JP5398096B1 - Permeable fine grain grout material - Google Patents
Permeable fine grain grout material Download PDFInfo
- Publication number
- JP5398096B1 JP5398096B1 JP2013113350A JP2013113350A JP5398096B1 JP 5398096 B1 JP5398096 B1 JP 5398096B1 JP 2013113350 A JP2013113350 A JP 2013113350A JP 2013113350 A JP2013113350 A JP 2013113350A JP 5398096 B1 JP5398096 B1 JP 5398096B1
- Authority
- JP
- Japan
- Prior art keywords
- slag
- slaked lime
- particle
- particles
- fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011440 grout Substances 0.000 title claims abstract description 36
- 239000000463 material Substances 0.000 title claims abstract description 25
- 239000002245 particle Substances 0.000 claims abstract description 90
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 75
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 75
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 75
- 235000011116 calcium hydroxide Nutrition 0.000 claims abstract description 75
- 239000002893 slag Substances 0.000 claims abstract description 66
- 239000010419 fine particle Substances 0.000 claims abstract description 53
- 239000002689 soil Substances 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 230000003204 osmotic effect Effects 0.000 claims abstract description 5
- 230000035515 penetration Effects 0.000 claims description 11
- 230000035699 permeability Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 239000012466 permeate Substances 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000004576 sand Substances 0.000 description 12
- 239000004571 lime Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 8
- 240000006909 Tilia x europaea Species 0.000 description 8
- 235000011941 Tilia x europaea Nutrition 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000011362 coarse particle Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052956 cinnabar Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
【課題】砂質土等の土粒子間隙に、スラグと消石灰と水とからなる微粒子を浸透させる浸透性微粒子グラウト材において、特にスラグと消石灰の微粒子径と、粒子分布を調整し、浸透性を向上させる。
【解決手段】砂質土の土粒子間隙に浸透させる微粒子からなるスラグ及び消石灰と、水とからなる浸透性微粒子グラウト材であって、上記スラグと上記消石灰の粒子径の上限28μm、下限0.6μmで、かつ最大側20%及び最小側20%の微粒子径の消石灰/スラグ比0.8〜1.3の範囲で構成することを特徴とする。
【選択図】図1An osmotic fine particle grout material that allows fine particles of slag, slaked lime, and water to permeate into a gap between soil particles such as sandy soil. Improve.
SOLUTION: An osmotic fine particle grout material composed of fine particles to be permeated into a soil particle gap of sandy soil, and water, an upper limit of 28 μm and a lower limit of 0. The slaked lime / slag ratio is in a range of 0.8 to 1.3 with a particle diameter of 6 μm and a particle size of 20% on the maximum side and 20% on the minimum side.
[Selection] Figure 1
Description
本発明は、砂質土等の土粒子間隙に、スラグと消石灰と水とからなる微粒子を浸透させる浸透性微粒子グラウト材に関し、特にスラグと消石灰の微粒子径と、粒子分布を調整した浸透性微粒子グラウト材に関するものである。 The present invention relates to a permeable fine particle grout material in which fine particles composed of slag, slaked lime, and water are permeated into a gap between soil particles such as sandy soil, and more particularly, permeable fine particles in which the particle size and particle distribution of slag and slaked lime are adjusted. It relates to grout materials.
砂質土等の軟弱地盤の地盤強化を目的としたグラウト注入工法において、強度を必要とする場合、グラウトとして、セメントやスラグ−石灰が用いられる。このようなグラウトは、砂質土等の土粒子間隙に浸透させる。このため、グラウトに含まれる細粒化した微粒子は、セメントとスラグ−石灰との間で、浸透に際して異なる性状を示す。 In the grouting method for reinforcing the ground of soft ground such as sandy soil, cement and slag-lime are used as the grouting when strength is required. Such a grout is infiltrated into a gap between soil particles such as sandy soil. For this reason, the finely divided fine particles contained in the grout exhibit different properties during penetration between cement and slag-lime.
セメントは、工場において、例えば早強セメントを細粒化した微粒子が、粒子径の大小に関わらず同じ組成で構成されるものであり、一様に硬化させることができる。 In the factory, for example, fine particles obtained by finely pulverizing early-strength cement are composed of the same composition regardless of the particle size, and can be uniformly cured.
これに対して、スラグと消石灰は、別々の工場で製造方法も異なるものであることから、細粒化した微粒子の微粒子分布比が異なる場合が多い。 On the other hand, since slag and slaked lime have different manufacturing methods at different factories, the fine particle distribution ratio of finely divided fine particles is often different.
スラグは、高炉で鉱石から鉄を精錬する際に発生する鉱さいを急冷させた硬い水砕スラグを微粒子に粉砕したものであり、微粒子分布比は、例えば後述する表1のスラグに示すように、特定範囲に調整されている。即ち、スラグは、その微粒子分布の極大(粗粒分)、及び極小(細粒分)は、殆ど含まれていないため、分布の分散が小さい。 The slag is obtained by pulverizing hard granulated slag obtained by quenching ore generated when refining iron from ore in a blast furnace into fine particles, and the fine particle distribution ratio is, for example, as shown in the slag of Table 1 described later. It has been adjusted to a specific range. That is, since the slag contains almost no maximum (coarse particles) and minimum (fine particles) of the fine particle distribution, the dispersion of the distribution is small.
一方、消石灰は、国内各地に産出される石灰石をか焼した後、水を加えてできたスラグより軟らかい消石灰粗大粒を細粒化して微粒子とするが、粉砕方法(装置)が、その石灰の製造−加工メーカによって若干異なるが、いずれにしても細粒分が多くなる。このため、消石灰は、微粒子分布が大きく分散している。 On the other hand, slaked lime is produced by calcining limestone produced in various parts of the country and then finely sizing coarse slaked lime particles that are softer than slag made by adding water. Although it differs slightly depending on the manufacturing-processing manufacturer, in any case, the amount of fine particles increases. For this reason, the fine particle distribution of slaked lime is widely dispersed.
このうち、市販されているJIS特号、更にはそれより細かい「特上」と称される石灰、例えば表1に示す「消石灰3」は、平均粒径はスラグに比べて小さく、細粒分は非常に多いが、大きな粒子も含まれており、粒子分布の分散は幅広いものとして構成されている。 Among these, commercially available JIS special names and finer limes called “special”, for example “slaked lime 3” shown in Table 1, have an average particle size smaller than that of slag. Is very large, but also includes large particles, and the dispersion of the particle distribution is wide.
一般にこれらの粒子の大きさを表す尺度としては、平均粒径或いはブレーン値(比表面積)で評価している。一方、砂質土の間隙に微粒子を浸透させるためには、微粒子の10倍以上の単位間隙にしか浸透しないことが一般的に言われている。このため、大きい粒子が少量であっても土粒子間隙への浸透を阻害することになる。
In general, the average particle size or the brain value (specific surface area) is used as a scale for expressing the size of these particles. On the other hand, it is generally said that in order to allow fine particles to permeate into the gaps in sandy soil, the fine particles only penetrate into
また、スラグと石灰とは、互いに次の関係にある。スラグは、アルカリ刺激剤である消石灰が均一に共存しなければ良好に硬化することができない。スラグと消石灰の粒子径の上限と下限の値、及び粒子分布比が大きく異なると、同じ浸透挙動することができず、硬化度合に差が生じ、また強度もバラつきが生じるという問題点が生じる。 Moreover, slag and lime have the following relationship with each other. Slag cannot be cured well unless slaked lime, which is an alkali stimulant, coexists uniformly. If the upper and lower limit values of particle diameters of slag and slaked lime and the particle distribution ratio are greatly different, the same permeation behavior cannot be achieved, a difference in the degree of curing occurs, and the strength also varies.
このため、グラウト単位あたりのスラグに対して、非常に消石灰が少なくなれば、硬化発現が遅くなり、逆に消石灰が非常に多くなれば、硬化は早くなるが、強度は低くなるという不均一な固結体となる。
また特許文献1では、石灰として消石灰、珪酸塩としてスラグが含まれており、粒子径は30μm以下としている。
しかし消石灰とスラグの粉砕方法は硬いスラグと、スラグより軟らかい消石灰の混合物を30μm以下に粉砕すれば、当然のことながら消石灰の方が細粒化され、スラグと消石灰との粒度分布比が大きく異なるという現象が生じる。
このため、地盤に注入した場合、同じ浸透挙動ができず不均一な固結体となるという問題が生じる。
更に粒子が30μm以下であっても最大側が多く含まれていれば浸透性を阻害するという問題も生じる。
これらの問題点を特許文献1では明らかにしておらず、ただ単にスラグと消石灰の混合物粒子が30μm以下としているが、その粒度分布比の違いが浸透に及ぼす影響については述べていない。
For this reason, if the amount of slaked lime is very small relative to the slag per unit of grout, the hardening expression is delayed, and conversely, if the amount of slaked lime is very large, the hardening is fast, but the strength is low. It becomes a consolidated body.
In Patent Document 1, slaked lime is included as lime, slag is included as silicate, and the particle diameter is 30 μm or less.
However, slaked lime and slag are pulverized by grinding a mixture of hard slag and slaked lime that is softer than slag to 30 μm or less. Naturally, slaked lime is refined and the particle size distribution ratio between slag and slaked lime is greatly different. The phenomenon that occurs.
For this reason, when it inject | pours into the ground, the problem that the same osmosis | permeation behavior cannot be performed and it becomes a non-uniform solidified body arises.
Furthermore, even if the particles are 30 μm or less, there is a problem that the permeability is inhibited if the maximum side is contained in a large amount.
Although these problems are not clarified in Patent Document 1, the mixture particles of slag and slaked lime are simply set to 30 μm or less, but the effect of the difference in the particle size distribution ratio on the penetration is not described.
そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、砂質土等の土粒子間隙に、スラグと消石灰と水とからなる微粒子を浸透させる浸透性微粒子グラウト材において、特にスラグと消石灰の微粒子径と、粒子分布を調整した浸透性微粒子グラウト材を提供することにある。 Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to infiltrate fine particles composed of slag, slaked lime, and water into a sand particle gap such as sandy soil. In the permeable fine particle grout material, it is providing the permeable fine particle grout material which adjusted especially the fine particle diameter of slag and slaked lime, and particle distribution.
請求項1記載の浸透性微粒子グラウト材は、砂質土の土粒子間隙に浸透させる微粒子からなるスラグ及び消石灰と、水とからなる浸透性微粒子グラウト材であって、上記スラグと上記消石灰の粒子径の上限28μm、下限0.6μmで、かつ最大側20%及び最小側20%の微粒子径の消石灰/スラグ比0.8〜1.3の範囲で構成することを特徴とする。 The permeable fine particle grout material according to claim 1 is a permeable fine particle grout material made up of slag and slaked lime made of fine particles that permeate into the soil particle gaps of sandy soil, and water, the slag and slaked lime particles. The upper limit is 28 μm, the lower limit is 0.6 μm, and the slaked lime / slag ratio is 0.8 to 1.3 with a fine particle diameter of 20% on the maximum side and 20% on the minimum side.
請求項2記載の浸透性微粒子グラウト材は、請求項1記載の発明において、粒子径の上限が26.61μmであり下限が0.73μmからなるスラグと、粒子径の上限が23.50μmであり下限が0.97μmである消石灰からなり、スラグの最大側5%の粒子径が18.62μm以上であり、消石灰の最大側5%の粒子径が17.43μm以上であることを特徴とする。
In the permeable fine particle grout material according to
請求項3記載の浸透性微粒子グラウト材の地盤への浸透方法は、請求項1記載の浸透性微粒子グラウト材を地盤へ浸透させる工程を有することを特徴とする。 The method for infiltrating the permeable fine particle grout material according to claim 3 into the ground includes the step of infiltrating the permeable fine particle grout material according to claim 1 into the ground .
上述した構成からなる本発明では、砂質土等の土粒子間隙に、スラグと消石灰と水とからなる微粒子を浸透させる浸透性微粒子グラウト材において、特にスラグと消石灰の微粒子径と、粒子分布を調整することにより浸透性を向上させている。 In the present invention having the above-described configuration, in the permeable fine particle grout material in which fine particles composed of slag, slaked lime, and water are permeated into a gap between soil particles such as sandy soil, in particular, the fine particle diameter and particle distribution of slag and slaked lime are set. The permeability is improved by adjusting.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明を適用した浸透性微粒子グラウト材は、砂質土等の土粒子間隙に浸透させる微粒子スラグと石灰と水とからなる浸透性微粒子グラウト材である。この浸透性微粒子グラウト材は、スラグと石灰の粒子径の上限28μm、下限0.6μmで、かつ最大側20%及び最小側20%の微粒子径の石灰/スラグ比0.87〜1.24の範囲で構成している。 The permeable fine particle grout material to which the present invention is applied is an permeable fine particle grout material composed of fine particle slag, lime, and water that penetrates into a gap between soil particles such as sandy soil. This permeable fine particle grout material has an upper limit of 28 μm and a lower limit of 0.6 μm of particle diameters of slag and lime, and a lime / slag ratio of 0.87 to 1.24 with a particle diameter of 20% on the maximum side and 20% on the minimum side. It consists of a range.
図1は、本発明を適用した浸透性微粒子グラウト材において、スラグと消石灰の粒子径の粒度分布を実際に測定した結果を示している。ここでいう上限とは、図1に示すスラグと消石灰の粒度分布でいうところの粗粒子の最大側であり、下限は、細粒子の最小側を示す。更にこれら粒度分布の上限と下限とを定めても、上限及び下限間の粒子径の粒度分布比を明確にする必要がある。このため、本発明では、最大側20%の粒子径及び最小側20%の粒子径における消石灰/スラグ比を0.8〜1.3以内の範囲に、望ましくは、当該消石灰/スラグ比を0.87〜1.24以内の範囲に調整することを特徴としている。 FIG. 1 shows the result of actually measuring the particle size distribution of the particle diameters of slag and slaked lime in the permeable fine particle grout material to which the present invention is applied. The upper limit here is the maximum side of the coarse particles in the slag and slaked lime particle size distribution shown in FIG. 1, and the lower limit is the minimum side of the fine particles. Furthermore, even if the upper and lower limits of the particle size distribution are defined, it is necessary to clarify the particle size distribution ratio of the particle diameter between the upper limit and the lower limit. For this reason, in the present invention, the slaked lime / slag ratio at the maximum 20% particle size and the minimum 20% particle size is within the range of 0.8 to 1.3, and preferably the slaked lime / slag ratio is 0. It is characterized in that it is adjusted within the range of .87 to 1.24.
なお、ここでいう最大側20%とは、最大粒径から累積上位20%を意味している。つまり最大側20%とは、粒子の累積度数の上から0.2を示すものである。ここでいう最小側20%とは、最小粒径から累積下位20%、累積上位80%を意味している。つまり最小側20%とは、粒子の累積度数の下から0.2を示すものである。
The maximum 20% here means the top 20% cumulative from the maximum particle size. In other words, the maximum 20% means 0.2 from the top of the cumulative frequency of particles. The
一方、浸透性微粒子グラウト材を構成する粒子が、砂質土等の土粒子間隙に浸透できるか否かは、粒子の平均粒径ではなく、粒子分布における最大側5%以上(粒子の累積度数の上から0〜0.05)の粒子の存在により、大きく左右されることも判明した。 On the other hand, whether or not the particles constituting the permeable fine particle grout material can penetrate into the gaps between the soil particles such as sandy soil is not the average particle size of the particles, but more than 5% on the maximum side in the particle distribution (cumulative frequency of particles) It has also been found that the presence of 0 to 0.05) particles from the top is greatly affected.
即ち、粒子径の最小側がいくら細粒化されていても、最大側5%以上の粒径が大きければ、砂質土等の土粒子間隙に微粒子が浸透するに従って目詰まりを起こし、以降の浸透を阻害することを新たに見出した。 In other words, no matter how fine the minimum particle diameter is, if the particle size of 5% or more on the maximum side is large, clogging will occur as the fine particles penetrate into the soil particle gap such as sandy soil, and the subsequent infiltration Newly found to inhibit.
このような浸透現象から、本発明では、最大側5%以上を含めて、粒子の上限28μmとしている。 From such a penetration phenomenon, in the present invention, the upper limit of the particle size is 28 μm including 5% or more on the maximum side.
一方、最小側は、スラグの粒子分布を基準とし、これに合わせて消石灰も同様とし、下限0.6μmとしている。 On the other hand, the minimum side is based on the slag particle distribution, and the same is applied to slaked lime, and the lower limit is 0.6 μm.
即ち、本発明では、スラグと消石灰の粒子径の上限28μm、下限0.6μmの範囲に調整している。 That is, in the present invention, the upper limit of the particle diameter of slag and slaked lime is 28 μm, and the lower limit is adjusted to 0.6 μm.
また、スラグに加える消石灰は、スラグを十分に硬化できるものであればよく、スラグ1重量部に対して、石灰を0.15〜0.5重量部混和させるようにして使用することが好ましい。スラグは、アルカリ刺激剤である消石灰を作用させることにより、硬化を開始する。 Moreover, the slaked lime added to slag should just be what can fully harden slag, and it is preferable to use it, mixing lime 0.15-0.5 weight part with respect to 1 weight part of slag. Slag begins to harden by the action of slaked lime, which is an alkali stimulant.
このため、消石灰が多いほど早く硬化し、消石灰が少ないほど硬化発現が遅くなるという傾向を示す。 For this reason, it shows the tendency that it hardens early, so that there is much slaked lime, and hardening expression becomes slow, so that there is little slaked lime.
しかし、消石灰は、強度にはそれほど影響を及ぼさず、強度は主にスラグにより決まる。従って、本発明では、早めに硬化させたい場合には、石灰の量を多くし、逆に硬化はそれほど早くなくてもよい場合には、消石灰の量を少なくする。 However, slaked lime does not affect the strength so much, and the strength is mainly determined by slag. Accordingly, in the present invention, the amount of lime is increased when it is desired to cure early, and conversely, the amount of slaked lime is decreased when curing does not have to be so fast.
なお、実用的にスラグを硬化させるには、スラグ重量部1に対して消石灰0.15重量部を下限とし、上限は0.7重量部、望ましくは0.50重量部である。 In addition, in order to harden slag practically, 0.15 weight part of slaked lime is made into a minimum with respect to the slag weight part 1, and an upper limit is 0.7 weight part, Preferably it is 0.50 weight part.
ちなみに、本発明を適用した浸透性微粒子グラウト材の地盤への注入方法としては、一液性、即ち調合槽に水、スラグ、消石灰を混合したグラウトを1台の注入ポンプで圧送して地盤に注入する方法で行われる。 Incidentally, as a method of injecting the permeable fine grain grout material to which the present invention is applied into the ground, it is one-part, that is, a grout in which water, slag and slaked lime are mixed in a mixing tank is pumped to the ground by a single injection pump. This is done by the method of injection.
本発明において使用されるスラグ及び消石灰は、上述した図1に示すように、スラグと消石灰の粒子径の上限28μm、下限0.6μmで、かつ最大側20%及び最小側20%の微粒子径の消石灰/スラグ比0.8〜1.3の範囲で構成したものを用いる。 As shown in FIG. 1 described above, the slag and slaked lime used in the present invention have an upper limit of 28 μm and a lower limit of 0.6 μm of slag and slaked lime, and a particle size of 20% on the maximum side and 20% on the minimum side. What was comprised in the range of 0.8-1.3 slaked lime / slag ratio is used.
その他分散剤、浸透促進剤、遅延剤、ゲル化剤、強度促進剤等を目的に合わせて併用することができる。 In addition, a dispersant, a penetration enhancer, a retarder, a gelling agent, a strength accelerator and the like can be used in combination for the purpose.
以下、本発明を適用した浸透性微粒子グラウト材の実施例について詳細に説明をする。 Hereinafter, examples of the permeable fine particle grout material to which the present invention is applied will be described in detail.
実験に用いた微粒子スラグ、消石灰の物性を表1に示す。また浸透させる砂質土として、硅砂5号を用いている。 Table 1 shows the physical properties of the fine particle slag and slaked lime used in the experiment. As sandy soil to be permeated, dredged sand No. 5 is used.
表1より、本発明例1のスラグと、本発明例2の消石灰1は、最大径、最小側5%、20%の粒子径及び最小径、最小側20%の粒子径は、殆ど差が無く、スラグと消石灰の最大側及び最小側の20%の消石灰/スラグの粒子径比は、消石灰/スラグ0.87〜1.24とほぼ近似値を示し、粒子分布がほぼ同じであった。
From Table 1, the slag of the present invention example 1 and the slaked lime 1 of the present invention example 2 are almost the same in the maximum diameter, minimum side 5%, 20% particle diameter and minimum diameter, and
これに対して、本発明例1のスラグと、比較例1及び比較例2の消石灰2は、最大径、最大側20%の粒子径及び最小径、最小側20%の粒子径は、大きく相違するものであり、特に最大側及び最小側の20%の消石灰/スラグの粒子径比は、比較例1で0.65〜1.53、比較例2で0.44〜1.86と、粒子分布に大きな差がある。特に消石灰2及び消石灰3は、最大側5%が30.56μm、及び40.51μmと、スラグの18.62μmと比較して粗粒分の割合が非常に大きいことが示されている。
On the other hand, the slag of Invention Example 1 and the slaked
上述した表1に示す微粒子、スラグ、消石灰を用いて、以下に説明する実験を行った。この実験に用いた装置は、透明ビニール製の内径5.4cm、長さ85cmのモールドで、下部に排出口(空気穴)を設け、上に金網、荒砂3cm、自然乾燥した硅砂5号70cmを間隙率43%になるように突き固めて、その上に荒砂3cmとした浸透管を作製した。 Experiments described below were performed using the fine particles, slag, and slaked lime shown in Table 1 above. The apparatus used in this experiment is a transparent vinyl mold with an inner diameter of 5.4 cm and a length of 85 cm, with a discharge port (air hole) in the lower part, a wire net, 3 cm of rough sand, and 70 cm of naturally dried dredged sand No. 5 70 cm. A permeation tube made of 3 cm of rough sand was prepared by tamping it so that the porosity was 43%.
実験では、グラウトが荒砂上部に6cmの液面を保持するように、浸透により液面が低下した分を常時補給した。また、微粒子が沈降分離しないように撹拌棒によりゆっくり撹拌した。 In the experiment, the amount of the liquid level lowered by infiltration was constantly replenished so that the grout maintained a 6 cm liquid level above the rough sand. Moreover, it stirred slowly with the stirring rod so that fine particles might not settle and separate.
実験に使用した本発明グラウトの配合1は、表1のスラグ18g、消石灰は、消石灰1を5.5g、分散剤1mlに水を加えて100mlとした(本発明例3)。
The composition 1 of the grout of the present invention used in the experiment was 18 g of slag in Table 1, and the slaked lime was 5.5 g of slaked
また比較用の配合2は、配合1の消石灰1を消石灰2に替えた以外は同一である。また比較用の配合3は、配合1の消石灰1を消石灰3に替えた以外は同一である。(以下、この配合2を比較例3とし、配合3を比較例4とする。)。上述した浸透管を用いて配合1及び配合2のグラウトの浸透長さと時間の関係を表2に示す。
Moreover, the mixing | blending 2 for a comparison is the same except having replaced the slaked lime 1 of the mixing | blending 1 with the slaked
浸透終了後、下部排出口を閉じ、上部に残存したグラウトを取り除いた密封した。 After the infiltration, the lower discharge port was closed and the grout remaining on the upper part was removed and sealed.
本発明例3の浸透速度は、1分までは早いが、それ以降は、時間の経過と共に若干遅くなる傾向が示されていた。この工程では、硅砂5号を間隙率43%に埋めた浸透管70cmに当該浸透性微粒子グラウト材グラウトを6cmの高さから自然浸透させた場合、浸透時間5分で浸透距離は70cmに達している。 The permeation rate of Example 3 of the present invention was fast up to 1 minute, but after that, there was a tendency that it slightly slowed with time. In this process, when the permeable fine particle grout material grout is naturally infiltrated from a height of 6 cm into a permeation pipe 70 cm in which silica sand No. 5 is buried at a porosity of 43%, the infiltration distance reaches 70 cm in 5 minutes. Yes.
一方、比較例3及び比較例4は、浸透速度1分までは、本発明例3と比較して若干遅い程度であるが、それ以降は、急激に浸透速度が遅くなり、特に比較例4は、本発明例3が70cmに達した時には、まだ43.3cmしか浸透していなかった。 On the other hand, Comparative Example 3 and Comparative Example 4 are slightly slower than the Inventive Example 3 until the permeation rate of 1 minute, but thereafter, the permeation rate decreases rapidly. When Example 3 of the present invention reached 70 cm, it was still penetrating only 43.3 cm.
これより、両者を比較した場合に、本発明例3と比較例3及び比較例4は、浸透性に大きな差異があることが確認できた。 From this, when both were compared, it could be confirmed that Invention Example 3, Comparative Example 3 and Comparative Example 4 had a large difference in permeability.
更に浸透固結体の切断時に観察したところ、比較例4の消石灰3は、砂表面に粒子の大きい消石灰粒子が薄い層を形成しており、更に砂表面下1〜2cmの砂粒子の間隙にも白い消石灰粒子が目詰まりを起こしており、浸透を阻害していることも確認できた。また消石灰2も消石灰3より少ないか、目詰まりを起こしていることも確認できた。
Further, when slaked lime 3 was observed, the slaked lime 3 of Comparative Example 4 formed a thin layer of slaked lime particles having large particles on the sand surface, and further in the gap between the sand particles 1 to 2 cm below the sand surface. It was also confirmed that the white slaked lime particles were clogged and inhibited the penetration. It was also confirmed that
これに対して、本発明3は、砂表面及び砂粒子の間隙に白い消石灰粒子が殆ど見られず、目詰まりを起こしていないことが確認できた。 On the other hand, in the present invention 3, it was confirmed that almost no white slaked lime particles were observed on the sand surface and the gap between the sand particles, and clogging was not caused.
この本発明例3と比較例3及び比較例4について検討したところ、比較例4の消石灰3は、平均粒径4.27μm、ブレーン値24.146cm2/gと全体としては非常に細かい粒子にも関わらず、浸透を阻害するのは、最大側5%で40.51μm以上の粗粒子が含まれており、この量が少ないが粒径の大きな粒子が目詰まりを起こしていることが実験より確認できた。また、比較例3の消石灰2よりも最大側5%で、30.56μmで消石灰1の17.43μmと比較して、大きい粗粒子が含まれており、目詰まりを起こしている。
When this invention example 3, comparative example 3, and comparative example 4 were examined, the slaked lime 3 of comparative example 4 had an average particle size of 4.27 μm and a brain value of 24.146 cm 2 / g, which were very fine particles as a whole. Despite this, it was found from experiments that coarse particles of 40.51 μm or more are contained at the maximum side of 5% that inhibits the penetration. It could be confirmed. Moreover, compared with 17.43 micrometer of slaked lime 1 by 30.56 micrometers at the maximum side 5% from the slaked
これに対して、本発明例3の消石灰1は、平均粒径5.48μm、ブレーン値9.132cm2/gと、比較例3より全体としては大きいが、最大側5%が17.43μm以上で大きな粒子が殆ど含まれていないため、目詰まりを起こしていない。 In contrast, the slaked lime 1 of Invention Example 3 has an average particle size of 5.48 μm and a brain value of 9.132 cm 2 / g, which is larger as a whole than Comparative Example 3, but the maximum side 5% is 17.43 μm or more. Since there are almost no large particles, clogging does not occur.
以上から、今までのように、グラウトの浸透性は、平均粒径やブレーン値で評価するのではなく、実際には大きい粒子が少量であっても、浸透の良し悪しに大きく影響を及ぼすことが確認できた。 From the above, as in the past, grout penetrability is not evaluated by average particle size or brane value. In fact, even if only a small amount of large particles is used, it greatly affects the quality of penetration. Was confirmed.
上述した実施例2における表2の浸透試験を行った1ヵ月後、本発明例3と比較例2における浸透固結体を上部5cmを残し、5〜15cm(強度用)、15〜25cm(透水用)の2箇所につき切断、抜き取りを行い、湿潤状態で3ヶ月間養生し、一軸圧縮強度と、透水係数を測定した。表3には、一軸圧縮強度、表4に透水係数の結果を示す。なお、比較として、浸透試験と同じ条件で突き固めた硅砂5号のみ(未処理)の透水係数を合わせて測定している。 One month after performing the penetration test of Table 2 in Example 2 described above, the permeation-solidified body in Invention Example 3 and Comparative Example 2 was left at the top 5 cm, 5-15 cm (for strength), 15-25 cm (water permeability) 2) were cut and extracted, cured for 3 months in a wet state, and measured for uniaxial compressive strength and hydraulic conductivity. Table 3 shows the results of uniaxial compressive strength, and Table 4 shows the results of water permeability. For comparison, only the permeability coefficient of cinnabar No. 5 (untreated) tamped under the same conditions as the penetration test is measured together.
表3より、浸透固結体の一軸圧縮強度は、本発明例4と比較例5共に殆ど同一であった。また、比較例3も実験例には示さないが、浸透固結体の一軸圧縮強度は、殆ど同一であった。 From Table 3, the uniaxial compressive strength of the osmotic consolidated body was almost the same in both the inventive example 4 and the comparative example 5. In addition, although Comparative Example 3 is not shown in the experimental examples, the uniaxial compressive strength of the permeation consolidated body was almost the same.
表4より、浸透固結体の透水係数は、10-4オーダーで、未処理(比較例7)と比較して、2桁改良されており、十分に止水効果があることが確認された。なお、本発明例5と比較例6とでは、浸透固結体の透水係数は殆ど差異が無かった。 From Table 4, it was confirmed that the permeability coefficient of the osmotic solidified body was on the order of 10 −4 , improved by two orders of magnitude compared with untreated (Comparative Example 7), and had a sufficient water-stopping effect. . Inventive Example 5 and Comparative Example 6 had almost no difference in the water permeability coefficient of the permeation consolidated body.
Claims (3)
上記スラグと上記消石灰の粒子径の上限28μm、下限0.6μmで、かつ最大側20%及び最小側20%の微粒子径の消石灰/スラグ比0.8〜1.3の範囲で構成することを特徴とする浸透性微粒子グラウト材。 An osmotic fine particle grout material composed of slag and slaked lime composed of fine particles to be permeated into the soil particle gap of sandy soil, and water,
The upper limit of the particle size of the slag and the slaked lime is 28 μm, the lower limit is 0.6 μm, and the slag and slag ratio is 0.8 to 1.3 in the fine particle diameter of the maximum 20% and the minimum 20%. Characteristic permeable fine grain grout material.
スラグの最大側5%の粒子径が18.62μm以上であり、消石灰の最大側5%の粒子径が17.43μm以上であることを特徴とする請求項1記載の浸透性微粒子グラウト材。 The upper limit of the particle diameter is 26.61 μm and the lower limit is 0.73 μm, and the upper limit of the particle diameter is 23.50 μm, and the lower limit is 0.97 μm.
2. The permeable fine particle grout material according to claim 1, wherein a particle size of 5% of the maximum side of the slag is 18.62 μm or more, and a particle size of the maximum 5% of the slaked lime is 17.43 μm or more.
を特徴とする浸透性微粒子グラウト材の地盤への浸透方法。 Penetration method to soil permeability fine grout, characterized in that the claim 1, wherein the permeable fine grout to have a process to infiltrate into the ground.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013113350A JP5398096B1 (en) | 2013-05-29 | 2013-05-29 | Permeable fine grain grout material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013113350A JP5398096B1 (en) | 2013-05-29 | 2013-05-29 | Permeable fine grain grout material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5398096B1 true JP5398096B1 (en) | 2014-01-29 |
JP2014231567A JP2014231567A (en) | 2014-12-11 |
Family
ID=50112366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013113350A Active JP5398096B1 (en) | 2013-05-29 | 2013-05-29 | Permeable fine grain grout material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5398096B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6275029B2 (en) * | 2014-12-12 | 2018-02-07 | パンパシフィック・カッパー株式会社 | Sediment stabilization method |
JP6584354B2 (en) * | 2016-03-24 | 2019-10-02 | 東興ジオテック株式会社 | Jet grout method for liquefaction countermeasures |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6163559A (en) * | 1984-09-04 | 1986-04-01 | 株式会社シモダ技術研究所 | Grout material and grout injection art |
JPH0326783A (en) * | 1989-06-23 | 1991-02-05 | Nittetsu Cement Co Ltd | Slurry for grout |
JPH10245556A (en) * | 1997-03-03 | 1998-09-14 | Kyokado Eng Co Ltd | Grout for ground |
JPH11116316A (en) * | 1997-10-09 | 1999-04-27 | Denki Kagaku Kogyo Kk | Grouting material |
JP2006182822A (en) * | 2004-12-27 | 2006-07-13 | Denki Kagaku Kogyo Kk | Highly penetrative grouting material |
-
2013
- 2013-05-29 JP JP2013113350A patent/JP5398096B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6163559A (en) * | 1984-09-04 | 1986-04-01 | 株式会社シモダ技術研究所 | Grout material and grout injection art |
JPH0326783A (en) * | 1989-06-23 | 1991-02-05 | Nittetsu Cement Co Ltd | Slurry for grout |
JPH10245556A (en) * | 1997-03-03 | 1998-09-14 | Kyokado Eng Co Ltd | Grout for ground |
JPH11116316A (en) * | 1997-10-09 | 1999-04-27 | Denki Kagaku Kogyo Kk | Grouting material |
JP2006182822A (en) * | 2004-12-27 | 2006-07-13 | Denki Kagaku Kogyo Kk | Highly penetrative grouting material |
Non-Patent Citations (2)
Title |
---|
JPN6013040872; 土木学会第65回年次学術講演会 , 2010, 第965-966頁 * |
JPN6013040873; 宇部三菱セメント研究報告 No.1 2000 , 2000, 第61-69頁 * |
Also Published As
Publication number | Publication date |
---|---|
JP2014231567A (en) | 2014-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011038104A (en) | Chemical agent for improving engineering properties of soil | |
JP5423959B2 (en) | Fast-hardening injection material using fast-curing material for injection material | |
CN104591646A (en) | Grouting material for surrounding rock | |
JP5896057B2 (en) | Manufacturing method of artificial stone | |
JP5398096B1 (en) | Permeable fine grain grout material | |
JP2013064238A (en) | Two-liquid grout injection method | |
CN108395183A (en) | A kind of foundation treatment engineering mixed serum and preparation method thereof | |
Tan et al. | Effect of Bentonite, Fly Ash and Silica Fume cement injections on uniaxial compressive strength of granular bases | |
Santhoshkumar et al. | Role of bentonite in improving the efficiency of cement grouting in coarse sand | |
CN108439833A (en) | A kind of high-performance low-carbon concrete and preparation method thereof | |
CN105884277B (en) | A kind of method that utilization heavy metal polluted soil prepares concrete | |
JP4533190B2 (en) | Injection material | |
JP7193105B1 (en) | Ground injection method using ground injection material and ground injection material | |
JP2847337B2 (en) | Ground injection liquid | |
EP2028170A1 (en) | Method for making light-weight concrete | |
WO2011136395A1 (en) | Method for producing artificial stone material | |
JP2023006556A (en) | Silica grout and ground injection method using the same | |
JP5810602B2 (en) | Method for producing suspension grout chemical | |
JPH07324188A (en) | Grout for the ground and method for grouting the ground | |
JP2021025289A (en) | Mixed material for fluidized sand, manufacturing method thereof, improved fluidized sand composition and manufacturing method thereof | |
KR101011966B1 (en) | Ground improving agent and method of soil and ground hardening | |
JP6405550B2 (en) | Ground injection material and ground injection method using the same | |
RU2806607C1 (en) | Building material | |
CN107117899B (en) | Concrete for bored pile and preparation process thereof | |
JP3101129B2 (en) | Method of manufacturing heavy concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5398096 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |