[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5397690B2 - Surface-coated cutting tool with excellent fracture resistance due to hard coating layer - Google Patents

Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Download PDF

Info

Publication number
JP5397690B2
JP5397690B2 JP2009281679A JP2009281679A JP5397690B2 JP 5397690 B2 JP5397690 B2 JP 5397690B2 JP 2009281679 A JP2009281679 A JP 2009281679A JP 2009281679 A JP2009281679 A JP 2009281679A JP 5397690 B2 JP5397690 B2 JP 5397690B2
Authority
JP
Japan
Prior art keywords
tisin
layer
tool
crystal grains
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009281679A
Other languages
Japanese (ja)
Other versions
JP2011121145A (en
Inventor
耕一 田中
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009281679A priority Critical patent/JP5397690B2/en
Publication of JP2011121145A publication Critical patent/JP2011121145A/en
Application granted granted Critical
Publication of JP5397690B2 publication Critical patent/JP5397690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、硬質被覆層が、工具基体表面に対して直立方向に成長した縦長平板状のTiSiN結晶粒で構成されることにより、断続重切削加工という厳しい切削条件下で用いられた場合にも、すぐれた耐欠損性を発揮し、切削工具の長寿命化が可能となる炭化タングステン(以下、WCで示す)基超硬合金製表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is also applicable to the case where the hard coating layer is composed of vertically flat TiSiN crystal grains grown in an upright direction with respect to the tool base surface, and is used under severe cutting conditions such as intermittent heavy cutting. The present invention relates to a tungsten carbide (hereinafter referred to as WC) -based cemented carbide surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and can extend the life of the cutting tool.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。     In general, for coated tools, inserts that are detachably attached to the tip of a cutting tool for turning of work materials such as various types of steel and cast iron, and the inserts are detachably attached to be used for chamfering and grooving. An insert type end mill that performs cutting processing in the same manner as a solid type end mill used for processing and shoulder processing is known.

また、例えば、特許文献1に示されるように、炭化タングステン(以下、WCで示す)基超硬合金焼結体で構成された工具本体の表面に、TiとSiの複合窒化物(以下、TiSiNで示す)層からなる硬質被覆層を物理蒸着してなる被覆工具が広く知られており、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。
また、例えば、特許文献2に示されるように、工具本体の表面に、TiSiN層からなる硬質被覆層を物理蒸着してなる被覆工具において、硬質被覆層を結晶質相と非晶質層の混合組織として形成し、かつ、結晶質相の結晶粒径を0.5nm以上20nm未満と定めることにより、高硬度を維持したままで耐酸化性、靭性の向上を図った被覆工具も知られている。
Further, for example, as shown in Patent Document 1, a composite nitride of Ti and Si (hereinafter referred to as TiSiN) is formed on the surface of a tool body composed of a tungsten carbide (hereinafter referred to as WC) based cemented carbide sintered body. A coating tool formed by physically vapor-depositing a hard coating layer composed of layers is widely known and used for continuous cutting and intermittent cutting of various steels and cast iron.
For example, as shown in Patent Document 2, in a coated tool obtained by physically vapor-depositing a hard coating layer made of a TiSiN layer on the surface of a tool body, the hard coating layer is a mixture of a crystalline phase and an amorphous layer. There is also known a coated tool which is formed as a structure and has improved crystal resistance and toughness while maintaining high hardness by defining the crystal grain size of the crystalline phase as 0.5 nm or more and less than 20 nm. .

特許第3454428号明細書Japanese Patent No. 3454428 特許第4112296号明細書Japanese Patent No. 4112296

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の重切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃に対して大きな断続的・衝撃的負荷がかかる断続重切削加工に用いた場合には、切刃部に欠損を生じやすく、これが原因で、比較的短時間で使用寿命に至るのが現状である。   In recent years, the FA of cutting devices has been remarkable, and in addition, there are strong demands for labor saving, energy saving, cost reduction and efficiency for cutting, and with this, high-efficiency heavy cutting such as high feed and high cutting However, in the above-mentioned conventional coated tools, there is no particular problem when various steels and cast irons are machined under normal conditions, but there is a large intermittent / impact on the cutting edge. When it is used for intermittent heavy cutting with a heavy load, the cutting edge is likely to be damaged, and this causes the service life to be reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、断続重切削加工に用いられた場合にも優れた耐欠損性を示し被覆工具の長寿命化を図るべく、硬質被覆層をTiSiN層で構成するとともに、該TiSiN層の結晶粒組織に着目し鋭意研究を行った結果、次のような知見を得た。   In view of the above, the present inventors have made the hard coating layer a TiSiN layer in order to show excellent fracture resistance even when used in intermittent heavy cutting and to extend the life of the coated tool. As a result of intensive studies focusing on the grain structure of the TiSiN layer, the following knowledge was obtained.

(a)従来、WC超硬合金からなる工具基体表面に、硬質被覆層としてのTiSiN層を成膜する場合、物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に上記の工具基体を装着し、例えば、
装置内加熱温度:390〜450℃、
工具基体に印加する直流バイアス電圧:−20〜−50V、
カソード電極:Ti−Si合金、
アーク放電電流:90〜120A、
装置内ガス流量:窒素(N)ガス+アルゴン(Ar)ガス、
装置内窒素ガス圧力:1〜5Pa、
の条件の条件で、TiSiN層(以下、従来TiSiN層という)が成膜される。
(A) Conventionally, when a TiSiN layer as a hard coating layer is formed on the surface of a tool base made of a WC cemented carbide, the above-mentioned tool base is applied to an arc ion plating (AIP) apparatus which is a kind of physical vapor deposition apparatus. For example,
In-apparatus heating temperature: 390 to 450 ° C.,
DC bias voltage applied to the tool base: -20 to -50V,
Cathode electrode: Ti-Si alloy,
Arc discharge current: 90-120A
Gas flow in the apparatus: nitrogen (N 2 ) gas + argon (Ar) gas,
Nitrogen gas pressure in the apparatus: 1 to 5 Pa,
Under these conditions, a TiSiN layer (hereinafter referred to as a conventional TiSiN layer) is formed.

(b)しかるに、前記TiSiN層の形成を、例えば図1の概略説明図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガスを利用したイオンプレーティング装置に上記の工具基体を装着し、
工具基体温度:360〜450 ℃、
蒸発源:金属Tiおよび金属Si、
プラズマガン放電電力:8〜15 kW、
反応ガス流量:窒素(N)ガス 100〜120 sccm、
放電ガス:アルゴン(Ar)ガス 30〜60 sccm、
工具基体に印加する直流バイアス電圧:+3〜+5 V、
ハースと工具基体間の距離:950〜1050 mm、
という特定の条件でTiSiN層を蒸着形成した場合、この結果形成されたTiSiN層(以下、改質TiSiN層という)を硬質被覆層とする被覆工具は、前記従来TiSiN層を形成した被覆工具に比して、高切り込み、高送りの断続重切削加工条件において、すぐれた耐欠損性を示すことを見出した。
(B) However, the formation of the TiSiN layer is performed by, for example, mounting the tool base on an ion plating apparatus using a pressure gradient type Ar plasma gas, which is one type of physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG. And
Tool substrate temperature: 360 to 450 ° C.
Evaporation source: metal Ti and metal Si,
Plasma gun discharge power: 8-15 kW,
Reaction gas flow rate: nitrogen (N 2) gas 100 to 120 sccm,
Discharge gas: Argon (Ar) gas 30-60 sccm,
DC bias voltage applied to the tool base: +3 to +5 V,
Distance between Hearth and tool substrate: 950-1050 mm,
When the TiSiN layer is formed by vapor deposition under the specific conditions, the coated tool using the TiSiN layer formed as a result (hereinafter referred to as a modified TiSiN layer) as a hard coating layer is compared with the conventional coated tool having the TiSiN layer formed thereon. The present inventors have found that excellent fracture resistance is exhibited under high cutting and high feed intermittent cutting conditions.

(c)上記改質TiSiN層の断面組織を透過型電子顕微鏡で観察したところ、図2の断面斜視図に示すように、層厚方向の縦断面においては、工具基体表面に対して直立方向に成長した縦長平板状のTiSiN結晶粒が形成され、また、改質TiSiN層の表面から0.1μmの深さの水平断面においては、短辺が5〜100nmであって、アスペクト比が3以上である上記縦長平板状のTiSiN結晶粒が所定の面積割合で形成されていることを確認した。 (C) The cross-sectional structure of the modified TiSiN layer was observed with a transmission electron microscope, and as shown in the cross-sectional perspective view of FIG. In the horizontal cross section having a depth of 0.1 μm from the surface of the modified TiSiN layer, the short side is 5 to 100 nm and the aspect ratio is 3 or more. It was confirmed that certain vertically long TiSiN crystal grains were formed in a predetermined area ratio.

(d)そして、表面被覆切削工具の硬質被覆層を、上記結晶粒組織の改質TiSiN層で構成すると、層の曲げ抵抗が大になり耐塑性変形性が向上するとともに、結晶粒界が複雑に入り組んで形成されていることから、硬質被覆層にクラックが発生した場合でも、クラックの進展に対する抵抗性が増し、その結果、切刃に対して大きな断続的・衝撃的負荷がかかる高送り、高切り込みの断続重切削加工に用いた場合であっても、チッピング、欠損の発生が抑制され、長期の使用に亘ってすぐれた切削性能を発揮することを見出したのである。 (D) When the hard coating layer of the surface-coated cutting tool is composed of the above-described modified TiSiN layer of the crystal grain structure, the bending resistance of the layer is increased, the plastic deformation resistance is improved, and the crystal grain boundary is complicated. Because it is formed in an intricate manner, even when cracks occur in the hard coating layer, the resistance to crack growth increases, and as a result, high feed that places a large intermittent and impact load on the cutting edge, It has been found that even when used for high-cut intermittent heavy cutting, chipping and chipping are suppressed, and excellent cutting performance is exhibited over a long period of use.

この発明は、上記の知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金製工具基体の表面に、0.2〜2μmの平均層厚のTiSiN層からなる硬質被覆層を物理蒸着した表面被覆切削工具において、
上記TiSiN層は、上記平均層厚と等しい高さを有し、かつ、上記工具基体表面に対して直立方向に成長した縦長平板状のTiSiN結晶粒からなり、
さらに、上記TiSiN層の表面から0.1μmの深さの水平断面における結晶粒組織を透過型電子顕微鏡で観察した場合、短辺が5〜100nmであって、アスペクト比が3以上である上記縦長平板状のTiSiN結晶粒が存在し、かつ、該水平断面において縦長平板状のTiSiN結晶粒が占める面積の合計は、全断面積の30%以上であることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
In a surface-coated cutting tool in which a hard coating layer composed of a TiSiN layer having an average layer thickness of 0.2 to 2 μm is physically vapor-deposited on the surface of a tungsten carbide-based cemented carbide tool base,
The TiSiN layer has a height equal to the average layer thickness, and is composed of vertically long TiSiN crystal grains grown in an upright direction with respect to the tool base surface,
Further, when the crystal grain structure in a horizontal cross section having a depth of 0.1 μm from the surface of the TiSiN layer is observed with a transmission electron microscope, the long side is 5 to 100 nm and the aspect ratio is 3 or more. A surface-coated cutting tool characterized in that flat TiSiN crystal grains exist and the total area occupied by the vertically long flat TiSiN crystal grains in the horizontal cross section is 30% or more of the total cross-sectional area. "
It has the characteristics.

本発明について、以下に説明する。   The present invention will be described below.

この発明の被覆工具の硬質被覆層を構成する改質TiSiN層において、Ti成分は高温強度を向上させ、Si成分は耐熱性を向上させ、また、N成分には層の強度を向上させる作用があるため、改質TiSiN層は、高い硬さとすぐれた耐熱性、強度を具備するようになり、被覆工具の耐摩耗性向上と工具の長寿命化に寄与する。
そして、本発明者等は、TiSiN層を蒸着形成するための数多くの試験を行った結果、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティングにより、工具基体上にTiSiN層を形成する条件を、例えば、
工具基体温度:390〜450 ℃、
蒸発源:金属Tiおよび金属Si、
プラズマガン放電電力:8〜15 kW、
反応ガス流量:窒素(N)ガス 100〜120 sccm、
放電ガス:アルゴン(Ar)ガス 30〜60 sccm、
工具基体に印加する直流バイアス電圧:+3〜+5 V、
ハースと工具基体間の距離:950〜1050 mm、
蒸着時間: 30〜150 min、
という特定の条件に調整して蒸着すると、工具基体表面に対して直立方向に成長した縦長平板状のTiSiN結晶粒からなる改質TiSiN層が形成されることを見出した。
In the modified TiSiN layer constituting the hard coating layer of the coated tool of the present invention, the Ti component improves the high temperature strength, the Si component improves the heat resistance, and the N component acts to improve the layer strength. Therefore, the modified TiSiN layer comes to have high hardness, excellent heat resistance and strength, and contributes to improvement of wear resistance of the coated tool and extension of the tool life.
As a result of conducting numerous tests for forming a TiSiN layer by vapor deposition, the present inventors have formed a TiSiN layer on a tool substrate by ion plating using a pressure gradient type Ar plasma gun shown in FIG. The conditions for forming are, for example,
Tool substrate temperature: 390 to 450 ° C.
Evaporation source: metal Ti and metal Si,
Plasma gun discharge power: 8-15 kW,
Reaction gas flow rate: nitrogen (N 2) gas 100 to 120 sccm,
Discharge gas: Argon (Ar) gas 30-60 sccm,
DC bias voltage applied to the tool base: +3 to +5 V,
Distance between Hearth and tool substrate: 950-1050 mm,
Deposition time: 30-150 min,
It has been found that when the deposition is performed under such specific conditions, a modified TiSiN layer composed of vertically long TiSiN crystal grains grown in an upright direction with respect to the tool base surface is formed.

なお、この発明の改質TiSiN層におけるSi成分の含有割合がTi成分との合量に占める原子比で0.01未満(即ち、0.01>Si/(Ti+Si))では所望の耐熱性向上効果を期待することはできず、一方その含有割合が同じく0.3を越える(即ち、Si/(Ti+Si)>0.3)と、相対的にTi成分の含有割合が少なくなり過ぎて、所望の高温強度が得られなくなることから、Si成分の含有割合は、原子比で0.01〜0.3とすることが望ましい。   In addition, when the content ratio of the Si component in the modified TiSiN layer of the present invention is less than 0.01 in terms of the atomic ratio to the total amount with the Ti component (that is, 0.01> Si / (Ti + Si)), the desired heat resistance is improved. The effect cannot be expected, while if the content ratio is similarly over 0.3 (that is, Si / (Ti + Si)> 0.3), the content ratio of the Ti component becomes relatively small, which is desirable. Therefore, the Si component content is preferably 0.01 to 0.3 in terms of atomic ratio.

改質TiSiN層の組織をより詳細に透過型電子顕微鏡で観察すると、図2の断面斜視図に示すように、改質TiSiN層の層厚方向の縦断面においては、上記縦長平板状のTiSiN結晶粒の高さが、改質TiSiN層の層厚を構成している。
また、工具基体表面に平行で、改質TiSiN層の表面から0.1μmの深さにある水平断面(即ち、改質TiSiN層表面から0.1μmの深さにあり、層厚方向に直交する平面)においては、短辺が5〜100nmであって、アスペクト比が3以上である矩形状のTiSiN結晶粒が存在する。
しかも、上記水平断面において、上記矩形状のTiSiN結晶粒の面積の合計が占める面積割合は、水平断面の全面積の30%以上となっている。
When the structure of the modified TiSiN layer is observed in more detail with a transmission electron microscope, as shown in the cross-sectional perspective view of FIG. 2, in the longitudinal section in the layer thickness direction of the modified TiSiN layer, the above-described vertically flat TiSiN crystal The height of the grains constitutes the layer thickness of the modified TiSiN layer.
Also, a horizontal cross section parallel to the tool base surface and at a depth of 0.1 μm from the surface of the modified TiSiN layer (that is, at a depth of 0.1 μm from the surface of the modified TiSiN layer and orthogonal to the layer thickness direction). In the plane, there are rectangular TiSiN crystal grains having a short side of 5 to 100 nm and an aspect ratio of 3 or more.
Moreover, in the horizontal cross section, the area ratio occupied by the total area of the rectangular TiSiN crystal grains is 30% or more of the total area of the horizontal cross section.

この改質TiSiN層の平均層厚(上記縦長平板状のTiSiN結晶粒の高さと同じ)は成膜時間によって大きく影響され、成膜時間が短いため(例えば、30分未満)に上記TiSiN結晶粒の高さが0.2μmに満たないような場合は、耐摩耗性に劣り長期の使用に亘ってすぐれた切削性能を発揮することはできず、一方、成膜時間が長くなり(例えば、150分を超える)、上記TiSiN結晶粒の高さが2μmを超えるような場合は、TiSiN結晶粒が粗大化し、表面平滑性が失われ、チッピングが生じ易くなる。
したがって、改質TiSiN層の平均層厚(=上記縦長平板状のTiSiN結晶粒の高さ)は、0.2〜2μmと定める。
The average layer thickness of the modified TiSiN layer (same as the height of the above-mentioned vertically long plate-like TiSiN crystal grains) is greatly influenced by the film formation time, and because the film formation time is short (for example, less than 30 minutes), the TiSiN crystal grains Is less than 0.2 μm, it is inferior in wear resistance and cannot exhibit excellent cutting performance over a long period of use, while the film formation time becomes long (for example, 150 When the height of the TiSiN crystal grains exceeds 2 μm, the TiSiN crystal grains become coarse, surface smoothness is lost, and chipping is likely to occur.
Therefore, the average layer thickness of the modified TiSiN layer (= the height of the above-mentioned vertically long tabular TiSiN crystal grains) is determined to be 0.2 to 2 μm.

また、この改質TiSiN層の表面から0.1μmの深さにある水平断面に存在する矩形状のTiSiN結晶粒の短辺が5nm未満では、結晶粒単体で十分な強度を維持することはできず、一方、短辺が100nmを超えると、結晶粒が粗大になりチッピングを生じ易くなることから、上記矩形状のTiSiN結晶粒の短辺は5〜100nmと定める。
なお、この発明でいう「短辺」とは、改質TiSiN層の表面から0.1μmの深さにある水平断面に存在する個々のTiSiN結晶粒について、そのサイズを透過型電子顕微鏡により測定し、個々の結晶粒の測定された最大径を示す線分を長辺とした場合に、長辺方向に対して垂直な方向における最大幅をいう。
In addition, when the short side of the rectangular TiSiN crystal grains present in a horizontal cross section at a depth of 0.1 μm from the surface of the modified TiSiN layer is less than 5 nm, the crystal grains alone cannot maintain sufficient strength. On the other hand, if the short side exceeds 100 nm, the crystal grains become coarse and chipping is likely to occur, so the short side of the rectangular TiSiN crystal grains is determined to be 5 to 100 nm.
As used herein, the term “short side” refers to the size of individual TiSiN crystal grains present in a horizontal section at a depth of 0.1 μm from the surface of the modified TiSiN layer, measured by a transmission electron microscope. The maximum width in the direction perpendicular to the long-side direction when the line segment indicating the measured maximum diameter of each crystal grain is the long side.

また、この改質TiSiN層の表面から0.1μmの深さにある水平断面に存在する矩形状のTiSiN結晶粒のアスペクト比が3未満では、層の曲げ抗力が小さくなり所望の耐塑性変形性が得られないことから、上記矩形状のTiSiN結晶粒のアスペクト比は3以上と定める。
なお、ここでいう「アスペクト比」とは、前記個々の結晶粒の測定された最大径を示す線分である長辺の値を、前記短辺の値で除した値である。
In addition, if the aspect ratio of the rectangular TiSiN crystal grains present in the horizontal cross section at a depth of 0.1 μm from the surface of the modified TiSiN layer is less than 3, the bending resistance of the layer becomes small and the desired plastic deformation resistance Therefore, the aspect ratio of the rectangular TiSiN crystal grains is determined to be 3 or more.
Here, the “aspect ratio” is a value obtained by dividing the value of the long side, which is a line segment indicating the measured maximum diameter of each crystal grain, by the value of the short side.

また、この改質TiSiN層の表面から0.1μmの深さにある水平断面に存在する矩形状のTiSiN結晶粒の面積割合が、測定した水平断面の全面積の30%未満であるような場合は、クラックの進展経路が複雑でなくなりクラックの進展に対する抵抗力が十分に得られずチッピングを生じやすくなることから、上記矩形状のTiSiN結晶粒面積割合は30%以上とする。   Also, when the area ratio of the rectangular TiSiN crystal grains present in the horizontal cross section at a depth of 0.1 μm from the surface of the modified TiSiN layer is less than 30% of the total area of the measured horizontal cross section Since the crack propagation path is not complicated and sufficient resistance to crack propagation is not obtained and chipping is likely to occur, the rectangular TiSiN crystal grain area ratio is set to 30% or more.

改質TiSiN層の表面から0.1μmの深さにある水平断面に存在する矩形状のTiSiN結晶粒の短辺の値、アスペクト比の値および面積割合は、改質TiSiN層の蒸着条件の内のそれぞれ、成膜時間、成膜温度および印加する直流バイアス電圧、成膜温度および印加する直流バイアス電圧によって影響を受けるので、矩形状のTiSiN結晶粒の短辺の値、アスペクト比の値および面積割合を所定の数値範囲に維持するためには、前記蒸着条件のうち、特に、成膜時間、成膜温度、印加する直流バイアス電圧については厳密に調整しなければならない。   The short side value, aspect ratio value, and area ratio of the rectangular TiSiN crystal grains present in the horizontal cross section at a depth of 0.1 μm from the surface of the modified TiSiN layer are included in the deposition conditions of the modified TiSiN layer. Are affected by the film formation time, the film formation temperature and the applied DC bias voltage, the film formation temperature and the applied DC bias voltage, respectively, so that the short side value, aspect ratio value and area of the rectangular TiSiN crystal grains are affected. In order to maintain the ratio within a predetermined numerical range, it is necessary to strictly adjust the deposition time, the deposition temperature, and the applied DC bias voltage among the deposition conditions.

この発明の被覆工具は、硬質被覆層を構成する改質TiSiN層が、工具基体表面に対して直立方向に成長した縦長平板状のTiSiN結晶粒からなり、さらに、上記改質TiSiN層の表面から0.1μmの深さの水平断面において、短辺が5〜100nmであって、アスペクト比が3以上である上記縦長平板状のTiSiN結晶粒が存在し、かつ、該縦長平板状のTiSiN結晶粒が占める面積の合計は、全断面積の30%以上である結晶粒組織を備えることから、改質TiSiN層の曲げ抵抗が大になり耐塑性変形性が向上するとともに、切刃に対して断続的・衝撃的負荷が作用する高送り、高切り込みの断続重切削加工において硬質被覆層にクラックが発生した場合でも、結晶粒界が複雑に入り組み形成されていることから、クラックの進展に対する抵抗性が増し、その結果、すぐれた高温硬さ、耐熱性、高温強度に加えて耐欠損性が改善され、長期の使用に亘ってすぐれた切削性能を発揮し、工具寿命の延命化が図られるのである。   In the coated tool of the present invention, the modified TiSiN layer constituting the hard coating layer is composed of vertically long TiSiN crystal grains grown in an upright direction with respect to the surface of the tool substrate, and further from the surface of the modified TiSiN layer. In the horizontal cross section having a depth of 0.1 μm, the above-mentioned vertically long tabular TiSiN crystal grains having a short side of 5 to 100 nm and an aspect ratio of 3 or more exist, and the vertically long tabular TiSiN crystal grains Since the total area occupied by the crystallized structure is 30% or more of the total cross-sectional area, the bending resistance of the modified TiSiN layer is increased, the plastic deformation resistance is improved, and the cutting edge is interrupted. Even when cracks occur in the hard coating layer during intermittent feed cutting with high feed and high depth of cut that are subject to mechanical and impact loads, the As a result, in addition to excellent high-temperature hardness, heat resistance, and high-temperature strength, chipping resistance is improved, and excellent cutting performance is demonstrated over long-term use, extending tool life. Is achieved.

この発明の表面被覆切削工具の硬質被覆層(改質TiSiN層)を蒸着形成するため圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略図を示し、(a)は概略正面図、(b)は概略平面図を示す。The schematic diagram of the ion plating apparatus using the pressure gradient type Ar plasma gun in order to vapor-deposit and form the hard coating layer (modified TiSiN layer) of the surface coating cutting tool of this invention is shown, (a) is a schematic front view, b) shows a schematic plan view. この発明の表面被覆切削工具の改質TiSiN層からなる硬質被覆層の断面斜視図を示す。The cross-sectional perspective view of the hard coating layer which consists of a modified TiSiN layer of the surface coating cutting tool of this invention is shown. 本発明インサート1の改質TiSiN層の表面から0.1μmの深さの水平断面におけるTiSiN結晶粒の組織写真を示す。The structure photograph of the TiSiN crystal grain in the horizontal cross section of the depth of 0.1 micrometer from the surface of the modified TiSiN layer of this invention insert 1 is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。
なお、ここでは被覆インサートを中心にして説明するが、被覆インサートに限らず、被覆エンドミル、被覆ドリル等の各種の被覆工具に適用できるものである。
Next, the coated tool of the present invention will be specifically described with reference to examples.
In addition, although demonstrated centering on a covering insert here, it is applicable not only to a covering insert but to various covering tools, such as a covering end mill and a covering drill.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120412のインサート形状をもったWC基超硬合金製の工具基体1〜10を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintering is carried out under the holding conditions, and after sintering, the tool bases 1 to 10 made of WC-base cemented carbide having an ISO standard / CNMG120212 insert shape are subjected to a honing process of R: 0.03 on the cutting edge portion. Formed.

Figure 0005397690
Figure 0005397690

ついで、上記の工具基体1〜10を、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、蒸発源として、金属Tiおよび金属Siを装着し、まず、装置内を排気して1.0×10−3Pa以下の真空に保持しながらヒーターで装置内を390〜450℃に加熱した後、Arガスを導入して2.3×10−2Paとしたのち、圧力勾配型プラズマガンの放電電力を2kWとし、装置内にArイオンを発生させて、工具基体に−200Vのバイアス電圧を印加することによって、前記工具基体を10分間Arボンバード処理し、ついで、装置内を一旦1×10−3Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kWとし、Arガスを45sccm,窒素ガスを100sccm流しながら、炉内の圧力を3×10−2〜6×10−2Paに保ち、蒸発源にプラズマビームを入射し金属Tiおよび金属Siの蒸気を発生させるとともにプラズマビームでイオン化して、蒸発源の上部1000mmに固定された工具基体表面に、表3に示される目標層厚の改質TiSiN層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明インサートという)1〜10を製造した。
なお、表2に、本発明インサート1〜10の改質TiSiN層の形成条件である圧力勾配型Arプラズマガンを利用したイオンプレーティングの各種条件を一覧で示す。
Next, the tool bases 1 to 10 are ultrasonically cleaned in acetone and dried, and attached to the ion plating apparatus using the pressure gradient type Ar plasma gun shown in FIG. Attach metal Ti and metal Si, and first heat the interior of the apparatus to 390-450 ° C. with a heater while maintaining a vacuum of 1.0 × 10 −3 Pa or less, then introduce Ar gas After a 2.3 × 10 -2 Pa and, by a 2kW the discharge power of the pressure gradient type plasma gun, by generating Ar ions in the device, to apply a bias voltage of -200V to the tool base body, said tool substrate by Ar bombardment for 10 minutes, then, after once 1 × 10 -3 Pa vacuum of about in the apparatus, the discharge power of the pressure gradient type Ar plasma gun and 12 kW, Ar gas Plasma 45 sccm, together with flowing 100sccm of nitrogen gas, maintaining the pressure in the furnace to 3 × 10 -2 ~6 × 10 -2 Pa, to generate steam of incident plasma beam metal Ti and metal Si evaporation source A modified TiSiN layer having a target layer thickness shown in Table 3 is vapor-deposited as a hard coating layer on the surface of the tool base fixed to 1000 mm above the evaporation source by ionization with a beam, thereby forming a coating tool of the present invention. Inventive surface-coated inserts (hereinafter referred to as inventive inserts) 1 to 10 were produced.
Table 2 shows a list of various conditions for ion plating using a pressure gradient type Ar plasma gun, which are conditions for forming the modified TiSiN layers of the inserts 1 to 10 of the present invention.

比較のため、上記の工具基体A1〜A10について、通常のアークイオンプレーティング(AIP)法によって、以下の条件で、表5に示される目標層厚の従来TiSiN層を蒸着形成することにより、比較例表面被覆インサート(以下、比較例インサートという)1〜10を製造した。
装置内加熱温度:390〜450℃、
工具基体に印加する直流バイアス電圧:−20〜−50V、
カソード電極:Ti−Si合金、
アーク放電電流:100〜120A、
装置内ガス:窒素(N)ガス、
装置内窒素ガス圧力:1〜5Pa、
なお、表4に、比較例インサート1〜10の従来TiSiN層の形成条件であるアークイオンプレーティング(AIP)の各種条件を一覧で示す。
For comparison, the above-mentioned tool bases A1 to A10 are compared by depositing a conventional TiSiN layer having a target layer thickness shown in Table 5 by vapor deposition under the following conditions by a normal arc ion plating (AIP) method. Examples Surface-coated inserts (hereinafter referred to as comparative example inserts) 1 to 10 were produced.
In-apparatus heating temperature: 390 to 450 ° C.,
DC bias voltage applied to the tool base: -20 to -50V,
Cathode electrode: Ti-Si alloy,
Arc discharge current: 100-120A
In-apparatus gas: Nitrogen (N 2 ) gas,
Nitrogen gas pressure in the apparatus: 1 to 5 Pa,
Table 4 shows a list of various conditions of arc ion plating (AIP), which are conditions for forming the conventional TiSiN layers of the comparative inserts 1 to 10.

ついで、本発明インサート1〜10および比較例インサート1〜10の各硬質被覆層について、透過型電子顕微鏡を用いて結晶粒組織の状態を観察した。
表3,5に、その観察結果を示す。
表3によれば、本発明インサート1〜10では、改質TiSiN層の平均層厚と等しい高さの縦長平板状のTiSiN結晶粒が、工具基体表面に対して直立方向に成長しており、TiSiN層の表面から0.1μmの深さの水平断面について透過型電子顕微鏡を用いて観察・測定したところ、短辺が5〜100nm、アスペクト比が3以上であり、かつ、該水平断面における合計面積が、全断面積の30%以上である縦長平板状のTiSiN結晶粒が存在することが確認された。
図3に、一例として、本発明インサート1の改質TiSiN層の表面から0.1μmの深さの水平断面におけるTiSiN結晶粒の組織写真を示す。
Subsequently, the state of the crystal grain structure was observed using the transmission electron microscope about each hard coating layer of this invention insert 1-10 and comparative example insert 1-10.
Tables 3 and 5 show the observation results.
According to Table 3, in the present invention inserts 1 to 10, vertically long tabular TiSiN crystal grains having a height equal to the average layer thickness of the modified TiSiN layer are grown in an upright direction with respect to the tool base surface, When a horizontal cross section having a depth of 0.1 μm from the surface of the TiSiN layer was observed and measured using a transmission electron microscope, the short side was 5 to 100 nm, the aspect ratio was 3 or more, and the total in the horizontal cross section It was confirmed that vertically flat TiSiN crystal grains having an area of 30% or more of the total cross-sectional area were present.
FIG. 3 shows, as an example, a structural photograph of TiSiN crystal grains in a horizontal section having a depth of 0.1 μm from the surface of the modified TiSiN layer of the insert 1 of the present invention.

これに対して、表5から、TiSiN層を通常のアークイオンプレーティング法により成膜した比較例インサート1〜10においては、従来TiSiN層の平均層厚と等しい高さの柱状のTiSiN結晶粒が工具基体表面に対して直立方向に成長しており、TiSiN層の表面から0.1μmの高さの水平断面につて透過型電子顕微鏡を用いて観察・測定したところ、観測面の大部分をアスペクト比が2未満の粒により構成されており、アスペクト比が3以上の粒子の存在は確認されないことが分かる。   On the other hand, from Table 5, in the comparative example inserts 1 to 10 in which the TiSiN layer was formed by a normal arc ion plating method, columnar TiSiN crystal grains having a height equal to the average layer thickness of the conventional TiSiN layer are Growing in the upright direction with respect to the tool base surface, a horizontal cross section 0.1 μm high from the surface of the TiSiN layer was observed and measured using a transmission electron microscope. It is understood that the presence of particles having an aspect ratio of 3 or more is not confirmed because the particles are composed of particles having a ratio of less than 2.

Figure 0005397690
Figure 0005397690

Figure 0005397690
Figure 0005397690

Figure 0005397690
Figure 0005397690

Figure 0005397690
Figure 0005397690

つぎに、上記本発明インサート1〜10および比較例インサート1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCMnH2の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 150 m/min.、
切り込み: 3.0 mm、
送り: 0.4 mm/rev.、
切削時間: 2 分、
の条件(切削条件1という)での高マンガン鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、3mm、0.3mm/rev.)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min.、
切り込み: 3 mm、
送り: 0.40 mm/rev.、
切削時間: 2 分、
の条件(切削条件2という)での炭素鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、3mm、0.20mm/rev.)、
を行い、
いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
Next, for the above-mentioned inserts 1 to 10 and comparative example inserts 1 to 10 in the state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SCMnH2 lengthwise equidistant four round grooved round bars,
Cutting speed: 150 m / min. ,
Cutting depth: 3.0 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 2 minutes,
Of high manganese steel under the following conditions (referred to as cutting condition 1) (normal cutting and feeding are 3 mm and 0.3 mm / rev., Respectively),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 3 mm,
Feed: 0.40 mm / rev. ,
Cutting time: 2 minutes,
(Continuous cutting and feeding are 3 mm and 0.20 mm / rev., Respectively)
And
In any cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 7.

Figure 0005397690
Figure 0005397690

表3,5,6に示される結果から、本発明インサート1〜10は、いずれも硬質被覆層を構成する改質TiSiN層が0.2〜2μmの平均層厚を有するとともに、工具基体表面に対して直立方向に平均層厚と同じ高さの縦長平板状のTiSiN結晶粒組織が形成されており、さらに、上記改質TiSiN層の表面から0.1μmの深さの水平断面において、短辺が5〜100nmであって、アスペクト比が3以上である上記縦長平板状のTiSiN結晶粒が存在し、かつ、該縦長平板状のTiSiN結晶粒が占める面積の合計は、全断面積の30%以上である結晶粒組織を備えることから、改質TiSiN層の曲げ抵抗性が増し、耐塑性変形性が向上するとともに、切刃に対して断続的・衝撃的負荷が作用する高送り、高切り込みの断続重切削加工において硬質被覆層にクラックが発生した場合でも、結晶粒界が複雑に入り組み形成されていることから、クラックの進展に対する抵抗性が増し、その結果、すぐれた高温硬さ、耐熱性、高温強度に加えて耐欠損性が改善され、長期の使用に亘ってすぐれた切削性能を発揮し、工具寿命の延命化が図られているのである。   From the results shown in Tables 3, 5 and 6, the inserts 1 to 10 of the present invention all have a modified TiSiN layer constituting the hard coating layer having an average layer thickness of 0.2 to 2 μm, and on the tool base surface. On the other hand, a vertically long TiSiN crystal grain structure having the same height as the average layer thickness is formed in the upright direction, and in the horizontal section having a depth of 0.1 μm from the surface of the modified TiSiN layer, the short side 5-100 nm, the aspect ratio is 3 or more, the above-mentioned vertically long plate-like TiSiN crystal grains exist, and the total area occupied by the vertically long plate-like TiSiN crystal grains is 30% of the total cross-sectional area Since it has the above-mentioned crystal grain structure, the bending resistance of the modified TiSiN layer is increased, the plastic deformation resistance is improved, and the cutting blade is subjected to intermittent and impact loads. Intermittent Even when cracks occur in the hard coating layer during machining, the grain boundaries are complex and formed, so the resistance to crack growth increases, and as a result, excellent high-temperature hardness, heat resistance, In addition to the high-temperature strength, the fracture resistance is improved, the cutting performance is excellent over a long period of use, and the tool life is extended.

これに対して、比較例インサート1〜10においては、従来TiSiN層における結晶粒はアスペクト比が低く、結晶粒界が複雑に入り組んで形成されておらず、クラックの進展に対する抵抗力が弱いため、断続切削加工においては、欠損等により比較的短時間で使用寿命に至ることが明らかである。   On the other hand, in Comparative Example Inserts 1 to 10, the crystal grains in the conventional TiSiN layer have a low aspect ratio, the crystal grain boundaries are not formed in a complicated manner, and the resistance to the progress of cracks is weak, In intermittent cutting, it is clear that the service life is reached in a relatively short time due to defects or the like.

上述のように、この発明の被覆工具は、硬質被覆層(改質TiSiN層)が、特定の短径、アスペクト比、面積割合を有する縦長平板状のTiSiN結晶粒組織として形成されていることから、優れた耐欠損性を備えており、そして、この優れた切削性能は、実施例において示した被覆インサートばかりでなく、被覆エンドミル、被覆ドリル等の各種被覆工具においても、長期の使用に亘って発揮されるものである。   As described above, in the coated tool of the present invention, the hard coating layer (modified TiSiN layer) is formed as a vertically long plate-like TiSiN crystal grain structure having a specific short diameter, aspect ratio, and area ratio. In addition to the coated inserts shown in the examples, this excellent cutting performance is not only applied to various coated tools such as coated end mills and coated drills over a long period of use. It is demonstrated.

Claims (1)

炭化タングステン基超硬合金製工具基体の表面に、0.2〜2μmの平均層厚のTiSiN層からなる硬質被覆層を物理蒸着した表面被覆切削工具において、
上記TiSiN層は、上記平均層厚と等しい高さを有し、かつ、上記工具基体表面に対して直立方向に成長した縦長平板状のTiSiN結晶粒からなり、
さらに、上記TiSiN層の表面から0.1μmの深さの水平断面における結晶粒組織を透過型電子顕微鏡で観察した場合、短辺が5〜100nmであって、アスペクト比が3以上である上記縦長平板状のTiSiN結晶粒が存在し、かつ、該水平断面において縦長平板状のTiSiN結晶粒が占める面積の合計は、全断面積の30%以上であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a TiSiN layer having an average layer thickness of 0.2 to 2 μm is physically vapor-deposited on the surface of a tungsten carbide-based cemented carbide tool base,
The TiSiN layer has a height equal to the average layer thickness, and is composed of vertically long TiSiN crystal grains grown in an upright direction with respect to the tool base surface,
Further, when the crystal grain structure in a horizontal cross section having a depth of 0.1 μm from the surface of the TiSiN layer is observed with a transmission electron microscope, the long side is 5 to 100 nm and the aspect ratio is 3 or more. A surface-coated cutting tool characterized in that flat TiSiN crystal grains exist and the total area occupied by the vertically long flat TiSiN crystal grains in the horizontal cross section is 30% or more of the total cross-sectional area.
JP2009281679A 2009-12-11 2009-12-11 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer Expired - Fee Related JP5397690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281679A JP5397690B2 (en) 2009-12-11 2009-12-11 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281679A JP5397690B2 (en) 2009-12-11 2009-12-11 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2011121145A JP2011121145A (en) 2011-06-23
JP5397690B2 true JP5397690B2 (en) 2014-01-22

Family

ID=44285577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281679A Expired - Fee Related JP5397690B2 (en) 2009-12-11 2009-12-11 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5397690B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585929B2 (en) * 2010-01-27 2014-09-10 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5590308B2 (en) * 2010-03-23 2014-09-17 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
KR102719440B1 (en) * 2021-12-30 2024-10-18 한국야금 주식회사 Cutting tools with hard coating
CN115786850B (en) * 2022-12-13 2024-01-19 西南交通大学 Gradient coating material, preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284201B2 (en) * 2004-01-29 2009-06-24 京セラ株式会社 Surface covering member and cutting tool
JP4367032B2 (en) * 2003-07-09 2009-11-18 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2007229821A (en) * 2006-02-27 2007-09-13 Kyocera Corp Surface-coated cutting tool
JP2009214196A (en) * 2008-03-07 2009-09-24 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to defect
JP2011088250A (en) * 2009-10-23 2011-05-06 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer that exhibits superior chipping resistance

Also Published As

Publication number Publication date
JP2011121145A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5796778B2 (en) Surface coated cutting tool with hard coating layer maintaining excellent heat resistance and wear resistance
JP5515806B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2011152602A (en) Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP5585935B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011088250A (en) Surface-coated cutting tool with hard coating layer that exhibits superior chipping resistance
JP5397690B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2009255282A (en) Cutting tool formed of surface-coated cubic boron nitride base ultra high-pressure sintered material
JP5995091B2 (en) Surface coated cutting tool with excellent adhesion strength and chipping resistance
JP5560514B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5464494B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
JP5240665B2 (en) Surface-coated cutting tool with excellent chip evacuation
JP2011156639A (en) Surface-coated cutting tool having hard coated layer that exhibits excellent chipping resistance
JP5590308B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5850393B2 (en) Surface coated cutting tool
JP5682217B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP5239324B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP2016064470A (en) Surface coat cutting tool excellent in chipping resistance and wear resistance
JP5552913B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2011194536A (en) Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2013184271A (en) Surface-coated cutting tool with hard coating layer maintaining excellent abrasion resistance and chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5397690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees