[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5399833B2 - Optical device and manufacturing method thereof - Google Patents

Optical device and manufacturing method thereof Download PDF

Info

Publication number
JP5399833B2
JP5399833B2 JP2009213045A JP2009213045A JP5399833B2 JP 5399833 B2 JP5399833 B2 JP 5399833B2 JP 2009213045 A JP2009213045 A JP 2009213045A JP 2009213045 A JP2009213045 A JP 2009213045A JP 5399833 B2 JP5399833 B2 JP 5399833B2
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
groove
optical film
polarizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009213045A
Other languages
Japanese (ja)
Other versions
JP2011064759A (en
Inventor
康夫 都甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2009213045A priority Critical patent/JP5399833B2/en
Publication of JP2011064759A publication Critical patent/JP2011064759A/en
Application granted granted Critical
Publication of JP5399833B2 publication Critical patent/JP5399833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、散乱性を持つ光学膜を有する光学装置及びその製造方法に関する。   The present invention relates to an optical device having a scattering optical film and a method for manufacturing the same.

液晶表示装置のバックライトと液晶表示素子との間に配置する散乱板として、様々なものが提案されている(例えば特許文献1)。   Various things are proposed as a scattering plate arrange | positioned between the backlight of a liquid crystal display device, and a liquid crystal display element (for example, patent document 1).

特開2001−155520号公報JP 2001-155520 A

本発明の一目的は、散乱性を持つ新規な光学膜を有する光学装置及びその製造方法を提供することである。   An object of the present invention is to provide an optical device having a novel optical film having scattering properties and a method for manufacturing the same.

本発明の一観点によれば、第1の方向に配向処理が施された第1の基板と、前記第1の基板上に液晶材料で形成され、前記第1の方向に液晶が配向して屈折率が大きい屈折率異方性を有し、溝の長さ方向が一方向に沿い溝のピッチや深さが一定でなく不規則に形成された溝構造を有し、入射光に対して乱反射・散乱性を付与する第1の光学膜と、前記第1の方向と平行に透過軸方向が配置された偏光板とを有する光学装置が提供される。 According to one aspect of the present invention, a first substrate that has been subjected to an alignment process in a first direction, and a liquid crystal material formed on the first substrate, the liquid crystal is aligned in the first direction. It has a refractive index greater refractive index anisotropy, the pitch and the depth of the grooves along the length direction of the groove in one direction has a irregularly shaped groove structure not constant, the incident light a first optical film to grant diffuse-scattering property, the first optical device having a polarizing plate parallel to the transmission axis direction is arranged and the direction are provided.

光学膜は、屈折率の大きい第1の方向の偏光成分を、膜面内で第1の方向に交差する方向の偏光成分より強く出射させることができ、また、入射光を散乱させることができる。   The optical film can emit the polarized light component in the first direction having a large refractive index more strongly than the polarized light component in the direction intersecting the first direction in the film surface, and can scatter incident light. .

図1A〜図1Dは、本発明の実施例による光学膜の主要な製造工程を示す概略断面図である。1A to 1D are schematic cross-sectional views illustrating main manufacturing steps of an optical film according to an embodiment of the present invention. 図2Aは、2種のサンプルのラビング方向を示す基板の概略平面図であり、図2Bは、スタンパ基板を示す概略平面図である。FIG. 2A is a schematic plan view of a substrate showing rubbing directions of two types of samples, and FIG. 2B is a schematic plan view showing a stamper substrate. 図3Aは、実施例の光学膜の偏光顕微鏡写真であり、図3Bは、実施例の光学膜の概略断面形状を示すグラフであり、図3Cは、溝平行サンプルを示す概略平面図であり、図3Dは、溝直交サンプルを示す概略平面図である。3A is a polarization micrograph of the optical film of the example, FIG. 3B is a graph showing a schematic cross-sectional shape of the optical film of the example, FIG. 3C is a schematic plan view showing a groove parallel sample, FIG. 3D is a schematic plan view showing a groove orthogonal sample. 図4は、第1の実験の測定系を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing the measurement system of the first experiment. 図5は、第1の実験の溝平行サンプルの光透過率を示すグラフである。FIG. 5 is a graph showing the light transmittance of the groove parallel sample of the first experiment. 図6は、第1の実験の溝直交サンプルの光透過率を示すグラフである。FIG. 6 is a graph showing the light transmittance of the groove orthogonal sample of the first experiment. 図7は、第2の実験の測定系を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing the measurement system of the second experiment. 図8は、第2の実験の溝平行サンプルの10°入射の光透過率を示すグラフである。FIG. 8 is a graph showing the light transmittance at 10 ° incidence of the groove parallel sample of the second experiment. 図9は、第2の実験の溝直交サンプルの10°入射の光透過率を示すグラフである。FIG. 9 is a graph showing the light transmittance at 10 ° incidence of the groove orthogonal sample of the second experiment. 図10は、第2の実験の溝平行サンプルの20°入射の光透過率を示すグラフである。FIG. 10 is a graph showing the light transmittance at 20 ° incidence of the groove parallel sample of the second experiment. 図11は、第2の実験の溝直交サンプルの20°入射の光透過率を示すグラフである。FIG. 11 is a graph showing the light transmittance at 20 ° incidence of the groove orthogonal sample of the second experiment. 図12は、実施例の液晶表示装置の概略断面図である。FIG. 12 is a schematic cross-sectional view of the liquid crystal display device of the example. 図13は、第3の実験の積層散乱板を示す概略斜視図である。FIG. 13 is a schematic perspective view showing the multilayer scattering plate of the third experiment. 図14は、第3の実験の垂直入射の光透過率を示すグラフである。FIG. 14 is a graph showing light transmittance at normal incidence in the third experiment. 図15は、第3の実験の10°入射の光透過率を示すグラフである。FIG. 15 is a graph showing the light transmittance at 10 ° incidence in the third experiment. 図16は、第3の実験の20°入射の光透過率を示すグラフである。FIG. 16 is a graph showing the light transmittance at 20 ° incidence in the third experiment.

まず、図1〜図3を参照して、本発明の実施例による光学膜の製造方法について説明する。   First, with reference to FIGS. 1-3, the manufacturing method of the optical film by the Example of this invention is demonstrated.

図1A〜図1Dは、実施例の光学膜の主要な製造工程を示す概略断面図である。まず、平板状の透明基板1aを準備した。透明基板1aは、例えばガラス基板であり、実施例として、厚さ0.7mmtのソーダライムガラス(青板ガラス)を用いた。なお、無アルカリガラス(白板ガラス)を用いることもできる。   1A to 1D are schematic cross-sectional views showing main manufacturing steps of the optical film of the example. First, a flat transparent substrate 1a was prepared. The transparent substrate 1a is, for example, a glass substrate. As an example, soda lime glass (blue plate glass) having a thickness of 0.7 mmt was used. In addition, alkali-free glass (white plate glass) can also be used.

透明基板1aの表面を洗浄した。例えば、純水洗浄もしくは洗剤洗浄の後、プラズマ洗浄もしくは紫外線及び赤外線洗浄等を用いることができる。   The surface of the transparent substrate 1a was cleaned. For example, plasma cleaning or ultraviolet and infrared cleaning can be used after pure water cleaning or detergent cleaning.

そして、透明基板1a上に、配向膜材料(例えば日産化学SE−410)をフレキソ印刷で所定形状に配置し、180℃で1時間焼成して配向膜1bを形成した。配向膜1bに、ラビングマシンでラビング処理を行った。ラビング方向の異なる2種類のサンプルを作成した。なお、透明基板1aと配向膜1bをまとめて、(配向処理が施された)基板1と呼ぶこととする。   Then, an alignment film material (for example, Nissan Chemical SE-410) was placed in a predetermined shape on the transparent substrate 1a by flexographic printing, and baked at 180 ° C. for 1 hour to form an alignment film 1b. The alignment film 1b was rubbed with a rubbing machine. Two types of samples with different rubbing directions were prepared. The transparent substrate 1a and the alignment film 1b are collectively referred to as the substrate 1 (which has been subjected to alignment treatment).

図2Aは、2種のサンプルのラビング方向を示す基板1の概略平面図である。後に光学膜に形成される溝の長さ方向(これを溝方向と呼ぶこともある)に対し、第1のサンプルは、溝方向と平行な方向にラビング方向が設定され、第2のサンプルは、溝方向と直交する方向にラビング方向が設定されている。第1のサンプルを溝平行サンプル、第2のサンプルを溝直交サンプルと呼ぶこととする。   FIG. 2A is a schematic plan view of the substrate 1 showing rubbing directions of two types of samples. The rubbing direction of the first sample is set in a direction parallel to the groove direction with respect to the length direction of the groove to be formed in the optical film later (this may also be referred to as the groove direction), and the second sample is The rubbing direction is set in a direction orthogonal to the groove direction. The first sample is referred to as a groove parallel sample, and the second sample is referred to as a groove orthogonal sample.

図1Aに示すように、基板1の配向膜1b上に、紫外線硬化性液晶材料をディスペンサ100により滴下して、液晶材料膜2aを形成した(液晶材料膜2aに後述の処理を行って光学膜2を形成する)。紫外線硬化性液晶材料として、DIC製のUCL−001(Δn=0.152)に反応開始剤を0.1wt%〜0.5wt%添加したものを用いた。   As shown in FIG. 1A, an ultraviolet curable liquid crystal material is dropped by a dispenser 100 on an alignment film 1b of a substrate 1 to form a liquid crystal material film 2a (the liquid crystal material film 2a is subjected to processing described later to form an optical film). 2). As the ultraviolet curable liquid crystal material, a material obtained by adding 0.1 wt% to 0.5 wt% of a reaction initiator to UCL-001 (Δn = 0.152) manufactured by DIC was used.

反応開始剤は、紫外線(365nm付近)に感度を持つ材料であれば特に限定はなく、実施例ではチバケミカルズ製のイルガキュア819を用いた。なお、液晶材料は、使用前に充分脱泡させておくのが好ましく、実施例では10Paのチャンバ内に5分〜1時間放置した。   The reaction initiator is not particularly limited as long as it is a material sensitive to ultraviolet rays (around 365 nm). In the examples, Irgacure 819 manufactured by Ciba Chemicals was used. The liquid crystal material is preferably sufficiently degassed before use. In the examples, the liquid crystal material was left in a 10 Pa chamber for 5 minutes to 1 hour.

配向膜1b上に形成することにより、液晶材料膜2a中の液晶分子の配向が、ラビング方向に揃う。これにより、光学膜2の面内で、ラビング方向の屈折率が大きくなるように、屈折率異方性が付与される。   By forming on the alignment film 1b, the alignment of the liquid crystal molecules in the liquid crystal material film 2a is aligned in the rubbing direction. Thereby, in the plane of the optical film 2, refractive index anisotropy is imparted so that the refractive index in the rubbing direction is increased.

図2Bは、スタンパ基板3を示す概略平面図である。スタンパ基板3は、表面に凹凸構造が形成されている。スタンパ基板3として、表面にバイトで溝を形成した銅板を用いた。先端の非対称なバイトを回転させながら、かつ深さを場所で変えながら切削を行って、長さ方向はほぼ一方向に揃うが、ピッチや深さが一定でなく所定範囲に分布する溝を多数形成した。実施例では、ピッチが3μm〜6μm程度の範囲に分布し、深さが1μm〜4μm程度の範囲に分布する(平均ピッチ4.5μm、平均深さ3μmの)溝を形成した。   FIG. 2B is a schematic plan view showing the stamper substrate 3. The stamper substrate 3 has an uneven structure on the surface. As the stamper substrate 3, a copper plate having a groove formed on the surface with a cutting tool was used. While cutting the asymmetric cutting tool at the tip and changing the depth depending on the location, the length direction is almost uniform, but the pitch and depth are not constant, but there are many grooves distributed in a predetermined range. Formed. In the examples, grooves having a pitch distributed in the range of about 3 μm to 6 μm and a depth distributed in the range of about 1 μm to 4 μm (average pitch 4.5 μm, average depth 3 μm) were formed.

スタンパ基板3に、スプレイ方式で離型剤をコーティングした。離型剤をコーティングして約8時間放置した後、60℃で1時間加熱処理した。なお、スタンパ基板3には配向処理を行わなかった。   A release agent was coated on the stamper substrate 3 by a spray method. The release agent was coated and allowed to stand for about 8 hours, followed by heat treatment at 60 ° C. for 1 hour. The stamper substrate 3 was not subjected to alignment treatment.

次に、図1Bに示すように、基板1をスタンパ基板3と重ね合わせてプレスし、液晶材料膜2aの表面に、スタンパ基板3の凹凸構造を転写して、光学膜2を形成した。スタンパ基板3の凹凸構造の頂部分が基板1に接する程度に、充分にプレスした。溝平行サンプルでは、スタンパ基板3の溝方向とラビング方向が平行になるように、溝直交サンプルでは、スタンパ基板3の溝方向とラビング方向が直交するように、重ね合わせを行なった。   Next, as shown in FIG. 1B, the substrate 1 was superimposed on the stamper substrate 3 and pressed, and the concavo-convex structure of the stamper substrate 3 was transferred to the surface of the liquid crystal material film 2a to form the optical film 2. The stamper substrate 3 was sufficiently pressed so that the top portion of the concavo-convex structure was in contact with the substrate 1. In the groove parallel sample, the stacking was performed so that the groove direction of the stamper substrate 3 and the rubbing direction were parallel, and in the groove orthogonal sample, the groove direction of the stamper substrate 3 and the rubbing direction were orthogonal.

基板1とスタンパ基板3の重ね合わせ及びプレスは、真空度10Paの真空中で行なった。なお、空気の混入が避けられればよいので、真空度はもっと低くすることもできる。大気中での実施も可能である。大気中の場合、例えば両基板を重ねて仮プレス状態とした後、透明基板側から観察して空気が入っている部分については、個別に圧を加えて空気を基板外へ追いやってから本プレスを行なうとよい。   The overlapping and pressing of the substrate 1 and the stamper substrate 3 were performed in a vacuum with a degree of vacuum of 10 Pa. It should be noted that the degree of vacuum can be further reduced as long as air mixing is avoided. Implementation in the atmosphere is also possible. In the atmosphere, for example, after both substrates are placed in a temporary press state, the part containing air observed from the transparent substrate side is individually pressed to drive the air out of the substrate and then press It is good to do.

なお、液晶材料は、光学膜形成に必要な量が基板1上に滴下されていることが理想であるが、多少多くても、スタンパ基板3の溝の両端から溢れさせることができるので構わない。なお、溢れた液晶材料を回収して再利用するようにしてもよい。   It is ideal that the liquid crystal material is dripped onto the substrate 1 in an amount necessary for forming the optical film, but it may be overflowed from both ends of the groove of the stamper substrate 3 even if it is somewhat larger. . The overflowing liquid crystal material may be collected and reused.

次に、図1Cに示すように、両基板1、3をプレスした状態のまま大気中に戻して、透明な基板1側から、基板全面に紫外線4を照射した。波長365nmについて2J/cm以上の照射条件とした。照射強度は、30mW/cm以上が望ましい。紫外線照射により、光学膜2中の紫外線硬化性液晶材料がポリマー化する。 Next, as shown in FIG. 1C, both substrates 1 and 3 were returned to the atmosphere in a pressed state, and the entire surface of the substrate was irradiated with ultraviolet rays 4 from the transparent substrate 1 side. Irradiation conditions of 2 J / cm 2 or more were set for a wavelength of 365 nm. The irradiation intensity is desirably 30 mW / cm 2 or more. The ultraviolet curable liquid crystal material in the optical film 2 is polymerized by the ultraviolet irradiation.

次に、図1Dに示すように、スタンパ基板3を光学膜2から剥離した。基板1及びスタンパ基板3のうち片側の基板の辺に力を加えて徐々に剥がすのではなく、両基板それぞれの辺に力を加えられるようにしておき、一気に加圧して面全体に同時に剥離されるようにすることで、きれいに剥がすことができる。このようにして、実施例の、溝平行サンプル及び溝直交サンプルの光学膜を作製した。なお、基板1と光学膜2をまとめて、散乱板5と呼ぶこともある。   Next, as shown in FIG. 1D, the stamper substrate 3 was peeled from the optical film 2. Rather than applying force to one side of the substrate 1 and the stamper substrate 3 and peeling off gradually, force is applied to each side of both substrates, and the entire surface is peeled off simultaneously by pressing at once. By doing so, it can be removed cleanly. Thus, the optical film of the groove | channel parallel sample and groove | channel orthogonal sample of an Example was produced. The substrate 1 and the optical film 2 may be collectively referred to as a scattering plate 5.

なお、スタンパ基板への離型剤のコーディング処理は、毎回の転写・剥離に対して行う必要はない。実施例の材料では、1回の離型剤のコーディング処理で10回程度の転写・剥離を行なうことができた。なお、離型剤を使わずに、トリアジンコーティング等のコーティングをスタンパ基板に行なってもよい。この場合数万回以上のプレス加工に耐えうるが、コーティング加工は高価となる。   It is not necessary to perform the coding process of the release agent on the stamper substrate for each transfer / peeling. With the material of the example, the transfer / peeling could be performed about 10 times with one release agent coding process. In addition, you may perform coating, such as a triazine coating, on a stamper board | substrate, without using a mold release agent. In this case, it can withstand tens of thousands of press processes, but the coating process is expensive.

なお、スタンパ基板材料として、硬質材料の一例として銅を示したが、フィルムやプラスチック等の柔軟な材料を用いることもできる。また、硬質材料である銅で作製した母型基板から、フィルム上に凹凸構造を反転転写して作製したスタンパ基板を用いても、同様の光学膜を形成することができた。   In addition, although copper was shown as an example of a hard material as a stamper board | substrate material, flexible materials, such as a film and a plastic, can also be used. Further, a similar optical film could be formed by using a stamper substrate prepared by reversing and transferring a concavo-convex structure on a film from a base substrate made of copper, which is a hard material.

フィルムを用いた柔軟なスタンパ基板の場合、プレス加工は、ラミネータによる貼り合せ加工も採用可能なので、硬質のスタンパ基板よりも作業は容易になる。また、紫外線処理後の剥離で、片側の基板側から徐々に剥がしてもきれいに剥がすことができる。さらに、スタンパ基板側から紫外線を照射することも可能となる。   In the case of a flexible stamper substrate using a film, the pressing process can also be performed by a laminator, so that the work becomes easier than a hard stamper substrate. Moreover, even if it peels off from the one substrate side by peeling after ultraviolet treatment, it can peel off neatly. Furthermore, it is possible to irradiate ultraviolet rays from the stamper substrate side.

ラミネータによる貼り合わせプレス加工工程を採用する場合は、転写される凹凸形状にほとんど気泡が含まれないため、プレス加工装置全体を真空度の高い環境で稼動する必要がなく、簡易な設備での生産を可能とする。ラミネータによる貼り合わせプレス加工で気泡の発生が少ないのは、ラミネータによる順次加圧操作により膜材料の型内部への充填とともに、型内部に残る空気が徐々に外部へ移動するためと考えられる。硬質の型を用いるプレス加工では、加圧操作が面一括に行なわれるため、このような効果が得られない。   When using a laminator-bonding press process, there is almost no air bubbles in the transferred concavo-convex shape, so there is no need to operate the entire press processing device in a high vacuum environment and production with simple equipment. Is possible. The reason why the generation of bubbles is small in the laminating and pressing process is considered to be that the air remaining in the mold gradually moves to the outside as the film material is filled into the mold by the sequential pressurizing operation by the laminator. In the press working using a hard die, such an effect cannot be obtained because the pressing operation is performed on the entire surface.

なお、透明基板材料として、硬質材料の一例としてガラスを示したが、フィルムやプラスチック等の柔軟な材料を用いることもできる。この場合も、プレス加工は、ラミネータによる貼り合せ加工により実現可能であるので、硬質のスタンパ基板によるプレス加工よりも作業は容易になる。また、紫外線処理後のスタンパ基板剥離工程で、透明基板も柔軟な材料で構成されている場合は、より容易に、片側の基板側から徐々に剥がしてもきれいに剥がすことができる。   In addition, although glass was shown as an example of a hard material as a transparent substrate material, flexible materials, such as a film and a plastic, can also be used. Also in this case, since the press work can be realized by the bonding process using a laminator, the work becomes easier than the press process using a hard stamper substrate. Further, in the stamper substrate peeling step after the ultraviolet treatment, when the transparent substrate is also made of a flexible material, it can be more easily peeled off even if it is gradually peeled off from one side of the substrate.

なお、光学膜形成に適した紫外線硬化性液晶材料は、DIC製のUCL−001に限らない。それ以外でも、一方向に長い液晶分子形状を有し、長軸方向の屈折率がその直交方向の屈折率より大きい(Δn>0)紫外線硬化性液晶材料を用いることができる。   The ultraviolet curable liquid crystal material suitable for forming the optical film is not limited to UCL-001 made by DIC. Other than that, an ultraviolet curable liquid crystal material having a liquid crystal molecule shape that is long in one direction and having a refractive index in the major axis direction larger than that in the orthogonal direction (Δn> 0) can be used.

なお、光学膜の形成方法として、ディスペンサ方式を例示したが、インクジェットやフレキソ等の印刷方式、スリットコート、スプレーコート、ワイヤーバーコート方式などを用いてもよい。なお、スピンコート方式もむろん適用可能であるが、材料使用効率の面から他の方式が望ましい。   In addition, although the dispenser system was illustrated as a formation method of an optical film, you may use printing systems, such as an inkjet and a flexo, a slit coat, a spray coat, a wire bar coat system. Of course, spin coating can be applied, but other methods are preferable from the viewpoint of material use efficiency.

光学膜の形成方法として、滴下法を例示したが、毛細管現象を利用してもよい。特に、実施例のようなストライプ状の溝の場合、両基板が完全に重なった状態で、溝の一端から液晶材料を溝内に入れていくことができる。溝表面に沿って光学膜が形成されることで、凹凸構造が形成される。   Although the dropping method has been exemplified as a method for forming the optical film, a capillary phenomenon may be used. In particular, in the case of a stripe-shaped groove as in the embodiment, the liquid crystal material can be put into the groove from one end of the groove in a state where both substrates are completely overlapped. An uneven structure is formed by forming an optical film along the groove surface.

溝の他端側より減圧を行なってもよいが、特に減圧しなくても毛細管現象により液晶材料が溝内に浸透するため、容易に封入することができる。なお、真空注入法を用いることもできるが、真空槽内で基板を液晶材料に浸漬する工程を要する等封入量に対して液晶材料が多く必要となること(使用効率も低いこと)、溝内の真空度、気密度を保持するために両基板の周りにシールを形成する必要があること等、注意を要する。   Although the pressure may be reduced from the other end side of the groove, the liquid crystal material permeates into the groove due to a capillary phenomenon without particularly reducing the pressure, so that it can be easily sealed. Although a vacuum injection method can also be used, a large amount of liquid crystal material is required with respect to the amount of sealing, such as requiring a step of immersing the substrate in the liquid crystal material in a vacuum chamber (use efficiency is low), and in the groove In order to maintain the degree of vacuum and air tightness, it is necessary to take care that a seal must be formed around both substrates.

図3Aは、実施例の光学膜の偏光顕微鏡写真である。倍率は50倍である。スタンパから転写された不規則な凹凸構造(長さ方向は一方向にほぼ揃っているが、ピッチや深さが一定でない溝構造)が、光学膜表面に形成されている。偏光板を固定して、光学膜を回転させて観察したところ、回転角度によって明るさが変化し、所望の屈折率異方性が付与されていることがわかった。   FIG. 3A is a polarization micrograph of the optical film of the example. The magnification is 50 times. An irregular concavo-convex structure (a groove structure in which the length direction is substantially aligned in one direction but the pitch and depth are not constant) transferred from the stamper is formed on the optical film surface. When the polarizing plate was fixed and the optical film was rotated and observed, the brightness changed depending on the rotation angle, and it was found that the desired refractive index anisotropy was imparted.

図3Bは、実施例の光学膜の概略断面形状を示すグラフである。断面形状は、触針式段差計(ディックタック)で測定した。溝のピッチ(溝の長さ方向に直交する方向の、隣接凸部の頂点間距離)は、3μm〜6μmに分布していた。なお、段差計の触針が太いため、深さについては正確な値が得られなかった。   FIG. 3B is a graph illustrating a schematic cross-sectional shape of the optical film of the example. The cross-sectional shape was measured with a stylus type step gauge (Dicktack). The pitch of the grooves (distance between vertices of adjacent convex portions in the direction orthogonal to the length direction of the grooves) was distributed in the range of 3 μm to 6 μm. In addition, since the stylus stylus is thick, an accurate value for the depth could not be obtained.

図3Cは、溝平行サンプルを示す概略平面図である。溝平行サンプルでは、溝方向(実線の矢印方向)と、屈折率の大きい方向(破線の矢印方向)とが、平行である。   FIG. 3C is a schematic plan view showing a groove parallel sample. In the groove parallel sample, the groove direction (solid arrow direction) and the direction in which the refractive index is large (broken arrow direction) are parallel.

図3Dは、溝直交サンプルを示す概略平面図である。溝直交サンプルでは、溝方向(実線の矢印方向)と、屈折率の大きい方向(破線の矢印方向)とが、直交している。   FIG. 3D is a schematic plan view showing a groove orthogonal sample. In the groove orthogonal sample, the groove direction (solid arrow direction) and the direction with a large refractive index (broken arrow direction) are orthogonal to each other.

次に、図4〜図11を参照して、溝平行サンプルと溝直交サンプルの光透過率を測定した第1及び第2の実験について説明する。   Next, with reference to FIGS. 4-11, the 1st and 2nd experiment which measured the light transmittance of a groove | channel parallel sample and a groove | channel orthogonal sample is demonstrated.

図4は、第1の実験の測定系を示す概略断面図である。基板1上に形成された光学膜2の上方に、基板1と平行に偏光板6が配置され、偏光板6の上方に、受光器11が配置され、基板1の下方に、投光器10が配置されている。   FIG. 4 is a schematic cross-sectional view showing the measurement system of the first experiment. A polarizing plate 6 is disposed above the optical film 2 formed on the substrate 1 in parallel with the substrate 1, a light receiver 11 is disposed above the polarizing plate 6, and a projector 10 is disposed below the substrate 1. Has been.

投光器10は、一方向に進む光を出射し、投光器10から出射された光が、基板1の法線方向から入射するように、投光器10が配置されている。基板1に入射した光は、光学膜2の凹凸構造により散乱され、散乱光の一部が、偏光板6を透過して受光器11で測定される。基板1の法線方向を0°とし、光学膜2の溝方向に直交する面内で受光器角度(視角)を変化させる。様々な受光器角度での光透過率を測定した。   The light projector 10 emits light traveling in one direction, and the light projector 10 is arranged so that the light emitted from the light projector 10 enters from the normal direction of the substrate 1. The light incident on the substrate 1 is scattered by the concavo-convex structure of the optical film 2, and a part of the scattered light passes through the polarizing plate 6 and is measured by the light receiver 11. The normal direction of the substrate 1 is set to 0 °, and the receiver angle (viewing angle) is changed within a plane orthogonal to the groove direction of the optical film 2. The light transmittance at various receiver angles was measured.

溝平行サンプル及び溝直交サンプルのそれぞれに対し、偏光板6の透過軸を溝方向と平行にした配置(これを偏光板平行配置と呼ぶこととする)、及び偏光板6の透過軸を溝方向と(平面視上)直交にした配置(これを偏光板直交配置と呼ぶこととする)について、測定を行なった。   For each of the groove parallel sample and the groove orthogonal sample, an arrangement in which the transmission axis of the polarizing plate 6 is parallel to the groove direction (this is referred to as a polarizing plate parallel arrangement), and the transmission axis of the polarizing plate 6 is the groove direction. And (on a plan view) an orthogonal arrangement (hereinafter referred to as a polarizing plate orthogonal arrangement) was measured.

図5及び図6は、それぞれ、溝平行サンプル及び溝直交サンプルの光透過率を示すグラフである。横軸が受光器角度を度単位で示し、縦軸が光透過率を%単位で示す。なお、散乱板5及び偏光板6のない場合の全光量を光透過率100%としている。投光器の光源として、白色のC光源を用いた。   5 and 6 are graphs showing the light transmittances of the groove parallel sample and the groove orthogonal sample, respectively. The horizontal axis shows the receiver angle in degrees, and the vertical axis shows the light transmittance in%. In addition, the total light quantity when there is no scattering plate 5 and polarizing plate 6 is set to 100% light transmittance. A white C light source was used as the light source of the projector.

図5に示すように、溝平行サンプルにおいて、偏光板平行配置の方が、偏光板直交配置に比べて、0°〜50°の受光器角度全域で高い光透過率となる傾向が見られる。   As shown in FIG. 5, in the groove parallel sample, there is a tendency that the parallel arrangement of the polarizing plates tends to have a higher light transmittance over the entire range of the receiver angle of 0 ° to 50 °, compared to the orthogonal arrangement of the polarizing plates.

一方、図6に示すように、溝直交サンプルでは、偏光板直交配置の方が、偏光板平行配置に比べて、0°〜50°の受光器角度全域で高い光透過率となる傾向が見られる。   On the other hand, as shown in FIG. 6, in the groove orthogonal sample, the polarizing plate orthogonal arrangement tends to have a higher light transmittance in the entire range of the receiver angle of 0 ° to 50 ° than the polarizing plate parallel arrangement. It is done.

これらの実験より、偏光板透過軸方向が溝方向と平行であっても直交であっても、偏光板透過軸方向が光学膜の屈折率の大きい方向と揃っているときに、高い透過率が得られるといえる。つまり、実施例の光学膜は、膜面内で屈折率の大きい方向の偏光成分を、屈折率の小さい方向の偏光成分に比べて強く出射する機能があると考えられる。   From these experiments, even if the polarizing plate transmission axis direction is parallel or orthogonal to the groove direction, when the polarizing plate transmission axis direction is aligned with the direction in which the refractive index of the optical film is large, a high transmittance is obtained. It can be said that it is obtained. In other words, the optical films of the examples are considered to have a function of emitting a polarized light component in a direction with a large refractive index within the film surface more strongly than a polarized light component in a direction with a small refractive index.

投光器から出射された光は、光学膜に入射して凹凸構造により乱反射・散乱するが、光学膜面内で屈折率が大きい方向と平行な偏光成分は、上方に抜けやすく、屈折率が小さい方向と平行な偏光成分は、反射もしくは光学膜内部で導光されるなどして上方に抜けにくいものと推測される。   The light emitted from the projector is incident on the optical film and is irregularly reflected / scattered by the concavo-convex structure, but the polarization component parallel to the direction in which the refractive index is large within the optical film surface is likely to escape upward, and the direction in which the refractive index is small. It is estimated that the polarized light component parallel to is difficult to escape upward by reflection or being guided inside the optical film.

偏光板透過軸方向が光学膜の屈折率の大きい方向と揃っている場合の光透過量(受光器角度についての積分値)をAとし、偏光板透過軸方向が光学膜の屈折率の小さい方向と揃っている場合の光透過量(受光器角度についての積分値)をBとする。(A−B)/Bを、明るさの差と定義する。第1の実験で、明るさの差は、溝平行サンプル、溝直交サンプルとも15%〜16%程度であり、両サンプル同程度であった。   When the transmission axis direction of the polarizing plate is aligned with the direction in which the refractive index of the optical film is large, the light transmission amount (integrated value with respect to the angle of the light receiver) is A, and the transmission axis direction of the polarizing plate is the direction in which the refractive index of the optical film is small. And B is the light transmission amount (integral value with respect to the receiver angle). (A−B) / B is defined as a difference in brightness. In the first experiment, the difference in brightness was about 15% to 16% for both the groove parallel sample and the groove orthogonal sample, which was about the same for both samples.

なお、光学膜面内の屈折率異方性を大きくすれば、明るさの差を大きくできるものと思われる。屈折率異方性を大きくするために、紫外線硬化性液晶材料に、他の液晶材料を混ぜてもよい。なお、例示した紫外線硬化性液晶材料UCL−001に対しては、概ね50wt%程度までは、他の液晶材料を添加しても固体状の膜が得られることを確認している。   Note that it is considered that the difference in brightness can be increased by increasing the refractive index anisotropy in the optical film plane. In order to increase the refractive index anisotropy, another liquid crystal material may be mixed with the ultraviolet curable liquid crystal material. It has been confirmed that, for the exemplified ultraviolet curable liquid crystal material UCL-001, a solid film can be obtained up to about 50 wt% even if other liquid crystal materials are added.

図7は、第2の実験の測定系を示す概略断面図である。第1の実験の測定系との違いについて説明する。第2の実験では、基板法線方向を0°とし、溝方向に直交する面内で投光器角度(入射角度)を変化させて、散乱板に光線が斜め入射する場合の光透過率を測定した。   FIG. 7 is a schematic cross-sectional view showing the measurement system of the second experiment. Differences from the measurement system of the first experiment will be described. In the second experiment, the substrate normal direction was set to 0 °, the projector angle (incident angle) was changed in a plane orthogonal to the groove direction, and the light transmittance was measured when the light ray was obliquely incident on the scattering plate. .

図8及び図9は、それぞれ、入射角度10°のときの、溝平行サンプル及び溝直交サンプルの光透過率を示すグラフである。   8 and 9 are graphs showing the light transmittances of the groove parallel sample and the groove orthogonal sample, respectively, at an incident angle of 10 °.

図10及び図11は、入射角度20°のときの、溝平行サンプル及び溝直交サンプルの光透過率を示すグラフである。   10 and 11 are graphs showing the light transmittances of the groove parallel sample and the groove orthogonal sample when the incident angle is 20 °.

第1の実験(入射角度0°)の場合と同様に、溝平行サンプル及び溝直交サンプルのそれぞれに対し、偏光板透過軸を溝方向と平行にした偏光板平行配置、及び偏光板透過軸を溝方向と直交にした偏光板直交配置について、測定を行なった。   As in the case of the first experiment (incident angle 0 °), for each of the groove parallel sample and the groove orthogonal sample, the polarizing plate parallel arrangement with the polarizing plate transmission axis parallel to the groove direction, and the polarizing plate transmission axis Measurement was performed on the orthogonal arrangement of the polarizing plates orthogonal to the groove direction.

図8〜図11に示すように、溝平行サンプル及び溝直交サンプルにおいて、入射角度10°及び20°ともに、第1の実験と同様に、偏光板透過軸方向が光学膜の屈折率の大きい方向と揃っているときに、高い透過率が得られている。   As shown in FIGS. 8 to 11, in the groove parallel sample and the groove orthogonal sample, the polarizing plate transmission axis direction is the direction in which the refractive index of the optical film is large, as in the first experiment, at both the incident angles of 10 ° and 20 °. When it is aligned, high transmittance is obtained.

ただし、斜め入射の第2の実験では、溝平行サンプルの方が、溝直交サンプルよりも明るさの差が大きい傾向が見られる。特に、入射角度20°の場合、溝平行サンプルの明るさの差が20%程度であるのに対し、溝直交サンプルの明るさの差は14%程度である。これより、光学膜の溝方向と、膜面内で屈折率の大きい方向を揃えることにより、屈折率の大きい方向の偏光成分の光透過量を増やせることが示唆される。   However, in the second experiment with oblique incidence, the groove parallel sample tends to have a larger brightness difference than the groove orthogonal sample. In particular, when the incident angle is 20 °, the difference in brightness of the groove parallel sample is about 20%, whereas the difference in brightness of the groove orthogonal sample is about 14%. This suggests that by aligning the groove direction of the optical film and the direction having a large refractive index within the film surface, the light transmission amount of the polarization component in the direction having the large refractive index can be increased.

また、斜め入射の第2の実験では、溝平行サンプル及び溝直交サンプルにおいて、偏光板平行配置及び偏光板直交配置ともに、入射角度よりも小さい角度に光透過率分布のピークが位置する傾向が見られる。すなわち、上方向(基板法線方向)に多くの光を出射できる。   In addition, in the second experiment with oblique incidence, in the groove parallel sample and the groove orthogonal sample, there is a tendency that the peak of the light transmittance distribution is located at an angle smaller than the incident angle in both the polarizing plate parallel arrangement and the polarizing plate orthogonal arrangement. It is done. That is, a lot of light can be emitted upward (in the normal direction of the substrate).

第1及び第2の実験より、入射角度が大きくなるほど、光学膜を透過する光透過量(受光器角度についての積分値)が大きくなる傾向が見られた。例えば、溝平行サンプルで偏光板平行配置の場合、光透過量は、入射角度0°に比べて入射角度20°で約1.5倍であった。   From the first and second experiments, it was found that the amount of light transmitted through the optical film (integrated value for the receiver angle) tends to increase as the incident angle increases. For example, in the case of parallel arrangement of polarizing plates in a groove parallel sample, the light transmission amount was about 1.5 times at an incident angle of 20 ° compared to an incident angle of 0 °.

実施例の光学膜は、溝構造により、特に、溝方向に直交する方向に光の進行方向を広げる。例えば、溝方向と平行な一方向に長い線状光源からの入射光を散乱させて、面内で光強度が均一に近づけられた面状光源的な出射光を得ることができる。   The optical film of the embodiment spreads the traveling direction of light in a direction perpendicular to the groove direction due to the groove structure. For example, incident light from a linear light source that is long in one direction parallel to the groove direction can be scattered to obtain outgoing light like a planar light source whose light intensity is made close to uniform in the plane.

次に、図12を参照して、実施例の液晶表示装置について説明する。図12は、実施例の液晶表示装置の概略断面図である。実施例の液晶表示装置は、バックライト20と、散乱板21と、液晶表示素子22とを含む。バックライト20は、例えば直下型構造であるが、サイドライト型構造とすることもできる。液晶表示素子22は、例えばクロスニコル配置された一対の偏光板22a、22cと、これら偏光板22a、22cに挟まれた液晶セル22bを含む。   Next, with reference to FIG. 12, the liquid crystal display device of an Example is demonstrated. FIG. 12 is a schematic cross-sectional view of the liquid crystal display device of the example. The liquid crystal display device according to the embodiment includes a backlight 20, a scattering plate 21, and a liquid crystal display element 22. The backlight 20 has, for example, a direct type structure, but can also have a side light type structure. The liquid crystal display element 22 includes, for example, a pair of polarizing plates 22a and 22c arranged in crossed Nicols, and a liquid crystal cell 22b sandwiched between the polarizing plates 22a and 22c.

散乱板21は、実施例の光学膜とその基板を含み、バックライト20と、液晶表示素子22のバックライト側偏光板22aとの間に配置される。散乱板21の光学膜の膜面内の屈折率の大きい方向と、バックライト側偏光板22aの透過軸方向とが揃っている。   The scattering plate 21 includes the optical film of the embodiment and its substrate, and is disposed between the backlight 20 and the backlight-side polarizing plate 22 a of the liquid crystal display element 22. The direction in which the refractive index is large in the film surface of the optical film of the scattering plate 21 and the transmission axis direction of the backlight side polarizing plate 22a are aligned.

このような、散乱板21とバックライト側偏光板22aとの配置により、バックライト側偏光板22aを透過する光量の増加が図られ、また、面内での光強度の均一化が図られる。   With such an arrangement of the scattering plate 21 and the backlight side polarizing plate 22a, the amount of light transmitted through the backlight side polarizing plate 22a can be increased, and the light intensity can be made uniform in the plane.

上述のように、実施例の光学膜を1枚使うことにより、線状光源から出射された光を面状に広げることができる。点状光源から出射された光を面状に広げるには、実施例の光学膜を、溝方向を交差させて2枚重ねて用いるのが好ましいと考えられる。1枚目の光学膜で、点状光源からの光を線状光源的に広げ、2枚目の光学膜で、線状光源的に広がった光をさらに面状光源的に広げる。   As described above, the light emitted from the linear light source can be spread in a planar shape by using one optical film of the embodiment. In order to spread the light emitted from the point light source in a planar shape, it is considered preferable to use two optical films of the embodiment with the groove directions intersecting each other. The first optical film spreads the light from the point light source as a linear light source, and the second optical film further spreads the light spread as a linear light source like a planar light source.

次に、図13〜図16を参照して、2枚重ねの散乱板の光透過率を測定した第3の実験について説明する。   Next, a third experiment in which the light transmittance of a two-layered scattering plate is measured will be described with reference to FIGS.

図13は、第3の実験の散乱板の積層構造を示す概略斜視図である。第3の実験では、光入射側から、溝平行サンプル30と溝直交サンプル31とを重ねて、積層散乱板を形成した。   FIG. 13 is a schematic perspective view showing the laminated structure of the scattering plates of the third experiment. In the third experiment, from the light incident side, the groove parallel sample 30 and the groove orthogonal sample 31 were overlapped to form a laminated scattering plate.

溝平行サンプル30の光学膜面内の屈折率が大きい方向(破線矢印で示す)と、溝直交サンプル31の光学膜面内の屈折率が大きい方向(破線矢印で示す)とが、平行に揃えられている。従って、溝平行サンプル30の溝方向(実線矢印で示す)と、溝直交サンプル31の溝方向(実線矢印で示す)とが、(平面視上)直交に配置されている。   The direction in which the refractive index in the optical film surface of the groove parallel sample 30 is large (indicated by a broken line arrow) and the direction in which the refractive index in the optical film surface of the groove orthogonal sample 31 is large (indicated by a broken line arrow) are aligned in parallel. It has been. Therefore, the groove direction of the groove parallel sample 30 (shown by solid line arrows) and the groove direction of the groove orthogonal sample 31 (shown by solid line arrows) are arranged orthogonally (on a plan view).

第3の実験は、積層散乱板について、垂直入射光及び斜め入射光に対する光透過率を測定した。第3の実験の測定系は、第1及び第2の実験の測定系(図4及び図7参照)と同様である。ただし、第1及び第2の実験の測定系の単層の散乱板5が、積層散乱板に置き換わり、受光器角度(視角)と、投光器角度(入射角度)は、基板法線方向を0°とし、屈折率の大きい方向に直交する面内で変化させた。   In the third experiment, the light transmittance with respect to normal incidence light and oblique incidence light was measured for the laminated scattering plate. The measurement system of the third experiment is the same as the measurement system of the first and second experiments (see FIGS. 4 and 7). However, the single-layer scattering plate 5 of the measurement system of the first and second experiments is replaced with a laminated scattering plate, and the receiver angle (viewing angle) and the projector angle (incident angle) are 0 ° in the normal direction of the substrate. And changed in a plane perpendicular to the direction in which the refractive index is large.

積層散乱板に対し、偏光板透過軸を屈折率の大きい方向と平行にした偏光板平行配置、及び偏光板透過軸を屈折率の大きい方向と直交にした偏光板直交配置について、光透過率の測定を行なった。なお、第1及び第2の実験での偏光板平行・直交配置は、溝方向に対して定義したが、ここでは屈折率の大きい方向に対して定義している。   For the laminated scattering plate, the polarizing plate parallel arrangement with the polarizing plate transmission axis parallel to the direction with a large refractive index, and the polarizing plate orthogonal arrangement with the polarizing plate transmission axis perpendicular to the direction with a large refractive index, Measurements were made. In addition, although the polarizing plate parallel / orthogonal arrangement in the first and second experiments is defined with respect to the groove direction, it is defined here with respect to the direction in which the refractive index is large.

図14〜図16は、それぞれ、入射角度0°、10°、及び20°の光透過率を示すグラフである。横軸が受光器角度を度単位で示し、縦軸が光透過率を%単位で示す。   14 to 16 are graphs showing light transmittances at incident angles of 0 °, 10 °, and 20 °, respectively. The horizontal axis shows the receiver angle in degrees, and the vertical axis shows the light transmittance in%.

図14〜図16に示すように、入射角度0°、10°、及び20°において、第1及び第2の実験と同様に、偏光板透過軸方向が積層光学膜の屈折率の大きい方向と揃っているときに、高い透過率が得られている。明るさの差は、入射角度0°、10°、20°でそれぞれ、13%程度、13%程度、20%程度であり、入射角度が大きくなるほど大きくなる傾向が見られる。   As shown in FIGS. 14 to 16, at the incident angles of 0 °, 10 °, and 20 °, similarly to the first and second experiments, the polarizing plate transmission axis direction is a direction in which the refractive index of the laminated optical film is large. When they are aligned, a high transmittance is obtained. The difference in brightness is about 13%, about 13%, and about 20% at incident angles of 0 °, 10 °, and 20 °, respectively, and a tendency to increase as the incident angle increases is observed.

また、第2の実験と同様に、斜め入射(入射角度10°、20°)の場合、偏光板平行配置及び偏光板直交配置ともに、斜め入射の入射角度よりも小さい角度に光透過率分布のピークが位置し、上方向(基板法線方向)に多くの光が出射される傾向が見られる。   Similarly to the second experiment, in the case of oblique incidence (incidence angles of 10 ° and 20 °), both the parallel arrangement of the polarizing plates and the orthogonal arrangement of the polarizing plates exhibit the light transmittance distribution at an angle smaller than the incident angle of the oblique incidence. A peak is located, and there is a tendency that a lot of light is emitted upward (in the normal direction of the substrate).

なお、光入射側に溝直交サンプルを配置した積層散乱板構造としても、同様な特性が得られるであろう。   It should be noted that similar characteristics will be obtained even in a laminated scattering plate structure in which a groove orthogonal sample is arranged on the light incident side.

このように、屈折率の大きい方向を揃えて複数枚の光学膜を積層した場合も、屈折率の大きい方向の偏光成分が多く出射されることがわかった。   Thus, it has been found that even when a plurality of optical films are laminated with the direction of the high refractive index aligned, a large amount of the polarized light component in the direction of the high refractive index is emitted.

以上説明したように、入射光を散乱させる凹凸構造を有し、膜面内の一方向に屈折率が大きい屈折率異方性を有する光学膜により、屈折率が大きい方向の偏光成分を、屈折率が小さい方向の偏光成分に比べて強く出射させることができる。   As described above, an optical film having a concavo-convex structure for scattering incident light and having a refractive index anisotropy having a large refractive index in one direction within the film surface refracts a polarization component in a direction with a large refractive index. The light can be emitted more strongly than the polarized light component in the direction where the rate is small.

このような光学膜と、透過軸方向が光学膜の屈折率の大きい方向と揃った偏光板とを組み合わせることにより、明るい偏光を出射する光学装置が得られる。   By combining such an optical film and a polarizing plate whose transmission axis direction is aligned with the direction in which the refractive index of the optical film is large, an optical device that emits bright polarized light can be obtained.

このような光学膜は、例えば、紫外線硬化性液晶材料にスタンパで凹凸構造を転写することにより、容易に作製することができる。   Such an optical film can be easily produced, for example, by transferring the concavo-convex structure to an ultraviolet curable liquid crystal material with a stamper.

なお、実施例の光学膜は、例えば車載用表示、遊戯用表示、携帯電話・デジタルカメラ用表示、オーディオ表示、パソコンモニター表示、テレビ表示など、バックライトを用いる液晶表示装置関連全般に応用することができる。   In addition, the optical film of an Example should be applied to the general liquid crystal display apparatus using a backlight, such as an in-vehicle display, an amusement display, a mobile phone / digital camera display, an audio display, a personal computer monitor display, and a television display. Can do.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

1a 透明基板
1b 配向膜
1 (配向処理が施された)基板
2 光学膜
3 スタンパ基板
4 紫外線
5 散乱板
6 偏光板
10 投光器
11 受光器
20 バックライト
21 散乱板
22 液晶表示素子
22a、22c 偏光板
22b 液晶セル
30 溝平行サンプル
31 溝直交サンプル
DESCRIPTION OF SYMBOLS 1a Transparent substrate 1b Alignment film | membrane 1 (The alignment process was performed) Substrate 2 Optical film 3 Stamper substrate 4 Ultraviolet ray 5 Scattering plate 6 Polarizing plate 10 Projector 11 Receiver 20 Backlight 21 Scattering plate 22 Liquid crystal display elements 22a and 22c Polarizing plate 22b Liquid crystal cell 30 Groove parallel sample 31 Groove orthogonal sample

Claims (8)

第1の方向に配向処理が施された第1の基板と、
前記第1の基板上に液晶材料で形成され、前記第1の方向に液晶が配向して屈折率が大きい屈折率異方性を有し、溝の長さ方向が一方向に沿い溝のピッチや深さが一定でなく不規則に形成された溝構造を有し、入射光に対して乱反射・散乱性を付与する第1の光学膜と、
前記第1の方向と平行に透過軸方向が配置された偏光板と
を有する光学装置。
A first substrate that has been subjected to an alignment treatment in a first direction;
A liquid crystal material is formed on the first substrate, and the liquid crystal is oriented in the first direction and has a refractive index anisotropy having a large refractive index, and the length direction of the grooves is along one direction and the pitch of the grooves. and has a irregularly shaped groove structure not constant depth, a first optical film to grant diffuse-scattering property with respect to incident light,
An optical device comprising: a polarizing plate having a transmission axis direction arranged in parallel with the first direction.
前記第1の光学膜の溝の長さ方向が、前記第1の方向と揃っている請求項に記載の光学装置。 The length direction of the groove of the first optical film, the optical device according to claim 1 which is aligned with the first direction. さらに、
バックライトと、
前記偏光板を前記バックライト側に配置した一対の偏光板に挟まれた液晶セルを有する液晶表示素子と
を有し、
前記バックライトと、前記バックライト側の偏光板との間に、前記第1の光学膜が配置されている請求項1または2に記載の光学装置。
further,
With backlight,
A liquid crystal display element having a liquid crystal cell sandwiched between a pair of polarizing plates arranged on the backlight side of the polarizing plate;
Wherein the backlight, between the backlight side polarizing plate, an optical device according to claim 1 or 2, wherein the first optical film is disposed.
さらに、
前記第1の方向と平行な第2の方向に配向処理が施された第2の基板と、
前記第2の基板上に液晶材料で形成され、前記第2の方向に液晶が配向して屈折率が大きい屈折率異方性を有し、溝の長さ方向が前記第2の方向と交差する一方向に沿い溝のピッチや深さが一定でなく不規則に形成された溝構造を有し、入射光に対して乱反射・散乱性を付与する第2の光学膜と
を有し、
前記第2の基板及び前記第2の光学膜は、前記第1の基板及び前記第1の光学膜と前記偏光板との間、または、前記第1の基板及び前記第1の光学膜に対して前記偏光板と反対側に配置されている請求項に記載の光学装置。
further,
A second substrate having been subjected to an alignment treatment in a second direction parallel to the first direction;
The liquid crystal material is formed on the second substrate, the liquid crystal is oriented in the second direction and has a large refractive index, and the groove length direction intersects with the second direction. A second optical film having a groove structure in which the pitch and the depth of the grooves are irregularly formed along one direction and imparts irregular reflection / scattering properties to incident light ;
Have
The second substrate and the second optical film are between the first substrate and the first optical film and the polarizing plate, or with respect to the first substrate and the first optical film. The optical device according to claim 2 , wherein the optical device is disposed on a side opposite to the polarizing plate.
(a)液晶材料に対する配向処理が施された基板上に、紫外線硬化性液晶材料で形成され、溝の長さ方向が一方向に沿い溝のピッチや深さが一定でなく不規則に形成された構造を有する光学膜を形成する工程と、
(b)前記光学膜に紫外線を照射する工程と、
を有する光学装置の製造方法。
(A) It is formed of an ultraviolet curable liquid crystal material on a substrate that has been subjected to an alignment treatment for the liquid crystal material, and the groove length direction is in one direction, and the groove pitch and depth are not constant and irregular. Forming an optical film having a groove structure;
(B) irradiating the optical film with ultraviolet rays;
A method for manufacturing an optical device.
前記工程(a)は、前記基板上に紫外線硬化性液晶材料膜を形成する工程と、構造を有する型から該液晶材料膜に構造を転写する工程とを含む請求項に記載の光学装置の製造方法。 6. The optical system according to claim 5 , wherein the step (a) includes a step of forming an ultraviolet curable liquid crystal material film on the substrate and a step of transferring the groove structure from the mold having the groove structure to the liquid crystal material film. Device manufacturing method. 前記工程(a)は、前記基板と構造を有する型との間に、紫外線硬化性液晶材料を注入する工程を含む請求項に記載の光学装置の製造方法。 6. The method of manufacturing an optical device according to claim 5 , wherein the step (a) includes a step of injecting an ultraviolet curable liquid crystal material between the substrate and a mold having a groove structure. さらに、
(c)前記光学膜の膜面内で屈折率が大きい方向と、透過軸方向が平行になるように、偏光板を配置する工程を有する請求項5〜7のいずれか1項に記載の光学装置の製造方法。
further,
(C) The optical according to any one of claims 5 to 7 , further comprising a step of disposing a polarizing plate so that a direction in which the refractive index is large and a transmission axis direction are parallel to each other within the film surface of the optical film. Device manufacturing method.
JP2009213045A 2009-09-15 2009-09-15 Optical device and manufacturing method thereof Expired - Fee Related JP5399833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009213045A JP5399833B2 (en) 2009-09-15 2009-09-15 Optical device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009213045A JP5399833B2 (en) 2009-09-15 2009-09-15 Optical device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011064759A JP2011064759A (en) 2011-03-31
JP5399833B2 true JP5399833B2 (en) 2014-01-29

Family

ID=43951111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009213045A Expired - Fee Related JP5399833B2 (en) 2009-09-15 2009-09-15 Optical device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5399833B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238534A (en) * 2013-06-10 2014-12-18 シャープ株式会社 Inspection apparatus for light control film and manufacturing apparatus for light control film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000221324A (en) * 1999-02-03 2000-08-11 Nec Corp Polarizing device and liquid crystal display device having that polarizing device
JP2003107244A (en) * 2001-09-27 2003-04-09 Casio Comput Co Ltd Liquid crystal polymer film and its manufacturing method
JP2007206104A (en) * 2006-01-30 2007-08-16 Fujifilm Corp Polarization conversion film, method of manufacturing same, polarization element and liquid crystal display device
JP2007206095A (en) * 2006-01-30 2007-08-16 Fujifilm Corp Polarization conversion film, method of manufacturing same, polarization element and liquid crystal display device
KR100738104B1 (en) * 2006-02-08 2007-07-12 삼성전자주식회사 Polarized light emitting light guide plate and method for fabricating the same and illuminator for flat panel display device using the same
JP2007249027A (en) * 2006-03-17 2007-09-27 Fujifilm Corp Polarized light conversion film and its manufacturing method, polarizing element, and liquid crystal display device
JP4991486B2 (en) * 2007-10-31 2012-08-01 ソニー株式会社 Optical sheet, method for manufacturing the same, and display device
WO2009084604A1 (en) * 2007-12-27 2009-07-09 Asahi Glass Co., Ltd. Liquid crystal element, optical head device, and variable optical modulation element

Also Published As

Publication number Publication date
JP2011064759A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
TWI534856B (en) Method for patterning a surface using selective adhesion
US8031276B2 (en) Manufacture of a birefringent liquid crystal component
JP5273248B2 (en) Method for manufacturing article having fine concavo-convex structure on surface and method for manufacturing wire grid type polarizer
KR100982504B1 (en) Stereoscopic image display and method for manufacturing the same
KR101927681B1 (en) Light-diffusing element and polarizing plate provided therewith
TWI711529B (en) Optical body and display device
TW201544878A (en) Wavelength conversion member, backlight unit, polarizing plate, liquid crystal panel and liquid crystal display device
JP6677722B2 (en) Horizontal alignment type liquid crystal display
CN105278148A (en) Polarizing plate, liquid crystal display device having the same and method of fabricating the polarizing plate
JP2008309829A (en) Manufacturing method for light diffusion sheet
JP2010210939A (en) Method for manufacturing phase difference film and liquid crystal display element
KR20120112097A (en) Light diffusion film and method of manufacturing thereof, application liquid therefor, and polarization plate and liquid crystal display using the same
JP5399833B2 (en) Optical device and manufacturing method thereof
JP2008233448A (en) Manufacturing method of wire grid polarizer, wire grid polarizer, polarizing plate, and liquid crystal display device
TW201501932A (en) Manufacturing method of transparent surface material with adhesive layer, and transparent surface material with adhesive layer
JP5146368B2 (en) Method for manufacturing optical article
JP2010190936A (en) Method of manufacturing optical article
JP2007232792A (en) Method of manufacturing grid polarizing film
CN104020608B (en) Display panel manufacturing method, display panel and display device
CN203012350U (en) Fine convex-concave pattern substrate, mould and wire grid polarizer
JP2010217822A (en) Method of manufacturing optical article
JP5389694B2 (en) Manufacturing method of display device
JP2014164142A (en) Method for manufacturing laminate of alignment substrate and retardation film, laminate, retardation film, and liquid crystal display device
CN102596572B (en) Process for producing laminate
KR101501989B1 (en) Optical film using release film and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131024

R150 Certificate of patent or registration of utility model

Ref document number: 5399833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees