射イオン:4He+、入射エネルギー:2.3MeV、入射角:75°、試料電流:35nA、入射ビーム経:1mmであり、RBSの検出器は、散乱角:160°、アパーチャ径:8mm、HFSの検出器は、反跳角:30°、アパーチャ径:8mm+Slitで測定を行った。 Specific measurement conditions for RBS and HFS are incident ion: 4He + , incident energy: 2.3 MeV, incident angle: 75 °, sample current: 35 nA, incident beam length: 1 mm, and the detector of RBS is scattered. Angle: 160 °, aperture diameter: 8 mm, HFS detector measured with recoil angle: 30 °, aperture diameter: 8 mm + Slit.

(無機微粉体の製造例B1)
硫酸チタニル水溶液を加水分解して得られた含水酸化チタンスラリーをアルカリ水溶液で洗浄した。次に、該含水酸化チタンのスラリーに塩酸を添加して、pHを0.65に調整してチタニアゾル分散液を得た。該チタニアゾル分散液にNaOHを添加し、分散液のpHを4.5に調整し、上澄み液の電気伝導度が70μS/cmになるまで洗浄をくり返した。該含水酸化チタンに対し、0.97倍モル量のSr(OH)2・8H2Oを加えてSUS製反応容器に入れ、窒素ガス置換した。さらにSrTiO3換算で0.5mol/Lになるように蒸留水を加えた。窒素雰囲気中で該スラリーを83℃まで6.5℃/時間で昇温し、83℃に到達してから5.5時間反応を行った。反応後室温まで冷却し、上澄み液を除去した後純水で洗浄をくり返した。
(Inorganic fine powder production example B1)
The hydrous titanium oxide slurry obtained by hydrolyzing the aqueous titanyl sulfate solution was washed with an alkaline aqueous solution. Next, hydrochloric acid was added to the hydrous titanium oxide slurry to adjust the pH to 0.65 to obtain a titania sol dispersion. NaOH was added to the titania sol dispersion, the pH of the dispersion was adjusted to 4.5, and washing was repeated until the electrical conductivity of the supernatant reached 70 μS / cm. 0.97-fold molar amount of Sr (OH) 2 .8H 2 O was added to the hydrous titanium oxide, and the mixture was placed in a SUS reaction vessel and purged with nitrogen gas. Further, distilled water was added so as to be 0.5 mol / L in terms of SrTiO 3 . The slurry was heated to 83 ° C. at 6.5 ° C./hour in a nitrogen atmosphere, and reacted for 5.5 hours after reaching 83 ° C. After the reaction, the mixture was cooled to room temperature, the supernatant was removed, and washing was repeated with pure water.

さらに窒素雰囲気下、上記スラリーをスラリーの固形分に対して6.5質量%のステアリン酸ナトリウムを溶解した水溶液中に入れ、撹拌しながら、硫酸亜鉛水溶液を滴下して、ペロブスカイト型結晶表面にステアリン酸亜鉛を析出させた。該スラリーを純水でくり返し洗浄した後ヌッチェで濾過し、得られたケーキを乾燥してステアリン酸亜鉛で表面処理した、概ね全粒子の粒子形状が概略立方体または直方体の六面体形状で、個数平均粒子径が110nmのチタン酸ストロンチウムを得た。このチタン酸ストロンチウムを無機微粉体B1とする。   Further, in a nitrogen atmosphere, the slurry is placed in an aqueous solution in which 6.5% by mass of sodium stearate is dissolved with respect to the solid content of the slurry, and while stirring, an aqueous zinc sulfate solution is added dropwise to the surface of the perovskite crystal. Zinc acid was precipitated. The slurry was repeatedly washed with pure water and then filtered with Nutsche, and the resulting cake was dried and surface-treated with zinc stearate. The particle shape of all particles was approximately cubic or cuboid hexahedral, and the number average particle Strontium titanate having a diameter of 110 nm was obtained. This strontium titanate is designated as inorganic fine powder B1.

(トナーの製造例T1)
スチレン−ブチルアクリレート共重合体(ピーク分子量1.9万、Mw=28万、Mn=0.9万、Tg=56℃) 100質量部
マグネタイト(八面体、平均粒子径0.21μm、保磁力11.5KA/m、残留磁化10.8Am2/kg、飽和磁化82.1Am2/kg) 90質量部
ポリエチレンワックス((Mn=850、融点:107℃、25℃における針入度:1)
4質量部
荷電制御剤(サリチル酸アルミ化合物、構造を下記に示す) 2質量部
(Toner Production Example T1)
Styrene-butyl acrylate copolymer (peak molecular weight 19 million, Mw = 280,000, Mn = 0,000, Tg = 56 ° C.) 100 parts by mass magnetite (octahedron, average particle size 0.21 μm, coercive force 11 0.5 KA / m, residual magnetization 10.8 Am 2 / kg, saturation magnetization 82.1 Am 2 / kg) 90 parts by mass polyethylene wax (Mn = 850, melting point: 107 ° C., penetration at 25 ° C .: 1)
4 parts by mass charge control agent (aluminum salicylate compound, structure is shown below) 2 parts by mass

Figure 0005300360
Figure 0005300360

上記材料をヘンシェルミキサーで十分に予備混合した後、130℃に設定した2軸混練押し出し機によって溶融混練した。得られた混練物を冷却し、カッターミルで粗粉砕した後、ジェット気流を用いた微粉砕機を用いて微粉砕し、得られた微粉砕物をさらに風力分級機で分級し、質量平均粒径(D4)7.5μmの分級微粉体を得た。   The above materials were sufficiently premixed with a Henschel mixer and then melt-kneaded with a twin-screw kneading extruder set at 130 ° C. The obtained kneaded product is cooled, coarsely pulverized with a cutter mill, then finely pulverized using a fine pulverizer using a jet stream, and the resulting finely pulverized product is further classified with an air classifier, and the mass average particle A classified fine powder having a diameter (D4) of 7.5 μm was obtained.

トナーの重量平均粒径(D4)は、以下のようにして算出する。測定装置としては、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)を用いる。測定条件の設定及び測定データの解析は、付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いる。尚、測定は実効測定チャンネル数2万5千チャンネルで行なう。   The weight average particle diameter (D4) of the toner is calculated as follows. As a measuring device, a precise particle size distribution measuring device “Coulter Counter Multisizer 3” (registered trademark, manufactured by Beckman Coulter, Inc.) using a pore electrical resistance method equipped with a 100 μm aperture tube is used. For setting the measurement conditions and analyzing the measurement data, the attached dedicated software “Beckman Coulter Multisizer 3 Version 3.51” (manufactured by Beckman Coulter, Inc.) is used. Note that the measurement is performed with 25,000 effective measurement channels.

測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。   As the electrolytic aqueous solution used for the measurement, special grade sodium chloride is dissolved in ion-exchanged water so as to have a concentration of about 1% by mass, for example, “ISOTON II” (manufactured by Beckman Coulter, Inc.) can be used.

尚、測定、解析を行なう前に、以下のように前記専用ソフトの設定を行なった。   Prior to measurement and analysis, the dedicated software was set as follows.

前記専用ソフトの「標準測定方法(SOM)を変更」画面において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。「閾値/ノイズレベルの測定ボタン」を押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、「測定後のアパーチャーチューブのフラッシュ」にチェックを入れる。   On the “Change Standard Measurement Method (SOM)” screen of the dedicated software, set the total count in the control mode to 50,000 particles, set the number of measurements once, and set the Kd value to “standard particles 10.0 μm” (Beckman Coulter Set the value obtained using By pressing the “Threshold / Noise Level Measurement Button”, the threshold and noise level are automatically set. In addition, the current is set to 1600 μA, the gain is set to 2, the electrolyte is set to ISOTON II, and the “aperture tube flush after measurement” is checked.

前記専用ソフトの「パルスから粒径への変換設定」画面において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。   In the “Pulse to particle size conversion setting” screen of the dedicated software, the bin interval is set to logarithmic particle size, the particle size bin is set to 256 particle size bin, and the particle size range is set to 2 μm to 60 μm.

具体的な測定法は以下の通りである。   The specific measurement method is as follows.

(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行なう。そして、専用ソフトの「アパーチャのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。   (1) About 200 ml of the electrolytic aqueous solution is put in a glass 250 ml round bottom beaker exclusively for Multisizer 3, set on a sample stand, and the stirrer rod is stirred counterclockwise at 24 rotations / second. Then, dirt and bubbles in the aperture tube are removed by the “aperture flush” function of the dedicated software.

(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れる。この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で約3質量倍に希釈した希釈液を約0.3ml加える。   (2) About 30 ml of the electrolytic aqueous solution is put into a glass 100 ml flat bottom beaker. In this, "Contaminone N" (nonionic surfactant, anionic surfactant, 10% by weight aqueous solution of neutral detergent for pH7 precision measuring instrument cleaning, made by organic builder, manufactured by Wako Pure Chemical Industries, Ltd. About 0.3 ml of a diluted solution obtained by diluting 3) with ion-exchanged water is added.

(3)発振周波数50kHzの発振器2個を位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispension System Tetora150」(日科機バイオス社製)を準備する。超音波分散器の水槽内に約3.3lのイオン交換水を入れ、この水槽中にコンタミノンNを約2ml添加する。   (3) Two oscillators with an oscillation frequency of 50 kHz are incorporated with the phase shifted by 180 degrees, and an ultrasonic disperser “Ultrasonic Dissipation System Tetora 150” (manufactured by Nikki Bios Co., Ltd.) having an electrical output of 120 W is prepared. About 3.3 l of ion-exchanged water is placed in the water tank of the ultrasonic disperser, and about 2 ml of Contaminone N is added to the water tank.

(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。   (4) The beaker of (2) is set in the beaker fixing hole of the ultrasonic disperser, and the ultrasonic disperser is operated. And the height position of a beaker is adjusted so that the resonance state of the liquid level of the electrolyte solution in a beaker may become the maximum.

(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。   (5) In a state where the electrolytic aqueous solution in the beaker of (4) is irradiated with ultrasonic waves, about 10 mg of toner is added to the electrolytic aqueous solution little by little and dispersed. Then, the ultrasonic dispersion process is continued for another 60 seconds. In the ultrasonic dispersion, the temperature of the water tank is appropriately adjusted so as to be 10 ° C. or higher and 40 ° C. or lower.

(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行なう。   (6) To the round bottom beaker of (1) installed in the sample stand, the electrolyte solution of (5) in which the toner is dispersed is dropped using a pipette, and the measurement concentration is adjusted to about 5%. . The measurement is performed until the number of measured particles reaches 50,000.

(7)測定データを装置付属の前記専用ソフトにて解析を行ない、重量平均粒径(D4)を算出する。尚、前記専用ソフトでグラフ/体積%と設定したときの、「分析/体積統計値(算術平均)」画面の「平均径」が重量平均粒径(D4)である。   (7) The measurement data is analyzed with the dedicated software attached to the apparatus, and the weight average particle diameter (D4) is calculated. The “average diameter” on the “analysis / volume statistics (arithmetic average)” screen when the graph / volume% is set by the dedicated software is the weight average particle diameter (D4).

得られた分級微粉体100質量部に、前記無機微粉体B1(六面体形状のチタン酸ストロンチウム、個数平均粒径110nm)1質量部、さらに乾式法で製造されたシリカ微粉体(BET比表面積200m2/g)100質量部あたりアミノ変性シリコーンオイル(アミン当量830、25℃における動粘度70×10-62/s)16質量部で処理した疎水性シリカ1質量部を加え、攪拌羽根回転速度1100rpmのヘンシェルミキサーFM500(三井三池社製)により、4分間回転させて外添させ、目開き150μmのメッシュで篩い、磁性一成分トナーT1を得た。 To 100 parts by mass of the obtained classified fine powder, 1 part by mass of the inorganic fine powder B1 (hexahedral strontium titanate, number average particle size 110 nm), and further silica fine powder (BET specific surface area 200 m 2 ) produced by a dry method. / G) 1 part by weight of hydrophobic silica treated with 16 parts by weight of amino-modified silicone oil (amine equivalent 830, kinematic viscosity at 25 ° C. 70 × 10 −6 m 2 / s) per 100 parts by weight, and stirring blade rotation speed Using a Henschel mixer FM500 (manufactured by Mitsui Miike Co., Ltd.) at 1100 rpm, it was rotated for 4 minutes and externally added, and sieved with a mesh having a mesh size of 150 μm to obtain magnetic one-component toner T1.

(無機微粉体の製造例B2)
硫酸チタニル粉末を蒸留水に溶解し、溶液中のTi濃度が1.5(mol/l)、反応終了時の酸濃度が2.0(mol/l)になるように、硫酸及び蒸留水を添加した溶液を調整し、この溶液を、密閉した容器により、110℃の加熱処理を36時間行い、加水分解反応をおこなった。その後、水洗浄を行い十分に硫酸、不純物を除去し、メタチタン酸スラリーを得た。このスラリーに、酸化チタンに対して等モル量になるように炭酸ストロンチウム(平均粒子径80nm)を添加する。水系湿式中で十分に混合した後、洗浄、乾燥後、800℃にて3時間焼結し、機械粉砕、分級工程を経て個数平均粒子径が100(nm)で球状のチタン酸ストロンチウムを得た。このチタン酸ストロンチウムを無機微粉体B2とする。
(Inorganic fine powder production example B2)
Dissolve titanyl sulfate powder in distilled water, and add sulfuric acid and distilled water so that the Ti concentration in the solution is 1.5 (mol / l) and the acid concentration at the end of the reaction is 2.0 (mol / l). The added solution was prepared, and this solution was subjected to a hydrolysis reaction at 110 ° C. for 36 hours in a sealed container to carry out a hydrolysis reaction. Thereafter, washing with water was performed to sufficiently remove sulfuric acid and impurities to obtain a metatitanic acid slurry. To this slurry, strontium carbonate (average particle diameter of 80 nm) is added so as to have an equimolar amount with respect to titanium oxide. After thorough mixing in an aqueous wet, washed, dried, sintered at 800 ° C. for 3 hours, and subjected to mechanical pulverization and classification to obtain spherical strontium titanate having a number average particle size of 100 (nm). . This strontium titanate is designated as inorganic fine powder B2.

(無機微粉体の製造例B3)
金属マグネシウムを蒸留精製した、高純度のマグネシウムを1150℃で加熱気化させて酸化反応器に導入し、さらに希稈剤として純度99.9%のアルゴンガスを導入してマグネシウム蒸気圧0.04気圧とし、次に純度99.9%の酸素ガスを導入しながら温度1000℃で酸化させた。酸化中、生成するマグネシア微粒子を循環させて、酸化火炎中、溶融成長させ、気相酸化反応法により製造された個数平均粒径が200nmの酸化マグネシウム(MgO)粉末を得た。この酸化マグネシウム粒子を無機微粉体B3とする。
(Inorganic fine powder production example B3)
Magnesium vapor pressure of 0.04 atm is introduced by distilling and purifying magnesium metal, heating and evaporating high-purity magnesium at 1150 ° C and introducing it into the oxidation reactor, and introducing 99.9% pure argon gas as a diluent. Then, oxidation was performed at a temperature of 1000 ° C. while introducing oxygen gas having a purity of 99.9%. The produced magnesia fine particles were circulated during oxidation, and melt-grown in an oxidation flame to obtain a magnesium oxide (MgO) powder having a number average particle diameter of 200 nm manufactured by a gas phase oxidation reaction method. This magnesium oxide particle is referred to as inorganic fine powder B3.

(無機微粉体の製造例B4)
撹拌機、滴下ロート、温度計をガラス製反応器にセットし、エタノールに、アンモニア水を加え撹拌し、25℃に保った。次にこの溶液にテトラエトキシシランを60分間で滴下し反応させた。滴下終了後さらに25℃にて3時間撹拌を続けシリカゾル懸濁液を得た。次にこのシリカゾル懸濁液を加熱し、エタノールを除去した後トルエンを加えさらに加熱し、水を除去した。次に懸濁液中のシリカ粒子に対して3質量部のメチルシランを加えた後、80℃で1時間反応させシリカの疎水化処理をおこなった。その後、懸濁液を加熱し、トルエンを除去し、流動層乾燥機で乾燥させた後、ピンミルで粉砕した。その後、速やかに再びトルエン溶液中に分散させた後、ヘキサメチルジシラザン10質量部を加え十分に撹拌をおこなう。その後、流動層乾燥機を用いて110℃で乾燥させた後、ピンミルで十分に解砕して、個数平均粒子径110nmで球状のゾルゲル法シリカを得た。このシリカ粒子を無機微粉体B4とする。
(Inorganic fine powder production example B4)
A stirrer, a dropping funnel and a thermometer were set in a glass reactor, and ammonia water was added to ethanol and stirred, and kept at 25 ° C. Next, tetraethoxysilane was dropped into the solution for 60 minutes to react. After completion of the dropping, stirring was further continued at 25 ° C. for 3 hours to obtain a silica sol suspension. Next, this silica sol suspension was heated to remove ethanol, and then toluene was added and further heated to remove water. Next, 3 parts by mass of methylsilane was added to the silica particles in the suspension, and the mixture was reacted at 80 ° C. for 1 hour to hydrophobize the silica. Thereafter, the suspension was heated to remove toluene, dried with a fluid bed dryer, and then pulverized with a pin mill. Then, after quickly dispersing again in the toluene solution, 10 parts by mass of hexamethyldisilazane is added and sufficiently stirred. Then, after drying at 110 degreeC using a fluidized bed dryer, it fully pulverized with a pin mill and obtained spherical sol-gel silica having a number average particle diameter of 110 nm. This silica particle is designated as inorganic fine powder B4.

(無機微粉体の製造例B5)
反応容器中にアルゴンと酸素の体積比が3:1の混合ガスを導入し大気と置換させる。この反応容器中に酸素ガスを40(m3/hr)及び水素ガスを20(m3/hr)で供給し着火装置を用いて酸素−水素からなる燃焼炎を形成する。次いでこの燃焼炎中に圧力12kg/cm3の水素キャリアガスで原料の金属ケイ素粉末を投入し、粉塵雲を形成する。この粉塵雲に燃焼炎により着火し粉塵爆発による酸化反応を生じさせる。酸化反応後、反応容器内を冷却し、個数平均粒子径730(nm)で球状のシリカ微粉末を得た。このシリカ粒子を無機微粉体B5とする。
(Inorganic fine powder production example B5)
A mixed gas having a volume ratio of argon and oxygen of 3: 1 is introduced into the reaction vessel to replace the atmosphere. Oxygen gas is supplied into this reaction vessel at 40 (m 3 / hr) and hydrogen gas at 20 (m 3 / hr), and an ignition device is used to form a combustion flame composed of oxygen-hydrogen. Next, a metal silicon powder as a raw material is charged into the combustion flame with a hydrogen carrier gas having a pressure of 12 kg / cm 3 to form a dust cloud. This dust cloud is ignited by a combustion flame and causes an oxidation reaction by dust explosion. After the oxidation reaction, the inside of the reaction vessel was cooled to obtain spherical silica fine powder having a number average particle size of 730 (nm). This silica particle is designated as inorganic fine powder B5.

(無機微粉体の製造例B6)
無機微粉体の製造例B5においてキャリアガスの圧力を9kg/cm3とする以外は無機微粉体の製造例B5と同様にして、個数平均粒子径920(nm)で球状のシリカ微粉末を得た。このシリカ粒子を無機微粉体B6とする。
(Inorganic fine powder production example B6)
A fine spherical silica powder having a number average particle size of 920 (nm) was obtained in the same manner as in the fine inorganic powder production example B5 except that the carrier gas pressure was 9 kg / cm 3 in the fine inorganic powder production example B5. . This silica particle is designated as inorganic fine powder B6.

(無機微粉体の製造例B7)
支燃性ガス供給管を開いて酸素ガスをバーナーに供給し、着火用バーナーに点火した後、可燃性ガス供給管を開いて水素ガスをバーナーに供給して火炎を形成し、これに四塩化珪素を蒸発器にてガス化して供給し、火炎加水分解反応をおこなわせ、生成したシリカ粉末を回収した。得られたシリカ微粉末100質量部を用い、これをミキサーに入れ、窒素雰囲気下、撹拌しながら、50mm2/sのジメチルシリコーンオイル20質量部を滴下し、300℃で1時間加熱撹拌した後に冷却しピンミルで十分に解砕して、個数平均粒子径22(nm)で球状のシリカ微粉末を得た。このシリカ粒子を無機微粉体B7とする。
(Inorganic fine powder production example B7)
Open the flammable gas supply pipe to supply oxygen gas to the burner, ignite the ignition burner, then open the flammable gas supply pipe to supply hydrogen gas to the burner to form a flame, and form tetrachloride Silicon was gasified with an evaporator and supplied to perform a flame hydrolysis reaction, and the generated silica powder was recovered. Using 100 parts by mass of the obtained silica fine powder, this was put in a mixer, 20 parts by mass of 50 mm 2 / s dimethyl silicone oil was added dropwise with stirring in a nitrogen atmosphere, and the mixture was heated and stirred at 300 ° C. for 1 hour, followed by cooling. Then, it was sufficiently crushed by a pin mill to obtain spherical silica fine powder having a number average particle size of 22 (nm). This silica particle is designated as inorganic fine powder B7.

(無機微粉体の製造例B8)
市販の天然マイカ微粒子(5μm)を充分にジェットミル粉砕し、サイクロンで分級捕集して、個数平均粒子径280(nm)で板状のマイカ微粉末を得た。このマイカ粒子を無機微粉体B8とする。
(Inorganic fine powder production example B8)
Commercially available natural mica fine particles (5 μm) were sufficiently milled with a jet mill and classified and collected with a cyclone to obtain plate-like mica fine powder having a number average particle size of 280 (nm). This mica particle is designated as inorganic fine powder B8.

(無機微粉体の製造例B9)
市販の天然タルク微粒子(2μm)を充分にジェットミル粉砕し、サイクロンで分級捕集して、個数平均粒子径330(nm)で板状のタルク微粉末を得た。このタルク粒子を無機微粉体B9とする。
(Inorganic fine powder production example B9)
Commercially available natural talc fine particles (2 μm) were sufficiently milled by a jet mill and classified and collected by a cyclone to obtain a plate-like talc fine powder having a number average particle size of 330 (nm). This talc particle is designated as inorganic fine powder B9.

(無機微粉体の製造例B10)
有機溶媒中にSiCl4を分散し25℃に保持した。これにNH3を吹き込み反応させ、反応生成物を濾別洗浄してシリコンジイミドを得た。得られたシリコンジイミドを950℃で仮焼し、非晶質の窒化珪素粉末を得た。この非晶質窒化珪素粉末を窒素ガス気流中、1350℃に加熱して結晶化を行いα型窒化珪素粉末とした後、さらに粉砕して、個数平均粒径80nmで不定形の窒化珪素微粉末を得た。
(Inorganic fine powder production example B10)
SiCl 4 was dispersed in an organic solvent and maintained at 25 ° C. NH 3 was blown into this, and the reaction product was filtered and washed to obtain silicon diimide. The obtained silicon diimide was calcined at 950 ° C. to obtain amorphous silicon nitride powder. The amorphous silicon nitride powder is crystallized by heating to 1350 ° C. in a nitrogen gas stream, and then pulverized to further form an amorphous silicon nitride fine powder having a number average particle size of 80 nm. Got.

これを、常法により洗浄、ろ過、乾燥、解砕処理して、窒化珪素微粒子を得た。この窒化珪素微粒子を無機微粉体B10とする。   This was washed, filtered, dried, and crushed by ordinary methods to obtain silicon nitride fine particles. The silicon nitride fine particles are referred to as inorganic fine powder B10.

(トナーの製造例T2乃至T10)
添加する無機微粉体B1を表2のようにB2乃至10に換えたほかは、トナーの製造例T1と同様にして、トナーT2乃至10を得た。
(Toner Production Examples T2 to T10)
Toners T2 to T10 were obtained in the same manner as in Toner Production Example T1, except that the inorganic fine powder B1 to be added was changed to B2 to B10 as shown in Table 2.

<実施例1>
上記感光体D1およびトナーT1を用い、キヤノン製レーザー複写機iRC6800の一次帯電装置と感光体クリーニング装置を改造した装置にて、モノカラーモードにて通紙耐久試験をおこなった。
<Example 1>
Using the photoreceptor D1 and the toner T1, a paper passing durability test was performed in a mono-color mode using an apparatus obtained by modifying the primary charging device and the photoreceptor cleaning device of a Canon laser copying machine iRC6800.

この実験で用いた一次帯電部材は、直径6mmの芯金周面に、厚さ3mmのウレタンゴム・EPDM等に導電性のカーボンを分散させた弾性層を有する。また、その表面にポリテトラフルオロエチレン樹脂、アクリル樹脂の混樹樹脂に導電性カーボンを添加した表面層を被覆して構成されている。全体の形状は、外径12mm、長手方向の長さ320mmのローラ形状であり、感光体に侵入量0.5mmで接し、感光体に従動回転するように取り付け、所定の一次帯電バイアスを印可した。   The primary charging member used in this experiment has an elastic layer in which conductive carbon is dispersed in urethane rubber, EPDM, or the like having a thickness of 3 mm on a peripheral surface of a core metal having a diameter of 6 mm. In addition, a surface layer in which conductive carbon is added to a mixed resin of polytetrafluoroethylene resin and acrylic resin is coated on the surface. The overall shape is a roller shape having an outer diameter of 12 mm and a longitudinal length of 320 mm. The roller is in contact with the photoreceptor at an intrusion amount of 0.5 mm, is attached so as to be driven and rotated by the photoreceptor, and a predetermined primary charging bias is applied. .

接触帯電方式において、帯電部材に清掃ブラシや植毛ローラ等の清掃部材を設けて帯電部材の汚染を抑える方法が知られているが、この耐久では汚染の様子をそのまま観察するためにこの帯電ローラに清掃部材は設けない。   In the contact charging method, there is known a method of preventing the charging member from being contaminated by providing a cleaning member such as a cleaning brush or a flocking roller on the charging member. No cleaning member is provided.

また、この実験で用いた感光体クリーニング装置は、クリーニングブレードを厚さ3.0mmでウレタンゴム製(硬度65°)の板状ブレードとし、感光体との当接圧は23℃/50%の環境下において0.45N/cmに設定した。クリーニングブレードと感光体との当接圧としては、トナーすり抜けやブレード先端の破損などを考慮して0.1N/cmから0.5N/cmの範囲の中で設定されることが一般的であり、0.45N/cmは強めの設定である。   Further, in the photoconductor cleaning device used in this experiment, the cleaning blade is a plate blade made of urethane rubber (hardness 65 °) with a thickness of 3.0 mm, and the contact pressure with the photoconductor is 23 ° C./50%. It was set to 0.45 N / cm under the environment. The contact pressure between the cleaning blade and the photosensitive member is generally set in the range of 0.1 N / cm to 0.5 N / cm in consideration of toner slipping and damage to the blade tip. 0.45 N / cm is a strong setting.

まず、室内の温度と湿度を調整できる環境試験室において、室内の温度/湿度を23℃/50%に設定した環境下で、感光体ヒータを常時オンに設定し、感光体の階調性、および感度の評価をおこなった。   First, in an environmental test room where the indoor temperature and humidity can be adjusted, the photoconductor heater is always turned on in an environment where the indoor temperature / humidity is set to 23 ° C./50%, and the gradation of the photoconductor, And the sensitivity was evaluated.

(階調性評価)
まず、画像露光光による45度170dpi(1インチあたり170線)の線密度で面積階調ドットスクリーンを用い面積階調(すなわち画像露光をおこなうドット部分の面積階調)によって、全階調範囲を17段階に均等配分した階調データを作成した。このとき、最も濃い階調を16、最も薄い階調を0として、各階調に番号を割り当て、階調段階とする。
(Gradation evaluation)
First, the entire gradation range is defined by an area gradation (that is, an area gradation of a dot portion where image exposure is performed) using an area gradation dot screen at a line density of 45 degrees 170 dpi (170 lines per inch) by image exposure light. The gradation data is distributed evenly in 17 steps. At this time, the darkest gradation is set to 16, the thinnest gradation is set to 0, and a number is assigned to each gradation to make a gradation step.

次に、上記電子写真装置に作製した電子写真感光体を設置し、上記階調データを上記電子写真装置のテキストモードを用いてA3用紙に出力する。このとき、高湿流れが起きると階調性評価に影響するため、前述したように感光体ヒータを常時オンに設定し、電子写真感光体の表面を約40℃に保つ条件とした。得られた画像を各階調ごとに反射濃度計(X−Rite Inc製:504 分光濃度計)により画像濃度を測定する。   Next, the electrophotographic photosensitive member produced in the electrophotographic apparatus is installed, and the gradation data is output to A3 paper using the text mode of the electrophotographic apparatus. At this time, if high-humidity flow occurs, the evaluation of the gradation property is affected. Therefore, as described above, the photosensitive member heater is always turned on, and the surface of the electrophotographic photosensitive member is maintained at about 40 ° C. The image density of the obtained image is measured with a reflection densitometer (manufactured by X-Rite Inc: 504 spectral densitometer) for each gradation.

こうして得られた評価値と階調段階との相関係数を算出し、各階調の反射濃度が完全に直線的に変化する階調表現が得られた場合である相関係数=1.00からの差分を求めた。そして、成膜条件No.1で作製した電子写真感光体の相関係数から算出される差分に対する各成膜条件にて作製された電子写真感光体の相関係数から算出される差分の比を階調性の指標として評価した。この評価において、数値が小さいほど階調性が優れており、直線的に近い階調表現がなされていることを示している。なお、反射濃度測定では各々の階調毎に3枚の画像を出力し、それら濃度の平均値を評価値とした。この結果を以下のように3段階評価とし、A乃至Bを合格とした。評価結果を表2に示す。
A‥成膜条件No.1で作製した電子写真感光体の相関係数から算出される相関係数=1.00からの差分に対する各成膜条件にて作製された電子写真感光体から算出される相関係数=1.00からの差分の比が1.80以下で階調性が良好。
B‥成膜条件No.1で作製した電子写真感光体の相関係数から算出される相関係数=1.00からの差分に対する各成膜条件にて作製された電子写真感光体から算出される相関係数=1.00からの差分の比が1.80を超え2.20未満で実用上問題なし。
C‥成膜条件No.1で作製した電子写真感光体の相関係数から算出される相関係数=1.00からの差分に対する各成膜条件にて作製された電子写真感光体から算出される相関係数=1.00からの差分の比が2.20を超えて実用上問題あり。
The correlation coefficient between the evaluation value obtained in this way and the gradation stage is calculated, and from the correlation coefficient = 1.00 when the gradation expression in which the reflection density of each gradation changes completely linearly is obtained. The difference of was calculated. And film-forming conditions No. The ratio of the difference calculated from the correlation coefficient of the electrophotographic photosensitive member manufactured under each film forming condition with respect to the difference calculated from the correlation coefficient of the electrophotographic photosensitive member manufactured in Step 1 is evaluated as an index of gradation. did. In this evaluation, the smaller the numerical value, the better the gradation, indicating that the gradation expression is linear. In the reflection density measurement, three images were output for each gradation, and the average value of the densities was used as the evaluation value. This result was evaluated as a three-step evaluation as follows, and A to B were set as acceptable. The evaluation results are shown in Table 2.
A ... Film formation condition No. 1. Correlation coefficient calculated from the correlation coefficient of the electrophotographic photosensitive member prepared in Step 1 = correlation coefficient calculated from the electrophotographic photosensitive member manufactured under each film forming condition with respect to the difference from 1.00 = 1. The gradation ratio is good when the ratio of the difference from 00 is 1.80 or less.
B ... Film formation condition No. 1. Correlation coefficient calculated from the correlation coefficient of the electrophotographic photosensitive member prepared in Step 1 = correlation coefficient calculated from the electrophotographic photosensitive member manufactured under each film forming condition with respect to the difference from 1.00 = 1. There is no practical problem with the ratio of the difference from 00 exceeding 1.80 and less than 2.20.
C: Film formation condition No. 1. Correlation coefficient calculated from the correlation coefficient of the electrophotographic photosensitive member prepared in Step 1 = correlation coefficient calculated from the electrophotographic photosensitive member manufactured under each film forming condition with respect to the difference from 1.00 = 1. The difference ratio from 00 exceeds 2.20, which is a practical problem.

(感度評価)
画像露光を切った状態で、一次帯電ローラに接続した外部電源により帯電器へ供給する電流を調整して電子写真感光体の表面電位を400Vとなるように設定した。
(Sensitivity evaluation)
With the image exposure turned off, the current supplied to the charger was adjusted by an external power source connected to the primary charging roller to set the surface potential of the electrophotographic photosensitive member to 400V.

次に、先に設定した帯電条件で帯電させた状態で、画像露光を照射し、その照射エネルギーを調整することにより現像器位置の電位を100Vとした。   Next, image exposure was performed in a state of being charged under the previously set charging condition, and the potential at the developing unit was set to 100 V by adjusting the irradiation energy.

感度評価で用いた電子写真装置の画像露光光源は、発振波長が658nmの半導体レーザーである。評価結果は成膜条件No.6の電子写真感光体を搭載した場合の照射エネルギーを1.00とした相対比較で示し、結果を以下のように3段階評価とし、A乃至Bを合格とした。評価結果を表2に示す。
A‥成膜条件No.6の電子写真感光体での照射エネルギーに対する照射エネルギーの比が1.10未満で優れている。
B‥成膜条件No.6の作製した電子写真感光体での照射エネルギーに対する照射エネルギーの比が1.10以上1.15未満で実用上問題なし。
C‥成膜条件No.6の電子写真感光体での照射エネルギーに対する照射エネルギーの比が1.15以上で実用上問題あり。
The image exposure light source of the electrophotographic apparatus used for sensitivity evaluation is a semiconductor laser having an oscillation wavelength of 658 nm. The evaluation results are as follows. The results are shown in a relative comparison in which the irradiation energy when the electrophotographic photosensitive member No. 6 is mounted is set to 1.00, and the results are evaluated in three stages as follows, and A to B are passed. The evaluation results are shown in Table 2.
A ... Film formation condition No. The ratio of the irradiation energy to the irradiation energy of the electrophotographic photosensitive member No. 6 is excellent at less than 1.10.
B ... Film formation condition No. The ratio of the irradiation energy to the irradiation energy in the electrophotographic photosensitive member prepared in No. 6 is 1.10 or more and less than 1.15, and there is no practical problem.
C: Film formation condition No. The ratio of the irradiation energy to the irradiation energy of the electrophotographic photosensitive member No. 6 is 1.15 or more, which is a practical problem.

次に、感光体ヒータを常時オフに設定したのち、15時間かけて徐々に環境試験室の温度/湿度を12.5℃/10%RHに変更した。感光体ヒータを常時オフに設定したまま、印字面積2%のA4白黒原稿を用いて、2枚通紙する毎に感光体の回転が5秒間停止する間欠運転にて、5000枚の通紙耐久を行った。通紙終了後、そのまま12.5℃/10%RHの環境下で15時間放置したのち、再度、同様の間欠運転にて5000枚の通紙耐久を行った。   Next, after the photoconductor heater was always turned off, the temperature / humidity of the environmental test chamber was gradually changed to 12.5 ° C./10% RH over 15 hours. With the photoconductor heater set to OFF at all times, using an A4 black and white document with a printing area of 2%, a 5000 sheet endurance is performed in an intermittent operation in which the rotation of the photoconductor is stopped for 5 seconds each time two sheets are passed. Went. After the completion of the sheet passing, the sheet was left as it was in an environment of 12.5 ° C./10% RH for 15 hours, and 5000 sheets were again passed through the same intermittent operation.

この低温/低湿環境下での耐久通紙のなかで、感光体の鳴きやびびりの評価(1)をおこなった。感光体の鳴きやびびりは、常温時よりもクリーニングブレードの弾性が低下する低温環境下で起きやすい。このため、感光体ヒータも前述したように常時オフに設定するが、感光体ヒータをオフにすることにより高湿流れが発生すると画像評価に影響するため、前述のように低湿環境とした。   Evaluation of the squeal and chatter of the photosensitive member (1) was performed in the durable paper passing under the low temperature / low humidity environment. The noise and chatter of the photoconductor is likely to occur in a low temperature environment where the elasticity of the cleaning blade is lower than that at normal temperature. For this reason, the photosensitive member heater is always set to be off as described above. However, if a high humidity flow is generated by turning off the photosensitive member heater, the image evaluation is affected.

(感光体の鳴き、びびりの評価1)
感光体が鳴きやびびりを起こすとユーザーが異常音として関知するほか、悪化すればクリーニングブレードの破損やクリーニング不良を起こし、印刷画像欠陥となってしまう。
(Evaluation of squeal and chatter of photoconductor 1)
If the photosensitive member squeals or chatters, the user will know it as an abnormal sound, and if it deteriorates, the cleaning blade will be damaged or the cleaning will be defective, resulting in a print image defect.

感光体の鳴きやびびりの評価方法としては、間欠通紙中の感光体の回転起動時や停止時、また特に12.5℃/10%環境での放置後、冷えた状態からの起動時に、感光体から気になるような音があるかどうかをチェックし、結果を以下のように5段階評価とし、A乃至Cまでを合格とした。評価結果を表2に示す。
A‥感光体の鳴きやびびりは全く認められない。
B‥ごく僅かな頻度で、通常は気付かない程度のごく小さな音が認められた。
C‥僅かな頻度で、通常は気にならない程度の小さな音が認められた。
D‥通常は気にならない程度の小さな音が認められた、または頻度を問わず気になる音を確認した。
E‥鳴き、びびりによる画像欠陥が発生した。
As a method for evaluating the noise and chatter of the photoconductor, when the photoconductor is started and stopped during intermittent paper feeding, especially after being left in a 12.5 ° C / 10% environment and starting from a cold state, It was checked whether or not there was a sound that was anxious from the photoconductor, the result was evaluated as follows, and the results from A to C were accepted. The evaluation results are shown in Table 2.
A: No squeal or chatter on the photoconductor is observed.
B: A very small sound that was not noticed was observed with very little frequency.
C: A small sound that was not usually noticed was observed with a small frequency.
D: A sound that was so small that it was not normally noticed was observed, or a sound that was anxious regardless of frequency.
E. Image defect caused by squealing and chattering.

次に、感光体ヒータを常時オンに設定したのち、15時間かけて徐々に環境試験室の温度/湿度を32.5℃/80%RHに変更した。ここで画像流れ評価のリファレンスとなるA3文字チャート(4pt、印字率4%)を印字した。   Next, after the photoconductor heater was always turned on, the temperature / humidity of the environmental test chamber was gradually changed to 32.5 ° C./80% RH over 15 hours. Here, an A3 character chart (4 pt, printing rate 4%) serving as a reference for image flow evaluation was printed.

次に、感光体ヒータを常時オフにして、低温時と同様の間欠運転にて5000枚の通紙耐久を行った。通紙終了後電源を切り、そのまま32.5℃/80%RHの環境下で60時間放置したのち、感光体ヒータをオフのままで立ち上げ、再度、A3文字チャートを印字した。   Next, the photosensitive drum heater was always turned off, and 5000 sheets were passed through in the same intermittent operation as at low temperatures. After the paper was passed, the power was turned off and left as it was for 60 hours in an environment of 32.5 ° C./80% RH. Then, the photosensitive member heater was turned off and the A3 character chart was printed again.

この高温/高湿環境下での、放置前後のA3文字チャートにより、画像流れの評価をおこなった。高温/高湿下で画像流れを防止する効果のある感光体ヒータをオフにしていることにより、画像流れが発生しやすくなる。   In this high-temperature / high-humidity environment, image flow was evaluated using A3 character charts before and after standing. By turning off the photoconductor heater, which is effective in preventing image flow under high temperature / high humidity, image flow is likely to occur.

(画像流れ評価)
5000枚の通紙試験前に出力した画像と、60時間放置後に出力した画像を、それぞれキヤノン製デジタル電子写真装置iRC−5870を用いて、モノクロ300dpiの2値の条件でPDFファイルに電子化した。電子化した画像をAdobe Photoshop(Adobe製)を用いて、電子写真感光体1周分の画像領域(251.3mm×273mm)の黒比率を測定した。次に、連続通紙耐久前に出力した画像に対する連続通紙試験後に出力した画像の黒比率の比率を求め、耐久流れの評価を行った。
(Image flow evaluation)
The images output before the 5000 sheet pass test and the images output after leaving for 60 hours were digitized into PDF files using Canon's digital electrophotographic device iRC-5870 under binary conditions of 300 dpi monochrome. . The black ratio of the image area (251.3 mm × 273 mm) for one round of the electrophotographic photosensitive member was measured using Adobe Photoshop (manufactured by Adobe) for the digitized image. Next, the ratio of the black ratio of the image output after the continuous paper passing test to the image output before the continuous paper passing durability was obtained, and the durability flow was evaluated.

耐久流れが発生した場合、画像全体で文字がぼける、または、文字が印字されずに白抜けするため、連続通紙試験前の正常な画像と比較した場合、出力された画像における黒比率が低下する。よって、連続通紙試験前の正常な画像に対する連続通紙試験後に出力された画像の黒比率の比率が100%に近いほど高湿流れが良好となる。この結果を以下のように5段階評価とし、A乃至Cまでを本発明の効果ありとし、合格とした。評価結果を表2に示す。
A‥連続通紙試験前の画像に対する連続通紙試験後に出力した画像の黒比率が、95%以上105%以下で特に優れている。
B‥連続通紙試験前の画像に対する連続通紙試験後に出力した画像の黒比率が、85%以上95%未満で優れている。
C‥連続通紙試験前の画像に対する連続通紙試験後に出力した画像の黒比率が、75%以上85%未満で良好である。
D‥連続通紙試験前の画像に対する連続通紙試験後に出力した画像の黒比率が、65%以上75%未満で実用上は問題なし。
E‥連続通紙試験前の画像に対する連続通紙試験後に出力した画像の黒比率が、65%未満で良好ではない。
When the endurance flow occurs, characters are blurred in the entire image, or white characters are lost without being printed, so the black ratio in the output image is reduced when compared with a normal image before the continuous paper passing test. To do. Therefore, as the ratio of the black ratio of the image output after the continuous paper test to the normal image before the continuous paper test is closer to 100%, the high-humidity flow becomes better. The results were evaluated as follows in five stages, and A to C were regarded as having the effect of the present invention and passed. The evaluation results are shown in Table 2.
A. The black ratio of the image output after the continuous paper passing test with respect to the image before the continuous paper passing test is particularly excellent at 95% or more and 105% or less.
B. The black ratio of the image output after the continuous paper passing test to the image before the continuous paper passing test is excellent at 85% or more and less than 95%.
C: The black ratio of the image output after the continuous paper feeding test to the image before the continuous paper feeding test is good at 75% or more and less than 85%.
D: There is no problem in practical use because the black ratio of the image output after the continuous paper test to the image before the continuous paper test is 65% or more and less than 75%.
E: The black ratio of the image output after the continuous paper test to the image before the continuous paper test is less than 65%, which is not good.

次に、感光体ヒータは常時オフ設定のまま、15時間かけて徐々に環境試験室の温度/湿度を23℃/50%RHに変更したのち、印字率1%のA4白黒原稿を用いて、1日あたり2万5千枚の連続通紙耐久を10日間実施して、25万枚まで行った。   Next, the temperature / humidity of the environmental test chamber was gradually changed to 23 ° C./50% RH over 15 hours with the photoconductor heater always set to OFF, and then using an A4 monochrome document with a printing rate of 1%, The continuous paper feed durability of 25,000 sheets per day was carried out for 10 days and up to 250,000 sheets.

この連続通紙終了までの耐久で、感光体の耐摩耗性およびクリーニング性の評価をおこなった。   The durability until the end of the continuous paper passing was evaluated for the abrasion resistance and cleaning property of the photoreceptor.

(耐磨耗性評価)
耐磨耗性の評価方法は、作製直後と耐久終了後の電子写真感光体表面層膜厚を、電子写真感光体の任意の周方向で長手方向9点(電子写真感光体の長手方向中央を基準として、0mm、±50mm、±90mm、±130mm、±150mm)及び前記任意の周方向から180°回転させた位置での長手方向9点、合計18点を測定し、その18点の平均値により算出した。
(Abrasion resistance evaluation)
The abrasion resistance evaluation method is as follows. The film thickness of the electrophotographic photosensitive member surface layer immediately after production and after the end of durability is determined by measuring nine points in the longitudinal direction in the arbitrary circumferential direction of the electrophotographic photosensitive member (the center in the longitudinal direction of the electrophotographic photosensitive member). As a reference, 0 points, ± 50 mm, ± 90 mm, ± 130 mm, ± 150 mm) and 9 points in the longitudinal direction at a position rotated by 180 ° from the arbitrary circumferential direction, a total of 18 points were measured, and the average value of the 18 points Calculated by

測定方法は、2mmのスポット径で電子写真感光体表面に垂直に光を照射し、分光計(大塚電子製:MCPD−2000)を用いて、反射光の分光測定をおこなう。得られた反射波形をもとに表面層膜厚を算出した。このとき、波長範囲を500nmから750nm、光導電層の屈折率は3.30とし、表面層の屈折率は前述したSi+C原子密度測定の際に行った分光エリプソメトリーの測定より求まる値を用いた。   The measurement method irradiates light perpendicularly on the surface of the electrophotographic photosensitive member with a spot diameter of 2 mm, and performs spectroscopic measurement of reflected light using a spectrometer (manufactured by Otsuka Electronics: MCPD-2000). The surface layer thickness was calculated based on the obtained reflection waveform. At this time, the wavelength range was 500 nm to 750 nm, the refractive index of the photoconductive layer was 3.30, and the refractive index of the surface layer was a value obtained from the spectroscopic ellipsometry measurement performed during the Si + C atom density measurement described above. .

作製直後の電子写真感光体の膜厚を測定してから画像形成装置に取り付け、一連の耐久試験に使用したあと画像形成装置から取り出し、作成直後の測定と同じ位置で膜厚を測定し、作製直後と同様に連続通紙試験した後の表面層膜厚を算出する。そして、作製直後及び連続通紙試験後で得られた表面層の平均膜厚から差分を求め26.5万枚での磨耗量を算出する。そして、成膜条件No.6の電子写真感光体の作製直後及び連続通紙試験後で得られた表面層の平均膜厚の差分に対する各電子写真感光体の表面層の平均膜厚の差分の比率を求め、相対評価を行った。この結果を以下のように5段階評価とし、A乃至Cまでを本発明の効果ありとし、合格とした。評価結果を表2に示す。
A‥成膜条件No.6の電子写真感光体表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真感光体表面層の平均膜厚の差分比率が60%以下で特に優れた耐磨耗性を有する。
B‥成膜条件No.6の電子写真感光体表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真感光体表面層の平均膜厚の差分比率が60%より大きく75%以下で優れている。
C‥成膜条件No.6の電子写真感光体表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真感光体表面層の平均膜厚の差分比率が75%より大きく90%以下で良好である。
D‥成膜条件No.6の電子写真感光体表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真感光体表面層の平均膜厚の差分比率が90%より大きく100%以下で実用上問題なし。
E‥成膜条件No.6の電子写真感光体表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真感光体表面層の平均膜厚の差分比率が100%より大きく、良好ではない。
Measure the film thickness of the electrophotographic photoreceptor immediately after fabrication, attach it to the image forming device, use it for a series of durability tests, take it out from the image forming device, and measure the film thickness at the same position as the measurement immediately after creation. The film thickness of the surface layer after the continuous paper feeding test is calculated in the same manner as immediately after. And a difference is calculated | required from the average film thickness of the surface layer obtained immediately after preparation and after a continuous paper-passing test, and the amount of wear in 265,000 sheets is calculated. And film-forming conditions No. The ratio of the difference in the average film thickness of the surface layer of each electrophotographic photosensitive member to the difference in the average film thickness of the surface layer obtained immediately after the production of the electrophotographic photosensitive member 6 and after the continuous paper passing test is obtained, and the relative evaluation is performed. went. The results were evaluated as follows in five stages, and A to C were regarded as having the effect of the present invention and passed. The evaluation results are shown in Table 2.
A ... Film formation condition No. The difference ratio of the average film thickness of the electrophotographic photosensitive member surface layer produced under each film forming condition with respect to the difference of the average film thickness of the electrophotographic photosensitive member surface layer of No. 6 is 60% or less and particularly excellent wear resistance. Have.
B ... Film formation condition No. The difference ratio of the average film thickness of the electrophotographic photosensitive member surface layer produced under each film forming condition with respect to the difference in the average film thickness of the electrophotographic photosensitive member surface layer of No. 6 is excellent at 60% to 75% or less.
C: Film formation condition No. The difference ratio of the average film thickness of the electrophotographic photosensitive member surface layer produced under each film forming condition to the difference in the average film thickness of the electrophotographic photosensitive member surface layer of No. 6 is good when it is greater than 75% and not more than 90%.
D ... Film formation condition No. The difference ratio of the average film thickness of the electrophotographic photosensitive member surface layer produced under each film forming condition with respect to the difference in the average film thickness of the electrophotographic photosensitive member surface layer of No. 6 is 90% to 100% and there is no practical problem. .
E ... Film formation condition No. The difference ratio of the average film thickness of the electrophotographic photosensitive member surface layer produced under each film forming condition with respect to the difference in the average film thickness of the electrophotographic photosensitive member surface layer of 6 is greater than 100%, which is not good.

(クリーニング不良の評価)
クリーニング不良の評価方法としては、間欠通紙中の画像にクリーニング不良による縦スジやびびり跡の発生をチェックし、また耐久通紙完了後にトナーや無機微粉体による帯電ローラの表面汚染状態をチェックし、以下のように5段階評価とし、A乃至Cまでを合格とした。評価結果を表2に示す。
A‥通紙耐久を通じてクリーニング不良による画像欠陥は見られず、また耐久通紙完了後の帯電ローラの汚染状態も良好である。
B‥通紙耐久を通じてクリーニング不良による画像欠陥は見られないが、耐久通紙完了後の帯電ローラに軽い汚染が見られる。
C‥通紙耐久を通じてクリーニング不良による画像欠陥は見られないが、耐久通紙完了後の帯電ローラに汚染が見られる。
D‥通紙耐久のなかでクリーニング不良による軽微な画像欠陥があった。
E‥通紙耐久のなかでクリーニング不良による画像欠陥があった。
(Evaluation of poor cleaning)
As an evaluation method for defective cleaning, check for occurrence of vertical streaks and chatter marks due to defective cleaning on images during intermittent paper passing, and check the surface contamination of the charging roller with toner or inorganic fine powder after completion of durable paper passing. As described below, a five-step evaluation was made, and A to C were accepted. The evaluation results are shown in Table 2.
A. Image defects due to poor cleaning are not observed through the endurance of paper passing, and the state of contamination of the charging roller after completion of the endurance paper passing is also good.
B. Image defects due to poor cleaning are not observed through endurance of paper passing, but slight contamination is seen on the charging roller after completion of endurance paper passing.
C: No image defect due to poor cleaning is observed through the endurance of the paper passing, but the charging roller after the end of the end of the paper passing is contaminated.
D. There was a slight image defect due to poor cleaning in the paper passing durability.
E. There was an image defect due to poor cleaning in the paper passing durability.

次に、耐摩耗性評価をした感光体を画像形成装置に戻し、感光体ヒータは常時オフ設定のまま、23℃/50%RHの環境下で、印字率4%のA5原稿を用い、A4用紙の長手奥側半分に印字させ、手前側半分を無印字部分として、1日あたり2万5千枚の連続通紙耐久を10日間実施して、25万枚まで行った。   Next, the photoconductor subjected to the abrasion resistance evaluation is returned to the image forming apparatus, and the photoconductor heater is always set to OFF, and an A5 original with a printing rate of 4% is used in an environment of 23 ° C./50% RH. Printing was performed on the back half of the long side of the paper, and the front half was used as a non-printing portion, and 25,000 sheets per day were continuously worn for 10 days, up to 250,000 sheets.

この、苛酷な条件下での連続通紙で、感光体の鳴きとびびりの評価(2)をおこなった。原稿のない感光体およびクリーニングブレード長手方向の半分の部分には印字がないので、クリーニングブレードのニップ部分にトナーおよびトナーに含有する無機微粉体が補給されず、従って無機微粉体が消耗または消失すればクリーニングブレードの潤滑剤が不足する状態となる。この評価で使用している画像形成装置ではクリーニングユニットで回収されたトナーは奥側へ送られて回収され、クリーニングユニット内で回収トナーが手前側へ循環されることもない。モース硬度が低い無機微粉体は摩滅して消失し、表面の原子密度が低い感光体では無機微粉体により削られた微小な溝から無機微粉体がすり抜け、何れも潤滑性が低下すると考えられる。   Evaluation of the squealing and chattering of the photosensitive member (2) was performed by continuous paper passing under this severe condition. Since there is no printing on the photosensitive member without a document and the half of the longitudinal direction of the cleaning blade, the toner and inorganic fine powder contained in the toner are not replenished to the nip portion of the cleaning blade, so that the inorganic fine powder is consumed or lost. If this is the case, the cleaning blade will run out of lubricant. In the image forming apparatus used in this evaluation, the toner collected by the cleaning unit is sent to the back side and collected, and the collected toner is not circulated to the front side in the cleaning unit. It is considered that the inorganic fine powder having a low Mohs hardness is worn away and disappears, and in the photoreceptor having a low atomic density on the surface, the inorganic fine powder slips through a minute groove cut by the inorganic fine powder.

(感光体の鳴き、びびりの評価2)
感光体の鳴きやびびりの評価(1)と同様に、感光体から気になるような音があるかどうかをチェックし、結果を以下のように5段階評価とし、A乃至Cまでを合格とした。評価結果を表2に示す。
A‥感光体の鳴きやびびりは全く認められない。
B‥ごく僅かな頻度で、通常は気付かない程度のごく小さな音が認められた。
C‥僅かな頻度で、通常は気にならない程度の小さな音が認められた。
D‥通常は気にならない程度の小さな音が認められた、または頻度を問わず気になる音を確認した。
E‥鳴き、びびりによる画像欠陥が発生、またはクリーニングブレードがめくれてクリーニング不能となった。
(Evaluation of squeal and chatter of photoconductor 2)
Similar to the evaluation (1) of the squeal and chatter of the photoconductor, it is checked whether there is a sound that is worrisome from the photoconductor, and the result is evaluated as the following five-step evaluation. did. The evaluation results are shown in Table 2.
A: No squeal or chatter on the photoconductor is observed.
B: A very small sound that was not noticed was observed with very little frequency.
C: A small sound that was not usually noticed was observed with a small frequency.
D: A sound that was so small that it was not normally noticed was observed, or a sound that was anxious regardless of frequency.
E ... Image defect caused by squealing or chattering, or cleaning blade turned over, making cleaning impossible.

<実施例2乃至10参考例1乃至5、比較例1乃至5>
使用する感光体とトナーをそれぞれD1乃至D11、T1乃至T10に、表2のように替えたほかは、実施例1と同様にして、実施例2乃至10、参考例1乃至5、および比較例1乃至5の評価をおこなった。なお、比較例1および2については、12.5℃/10%RHでの通紙においてクリーニング部材のびびり、およびクリーニング不良による著しい画像欠陥が発現したため、その後の通紙耐久は中止した。評価結果を表2に示す。
<Examples 2 to 10 , Reference Examples 1 to 5, and Comparative Examples 1 to 5>
Examples 2 to 10, Reference Examples 1 to 5 and Comparative Example were the same as Example 1 except that the photosensitive member and toner used were changed to D1 to D11 and T1 to T10, respectively, as shown in Table 2. Evaluations from 1 to 5 were made. In Comparative Examples 1 and 2, since the cleaning member chattered and a significant image defect due to poor cleaning occurred when the paper was passed at 12.5 ° C./10% RH, the subsequent paper passing durability was stopped. The evaluation results are shown in Table 2.

以上の評価結果より、本発明の効果を確認した。   From the above evaluation results, the effect of the present invention was confirmed.

実施例1乃至3および比較例4乃至5の結果より、感光体表面層の珪素原子の原子密度と炭素原子の原子密度の和が6.60×1022原子/cm3以上であることで耐摩耗性と画像流れに有効であることがわかる。 From the results of Examples 1 to 3 and Comparative Examples 4 to 5, it was confirmed that the sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the surface layer of the photoreceptor was 6.60 × 10 22 atoms / cm 3 or more. It can be seen that it is effective for abrasion and image flow.

また、実施例1および10、参考例1乃至5、比較例1乃至3の結果より、前記感光体を用いた場合に、モース硬度が4.0以上7.0以下である無機微粉体をトナーが有していれば、クリーニング部材を強く押しつける条件でも鳴きやびびりを発生させず、クリーニング性を良好に維持できることがわかった。無機微粉体のモース硬度が4.0未満の場合は感光体の停止時鳴きや起動時のびびりが起き、それに伴ってクリーニングブレードからトナーがすり抜け、画像欠陥を起こし帯電ローラを汚染した。モース硬度が7.0を超えると感光体の削れが促進され、耐久終了時には軽微ではあったが感光体の周キズによるスジ状の画像欠陥が見られた。 Further, based on the results of Examples 1 and 10 , Reference Examples 1 to 5 , and Comparative Examples 1 to 3, an inorganic fine powder having a Mohs hardness of 4.0 or more and 7.0 or less when toner is used. It has been found that the cleaning performance can be maintained well without causing squealing or chattering even under the condition of strongly pressing the cleaning member. When the Mohs hardness of the inorganic fine powder was less than 4.0, the squeal at the stop of the photoconductor or the chatter at the start-up occurred, and accordingly, the toner slipped through the cleaning blade, causing image defects and contaminating the charging roller. When the Mohs hardness exceeded 7.0, the photoconductor was scraped, and at the end of the endurance, although slight, streak-like image defects due to circumferential scratches on the photoconductor were observed.

参考例1乃至5の結果より、該無機微粉体の一次粒子の個数平均粒径が30nm以上800nm以下であると感光体の鳴きやびびり、クリーニング性、画像流れが良好であり、100nm以上300nm以下であるとさらに良好な結果であった。30nm未満でも800nmを超えても、クリーニングブレードと感光体が接するニップ部での潤滑効果が小さくなり、感光体の鳴きやびびりを起こしやすくなり、30nm未満では無機微粉体のすり抜けによって帯電ローラが白く汚染され、800nmを超えるとトナーすり抜けにより黒く汚染された。 From the results of Reference Examples 1 to 5 , when the number average particle size of the primary particles of the inorganic fine powder is 30 nm or more and 800 nm or less, the squealing, chattering, cleaning property and image flow of the photoreceptor are good, and 100 nm or more and 300 nm or less. The result was even better. If the thickness is less than 30 nm or more than 800 nm, the lubricating effect at the nip where the cleaning blade and the photosensitive member are in contact with each other is reduced, and the photosensitive member is liable to squeal and chatter. When it exceeded 800 nm, it was contaminated black due to toner passing through.

実施例1および10、参考例1乃至3の結果より、該無機微粉体がチタン酸ストロンチウムであると好ましく、実施例1と10の比較で、さらに六面体の形状であると好ましいことがわかった。チタン酸ストロンチウムが弱正帯電の帯電特性を持つことと、稜線や頂点を持つ形状であることが何らかの効果を発揮し、クリーニングブレードと感光体のニップ部に最適に配置され、好ましい働きをしていると考えている。 From the results of Examples 1 and 10 and Reference Examples 1 to 3 , it was found that the inorganic fine powder was preferably strontium titanate, and in comparison with Examples 1 and 10, it was further preferable that the inorganic fine powder had a hexahedral shape. Strontium titanate has a slightly positive charging characteristic and has a shape with ridges and vertices, which has some effect and is optimally placed in the nip part of the cleaning blade and the photoconductor and works well. I think.

実施例1乃至9および比較例4乃至5の結果より、該電子写真感光体の表面層の珪素原子と炭素原子の原子密度の和に対する炭素原子の原子密度の比が0.61以上0.75以下であるとさらに好ましいことがわかった。この比が0.61未満であると階調性が悪化し、0.75を超えると感度が低下している。   From the results of Examples 1 to 9 and Comparative Examples 4 to 5, the ratio of the atomic density of carbon atoms to the sum of the atomic densities of silicon atoms and carbon atoms in the surface layer of the electrophotographic photosensitive member is 0.61 or more and 0.75. It was found that the following is more preferable. If this ratio is less than 0.61, the gradation is deteriorated, and if it exceeds 0.75, the sensitivity is lowered.

さらに実施例1乃至9および比較例4乃至5の結果より、珪素原子の原子密度、炭素原子の原子密度、および水素原子の原子密度の和に対する水素原子の原子密度の比が0.30以上0.45以下であるとさらに好ましいことがわかった。この比が0.30未満であると感度が悪化し、0.45を超えると耐摩耗性が悪化している。   Furthermore, from the results of Examples 1 to 9 and Comparative Examples 4 to 5, the ratio of the atomic density of hydrogen atoms to the sum of the atomic density of silicon atoms, the atomic density of carbon atoms, and the atomic density of hydrogen atoms is 0.30 or more and 0 It was found that it was more preferable that it be .45 or less. When this ratio is less than 0.30, the sensitivity is deteriorated, and when it exceeds 0.45, the wear resistance is deteriorated.

また、鳴きやびびりの評価(2)において、比較例3乃至5は23℃/50%RHにおける連続通紙途中にブレードめくれが発生し、通紙耐久を中止した。比較例3はモース硬度の高い無機微粉体であり、比較例4乃至5は原子密度の低い感光体である。どちらも無機微粉体による感光体表面の研磨力が大きいと考えられ、したがって感光体表面が無機微粉体により削られ、微小な溝から無機微粉体がすり抜けて消失し、潤滑性が低下してブレードがめくれたものと思われる。   In the evaluation (2) of squeal and chatter, in Comparative Examples 3 to 5, blade turning occurred during continuous sheet passing at 23 ° C./50% RH, and the sheet passing durability was stopped. Comparative Example 3 is an inorganic fine powder having a high Mohs hardness, and Comparative Examples 4 to 5 are photoreceptors having a low atomic density. In both cases, it is considered that the polishing force on the surface of the photoconductor by the inorganic fine powder is large. Therefore, the surface of the photoconductor is scraped by the inorganic fine powder, and the inorganic fine powder slips through the minute groove and disappears. It seems to have been turned up.

以上より、電子写真感光体表面層の珪素原子の原子密度と炭素原子の原子密度の和が6.60×1022原子/cm3以上とし、トナーに含まれる該無機微粉体はモース硬度が4.0以上7.0以下であることにより、クリーニング部材の鳴きやびびりが発生せず、また感光体の摩耗を促進させることなく画像流れ等の画像欠陥を抑制でき、幅広い使用環境において高画質を達成する長寿命で低電力な画像形成装置を得ることができる。 Thus, the sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the surface layer of the electrophotographic photosensitive member is set to 6.60 × 10 22 atoms / cm 3 or more, and the inorganic fine powder contained in the toner has a Mohs hardness of 4 When the value is 0.0 or more and 7.0 or less, the cleaning member does not squeal or chatter, and image defects such as image flow can be suppressed without accelerating the wear of the photosensitive member. A long-life and low-power image forming apparatus can be obtained.

さらに、無機微粉体一次粒子の個数平均粒径が30nm以上800nm以下であり、その主成分がチタン酸ストロンチウムであり、その形状は6個の四角形で囲まれた凸多面体である六面体であり、さらに該電子写真感光体の表面層の珪素原子と炭素原子の原子密度の和に対する炭素原子の原子密度の比が0.61以上0.75以下であり、珪素原子の原子密度、炭素原子の原子密度、および水素原子の原子密度の和に対する水素原子の原子密度の比が0.30以上0.45以下であれば、さらに出力画像の階調性や濃度に優れ、感光体の鳴きやびびりにとって苛酷な条件で長時間使用されても、良好な画像品質をさらに維持できる画像形成装置を得ることができる。   Furthermore, the number average particle size of the inorganic fine powder primary particles is 30 nm to 800 nm, the main component is strontium titanate, and the shape is a hexahedron that is a convex polyhedron surrounded by six squares, The ratio of the atomic density of carbon atoms to the sum of the atomic densities of silicon atoms and carbon atoms in the surface layer of the electrophotographic photosensitive member is 0.61 or more and 0.75 or less, and the atomic density of silicon atoms and the atomic density of carbon atoms If the ratio of the atomic density of the hydrogen atom to the sum of the atomic densities of the hydrogen atoms is not less than 0.30 and not more than 0.45, the gradation and density of the output image are further excellent, which is severe for the noise and chatter of the photoreceptor. An image forming apparatus that can maintain good image quality even when used for a long time under various conditions can be obtained.

Figure 0005300360
Figure 0005300360

Figure 0005300360
Figure 0005300360

本発明の電子写真感光体の作製に用いられるプラズマCVD装置の一例の模式図である。It is a schematic diagram of an example of the plasma CVD apparatus used for preparation of the electrophotographic photosensitive member of the present invention. 従来のコロナ帯電方式を使用した電子写真装置の模式的概略断面図である。It is a typical schematic sectional drawing of the electrophotographic apparatus using the conventional corona charging system. 実施例で用いた接触帯電方式に改造した電子写真装置の概略断面図である。It is a schematic sectional drawing of the electrophotographic apparatus remodeled to the contact charging system used in the Example.

符号の説明Explanation of symbols

1100 堆積装置
1110 反応容器
1111 カソード電極
1112 導電性基体
1113 基体加熱用ヒータ
1114 ガス導入管
1115 高周波マッチングボックス
1116 ガス配管
1117 リークバルブ
1118 メインバルブ
1119 真空計
1120 高周波電源
1121 絶縁材料
1123 受け台
1200 ガス供給装置
1211〜1215 マスフローコントローラ
1221〜1225 ボンベ
1231〜1235 バルブ
1241〜1245 流入バルブ
1251〜1255 流出バルブ
1260 補助バルブ
1261〜1265 圧力調整器
1100 Deposition apparatus 1110 Reaction vessel 1111 Cathode electrode 1112 Conductive substrate 1113 Heater for substrate heating 1114 Gas introduction tube 1115 High-frequency matching box 1116 Gas piping 1117 Leak valve 1118 Main valve 1119 Vacuum gauge 1120 High-frequency power source 1121 Insulating material 1123 Receiving base 1200 Gas supply Devices 1211 to 1215 Mass flow controllers 1221 to 1225 Cylinders 1231 to 1235 Valves 1241 to 1245 Inflow valves 1251 to 1255 Outflow valves 1260 Auxiliary valves 1261 to 1265 Pressure regulators

Claims (5)

静電荷像担持体を帯電部材により帯電させる工程と、帯電された静電荷像担持体に静電潜像を形成させる静電潜像形成工程と、トナー担持体上に担持させたトナーを該静電潜像に転移させて可視化する現像工程と、該静電荷像担持体上に形成されたトナー画像を記録媒体上に転写する転写工程と、転写工程後の静電荷像担持体表面をクリーニング部材でクリーニングするクリーニング工程とを有する画像形成方法であって、
該静電荷像担持体は、少なくとも光導電層と、水素化アモルファス炭化珪素で形成されている表面層とを順次積層した電子写真感光体であり、該表面層の珪素原子の原子密度と炭素原子の原子密度の和が6.60×1022原子/cm3以上であり、
該トナーは少なくとも結着樹脂および着色剤を含有するトナー粒子と無機微粉体を有するトナーであり、該無機微粉体は、チタン酸ストロンチウムであり、該無機微粉体のモース硬度が4.0以上7.0以下であることを特徴とする画像形成方法。
A step of charging the electrostatic image carrier with a charging member; an electrostatic latent image forming step for forming an electrostatic latent image on the charged electrostatic image carrier; and a toner carried on the toner carrier. A developing process for transferring to an electrostatic latent image for visualization, a transfer process for transferring a toner image formed on the electrostatic charge image carrier onto a recording medium, and a surface of the electrostatic charge image carrier after the transfer process as a cleaning member And an image forming method having a cleaning step of cleaning with
The electrostatic image bearing member is an electrophotographic photosensitive member in which at least a photoconductive layer and a surface layer formed of hydrogenated amorphous silicon carbide are sequentially stacked, and the atomic density of silicon atoms and carbon atoms in the surface layer The sum of the atomic densities of 6.60 × 10 22 atoms / cm 3 or more,
The toner is a toner having toner particles containing at least a binder resin and a colorant and an inorganic fine powder, the inorganic fine powder is strontium titanate, and the inorganic fine powder has a Mohs hardness of 4.0 or more and 7 An image forming method, wherein the image forming method is 0.0 or less.
該電子写真感光体の表面層における、珪素原子の原子数と炭素原子の原子数の和に対する炭素原子の原子数の比が0.61以上0.75以下であることを特徴とする請求項1に記載の画像形成方法。   2. The ratio of the number of carbon atoms to the sum of the number of silicon atoms and the number of carbon atoms in the surface layer of the electrophotographic photosensitive member is 0.61 or more and 0.75 or less. The image forming method described in 1. 該電子写真感光体の表面層における、珪素原子の原子数、炭素原子の原子数、および水素原子の原子数の和に対する水素原子の原子数の比が0.30以上0.45以下であることを特徴とする請求項1又は2に記載の画像形成方法。   The ratio of the number of hydrogen atoms to the sum of the number of silicon atoms, the number of carbon atoms, and the number of hydrogen atoms in the surface layer of the electrophotographic photosensitive member is 0.30 or more and 0.45 or less. The image forming method according to claim 1 or 2. 該無機微粉体は、一次粒子の個数平均粒径が30nm以上800nm以下であることを特徴とする請求項1乃至3のいずれか1項に記載の画像形成方法。   The image forming method according to any one of claims 1 to 3, wherein the inorganic fine powder has a number average particle size of primary particles of 30 nm or more and 800 nm or less. 該無機微粉体は、6個の四角形で囲まれた凸多面体である六面体の粒子形状を有する粒子を50個数%以上含有していることを特徴とする請求項1乃至4のいずれか1項に記載の画像形成方法。   5. The inorganic fine powder according to any one of claims 1 to 4, wherein the inorganic fine powder contains 50% by number or more of particles having a hexahedral particle shape that is a convex polyhedron surrounded by six quadrangles. The image forming method described.
JP2008191952A 2008-07-25 2008-07-25 Image forming method Expired - Fee Related JP5300360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191952A JP5300360B2 (en) 2008-07-25 2008-07-25 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191952A JP5300360B2 (en) 2008-07-25 2008-07-25 Image forming method

Publications (3)

Publication Number Publication Date
JP2010032598A JP2010032598A (en) 2010-02-12
JP2010032598A5 JP2010032598A5 (en) 2011-09-29
JP5300360B2 true JP5300360B2 (en) 2013-09-25

Family

ID=41737183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191952A Expired - Fee Related JP5300360B2 (en) 2008-07-25 2008-07-25 Image forming method

Country Status (1)

Country Link
JP (1) JP5300360B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215573A (en) * 2010-03-17 2011-10-27 Ricoh Co Ltd Toner, method of manufacturing the same, developer, and image forming method
JP7229757B2 (en) * 2018-12-21 2023-02-28 キヤノン株式会社 Cleaning device, process cartridge and image forming device
JP7459701B2 (en) 2020-07-10 2024-04-02 コニカミノルタ株式会社 Toner for developing electrostatic images

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124841B2 (en) * 1992-08-03 2001-01-15 京セラ株式会社 Electrophotographic photoreceptor
JP3972402B2 (en) * 1997-04-14 2007-09-05 東洋インキ製造株式会社 Toner for developing electrostatic image and image forming method using the toner
JP4546055B2 (en) * 2002-09-24 2010-09-15 キヤノン株式会社 Method for setting brush density of cleaning brush and area of one pixel of electrostatic image
JP2007183339A (en) * 2006-01-05 2007-07-19 Canon Inc Image forming apparatus
WO2007080826A1 (en) * 2006-01-13 2007-07-19 Toyo Ink Mfg. Co., Ltd. Toner for electrostatic charge image development

Also Published As

Publication number Publication date
JP2010032598A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4273170B2 (en) Image forming method
JP5300360B2 (en) Image forming method
JP2004145325A (en) Fine silica particle, toner, two-component developer and image forming method
JP4850936B2 (en) Image forming method
JP5875275B2 (en) toner
JP2008129401A (en) Image forming method
JP4773940B2 (en) Toner and image forming method
JP3848165B2 (en) Electrophotographic method and electrophotographic apparatus
JP3854796B2 (en) Image forming apparatus
JP4875850B2 (en) Image forming method
JP3976955B2 (en) Electrophotographic method
JPH11190916A (en) Method for forming image
JP2009180890A (en) Electrostatic latent image developing toner
CN101344736A (en) External toner additive, toner and image forming apparatus using the same
JP3919506B2 (en) Image forming method
JP2020034653A (en) Image forming device
JP2020034654A (en) Image forming device
JP2007079230A (en) Electrophotographic apparatus
JP2002229234A (en) Electrophotographic method and electrophotographic apparatus
JP3880379B2 (en) Developer, image forming method and image forming apparatus
JP3122848B2 (en) Magnetic developer and image forming method
JPH05333594A (en) Magnetic developer
JP2007292985A (en) Image forming method
JP2003207983A (en) Method and apparatus for forming image
JP2002214870A (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R151 Written notification of patent or utility model registration

Ref document number: 5300360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees