JP5398546B2 - Method for producing diphenylmethanediamine - Google Patents
Method for producing diphenylmethanediamine Download PDFInfo
- Publication number
- JP5398546B2 JP5398546B2 JP2009544402A JP2009544402A JP5398546B2 JP 5398546 B2 JP5398546 B2 JP 5398546B2 JP 2009544402 A JP2009544402 A JP 2009544402A JP 2009544402 A JP2009544402 A JP 2009544402A JP 5398546 B2 JP5398546 B2 JP 5398546B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- ammonia
- diphenylmethanediamine
- mda
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 title claims description 9
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 47
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 41
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 22
- 229910021529 ammonia Inorganic materials 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 14
- 239000011541 reaction mixture Substances 0.000 claims description 14
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 claims description 11
- 239000008346 aqueous phase Substances 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 8
- 239000000920 calcium hydroxide Substances 0.000 claims description 8
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 8
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 claims description 7
- 239000012074 organic phase Substances 0.000 claims description 7
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 6
- 239000000292 calcium oxide Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 5
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 4
- 230000003472 neutralizing effect Effects 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 6
- 125000002619 bicyclic group Chemical group 0.000 description 6
- 235000011116 calcium hydroxide Nutrition 0.000 description 6
- 238000006386 neutralization reaction Methods 0.000 description 6
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 5
- 235000012255 calcium oxide Nutrition 0.000 description 5
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- -1 polyphenylene Polymers 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 125000000467 secondary amino group Chemical class [H]N([*:1])[*:2] 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical class NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 238000009621 Solvay process Methods 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 238000010575 fractional recrystallization Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- RTWNYYOXLSILQN-UHFFFAOYSA-N methanediamine Chemical compound NCN RTWNYYOXLSILQN-UHFFFAOYSA-N 0.000 description 1
- WDWDWGRYHDPSDS-UHFFFAOYSA-N methanimine Chemical compound N=C WDWDWGRYHDPSDS-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/44—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
- C07C211/49—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
- C07C211/50—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/68—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
- C07C209/78—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton from carbonyl compounds, e.g. from formaldehyde, and amines having amino groups bound to carbon atoms of six-membered aromatic rings, with formation of methylene-diarylamines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/82—Purification; Separation; Stabilisation; Use of additives
- C07C209/84—Purification
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
酸の存在下でのアニリンとホルムアルデヒドの反応によるジフェニルメタンジアミン(MDA)の製造方法は知られており、広く文献に記述されている。実際には、このようにして製造されたジフェニルメタンジアミンは通常、より高度に縮合されたポリフェニレンポリメチレンポリアミン類との混合物として得られる。以下、MDAは二環のジフェニルメタンジアミンと、より高度に縮合されたポリフェニレンポリメチレンポリアミン類との混合物を示すものとする。 Methods for producing diphenylmethanediamine (MDA) by the reaction of aniline and formaldehyde in the presence of an acid are known and widely described in the literature. In practice, the diphenylmethanediamine thus produced is usually obtained as a mixture with more highly condensed polyphenylenepolymethylenepolyamines. Hereinafter, MDA refers to a mixture of bicyclic diphenylmethane diamine and more highly condensed polyphenylene polymethylene polyamines.
工業的には、MDAはホスゲンとの反応によりほとんどジフェニルメタンジイソシアネート(MDI)に変換される。 Industrially, MDA is mostly converted to diphenylmethane diisocyanate (MDI) by reaction with phosgene.
ある利用法では例えばプラスチックや塗料の架橋剤として、純粋な二環のMDAを使用してもよい。 In some applications, pure bicyclic MDA may be used, for example, as a crosslinker for plastics and paints.
工業上、MDAは各文献に記述されるように、酸の存在下でアニリンとホルムアルデヒドの反応により製造される。酸はとりわけ塩酸が使用される。この種類の方法は周知であり、例えば「Kunststoffhandbuch, 第7巻, Polyurethane, Carl Hanser Verlag, Munich, Vienna, 第3版, 1993, 76〜86ページ」に記載されており、そしてまた多数の特許文献に記載がある(WO99/40059はその一例である)。 In industry, MDA is produced by the reaction of aniline and formaldehyde in the presence of an acid, as described in the literature. In particular, hydrochloric acid is used as the acid. This type of method is well known and is described, for example, in “Kunststoffhandbuch, Vol. 7, Polyurethane, Carl Hanser Verlag, Munich, Vienna, 3rd edition, 1993, pp. 76-86” and also numerous patent documents. (WO99 / 40059 is an example).
特定の要件下で、酸とアニリンおよびホルムアルデヒドとアニリンの比率を変えることでMDA中の二環の生成物の画分を調整することができる。 Under certain requirements, the fraction of bicyclic products in MDA can be adjusted by changing the ratio of acid to aniline and formaldehyde to aniline.
MDAの製造に関係する一つの問題は中和である。一方では、水酸化ナトリウム水溶液を用いた慣用的に行われる中和は高価である。また一方では、上記手順により生成された塩水は、高額の費用をかけて廃水として処理されなければならない。 One problem associated with MDA production is neutralization. On the other hand, conventional neutralization with aqueous sodium hydroxide is expensive. On the other hand, the salt water produced by the above procedure must be treated as waste water at high cost.
これらの問題を克服するための一つの可能性は、複数の異種の酸性触媒の使用である。例えばWO01/58847には、固体の無機の酸性触媒の存在下でアニリンをホルムアルデヒドと1.7-100のモル比で反応させることによりMDAを製造する方法が記載されている。同公報に記述された方法の不具合は、オリゴマーのファウリングによる失活の結果としての触媒の不十分な耐用年数、アニリン中に存在する、またはその反応中に形成されるN-メチルアミン類のような第二級アミン類による触媒の酸性基の滴定、および触媒の高コストと触媒の転換と再生による(反応)休止時間に基づく高コスト化が挙げられる。 One possibility to overcome these problems is the use of multiple dissimilar acidic catalysts. For example, WO 01/58847 describes a method for producing MDA by reacting aniline with formaldehyde in a molar ratio of 1.7-100 in the presence of a solid inorganic acidic catalyst. The disadvantages of the method described in the publication are the poor service life of the catalyst as a result of deactivation due to oligomer fouling, the presence of N-methylamines present in the aniline or formed during the reaction. Examples thereof include titration of acidic groups of the catalyst with such secondary amines, and high cost based on catalyst high cost and (reaction) downtime due to catalyst conversion and regeneration.
WO2005/007613には酸性触媒を吸着剤により除去するMDAの製造方法が記載されている。再生を経て、酸は吸着剤から回収され再び使用することができる。この方法をもっても不都合な点は、表面のファウリングの結果、吸着剤の耐用年数が短くなることである。 WO2005 / 007613 describes a method for producing MDA in which an acidic catalyst is removed with an adsorbent. After regeneration, the acid is recovered from the adsorbent and can be used again. The disadvantage of this method is that the useful life of the adsorbent is shortened as a result of surface fouling.
反応混合物の中和を目的とした、他の金属、とりわけアルカリ土類金属の酸化物および/または水酸化物の使用は、装置の崩壊を導く固体の付随した形成の増加を理由として大抵失敗していた。 The use of other metals, especially alkaline earth metal oxides and / or hydroxides, for the purpose of neutralizing the reaction mixture, often fails because of the concomitant increase in solid formation leading to equipment collapse. It was.
本発明は、単純で、安価で製造方法そのものの不具合を有さずに酸性触媒の操作上確実な分離が可能なMDAの製造方法を提供することをその目的とする。 An object of the present invention is to provide a method for producing MDA that is simple, inexpensive, and capable of reliably separating an acidic catalyst in operation without causing defects in the production method itself.
アルカリ土類金属の酸化物または水酸化物を用いた処理による更なる工程で回収されるアンモニアを中和薬剤として使用することにより、驚くべきことにこの目的を達成できたのである。 This object was surprisingly achieved by using ammonia recovered as a neutralizing agent in a further step by treatment with an alkaline earth metal oxide or hydroxide.
本発明はジフェニルメタンジアミンの製造方法を提供するものであり、以下の工程を含包する。
a)酸の存在下にアニリンをホルムアルデヒドと反応させ、
b)酸をアンモニアで中和し、
c)工程b)からの反応混合物を水相と有機相に分離し、
d)工程c)で得られた水相をアルカリ土類金属の酸化物または水酸化物で処理し、
e)工程d)で得られたアンモニアを除去する。
The present invention provides a method for producing diphenylmethanediamine, and includes the following steps.
a) reacting aniline with formaldehyde in the presence of acid,
b) neutralize the acid with ammonia;
c) separating the reaction mixture from step b) into an aqueous phase and an organic phase;
d) treating the aqueous phase obtained in step c) with an alkaline earth metal oxide or hydroxide;
e) The ammonia obtained in step d) is removed.
使用する酸は好ましくは無機酸であり、さらに詳細には塩酸である。 The acid used is preferably an inorganic acid, more particularly hydrochloric acid.
原則として工程d)でアルカリ土類金属の酸化物または水酸化物を使用することができる。入手しやすく、主として取扱いに問題が無く、結果として生じる副産物が処分できることを理由として、酸化カルシウムおよび/または水酸化カルシウムを使用してもよい。 As a rule, alkaline earth metal oxides or hydroxides can be used in step d). Calcium oxide and / or calcium hydroxide may be used because they are readily available, primarily without problems in handling, and the resulting by-products can be disposed of.
工程a)のMDAの製造方法は、前述のように触媒としての酸の存在下、アニリンとホルムアルデヒドの反応により行われる。この種類の方法は周知であり、例えば「Kunststoffhandbuch, 第7巻, Polyurethane, Carl Hanser Verlag, Munich, Vienna, 第3版, 1993, 76〜86ページ」に、そしてまた多くの特許文献(WO99/40059はその一例である)に記載がある。 The process for producing MDA in step a) is performed by the reaction of aniline and formaldehyde in the presence of an acid as a catalyst as described above. This type of method is well known, for example in “Kunststoffhandbuch, Vol. 7, Polyurethane, Carl Hanser Verlag, Munich, Vienna, 3rd edition, 1993, pp. 76-86” and also in many patent documents (WO99 / 40059). Is an example).
ホルムアルデヒドの代わりに、またはホルムアルデヒドとの混合物の中で、少なくとも一種のホルムアルデヒド供与化合物もまた使用することができる。ホルムアルデヒドはさらに詳細には、ホルマリン水溶液、ホルマリンアルコール溶液、ヘミアセタール、第一級アミンのメチレンアミン、第一級または第二級アミンのN,N'-メチレンジアミンそしてまたはパラホルムアルデヒドの形で使用される。 At least one formaldehyde donor compound can also be used instead of formaldehyde or in a mixture with formaldehyde. Formaldehyde is used in more detail in the form of formalin aqueous solution, formalin alcohol solution, hemiacetal, primary amine methyleneamine, primary or secondary amine N, N'-methylenediamine and / or paraformaldehyde. The
発明の方法は連続式に、半連続式に、バッチ式に実施されうるが、好ましくは連続式、半連続式である。 The process of the invention can be carried out continuously, semi-continuously or batchwise, but is preferably continuous or semi-continuous.
連続式の場合には反応物質はお互いに所望の割合で反応装置の中へ量りとられ、入ってくる流れと等しい量の多量の反応生成物が反応装置の中から除去される。使用される反応装置の例は管型反応器である。バッチ式または半連続式の進行の場合、反応物質はバッチ反応装置の中に量りとられ、好ましくは攪拌とともにおよび/またはポンプ循環とともに供給される、そして完全に反応した反応生成物は反応装置から除去され、後処理に回される。 In the continuous mode, the reactants are weighed into the reactor at the desired ratio with respect to each other, and a large amount of reaction product in an amount equal to the incoming stream is removed from the reactor. An example of a reactor used is a tubular reactor. In the case of a batch or semi-continuous process, the reactants are weighed into the batch reactor, preferably fed with stirring and / or with pump circulation, and the fully reacted reaction product is removed from the reactor. Removed and sent for post-processing.
発明の方法は、アニリンがホルムアルデヒドに対して好ましくは2倍以上のモル比で実施される。酸とアニリンのモル比は好ましくは0.05より大きい。これらの比においては反応混合物中でそれぞれの二環の生成物の形成が増大する。 The inventive process is preferably carried out in a molar ratio of aniline to formaldehyde of preferably 2 times or more. The molar ratio of acid to aniline is preferably greater than 0.05. These ratios increase the formation of the respective bicyclic product in the reaction mixture.
反応は0‐200℃の温度範囲で実施されるのが好ましく、より好ましくは20‐150℃、特に好ましくは40‐120℃である。温度が上昇するにつれて反応生成物中に2,2'-異性体と2,4'-異性体画分の増加が見られた。 The reaction is preferably carried out in the temperature range of 0-200 ° C, more preferably 20-150 ° C, particularly preferably 40-120 ° C. As the temperature increased, the 2,2'-isomer and 2,4'-isomer fractions increased in the reaction product.
反応中の圧力は0,1-50bar(絶対圧)であり、好ましくは1‐10bar(絶対圧)である。 The pressure during the reaction is 0,1-50 bar (absolute pressure), preferably 1-10 bar (absolute pressure).
バッチ式および半連続式による実施の場合には、すべての反応物質を量りとった後で反応混合物にいわゆる“エイジング”を受けさせることもできる。その目的のために反応混合物は反応装置中に残され、または他の反応装置(好ましくは攪拌式の反応装置)に運ばれる。この段階での反応混合物の温度は75℃を超過すると好ましく、さらに好ましくは110-150℃の範囲内である。 In the case of batch and semi-continuous operation, the reaction mixture can also be subjected to so-called “aging” after all the reactants have been weighed. For that purpose, the reaction mixture is left in the reactor or is transported to another reactor, preferably a stirred reactor. The temperature of the reaction mixture at this stage is preferably above 75 ° C, more preferably in the range of 110-150 ° C.
工程a)の製造方法の後に、反応混合物の中和(工程b))を行う。この目的のためにアンモニアが反応混合物に添加される。アンモニアは気体の形態で反応混合物に供給されても良く、必要に応じて水で飽和されていてもよく、アンモニア水溶液の形態でも良く、または両方の相の混合物の形態でも良い。アンモニアと反応混合物の結合はとりわけ攪拌式タンク、チューブ(静止型混合素子はあってもなくてもよい)またはその他の装置のような適切な装置中で起こる。塩基性のアンモニアの添加は反応混合物の中和と、水相と有機相の二つの混ざらない相の形成を結果としてもたらす。中和は1-10bar(絶対圧)の圧力下、平均温度40-120℃において起こる。 After the production method of step a), the reaction mixture is neutralized (step b)). For this purpose, ammonia is added to the reaction mixture. Ammonia may be supplied to the reaction mixture in gaseous form, may be saturated with water if necessary, may be in the form of an aqueous ammonia solution, or may be in the form of a mixture of both phases. The combination of ammonia and the reaction mixture occurs in a suitable apparatus such as a stirred tank, a tube (with or without a static mixing element) or other apparatus, among others. The addition of basic ammonia results in neutralization of the reaction mixture and the formation of two immiscible phases, an aqueous phase and an organic phase. Neutralization takes place at an average temperature of 40-120 ° C under a pressure of 1-10 bar (absolute pressure).
工程b)からの混合物は現在、記述されているように有機相と水相となっている。工程c)ではこれらの相が分離される。相は例えばデキャンティングの手段によりお互いに分離される。その後、それぞれの相は別々に後処理に付される。 The mixture from step b) is now in the organic and aqueous phase as described. In step c) these phases are separated. The phases are separated from one another, for example by means of decanting. Each phase is then subjected to post-treatment separately.
基本的に水と水中に溶解した酸性触媒のアンモニウム塩とから構成される水相と、また少量のアニリンとホルムアルデヒドの反応物質と、少量のMDA最終生成物が、工程d)においてアルカリ土類金属の酸化物および/または水酸化物で処理される。上述のように、対応する化合物であるカルシウム(一般的には乳状石灰や消石灰である)を使用することも好ましい。アンモニウム塩はアンモニアの形成を伴い分解される。この処理工程は、炭酸ナトリウムを生産するためのソルヴェイ法の一工程として知られている。アンモニアは、好ましくは蒸留やストリッピングにより蒸気または不活性ガスと共に分離される。 An aqueous phase consisting essentially of water and an ammonium salt of an acidic catalyst dissolved in water, as well as a small amount of aniline and formaldehyde reactants and a small amount of MDA final product, in step d) are alkaline earth metals. With the oxide and / or hydroxide. As mentioned above, it is also preferred to use the corresponding compound calcium (generally milky lime or slaked lime). Ammonium salts are decomposed with the formation of ammonia. This treatment step is known as a step in the Solvay process for producing sodium carbonate. Ammonia is preferably separated with steam or inert gas by distillation or stripping.
必要に応じて、アンモニアを多く含む気体相が、吸着による乾燥または凝縮による蒸気の除去のような更なる工程を経て濃縮、精製されれば、それらは再び中和(工程b))に回すことができる。 If necessary, if the gaseous phase rich in ammonia is concentrated and purified through further steps such as drying by adsorption or removal of vapors by condensation, they are sent to neutralization (step b)) again. Can do.
一実施の形態では、蒸気を含むガスは、酸化カルシウム(または生石灰とも呼ばれる)上を通過する。この処理により、そのガスは乾燥され、かつ生石灰が水酸化カルシウムに変換される。それは、工程d)でアンモニア塩の分解の処理に供給される消石灰として知られる。 In one embodiment, the vapor containing gas passes over calcium oxide (also called quicklime). This treatment dries the gas and converts quicklime into calcium hydroxide. It is known as slaked lime that is supplied to the process of decomposition of the ammonia salt in step d).
濃縮と精製に次いで、必要であれば、アンモニアが除去された後に残る低濃度のアンモニアを含む液相を廃水として処分する。 Following concentration and purification, if necessary, the liquid phase containing the low concentration of ammonia remaining after the ammonia is removed is disposed of as waste water.
工程c)で分離された有機相(MDAを圧倒的に多く含み、そして残留物の水、アンモニア、MDAの製造に使用された生成物を含む)を同様に後処理する。これは例えば一回、または繰り返しの水洗浄による方法、または好ましくは、例えばアニリンと水の除去を目的とする複合蒸留により成し遂げられる。 The organic phase separated in step c), which is predominantly MDA and contains the residual water, ammonia and products used for the production of MDA, is worked up in the same way. This can be accomplished, for example, by a single or repeated water wash, or preferably by a combined distillation, for example for the purpose of removing aniline and water.
本発明の方法により製造されるMDAは典型的にMDIを供給する為にホスゲンと反応される。この種類の方法は周知であり、例えば「Kunststoffhandbuch, 第7巻, Polyurethane, Carl Hanser Verlag, Munich, Vienna, 第3版, 1993, 76〜86ページ」に、そしてまた多くの特許文献(WO99/40059やWO99/54289は一つの例である)に広く記述されている。 MDA produced by the process of the present invention is typically reacted with phosgene to provide MDI. This type of method is well known, for example in “Kunststoffhandbuch, Vol. 7, Polyurethane, Carl Hanser Verlag, Munich, Vienna, 3rd edition, 1993, pp. 76-86” and also in many patent documents (WO99 / 40059). And WO99 / 54289 are one example).
その目的のため、一般にはMDAと、必要に応じてホスゲンが不活性溶媒に溶解され反応へ導かれる。使用される溶媒は好ましくは不活性溶媒であり、とりわけトルエンのような芳香族溶媒やモノクロロベンゼンのようなハロゲン化芳香族化合物である。 For that purpose, generally MDA and, if necessary, phosgene are dissolved in an inert solvent and led to the reaction. The solvent used is preferably an inert solvent, in particular an aromatic solvent such as toluene or a halogenated aromatic compound such as monochlorobenzene.
上記方法では、例えば攪拌式タンク、攪拌式タンクカスケード、カラムおよび/またはチューブ反応装置のような慣用の反応装置で、例えば50-150℃、好ましくは70-120℃、さらに好ましくは70-100℃の知られた温度にて、0.5-10bar、好ましくは0.8-8bar、より好ましくは0.8-1.5barの圧力下にて、1段階または複数の段階にて実施することができる。 In the above process, for example, 50-150 ° C., preferably 70-120 ° C., more preferably 70-100 ° C. in a conventional reactor such as a stirred tank, stirred tank cascade, column and / or tube reactor. Can be carried out in one or more stages at a known temperature of 0.5-10 bar, preferably 0.8-8 bar, more preferably 0.8-1.5 bar.
一例として少なくとも一種の不活性有機溶媒の存在下において、静止型ミキサー中で実施される最初のホスゲン化段階と、滞留時間装置中で実施される2番目のホスゲン化段階との2段階反応によりホスゲン化を実行することができる。 By way of example, in the presence of at least one inert organic solvent, phosgene is produced by a two-stage reaction of a first phosgenation stage carried out in a static mixer and a second phosgenation stage carried out in a residence time apparatus. Can be performed.
ホスゲン化により製造された粗MDIは例えば蒸留などの慣用の技術手段により精製することができる。好ましくは、最初の精製操作において、ホスゲンと、必要に応じて溶媒を、好ましくは実質的に、より好ましくは完全に、ホスゲン化反応混合物すなわち粗MDIから除去することもできる。 The crude MDI produced by phosgenation can be purified by conventional technical means such as distillation. Preferably, in the initial purification operation, phosgene and optionally the solvent can also be removed from the phosgenation reaction mixture or crude MDI, preferably substantially, more preferably completely.
次いで好ましくは、2,2'-,2,4'-および/または4,4'-MDIのような所望の単量体のMDIおよび/またはこれらの異性体の少なくとも二種を含む混合物を、好ましくは蒸留(例えば圧力は2-50mbar、好ましくは2-20mbarであり、温度は150-250℃、好ましくは180-230℃である)および/または結晶化(例えば分別再結晶化である)のような適当な技術手段によりその後分離することができる。 Then preferably a mixture comprising at least two of the desired monomeric MDI and / or isomers thereof, such as 2,2′-, 2,4′- and / or 4,4′-MDI, Preferably by distillation (eg pressure is 2-50 mbar, preferably 2-20 mbar, temperature is 150-250 ° C., preferably 180-230 ° C.) and / or crystallization (eg fractional recrystallization) It can then be separated by suitable technical means.
MDIの製造方法の一実施の形態では、粗MDAから二環の生成物を分離することができ、EP570799に記載があるような気体相のホスゲン化によりそれを反応させることができる。そして例えば二環のMDIを提供する。 In one embodiment of the process for producing MDI, the bicyclic product can be separated from the crude MDA and reacted by phosgenation of the gas phase as described in EP570799. And for example, provide bicyclic MDI.
この方法で製造されたMDIはとりわけ、ポリウレタンを生成するための少なくとも二種の活性水素原子を有する化合物と反応させることができる。 MDI produced in this way can inter alia be reacted with a compound having at least two active hydrogen atoms to form a polyurethane.
本発明の方法は費用対効果が高く操作上確実なMDAの処理を可能にする。MDAに損傷はない。使用されるアンモニアは反応生成物から完全に分離することができる。アンモニアの循環は生成物の損失の発生を防止する。発生する塩の水溶液は問題なく処分される。 The method of the present invention allows for cost-effective and operationally reliable MDA processing. There is no damage to the MDA. The ammonia used can be completely separated from the reaction product. The circulation of ammonia prevents product loss from occurring. The resulting aqueous salt solution is disposed of without problems.
以下の実施例により本発明を更に説明する。 The following examples further illustrate the present invention.
攪拌機構の備わった実験装置中で、1kgのアニリンを30質量%濃度の塩酸0.5kgと混合し、そしてその混合物を50℃に加熱した。1時間にわたって連続的に、40質量%濃度のホルムアルデヒド溶液合計0.4kgを量り入れた。そのあとで混合物を100℃に加熱し、その温度で12時間攪拌した。この間、アニリンをホルムアルデヒドと反応させ、MDAを生成した。 In an experimental apparatus equipped with a stirring mechanism, 1 kg of aniline was mixed with 0.5 kg of 30% strength by weight hydrochloric acid and the mixture was heated to 50 ° C. A total of 0.4 kg of 40% strength by weight formaldehyde solution was weighed continuously over 1 hour. The mixture was then heated to 100 ° C. and stirred at that temperature for 12 hours. During this time, aniline was reacted with formaldehyde to produce MDA.
その後、30分間激しく攪拌した混合物の中に50℃の20質量%濃度のアンモニア溶液約350gを量り入れた。それから攪拌器のスイッチを停止した。反応混合物は有機相と水相に分離した。相分離が起こった後で、それらの相を実験装置から別々に回収した。 Thereafter, about 350 g of a 20 mass% ammonia solution at 50 ° C. was weighed into the mixture stirred vigorously for 30 minutes. The stirrer switch was then turned off. The reaction mixture was separated into an organic phase and an aqueous phase. After phase separation occurred, the phases were collected separately from the experimental apparatus.
回収された水相は18.5質量%濃度の塩化アンモニウムを含んでいた。 The recovered aqueous phase contained 18.5% strength by weight ammonium chloride.
1kgの水相を温度調節された実験装置中で150gの水酸化カルシウム(消石灰)と混ぜあわせた。結果として生じた水和アンモニア気体は酸化カルシウムで満たされた乾燥塔を通過し、乾燥した。乾燥したアンモニアは中和のために再び使用された。 1 kg of the aqueous phase was mixed with 150 g of calcium hydroxide (slaked lime) in a temperature controlled laboratory apparatus. The resulting hydrated ammonia gas passed through a drying tower filled with calcium oxide and dried. The dried ammonia was used again for neutralization.
完全な脱ガスに続いて、装置の中には処分すべき約20%濃度の塩化カルシウム水溶液が残っていた。 Following complete degassing, there remained approximately 20% strength aqueous calcium chloride solution to be disposed of in the apparatus.
Claims (7)
a)酸の存在下にアニリンをホルムアルデヒドと反応させる工程、
b)酸をアンモニアで中和する工程、
c)工程b)からの反応混合物を水相と有機相に分離する工程、
d)工程c)で得られた水相をアルカリ土類金属の酸化物または水酸化物で処理する工程、
e)工程d)で得られたアンモニアを除去する工程を含み、
且つ工程e)で得られたアンモニアが工程b)に戻されることを特徴とするジフェニルメタンジアミンの製造方法。 A method for producing diphenylmethanediamine, comprising:
a) reacting aniline with formaldehyde in the presence of an acid,
b) neutralizing the acid with ammonia;
c) separating the reaction mixture from step b) into an aqueous phase and an organic phase;
d) treating the aqueous phase obtained in step c) with an alkaline earth metal oxide or hydroxide;
comprising the step of removing ammonia obtained in step e) d),
A process for producing diphenylmethanediamine, wherein the ammonia obtained in step e) is returned to step b) .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07100242.2 | 2007-01-08 | ||
EP07100242 | 2007-01-08 | ||
PCT/EP2008/050002 WO2008083997A1 (en) | 2007-01-08 | 2008-01-02 | Method for the production of diphenylmethane diamine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010515667A JP2010515667A (en) | 2010-05-13 |
JP5398546B2 true JP5398546B2 (en) | 2014-01-29 |
Family
ID=39166987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009544402A Expired - Fee Related JP5398546B2 (en) | 2007-01-08 | 2008-01-02 | Method for producing diphenylmethanediamine |
Country Status (8)
Country | Link |
---|---|
US (1) | US8329951B2 (en) |
EP (1) | EP2108011B1 (en) |
JP (1) | JP5398546B2 (en) |
KR (1) | KR101544219B1 (en) |
CN (1) | CN101583591B (en) |
ES (1) | ES2427593T3 (en) |
PT (1) | PT2108011E (en) |
WO (1) | WO2008083997A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102666474A (en) * | 2009-12-18 | 2012-09-12 | 巴斯夫欧洲公司 | Two-stage method for cost-effective separation of homogeneous catalysts in mda synthesis |
CN102079712A (en) * | 2010-12-31 | 2011-06-01 | 大连联化化学有限公司 | Method for recycling anhydrous organic amine from organic amine salt |
HUE035346T2 (en) | 2013-12-11 | 2018-05-02 | Basf Se | Process for the preparation of 4,4'-dimethylaniline |
EP3351505A1 (en) | 2017-01-20 | 2018-07-25 | Covestro Deutschland AG | Method for flexible control of the use of hydrochloric acid from chemical production |
EP3351513A1 (en) | 2017-01-20 | 2018-07-25 | Covestro Deutschland AG | Method and device for continuous hydrochloric acid neutralization |
DE102022201519A1 (en) * | 2022-02-14 | 2023-08-17 | Volkswagen Aktiengesellschaft | Process for the coupled production of polyurethanes with a reduced carbon footprint |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2781245A (en) * | 1952-09-18 | 1957-02-12 | Allied Chem & Dye Corp | Process of recovering ammonia from ammoniacal liquors |
GB1192121A (en) * | 1968-03-18 | 1970-05-20 | Ici Ltd | Purification of Polyamines Formed by Aniline-Formaldehyde Condensation |
DE1901993A1 (en) * | 1969-01-16 | 1970-08-20 | Basf Ag | Process for the preparation of 4,4'-diphenylmethane diisocyanate and a mixture of di- and polyisocyanates |
JPS6283316A (en) * | 1985-10-08 | 1987-04-16 | Mitsubishi Heavy Ind Ltd | Production of alumina particles |
JPH08797B2 (en) * | 1986-04-21 | 1996-01-10 | 日本化薬株式会社 | Process for producing diaminodiphenylmethane compounds |
JPH04154744A (en) * | 1990-10-18 | 1992-05-27 | Mitsui Toatsu Chem Inc | Production of methylene-crosslinked polyarylamine |
US5310769A (en) * | 1992-05-01 | 1994-05-10 | Bayer Aktiengesellschaft | Process for the production of polyamine mixtures of the polyamino-polyaryl-polymethylene series |
DE4217019A1 (en) | 1992-05-22 | 1993-11-25 | Bayer Ag | Process for the preparation of aromatic diisocyanates |
JP3868027B2 (en) * | 1996-06-12 | 2007-01-17 | 三井化学株式会社 | Process for producing methylene-bridged polyphenylene polyamines mainly composed of triaminodiphenylmethanes |
DE19804915A1 (en) | 1998-02-07 | 1999-08-12 | Basf Ag | Process for the preparation of methylene di (phenylamine) and methylene di (phenyl isocyanate) |
DE19817691A1 (en) | 1998-04-21 | 1999-10-28 | Basf Ag | Production of diphenylmethanediisocyanate and polyphenylene-polymethylene-polyisocynate mixtures |
JP4033420B2 (en) * | 1998-04-23 | 2008-01-16 | 三井造船株式会社 | Method and apparatus for dry removal of hydrogen chloride in exhaust gas |
JP4016520B2 (en) * | 1998-12-22 | 2007-12-05 | 住友化学株式会社 | Production method of bisphenols |
DE10006452A1 (en) | 2000-02-14 | 2001-08-16 | Bayer Ag | Production of diaminophenyl methanes, useful for production of polyurethanes, comprises acid catalyzed rearrangement of a dried condensate of aniline and a methylene group containing agent |
DE10211021A1 (en) * | 2002-03-13 | 2003-09-25 | Bayer Ag | Process for the preparation of polyisocyanates of the diphenylmethane series with a reduced color value |
DE10331772A1 (en) | 2003-07-11 | 2005-02-03 | Basf Ag | Process for the preparation of diaminodiarylmethanes |
-
2008
- 2008-01-02 PT PT87011904T patent/PT2108011E/en unknown
- 2008-01-02 JP JP2009544402A patent/JP5398546B2/en not_active Expired - Fee Related
- 2008-01-02 EP EP08701190.4A patent/EP2108011B1/en active Active
- 2008-01-02 CN CN200880001868.6A patent/CN101583591B/en active Active
- 2008-01-02 WO PCT/EP2008/050002 patent/WO2008083997A1/en active Application Filing
- 2008-01-02 KR KR1020097014472A patent/KR101544219B1/en active IP Right Grant
- 2008-01-02 ES ES08701190T patent/ES2427593T3/en active Active
- 2008-01-02 US US12/521,873 patent/US8329951B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN101583591B (en) | 2014-01-08 |
JP2010515667A (en) | 2010-05-13 |
US8329951B2 (en) | 2012-12-11 |
US20100105951A1 (en) | 2010-04-29 |
WO2008083997A1 (en) | 2008-07-17 |
KR101544219B1 (en) | 2015-08-12 |
CN101583591A (en) | 2009-11-18 |
PT2108011E (en) | 2013-09-06 |
EP2108011A1 (en) | 2009-10-14 |
KR20090108594A (en) | 2009-10-15 |
ES2427593T3 (en) | 2013-10-31 |
EP2108011B1 (en) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5398546B2 (en) | Method for producing diphenylmethanediamine | |
US8431746B2 (en) | Method for producing diphenylmethane diamine | |
RU2398760C2 (en) | Diaminodiphenylmethane synthesis method | |
JP6166664B2 (en) | Method for producing diphenylmethane-based diamine and polyamine | |
US9771291B2 (en) | Process for working up waste water from nitrobenzene preparation | |
EP2203408B1 (en) | Process for the production of di- and polyamines of the diphenylmethane series | |
KR101785129B1 (en) | Two-stage process for cost-effective deposition of homogeneous catalysts in mda synthesis | |
US5675035A (en) | Fractionation and purification of aromatic polyamine mixtures and the use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130419 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130426 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130520 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130924 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131022 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5398546 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |