[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5397152B2 - Positive radiation-sensitive composition, interlayer insulating film and method for forming the same - Google Patents

Positive radiation-sensitive composition, interlayer insulating film and method for forming the same Download PDF

Info

Publication number
JP5397152B2
JP5397152B2 JP2009243920A JP2009243920A JP5397152B2 JP 5397152 B2 JP5397152 B2 JP 5397152B2 JP 2009243920 A JP2009243920 A JP 2009243920A JP 2009243920 A JP2009243920 A JP 2009243920A JP 5397152 B2 JP5397152 B2 JP 5397152B2
Authority
JP
Japan
Prior art keywords
ether
solvent
dimethylbutyl
mass
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009243920A
Other languages
Japanese (ja)
Other versions
JP2011090164A (en
Inventor
大吾 一戸
政暁 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2009243920A priority Critical patent/JP5397152B2/en
Priority to KR1020100101781A priority patent/KR20110044147A/en
Priority to CN2010105225569A priority patent/CN102043339A/en
Publication of JP2011090164A publication Critical patent/JP2011090164A/en
Application granted granted Critical
Publication of JP5397152B2 publication Critical patent/JP5397152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0223Iminoquinonediazides; Para-quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Liquid Crystal (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Silicon Polymers (AREA)

Description

本発明は、液晶表示素子(LCD)の層間絶縁膜を形成するための材料として好適なポジ型感放射線性組成物、その組成物から形成された層間絶縁膜、及びその層間絶縁膜の形成方法に関する。   The present invention relates to a positive radiation sensitive composition suitable as a material for forming an interlayer insulating film of a liquid crystal display element (LCD), an interlayer insulating film formed from the composition, and a method of forming the interlayer insulating film About.

液晶表示素子等には、一般に層状に配置される配線の間を絶縁するために層間絶縁膜が設けられている。層間絶縁膜を形成する材料としては、必要とするパターン形状を得るための工程数が少なく、しかも十分な平坦性を有するものが好ましいことから、感放射線性組成物が幅広く使用されている。   A liquid crystal display element or the like is generally provided with an interlayer insulating film in order to insulate between wirings arranged in layers. As a material for forming the interlayer insulating film, a radiation-sensitive composition is widely used because a material having a small number of steps for obtaining a required pattern shape and having sufficient flatness is preferable.

また、液晶表示素子の層間絶縁膜は、配線用のコンタクトホールのパターン形成が必要である。ネガ型組成物では、実用上使用できるレベルのホール径を有したコンタクトホールを形成することは困難であることから、液晶表示素子の層間絶縁膜を形成するために、ポジ型感放射線性組成物が幅広く使用されている(特許文献1)。   In addition, the interlayer insulating film of the liquid crystal display element needs to form a contact hole pattern for wiring. In a negative composition, it is difficult to form a contact hole having a hole diameter of a practically usable level. Therefore, in order to form an interlayer insulating film of a liquid crystal display element, a positive radiation sensitive composition Is widely used (Patent Document 1).

層間絶縁膜形成用の感放射線性組成物の成分としては、主にアクリル系樹脂が使用されている。これに対し、アクリル系樹脂よりも耐熱性及び透明性に優れたポリシロキサン系材料を感放射線性組成物の成分として用いる試みがなされている(特許文献2及び3)。   As a component of the radiation sensitive composition for forming an interlayer insulating film, an acrylic resin is mainly used. On the other hand, an attempt has been made to use a polysiloxane material, which is superior in heat resistance and transparency as compared with an acrylic resin, as a component of the radiation-sensitive composition (Patent Documents 2 and 3).

ここで、液晶表示素子の製造においては、生産性向上、大型画面への対応という観点から、ガラス基板サイズの大型化が進んでいる。ガラス基板サイズは、300mm×400mmの第一世代、370mm×470mmの第二世代、620mm×750mmの第三世代、960mm×1,100mmの第四世代を経て、1,100mm×1,300mmの第五世代が主流となってきている。さらに、1,500mm×1,850mmの第六世代から、1,850mm×2,100mmの第七世代、2,200mm×2,600mmの第八世代と基板サイズは今後さらに大型化が進むことが予想されている。   Here, in the manufacture of liquid crystal display elements, the size of the glass substrate is increasing from the viewpoint of improving productivity and supporting large screens. The glass substrate size is 300 mm × 400 mm first generation, 370 mm × 470 mm second generation, 620 mm × 750 mm third generation, 960 mm × 1,100 mm fourth generation, 1,100 mm × 1,300 mm first generation Five generations are becoming mainstream. Furthermore, from the sixth generation of 1,500 mm × 1,850 mm to the seventh generation of 1,850 mm × 2,100 mm and the eighth generation of 2,200 mm × 2,600 mm, the substrate size will be further increased in the future. Expected.

基板サイズが小型、例えば第二世代サイズ以下の場合、スピン塗布法により塗布されるが、この方法では、塗布に多量の感放射線樹脂組成物溶液を必要とし、さらに大型基板の塗布には対応できない。また、基板サイズが第四世代サイズ以下の場合において、スリット&スピン法で塗布が行われているが、第五世代以降の基板サイズへの対応は難しい。   When the substrate size is small, for example, the second generation size or less, it is applied by a spin coating method. However, this method requires a large amount of a radiation sensitive resin composition solution and cannot be applied to a large substrate. . In addition, when the substrate size is equal to or smaller than the fourth generation size, the coating is performed by the slit & spin method, but it is difficult to cope with the substrate size after the fifth generation.

第五世代以降の基板サイズへの塗布方式としては、組成物をスリット状のノズルから吐出して塗布する、いわゆるスリット塗布法が適用されている(特許文献4及び5)。このスリット塗布法は、スピン塗布法と比較して塗布に要する組成物の量を低減することができるメリットもあり、液晶表示素子製造のコスト削減にも資する。   A so-called slit coating method in which the composition is ejected from a slit-like nozzle and applied is applied as a coating method for a substrate size of the fifth generation or later (Patent Documents 4 and 5). This slit coating method has an advantage that the amount of the composition required for coating can be reduced as compared with the spin coating method, and contributes to cost reduction of liquid crystal display element manufacturing.

スリット塗布法を始めとして各種塗布方式では、感放射線性樹脂組成物の塗布膜を形成した後に溶剤を揮発させて除去するための乾燥工程を行う。スピン塗布法では回転している基板上に組成物を滴下して塗布することから、基板が回転している分溶媒の揮発も速やかに行われる。これに対し、スリット塗布法では組成物を基板上に塗布し終えた後乾燥工程を行うので、スピン塗布法と比較して乾燥工程が長くなってしまうことがある。スリット塗布法の組成物使用量の低減というメリットを活かしつつ、液晶表示素子のさらなる生産効率の向上のためには、乾燥工程を短縮する方策が必要となる。   In various coating methods including a slit coating method, after forming a coating film of the radiation-sensitive resin composition, a drying process is performed to volatilize and remove the solvent. In the spin coating method, the composition is dropped onto the rotating substrate and applied, so that the solvent is rapidly evaporated as the substrate rotates. In contrast, in the slit coating method, the drying process is performed after the composition has been applied to the substrate, and therefore the drying process may be longer than in the spin coating method. In order to further improve the production efficiency of the liquid crystal display element while taking advantage of the reduction in the amount of the composition used in the slit coating method, a measure for shortening the drying process is required.

特開2001−354822号公報JP 2001-354822 A 特開2000−1648号公報JP 2000-1648 A 特開2006−178436号公報JP 2006-178436 A 特開2006−184841号公報JP 2006-184841 A 特開2001−25645号公報JP 2001-25645 A

そこで、溶剤の揮発性を高めて乾燥工程を短縮するべく蒸気圧の高い溶剤を用いると、乾燥時間は短くなるものの、塗布ムラが生じやすくなって塗布性が低下してしまうことが分かった。一方、塗布膜の均一性を確保すべく蒸気圧の低い溶剤を用いると、塗布ムラは抑えられるものの、乾燥時間が長くなってしまうことが分かった。   Thus, it has been found that when a solvent having a high vapor pressure is used to increase the volatility of the solvent and shorten the drying process, the drying time is shortened but coating unevenness is likely to occur and the coating property is lowered. On the other hand, it was found that when a solvent having a low vapor pressure was used to ensure the uniformity of the coating film, the coating time was reduced, but the drying time was prolonged.

このような状況下、硬化させた際には層間絶縁膜として一般的に要求される耐熱性、透明性、耐溶剤性及び低誘電性に優れるとともに、塗布膜形成の際の塗布性が良好であり、かつ乾燥工程を短縮可能なポリシロキサン系のポジ型感放射線性組成物の開発が強く望まれている。   Under such circumstances, when cured, it has excellent heat resistance, transparency, solvent resistance, and low dielectric properties generally required as an interlayer insulating film, and good coating properties when forming a coating film. There is a strong demand for the development of a polysiloxane-based positive-type radiation-sensitive composition that can shorten the drying process.

本発明は以上のような事情に基づいてなされたものであり、その目的は、塗布方法としてスリット塗布法を採用した場合であっても、優れた塗布性ないし膜厚均一性を示し、かつ塗布膜の乾燥時間を短縮が可能という、相反する性質を両立させているとともに、放射線感度及び耐メルトフロー性に優れたポジ型感放射線性樹脂組成物、並びに高耐熱性、高耐溶剤性、高透過率、低誘電率等の諸性能に優れる層間絶縁膜及びその形成方法を提供することである。   The present invention has been made on the basis of the circumstances as described above, and its purpose is to provide excellent coating properties or film thickness uniformity even when a slit coating method is adopted as a coating method, and coating. A positive radiation sensitive resin composition with excellent radiation sensitivity and melt flow resistance, as well as conflicting properties that can shorten the drying time of the film, and high heat resistance, high solvent resistance, high An object of the present invention is to provide an interlayer insulating film excellent in various properties such as transmittance and low dielectric constant, and a method for forming the same.

上記課題を解決するためになされた発明は、
[A]シロキサンポリマー、
[B]キノンジアジド化合物、及び
[C]下記式(1)で表される溶剤
を含有するポジ型感放射線性樹脂組成物である。

Figure 0005397152
(式(1)中、R及びRは、それぞれ独立して、炭素数が1から6の直鎖状若しくは分岐状のアルキル基である(ただし、R及びRのいずれか一方の炭素数が1〜4である場合は、他方の炭素数は5又は6である)。) The invention made to solve the above problems is
[A] siloxane polymer,
[B] A positive radiation-sensitive resin composition containing a quinonediazide compound, and [C] a solvent represented by the following formula (1).
Figure 0005397152
(In formula (1), R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms (provided that either one of R 1 and R 2 is When the carbon number is 1 to 4, the other carbon number is 5 or 6).)

当該ポジ型感放射線性樹脂組成物は、溶剤として上記式(1)で表される特定の溶剤を含んでいる。これにより、溶剤とシロキサンポリマーとの親和性が良好となるとともに、このような溶剤は過剰な揮発性を示さないことから、当該ポジ型感放射性樹脂組成物を基板上にムラなく均一に塗布することができる。また、この溶剤は適度な揮発性を有することから、当該ポジ型感放射性樹脂組成物による塗布膜形成後の乾燥工程を短縮することができる。   The positive radiation sensitive resin composition contains a specific solvent represented by the above formula (1) as a solvent. As a result, the affinity between the solvent and the siloxane polymer is improved, and since such a solvent does not exhibit excessive volatility, the positive-type radiation-sensitive resin composition is uniformly applied onto the substrate. be able to. Moreover, since this solvent has moderate volatility, the drying process after the coating film formation by the said positive type radiation sensitive resin composition can be shortened.

当該ポジ型感放射線性樹脂組成物では、上記式(1)において、R及びRは、直鎖状又は分岐状の炭素数が5又は6の同一のアルキル基であることが好ましい。このようにアルキル基が対称的な溶剤を用いることにより、さらなる塗布性の向上及び乾燥時間の短縮を図ることができる。 In the positive radiation sensitive resin composition, in the above formula (1), R 1 and R 2 are preferably linear or branched alkyl groups having 5 or 6 carbon atoms. As described above, by using a solvent having a symmetrical alkyl group, it is possible to further improve the coating property and shorten the drying time.

当該ポジ型感放射線性樹脂組成物において、[C]成分の溶剤の含有量が、ポジ型感放射線性樹脂組成物の全溶剤量に対して、5質量%以上40質量%以下であることが好ましい。[C]成分の溶剤の含有量が上記範囲であると、ポジ型感放射線性樹脂組成物の粘度と固形分濃度のバランスが良好となり、より効率的に塗布ムラを防止しつつ塗布膜の乾燥時間の短縮化を達成することができる。   In the positive radiation sensitive resin composition, the content of the solvent of the component [C] is 5% by mass or more and 40% by mass or less with respect to the total amount of the solvent of the positive radiation sensitive resin composition. preferable. When the content of the solvent of the component [C] is in the above range, the balance between the viscosity and the solid content concentration of the positive radiation-sensitive resin composition is improved, and the coating film can be dried more efficiently while preventing uneven coating. A reduction in time can be achieved.

当該ポジ型感放射線性樹脂組成物は、[C]成分の溶剤以外の[D]溶剤を含み、その[D]溶剤は、アルコール系溶剤、グリコールエーテル系溶剤、エチレングリコールアルキルエーテルアセテート系溶剤、ジエチレングリコールモノアルキルエーテル系溶剤、ジエチレングリコールジアルキルエーテル系溶剤、ジプロピレングリコールジアルキルエーテル系溶剤、プロピレングリコールモノアルキルエーテル系溶剤、プロピレングリコールアルキルエーテルアセテート系溶剤、プロピレングリコールアルキルエーテルプロピオネート系溶剤、ケトン系溶剤、ラクトン系溶剤及びエステル系溶剤よりなる群より選ばれる少なくとも1種の溶剤であることが好ましい。当該ポジ型感放射性樹脂組成物が、こうした溶剤を含むことにより、良好な塗布性を得るための粘度と乾燥時間の短縮に必要な揮発性とを容易に調整することができる。   The positive radiation sensitive resin composition includes a [D] solvent other than the solvent of the [C] component, and the [D] solvent includes an alcohol solvent, a glycol ether solvent, an ethylene glycol alkyl ether acetate solvent, Diethylene glycol monoalkyl ether solvent, diethylene glycol dialkyl ether solvent, dipropylene glycol dialkyl ether solvent, propylene glycol monoalkyl ether solvent, propylene glycol alkyl ether acetate solvent, propylene glycol alkyl ether propionate solvent, ketone solvent It is preferably at least one solvent selected from the group consisting of lactone solvents and ester solvents. When the positive radiation-sensitive resin composition contains such a solvent, the viscosity for obtaining good coating properties and the volatility necessary for shortening the drying time can be easily adjusted.

当該ポジ型感放射線性樹脂組成物は、塗布性が優れ乾燥時間も短いことから、液晶表示素子の層間絶縁膜を形成するために好適に用いられる。   Since the positive radiation sensitive resin composition has excellent coatability and a short drying time, it is preferably used for forming an interlayer insulating film of a liquid crystal display element.

本発明の液晶表示素子の層間絶縁膜は、当該ポジ型感放射線性樹脂組成物から形成されている。その結果、当該層間絶縁膜は、高耐熱性、高耐溶剤性、高透過率、低誘電率、光線透過率等の諸性能に優れるという利点を有する。   The interlayer insulating film of the liquid crystal display element of the present invention is formed from the positive radiation sensitive resin composition. As a result, the interlayer insulating film has an advantage of being excellent in various performances such as high heat resistance, high solvent resistance, high transmittance, low dielectric constant, and light transmittance.

本発明の液晶表示素子用層間絶縁膜の形成方法は、
(1)当該ポジ型感放射線性組成物の塗膜を基板上に形成する工程、
(2)工程(1)で形成した塗膜の少なくとも一部に放射線を照射する工程、
(3)工程(2)で放射線を照射された塗膜を現像する工程、及び
(4)工程(3)で現像された塗膜を加熱する工程
を含む。当該形成方法では当該ポジ型感放射線性樹脂組成物が用いられているので、諸性能に優れた当該層間絶縁膜を効率良く形成することができる。
The method for forming an interlayer insulating film for a liquid crystal display element of the present invention comprises:
(1) The process of forming the coating film of the said positive type radiation sensitive composition on a board | substrate,
(2) A step of irradiating at least a part of the coating film formed in step (1),
(3) A step of developing the coating film irradiated with radiation in the step (2), and (4) a step of heating the coating film developed in the step (3). Since the positive radiation sensitive resin composition is used in the forming method, the interlayer insulating film excellent in various performances can be formed efficiently.

以上説明したように、本発明のポジ型感放射線性組成物は、上記[A]、[B]及び[C]成分を含んでいることによって、耐熱性、透明性、耐溶剤性及び低誘電性という一般的な要求特性をバランス良く満たす液晶表示素子用層間絶縁膜を効率的に形成することができる。また、当該ポジ型感放射線性組成物は、放射線感度や耐メルトフロー性を発揮しつつ、塗布膜形成の際の塗布性が良好であり、かつスリット塗布法を採用した場合であっても乾燥工程の短縮が可能となる。   As described above, the positive radiation-sensitive composition of the present invention contains the above-mentioned components [A], [B] and [C], so that it has heat resistance, transparency, solvent resistance and low dielectric constant. It is possible to efficiently form an interlayer insulating film for a liquid crystal display element that satisfies a general required characteristic of property in a well-balanced manner. In addition, the positive radiation sensitive composition exhibits good radiation sensitivity and melt flow resistance, has good coating properties when forming a coating film, and is dry even when a slit coating method is adopted. The process can be shortened.

本発明のポジ型感放射線性組成物は、[A]シロキサンポリマー、[B]キノンジアジド化合物、及び[C]上記式(1)で表される溶剤を少なくとも含有し、その他、任意成分([D]他の溶剤、[E]他のシラン化合物及び[F]感熱性酸発生剤又は感熱性塩基発生剤等)を含有していてもよい。   The positive radiation sensitive composition of the present invention contains at least a [A] siloxane polymer, a [B] quinonediazide compound, and [C] a solvent represented by the above formula (1), and other optional components ([D ] Other solvents, [E] other silane compounds and [F] heat-sensitive acid generators or heat-sensitive base generators, etc.) may be contained.

[A]成分:シロキサンポリマー
[A]成分のシロキサンポリマーは、シロキサン結合を有する化合物のポリマーである限りは特に限定されるものではない。当該ポジ型感放射線性樹脂組成物が、後述する[E]成分のシラン化合物を含む場合、[A]成分は、[E]成分のシラン化合物と共に縮合し、硬化物を形成する。任意成分である後述の[F]感熱性酸発生剤又は感熱性塩基発生剤をポジ型感放射線性組成物に加えた場合、熱をかけることによって酸性活性物質又は塩基性活性物質が発生し、これが触媒となって[A]及び[E]成分の縮合がさらに促進される。
[A] component: siloxane polymer The siloxane polymer of the [A] component is not particularly limited as long as it is a polymer of a compound having a siloxane bond. When the positive radiation sensitive resin composition contains a silane compound of [E] component described later, the [A] component condenses with the silane compound of [E] component to form a cured product. When an optional component [F] heat-sensitive acid generator or heat-sensitive base generator described below is added to the positive radiation-sensitive composition, an acidic active substance or a basic active substance is generated by applying heat, This serves as a catalyst to further promote the condensation of the [A] and [E] components.

[A]成分のシロキサンポリマーとしては、下記式(2)で示される加水分解性シラン化合物の加水分解縮合物であることが好ましい。

Figure 0005397152
(式(2)中、Rは炭素数が1〜20の非加水分解性の有機基であり、Rは炭素数が1〜4のアルコキシ基又はアルキル基であり、qは0〜3の整数である。) The siloxane polymer of the component [A] is preferably a hydrolysis condensate of a hydrolyzable silane compound represented by the following formula (2).
Figure 0005397152
(In formula (2), R 3 is a non-hydrolyzable organic group containing 1 to 20 carbon atoms, R 4 is an alkoxy group or an alkyl group having 1 to 4 carbon atoms, q is 0 to 3 Is an integer.)

本願における加水分解性シラン化合物の「加水分解性の基」とは、通常、無触媒、過剰の水の共存下、室温(約25℃)〜約100℃の温度範囲内で加熱することにより、加水分解してシラノール基を生成することができる基、又は、シロキサン縮合物を形成することができる基を指す。それに対して、「非加水分解性の基」とは、そのような加水分解条件下で、加水分解又は縮合を起こさず、安定に存在する基を指す。   The “hydrolyzable group” of the hydrolyzable silane compound in the present application is usually heated in the temperature range of room temperature (about 25 ° C.) to about 100 ° C. in the presence of a catalyst and excess water, It refers to a group capable of forming a silanol group upon hydrolysis or a group capable of forming a siloxane condensate. In contrast, a “non-hydrolyzable group” refers to a group that does not undergo hydrolysis or condensation and exists stably under such hydrolysis conditions.

上記式(2)で示される加水分解性シラン化合物の加水分解反応においては、一部の加水分解性基が未加水分解の状態で残っていてもよい。また、ここで言う「加水分解性シラン化合物の加水分解縮合物」は、加水分解されたシラン化合物の一部のシラノール基同士が反応・縮合した加水分解縮合物を意味する。   In the hydrolysis reaction of the hydrolyzable silane compound represented by the above formula (2), some hydrolyzable groups may remain in an unhydrolyzed state. The “hydrolyzable condensate of hydrolyzable silane compound” referred to here means a hydrolyzed condensate obtained by reacting and condensing some silanol groups of the hydrolyzed silane compound.

上記Rで表される炭素数が1〜20である非加水分解性の有機基としては、炭素数1〜12の無置換、もしくはビニル基、(メタ)アクリロイル基又はエポキシ基で1個以上置換されたアルキル基、炭素数6〜12のアリール基、炭素数7〜12のアラルキル基等が挙げられる。これらは、直鎖状、分岐状、又は環状であってよく、同一分子内に複数のRが存在するときはこれらの組み合わせであってもよい。また、Rは、ヘテロ原子を有する構造単位を含んでいてもよい。そのような構造単位としては、例えばエーテル、エステル、スルフィド等が挙げられる。 The non-hydrolyzable organic group having 1 to 20 carbon atoms represented by R 3 is an unsubstituted or substituted vinyl group, (meth) acryloyl group or epoxy group having 1 to 12 carbon atoms. Examples thereof include a substituted alkyl group, an aryl group having 6 to 12 carbon atoms, and an aralkyl group having 7 to 12 carbon atoms. These may be linear, branched, or cyclic, and may be a combination thereof when a plurality of R 3 are present in the same molecule. R 3 may include a structural unit having a hetero atom. Examples of such a structural unit include ether, ester, sulfide and the like.

上記Rで表される炭素数が1〜4のアルコキシ基の例としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられ、炭素数が1〜4のアルキル基の例としては、n−プロピル基、i−プロピル基、ブチル基等が挙げられる。これらのRの中でも、加水分解の容易性の観点から、メトキシ基及びエトキシ基が好ましい。また、添え字qは0〜3の整数であるが、より好ましくは0〜2の整数であり、特に好ましくは0又は1であり、最も好ましくは1である。qが0〜2の整数である場合には、加水分解・縮合反応の進行がより容易となり、ひいては当該組成物から形成した層間絶縁膜の耐熱性や耐溶剤性を向上させることができるとともに、当該ポジ型感放射性樹脂組成物の保存安定性等を向上させることができる。 Examples of the alkoxy group having 1 to 4 carbon atoms represented by R 4 include a methoxy group, an ethoxy group, and a propoxy group. Examples of the alkyl group having 1 to 4 carbon atoms include n- A propyl group, an i-propyl group, a butyl group, etc. are mentioned. Among these R 4 , a methoxy group and an ethoxy group are preferable from the viewpoint of easy hydrolysis. The subscript q is an integer of 0 to 3, more preferably an integer of 0 to 2, particularly preferably 0 or 1, and most preferably 1. When q is an integer of 0 to 2, the progress of hydrolysis / condensation reaction becomes easier, and as a result, the heat resistance and solvent resistance of the interlayer insulating film formed from the composition can be improved. Storage stability and the like of the positive type radiation sensitive resin composition can be improved.

上記式(2)で表される加水分解性シラン化合物としては、4個の加水分解性基で置換されたシラン化合物、1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物、2個の非加水分解性基と2個の加水分解性基とで置換されたシラン化合物、3個の非加水分解性基と1個の加水分解性基とで置換されたシラン化合物、又はそれらの混合物を挙げることができる。   The hydrolyzable silane compound represented by the above formula (2) is a silane compound substituted with four hydrolyzable groups, substituted with one non-hydrolyzable group and three hydrolyzable groups. Silane compound substituted with two non-hydrolyzable groups and two hydrolyzable groups, substituted with three non-hydrolyzable groups and one hydrolyzable group Mention may be made of silane compounds or mixtures thereof.

このような上記式(2)で表される加水分解性シラン化合物の具体例としては、
4個の加水分解性基で置換されたシラン化合物として、テトラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、テトラフェノキシシラン、テトラベンジロキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン等;
1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物として、クロロトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−i−プロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−i−プロポキシシラン、エチルトリブトキシシラン、ブチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロポキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等;
2個の非加水分解性基と2個の加水分解性基とで置換されたシラン化合物として、ジクロロジメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジブチルジメトキシシラン等;
3個の非加水分解性基と1個の加水分解性基とで置換されたシラン化合物として、トリクロロメトキシシラン、トリブチルメトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリブチルエトキシシラン等をそれぞれ挙げることができる。
As a specific example of the hydrolyzable silane compound represented by the above formula (2),
Examples of the silane compound substituted with four hydrolyzable groups include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetrabenzyloxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, etc. ;
As a silane compound substituted with one non-hydrolyzable group and three hydrolyzable groups, chlorotrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxy Silane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltri-i-propoxysilane, ethyltributoxysilane, butyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltri -N-propoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane Emissions, .gamma.-glycidoxypropyltrimethoxysilane, .gamma.-glycidoxypropyl triethoxy silane, beta-(3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like;
Examples of silane compounds substituted with two non-hydrolyzable groups and two hydrolyzable groups include dichlorodimethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, dibutyldimethoxysilane and the like;
Examples of silane compounds substituted with three non-hydrolyzable groups and one hydrolyzable group include trichloromethoxysilane, tributylmethoxysilane, trimethylmethoxysilane, trimethylethoxysilane, tributylethoxysilane, and the like. it can.

これらの上記式(2)で表される加水分解性シラン化合物のうち、4個の加水分解性基で置換されたシラン化合物、及び1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物が好ましく、1個の非加水分解性基と3個の加水分解性基とで置換されたシラン化合物が特に好ましい。好ましい加水分解性シラン化合物の具体例としては、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−i−プロポキシシラン、メチルトリブトキシシラン、フェニルトリメトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリブトキシシラン、ブチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシランが挙げられる。このような加水分解性シラン化合物は、1種単独で使用しても、又は2種以上を組み合わせて使用してもよい。   Of these hydrolyzable silane compounds represented by the above formula (2), a silane compound substituted with four hydrolyzable groups, and one non-hydrolyzable group and three hydrolyzable groups A silane compound substituted with one non-hydrolyzable group and three hydrolyzable groups is particularly preferred. Specific examples of preferable hydrolyzable silane compounds include tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri-i-propoxysilane, methyltributoxysilane, phenyltrimethoxysilane, ethyltrimethoxysilane, ethyltrimethoxysilane. Examples include ethoxysilane, ethyltriisopropoxysilane, ethyltributoxysilane, butyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-methacryloxypropyltriethoxysilane. Such hydrolyzable silane compounds may be used singly or in combination of two or more.

上記式(2)で表される加水分解性シラン化合物を加水分解・縮合させる条件は、上記式(2)で表される加水分解性シラン化合物の少なくとも一部を加水分解して、加水分解性基をシラノール基に変換し、縮合反応を起こさせるものである限り、特に限定されるものではないが、一例として以下のように実施することができる。   The conditions for hydrolyzing and condensing the hydrolyzable silane compound represented by the above formula (2) are hydrolyzable by hydrolyzing at least a part of the hydrolyzable silane compound represented by the above formula (2). Although it does not specifically limit as long as it converts a group into a silanol group and causes a condensation reaction, it can implement as follows as an example.

上記式(2)で表される加水分解性シラン化合物の加水分解・縮合に用いられる水は、逆浸透膜処理、イオン交換処理、蒸留等の方法により精製された水を使用することが好ましい。このような精製水を用いることによって、副反応を抑制し、加水分解の反応性を向上させることができる。水の使用量は、上記式(2)で表される加水分解性シラン化合物の加水分解性基(−OR)の合計量1モルに対して、好ましくは0.1〜3モル、より好ましくは0.3〜2モル、さらに好ましくは0.5〜1.5モルの量である。このような量の水を用いることによって、加水分解・縮合の反応速度を最適化することができる。 The water used for hydrolysis / condensation of the hydrolyzable silane compound represented by the above formula (2) is preferably water purified by a method such as reverse osmosis membrane treatment, ion exchange treatment or distillation. By using such purified water, side reactions can be suppressed and the reactivity of hydrolysis can be improved. The amount of water used is preferably from 0.1 to 3 mol, more preferably from 1 mol of the total amount of hydrolyzable groups (—OR 4 ) of the hydrolyzable silane compound represented by formula (2). Is an amount of 0.3-2 mol, more preferably 0.5-1.5 mol. By using such an amount of water, the hydrolysis / condensation reaction rate can be optimized.

上記式(2)で表される加水分解性シラン化合物の加水分解・縮合に使用することができる溶剤としては、特に限定されるものではないが、通常、後述するポジ型感放射線性組成物の調製に用いられる溶剤と同様のものを使用することができる。このような溶剤の好ましい例としては、エチレングリコールモノアルキルエーテルアセテート、ジエチレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテルアセテート、プロピオン酸エステル類が挙げられる。これらの溶剤の中でも、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート又は3−メトキシプロピオン酸メチル、ジアセトンアルコールが、特に好ましい。   Although it does not specifically limit as a solvent which can be used for hydrolysis and condensation of the hydrolysable silane compound represented by the said Formula (2), Usually, the positive type radiation sensitive composition mentioned later is used. The solvent similar to the solvent used for preparation can be used. Preferable examples of such a solvent include ethylene glycol monoalkyl ether acetate, diethylene glycol dialkyl ether, propylene glycol monoalkyl ether, propylene glycol monoalkyl ether acetate, and propionic acid esters. Among these solvents, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, methyl 3-methoxypropionate, and diacetone alcohol are particularly preferable.

上記式(2)で表される加水分解性シラン化合物の加水分解・縮合反応は、好ましくは酸触媒(例えば、塩酸、硫酸、硝酸、蟻酸、シュウ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、リン酸、酸性イオン交換樹脂、各種ルイス酸)、塩基触媒(例えば、アンモニア、1級アミン類、2級アミン類、3級アミン類、ピリジン等の含窒素化合物;塩基性イオン交換樹脂;水酸化ナトリウム等の水酸化物;炭酸カリウム等の炭酸塩;酢酸ナトリウム等のカルボン酸塩;各種ルイス塩基)、又は、アルコキシド(例えば、ジルコニウムアルコキシド、チタニウムアルコキシド、アルミニウムアルコキシド)等の触媒の存在下で行われる。例えば、アルミニウムアルコキシドとしては、テトラ−i−プロポキシアルミニウムを用いることができる。触媒の使用量としては、加水分解・縮合反応の促進の観点から、加水分解性シラン化合物のモノマー1モルに対し、好ましくは0.2モル以下であり、より好ましくは0.00001〜0.1モルである。   The hydrolysis / condensation reaction of the hydrolyzable silane compound represented by the above formula (2) is preferably an acid catalyst (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid). , Phosphoric acid, acidic ion exchange resins, various Lewis acids), basic catalysts (for example, nitrogen-containing compounds such as ammonia, primary amines, secondary amines, tertiary amines, pyridine; basic ion exchange resins; water) In the presence of a catalyst such as hydroxide such as sodium oxide; carbonate such as potassium carbonate; carboxylate such as sodium acetate; various Lewis bases] or alkoxide (eg, zirconium alkoxide, titanium alkoxide, aluminum alkoxide). Done. For example, tetra-i-propoxyaluminum can be used as the aluminum alkoxide. The amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1, with respect to 1 mol of the hydrolyzable silane compound monomer from the viewpoint of promoting the hydrolysis / condensation reaction. Is a mole.

上記式(2)で表される加水分解性シラン化合物の加水分解・縮合における反応温度及び反応時間は、適宜に設定される。例えば、下記の条件が採用できる。反応温度は、好ましくは40〜200℃、より好ましくは50〜150℃である。反応時間は、好ましくは30分〜24時間、より好ましくは1〜12時間である。このような反応温度及び反応時間とすることによって、加水分解・縮合反応を最も効率的に行うことができる。この加水分解・縮合においては、反応系内に加水分解性シラン化合物、水及び触媒を一度に添加して反応を一段階で行ってもよく、あるいは、加水分解性シラン化合物、水及び触媒を、数回に分けて反応系内に添加することによって、加水分解及び縮合反応を多段階で行ってもよい。なお、加水分解・縮合反応の後には、脱水剤を加え、次いで、エバポレーションにかけることによって、水及び生成したアルコールを反応系から除去することができる。なお、この段階で用いられる脱水剤は、一般的に、過剰の水を吸着又は包接して脱水能が完全に消費されるか、またはエバポレーションにより除去されるため、ポジ型感放射線性組成物に任意に添加される後述の[G]成分の脱水剤の範疇には入らないものとする。   The reaction temperature and reaction time in hydrolysis / condensation of the hydrolyzable silane compound represented by the above formula (2) are appropriately set. For example, the following conditions can be adopted. The reaction temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C. The reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours. By setting such reaction temperature and reaction time, the hydrolysis / condensation reaction can be performed most efficiently. In this hydrolysis / condensation, the reaction may be carried out in one step by adding a hydrolyzable silane compound, water and a catalyst to the reaction system at one time. Alternatively, the hydrolyzable silane compound, water and the catalyst may be The hydrolysis and condensation reaction may be performed in multiple stages by adding them into the reaction system in several times. After the hydrolysis / condensation reaction, water and the produced alcohol can be removed from the reaction system by adding a dehydrating agent and then subjecting it to evaporation. In addition, since the dehydrating agent used at this stage generally adsorbs or includes excess water and the dehydrating ability is completely consumed or removed by evaporation, a positive radiation-sensitive composition It is not included in the category of the dehydrating agent of the later-described [G] component that is arbitrarily added to.

上記式(2)で表される加水分解性シラン化合物の加水分解縮合物の分子量は、移動相にテトラヒドロフランを使用したGPC(ゲルパーミエーションクロマトグラフィー)を用い、ポリスチレン換算の数平均分子量として測定することができる。そして、加水分解縮合物の数平均分子量は、通常500〜10000の範囲内の値とするのが好ましく、1000〜5000の範囲内の値とするのがさらに好ましい。加水分解縮合物の数平均分子量の値を500以上とすることによって、ポジ型感放射線性組成物の塗膜の成膜性を改善することができる。一方、加水分解縮合物の数平均分子量の値を10000以下とすることによって、ポジ型感放射線性組成物の感放射線性の低下を防止することができる。   The molecular weight of the hydrolysis condensate of the hydrolyzable silane compound represented by the above formula (2) is measured as a number average molecular weight in terms of polystyrene using GPC (gel permeation chromatography) using tetrahydrofuran as a mobile phase. be able to. The number average molecular weight of the hydrolysis-condensation product is usually preferably a value within the range of 500 to 10,000, and more preferably within the range of 1000 to 5000. By setting the value of the number average molecular weight of the hydrolysis-condensation product to 500 or more, the film formability of the coating film of the positive radiation sensitive composition can be improved. On the other hand, the fall of the radiation sensitivity of a positive radiation sensitive composition can be prevented by making the value of the number average molecular weight of a hydrolysis-condensation product into 10,000 or less.

[B]成分:キノンジアジド化合物
[B]成分は、放射線の照射によってカルボン酸を発生するキノンジアジド化合物である。このようなキノンジアジド化合物を含有するポジ型感放射線性組成物は、放射照射工程における露光部分が現像工程で除去されるポジ型の感放射線特性を有する。[B]成分のキノンジアジド化合物として、好ましくは、フェノール性水酸基を有する化合物及びナフトキノンジアジドスルホン酸ハライドをエステル化反応させることによって得られる化合物を用いることができる。フェノール性水酸基を有する化合物の例としては、フェノール性水酸基のオルト位及びパラ位が、それぞれ独立して水素もしくは下記式(3)で表される置換基のいずれかである化合物が挙げられる。
[B] component: quinonediazide compound [B] component is a quinonediazide compound which generates a carboxylic acid upon irradiation with radiation. Such a positive radiation sensitive composition containing a quinonediazide compound has positive radiation sensitive characteristics in which an exposed portion in the radiation irradiation process is removed in the development process. As the quinonediazide compound as the component [B], a compound obtained by esterifying a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid halide can be preferably used. Examples of the compound having a phenolic hydroxyl group include compounds in which the ortho position and the para position of the phenolic hydroxyl group are each independently hydrogen or a substituent represented by the following formula (3).

Figure 0005397152
(式中、R、R及びRは、各々独立して炭素数1〜10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。また、R、R及びRのうちの2つ又は3つによって環が形成されていてもよい。)
Figure 0005397152
(Wherein R 5 , R 6 and R 7 each independently represents any of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group. Also, R 5 , R 6 and A ring may be formed by two or three of R 7. )

上記式(3)で表される置換基において、R、R、Rが、炭素数1〜10のアルキル基である場合、当該アルキル基は、置換されていても、置換されていなくてもよい。このようなアルキル基の例としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、トリフルオロメチル基、2−カルボキシエチル基が挙げられる。また、置換フェニル基の置換基としては、水酸基が挙げられる。また、R、R及びRのうちの2つ又は3つによって形成される環状基の例としては、シクロペンタン環、シクロヘキサン環、アダマンタン環、フルオレン環が挙げられる。 In the substituent represented by the above formula (3), when R 5 , R 6 , and R 7 are an alkyl group having 1 to 10 carbon atoms, the alkyl group is not substituted even if it is substituted. May be. Examples of such alkyl groups include, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-hexyl group, and cyclohexyl group. , N-heptyl group, n-octyl group, trifluoromethyl group, and 2-carboxyethyl group. Moreover, a hydroxyl group is mentioned as a substituent of a substituted phenyl group. Examples of the cyclic group formed by two or three of R 5 , R 6 and R 7 include a cyclopentane ring, a cyclohexane ring, an adamantane ring, and a fluorene ring.

フェノール性水酸基を有する化合物の例としては、下記式(4)及び(5)で表される化合物群が挙げられる。   Examples of the compound having a phenolic hydroxyl group include compounds represented by the following formulas (4) and (5).

Figure 0005397152
Figure 0005397152

Figure 0005397152
Figure 0005397152

フェノール性水酸基を有する化合物の他の例としては、4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール、1,1,1−トリ(p−ヒドロキシフェニル)エタン等を挙げることができる。   Other examples of compounds having a phenolic hydroxyl group include 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol, 1,1,1 -Tri (p-hydroxyphenyl) ethane and the like can be mentioned.

ナフトキノンジアジドスルホン酸ハライドとしては、4−ナフトキノンジアジドスルホン酸ハライドあるいは5−ナフトキノンジアジドスルホン酸ハライドを用いることができる。4−ナフトキノンジアジドスルホン酸ハライドから得られたエステル化合物(キノンジアジド化合物)は、i線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5−ナフトキノンジアジドスルホン酸ハライドから得られたエステル化合物(キノンジアジド化合物)は、広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4−ナフトキノンジアジドスルホン酸ハライドから得られたエステル化合物、あるいは5−ナフトキノンジアジドスルホン酸ハライドから得られたエステル化合物を選択することが好ましい。特に好ましいキノンジアジド化合物の例としては、4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(3.0モル)との縮合物、1,1,1−トリ(p−ヒドロキシフェニル)エタン(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(3.0モル)との縮合物を挙げることができる。   As the naphthoquinone diazide sulfonic acid halide, 4-naphthoquinone diazide sulfonic acid halide or 5-naphthoquinone diazide sulfonic acid halide can be used. An ester compound (quinonediazide compound) obtained from 4-naphthoquinonediazidesulfonic acid halide is suitable for i-line exposure because it has absorption in the i-line (wavelength 365 nm) region. In addition, an ester compound (quinonediazide compound) obtained from 5-naphthoquinonediazidesulfonic acid halide is suitable for exposure in a wide range of wavelengths because absorption exists in a wide range of wavelengths. It is preferable to select an ester compound obtained from 4-naphthoquinone diazide sulfonic acid halide or an ester compound obtained from 5-naphthoquinone diazide sulfonic acid halide depending on the wavelength to be exposed. Examples of particularly preferred quinonediazide compounds include 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2 -Condensation product with naphthoquinonediazide-5-sulfonic acid chloride (3.0 mol), 1,1,1-tri (p-hydroxyphenyl) ethane (1.0 mol) and 1,2-naphthoquinonediazide-5 Mention may be made of condensates with sulphonic acid chloride (3.0 mol).

ナフトキノンジアジド化合物の分子量は、好ましくは300〜1500、さらに好ましくは350〜1200とすることができる。ナフトキノンジアジド化合物の分子量を300以上とすることにより、形成される層間絶縁膜の透明性を高く維持することができる。一方、ナフトキノンジアジド化合物の分子量を1500以下とすることによって、ポジ型感放射線性組成物のパターン形成能の低下を抑制することができる。   The molecular weight of the naphthoquinone diazide compound is preferably 300 to 1500, and more preferably 350 to 1200. By setting the molecular weight of the naphthoquinonediazide compound to 300 or more, the transparency of the formed interlayer insulating film can be maintained high. On the other hand, by setting the molecular weight of the naphthoquinonediazide compound to 1500 or less, it is possible to suppress a decrease in the pattern forming ability of the positive radiation sensitive composition.

これらの[B]成分は、単独で又は2種以上を組み合わせて用いることができる。ポジ型感放射線性組成物における[B]成分の使用量は、[A]成分100質量部に対して、好ましくは1〜100質量部であり、より好ましくは5〜50質量部である。[B]成分の使用量を1〜100質量部とすることによって、現像液となるアルカリ水溶液に対する放射線の照射部分と未照射部分との溶解度の差が大きく、パターニング性能が良好となり、また得られる層間絶縁膜の耐溶剤性も良好となる。   These [B] components can be used individually or in combination of 2 or more types. The amount of the [B] component used in the positive radiation-sensitive composition is preferably 1 to 100 parts by mass and more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the [A] component. When the amount of the component [B] used is 1 to 100 parts by mass, the difference in solubility between the irradiated portion and the unirradiated portion with respect to the alkaline aqueous solution serving as the developer is large, and the patterning performance is improved and obtained. The solvent resistance of the interlayer insulating film is also improved.

[C]成分:溶剤
本発明のポジ型感放射線性樹脂組成物は、上記式(1)で示される溶剤を含有する。このような溶剤はシロキサンポリマーとの親和性が良好であり、かつ過剰な揮発性を示さないことから、当該ポジ型感放射性樹脂組成物を基板上にムラなく均一に塗布することができる。また、この溶剤は適度な揮発性を有することから、当該ポジ型感放射性樹脂組成物による塗布膜形成後の乾燥工程を短縮することができる。上記式(1)におけるR及びRの炭素数の組み合わせとしては、R及びRの炭素数が1と5、2と5、3と5、4と5、5と5、1と6、2と6、3と6、4と6、5と6及び6と6との組み合わせが挙げられる。
[C] Component: Solvent The positive-type radiation-sensitive resin composition of the present invention contains a solvent represented by the above formula (1). Since such a solvent has good affinity with the siloxane polymer and does not exhibit excessive volatility, the positive-type radiation-sensitive resin composition can be uniformly applied onto the substrate. Moreover, since this solvent has moderate volatility, the drying process after the coating film formation by the said positive type radiation sensitive resin composition can be shortened. As a combination of the carbon number of R 1 and R 2 in the above formula (1), the carbon number of R 1 and R 2 is 1, 5, 2, 5, 3, 5, 4, 4, 5, 5, 5, 6, 2 and 6, 3 and 6, 4 and 6, 5 and 6, and 6 and 6 are listed.

上記式(1)で表される溶剤としては、
及びRの炭素数が1と5との組み合わせの溶剤として、n−アミル−メチルエーテル、3−メチルブチル−メチルエーテル、2−メチルブチル−メチルエーテル、1−メチルブチル−メチルエーテル、t−ブチル−メチルエーテル、メチル−2−エチルプロピルエーテル、メチル−1−エチルプロピルエーテル等;
及びRの炭素数が2と5との組み合わせの溶剤として、n−アミル−エチルエーテル、3−メチルブチル−エチルエーテル、2−メチルブチル−エチルエーテル、1−メチルブチル−エチルエーテル、t−ブチル−エチルエーテル、エチル−2−エチルプロピルエーテル、エチル−1−エチルプロピルエーテル等;
及びRの炭素数が3と5との組み合わせの溶剤として、n−アミル−n−プロピルエーテル、3−メチルブチル−n−プロピルエーテル、2−メチルブチル−n−プロピルエーテル、1−メチルブチル−n−プロピルエーテル、t−ブチル−n−プロピルエーテル、n−アミル−イソプロピルエーテル、3−メチルブチル−イソプロピルエーテル、2−メチルブチル−イソプロピルエーテル、1−メチルブチル−イソプロピルエーテル、2,2−ジメチルプロピル−イソプロピルエーテル、1,2−ジメチルプロピル−イソプロピルエーテル、1,1−ジメチルプロピル−イソプロピルエーテル等;
及びRの炭素数が4と5との組み合わせの溶剤として、n−ブチル−n−アミルエーテル、n−ブチル−3−メチルブチルエーテル、n−ブチル−2−メチルブチルエーテル、n−ブチル−1−メチルブチルエーテル、n−ブチル−2,2−ジメチルプロピルエーテル、n−ブチル−1,2−ジメチルプロピルエーテル、n−ブチル−1,1−ジメチルプロピルエーテル、イソブチル−n−アミルエーテル、イソブチル−3−メチルブチルエーテル、イソブチル−2−メチルブチルエーテル、イソブチル−1−メチルブチルエーテル、イソブチル−2,2−ジメチルプロピルエーテル、イソブチル−1,2−ジメチルプロピルエーテル、イソブチル−1,1−ジメチルプロピルエーテル、t−ブチル−n−アミルエーテル、t−ブチル−3−メチルブチルエーテル、t−ブチル−2−メチルブチルエーテル、t−ブチル−1−メチルブチルエーテル、t−ブチル−2,2−ジメチルプロピルエーテル、t−ブチル−1,2−ジメチルプロピルエーテル、t−ブチル−1,1−ジメチルプロピルエーテル等;
及びRの炭素数が5と5との組み合わせの溶剤として、ジ(n−アミル)エーテル、n−アミル−3−メチルブチルエーテル、n−アミル−2−メチルブチルエーテル、n−アミル−1−メチルブチルエーテル、n−アミル−2,2−ジメチルプロピルエーテル、n―アミル―1,2−ジメチルプロピルエーテル、n−アミル−1,1−ジメチルプロピルエーテル、ジ(3−メチルブチル)エーテル、3−メチルブチル−2−メチルブチルエーテル、3−メチルブチル−1−メチルブチルエーテル、3−メチルブチル−2,2−ジメチルプロピルエーテル、3−メチルブチル−1,2−ジメチルプロピルエーテル、3−メチルブチル−1,1−ジメチルプロピルエーテル、ジ(2−メチルブチル)エーテル、2−メチルブチル−1−メチルブチルエーテル、2−メチルブチル−2,2−ジメチルプロピルエーテル、2−メチルブチル−1,2−ジメチルプロピルエーテル、2−メチルブチル−1,1−ジメチルプロピルエーテル、ジ(1−メチルブチル)エーテル、1−メチルブチル−2,2−ジメチルプロピルエーテル、1−メチルブチル−1,2−ジメチルプロピルエーテル、1−メチルブチル−1,1−ジメチルプロピルエーテル、ジ(2,2−ジメチルプロピル)エーテル、2,2−ジメチルプロピル−1,2−ジメチルプロピルエーテル、2,2−ジメチルプロピル−1,2−ジメチルプロピルエーテル、ジ(1,2−ジメチルプロピル)エーテル、1,2−ジメチルプロピル−1,1−ジメチルプロピルエーテル、ジ(1,1−ジメチルプロピル)エーテル等;
As the solvent represented by the above formula (1),
As a solvent for the combination of R 1 and R 2 having 1 and 5 carbon atoms, n-amyl-methyl ether, 3-methylbutyl-methyl ether, 2-methylbutyl-methyl ether, 1-methylbutyl-methyl ether, t-butyl -Methyl ether, methyl-2-ethylpropyl ether, methyl-1-ethylpropyl ether, etc .;
As a solvent in which R 1 and R 2 have 2 and 5 carbon atoms, n-amyl-ethyl ether, 3-methylbutyl-ethyl ether, 2-methylbutyl-ethyl ether, 1-methylbutyl-ethyl ether, t-butyl -Ethyl ether, ethyl-2-ethylpropyl ether, ethyl-1-ethylpropyl ether, etc .;
As a solvent in which R 1 and R 2 have 3 and 5 carbon atoms, n-amyl-n-propyl ether, 3-methylbutyl-n-propyl ether, 2-methylbutyl-n-propyl ether, 1-methylbutyl- n-propyl ether, t-butyl-n-propyl ether, n-amyl-isopropyl ether, 3-methylbutyl-isopropyl ether, 2-methylbutyl-isopropyl ether, 1-methylbutyl-isopropyl ether, 2,2-dimethylpropyl-isopropyl Ether, 1,2-dimethylpropyl-isopropyl ether, 1,1-dimethylpropyl-isopropyl ether, etc .;
As a solvent in which R 1 and R 2 have 4 and 5 carbon atoms, n-butyl-n-amyl ether, n-butyl-3-methylbutyl ether, n-butyl-2-methylbutyl ether, n-butyl- 1-methylbutyl ether, n-butyl-2,2-dimethylpropyl ether, n-butyl-1,2-dimethylpropyl ether, n-butyl-1,1-dimethylpropyl ether, isobutyl-n-amyl ether, isobutyl- 3-methylbutyl ether, isobutyl-2-methylbutyl ether, isobutyl-1-methylbutyl ether, isobutyl-2,2-dimethylpropyl ether, isobutyl-1,2-dimethylpropyl ether, isobutyl-1,1-dimethylpropyl ether, t -Butyl-n-amyl ether, t-butyl -3-methylbutyl ether, t-butyl-2-methylbutyl ether, t-butyl-1-methylbutyl ether, t-butyl-2,2-dimethylpropyl ether, t-butyl-1,2-dimethylpropyl ether, t- Butyl-1,1-dimethylpropyl ether and the like;
As a solvent in which R 1 and R 2 have 5 and 5 carbon atoms, di (n-amyl) ether, n-amyl-3-methylbutyl ether, n-amyl-2-methylbutyl ether, n-amyl-1 -Methylbutyl ether, n-amyl-2,2-dimethylpropyl ether, n-amyl-1,2-dimethylpropyl ether, n-amyl-1,1-dimethylpropyl ether, di (3-methylbutyl) ether, 3- Methylbutyl-2-methylbutyl ether, 3-methylbutyl-1-methylbutyl ether, 3-methylbutyl-2,2-dimethylpropyl ether, 3-methylbutyl-1,2-dimethylpropyl ether, 3-methylbutyl-1,1-dimethylpropyl Ether, di (2-methylbutyl) ether, 2-methylbutyl-1- Butyl butyl ether, 2-methylbutyl-2,2-dimethylpropyl ether, 2-methylbutyl-1,2-dimethylpropyl ether, 2-methylbutyl-1,1-dimethylpropyl ether, di (1-methylbutyl) ether, 1-methylbutyl -2,2-dimethylpropyl ether, 1-methylbutyl-1,2-dimethylpropyl ether, 1-methylbutyl-1,1-dimethylpropyl ether, di (2,2-dimethylpropyl) ether, 2,2-dimethylpropyl -1,2-dimethylpropyl ether, 2,2-dimethylpropyl-1,2-dimethylpropyl ether, di (1,2-dimethylpropyl) ether, 1,2-dimethylpropyl-1,1-dimethylpropyl ether, Di (1,1-dimethylpropyl) ether and the like;

及びRの炭素数が1と6との組み合わせの溶剤として、n−ヘキシル−メチルエーテル、メチル−4−メチルペンチルエーテル、メチル−3−メチルペンチルエーテル、メチル−2−メチルペンチルエーテル、メチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−メチルエーテル、2,2−ジメチルブチル−メチルエーテル、1,1−ジメチルブチル−メチルエーテル、1,2−ジメチルブチル−メチルエーテル、1,3−ジメチルブチル−メチルエーテル、2,3−ジメチルブチル−メチルエーテル等;
及びRの炭素数が2と6との組み合わせの溶剤として、エチル−n−ヘキシルエーテル、エチル−4−メチルペンチルエーテル、エチル−3−メチルペンチルエーテル、エチル−2−メチルペンチルエーテル、エチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−エチルエーテル、2,2−ジメチルブチル−エチルエーテル、1,1−ジメチルブチル−エチルエーテル、1,2−ジメチルブチル−エチルエーテル、1,3−ジメチルブチル−エチルエーテル、2,3−ジメチルブチル−エチルエーテル等;
及びRの炭素数が3と6との組み合わせの溶剤として、n−ヘキシル−n−プロピルエーテル、n−プロピル−4−メチルペンチルエーテル、n−プロピル−3−メチルペンチルエーテル、n−プロピル−2−メチルペンチルエーテル、n−プロピル−1−メチルペンチルエーテル、3,3−ジメチルブチル−n−プロピルエーテル、2,2−ジメチルブチル−n−プロピルエーテル、1,1−ジメチルブチル−n−プロピルエーテル、1,2−ジメチルブチル−n−プロピルエーテル、1,3−ジメチルブチル−n−プロピルエーテル、n−ヘキシル−イソプロピルエーテル、イソプロピル−4−メチルペンチルエーテル、イソプロピル−3−メチルペンチルエーテル、イソプロピル−2−メチルペンチルエーテル、イソプロピル−1−メチルペンチルエーテル、3,3−ジメチルブチル−イソプロピルエーテル、2,2−ジメチルブチル−イソプロピルエーテル、1,1−ジメチルブチル−イソプロピルエーテル、1,2−ジメチルブチル−イソプロピルエーテル、1,3−ジメチルブチル−イソプロピルエーテル、2,3−ジメチルブチル−イソプロピルエーテル等;
及びRの炭素数が4と6との組み合わせの溶剤として、n−ブチル−n−ヘキシルエーテル、n−ブチル−4−メチルペンチルエーテル、n−ブチル−3−メチルペンチルエーテル、n−ブチル−2−メチルペンチルエーテル、n−ブチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−n−ブチルエーテル、2,2−ジメチルブチル−n−ブチルエーテル、1,1−ジメチルブチル−n−ブチルエーテル、1,2−ジメチルブチル−n−ブチルエーテル、1,3−ジメチルブチル−n−ブチルエーテル、2,3−ジメチルブチル−n−ブチルエーテル、イソブチル−n−ヘキシルエーテル、イソブチル−4−メチルペンチルエーテル、イソブチル−3−メチルペンチルエーテル、イソブチル−2−メチルペンチルエーテル、イソブチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−イソブチルエーテル、2,2−ジメチルブチル−イソブチルエーテル、1,1−ジメチルブチル−イソブチルエーテル、1,2−ジメチルブチル−イソブチルエーテル、1,3−ジメチルブチル−イソブチルエーテル、2,3−ジメチルブチル−イソブチルエーテル、t−ブチル−n−ヘキシルエーテル、t−ブチル−4−メチルペンチルエーテル、t−ブチル−3−メチルペンチルエーテル、t−ブチル−2−メチルペンチルエーテル、t−ブチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−t−ブチルエーテル、2,2−ジメチルブチル−t−ブチルエーテル、1,1−ジメチルブチル−t−ブチルエーテル、1,2−ジメチルブチル−t−ブチルエーテル、1,3−ジメチルブチル−t−ブチルエーテル、2,3−ジメチルブチル−t−ブチルエーテル等;
As a solvent for the combination of R 1 and R 2 having 1 and 6 carbon atoms, n-hexyl-methyl ether, methyl-4-methylpentyl ether, methyl-3-methylpentyl ether, methyl-2-methylpentyl ether, Methyl-1-methylpentyl ether, 3,3-dimethylbutyl-methyl ether, 2,2-dimethylbutyl-methyl ether, 1,1-dimethylbutyl-methyl ether, 1,2-dimethylbutyl-methyl ether, 1, 3-dimethylbutyl-methyl ether, 2,3-dimethylbutyl-methyl ether, etc .;
As a solvent for the combination of R 1 and R 2 having 2 and 6 carbon atoms, ethyl-n-hexyl ether, ethyl-4-methylpentyl ether, ethyl-3-methylpentyl ether, ethyl-2-methylpentyl ether, Ethyl-1-methylpentyl ether, 3,3-dimethylbutyl-ethyl ether, 2,2-dimethylbutyl-ethyl ether, 1,1-dimethylbutyl-ethyl ether, 1,2-dimethylbutyl-ethyl ether, 1, 3-dimethylbutyl-ethyl ether, 2,3-dimethylbutyl-ethyl ether, etc .;
As a solvent for the combination of R 1 and R 2 having 3 and 6 carbon atoms, n-hexyl-n-propyl ether, n-propyl-4-methylpentyl ether, n-propyl-3-methylpentyl ether, n- Propyl-2-methylpentyl ether, n-propyl-1-methylpentyl ether, 3,3-dimethylbutyl-n-propyl ether, 2,2-dimethylbutyl-n-propyl ether, 1,1-dimethylbutyl-n -Propyl ether, 1,2-dimethylbutyl-n-propyl ether, 1,3-dimethylbutyl-n-propyl ether, n-hexyl-isopropyl ether, isopropyl-4-methylpentyl ether, isopropyl-3-methylpentyl ether , Isopropyl-2-methylpentyl ether, isopropyl 1-methylpentyl ether, 3,3-dimethylbutyl-isopropyl ether, 2,2-dimethylbutyl-isopropyl ether, 1,1-dimethylbutyl-isopropyl ether, 1,2-dimethylbutyl-isopropyl ether, 1,3- Dimethylbutyl-isopropyl ether, 2,3-dimethylbutyl-isopropyl ether, etc .;
As a solvent in which R 1 and R 2 have 4 and 6 carbon atoms, n-butyl-n-hexyl ether, n-butyl-4-methylpentyl ether, n-butyl-3-methylpentyl ether, n- Butyl-2-methylpentyl ether, n-butyl-1-methylpentyl ether, 3,3-dimethylbutyl-n-butyl ether, 2,2-dimethylbutyl-n-butyl ether, 1,1-dimethylbutyl-n-butyl ether 1,2-dimethylbutyl-n-butyl ether, 1,3-dimethylbutyl-n-butyl ether, 2,3-dimethylbutyl-n-butyl ether, isobutyl-n-hexyl ether, isobutyl-4-methylpentyl ether, isobutyl -3-methylpentyl ether, isobutyl-2-methylpentyl ether , Isobutyl-1-methylpentyl ether, 3,3-dimethylbutyl-isobutyl ether, 2,2-dimethylbutyl-isobutyl ether, 1,1-dimethylbutyl-isobutyl ether, 1,2-dimethylbutyl-isobutyl ether, 1 , 3-dimethylbutyl-isobutyl ether, 2,3-dimethylbutyl-isobutyl ether, t-butyl-n-hexyl ether, t-butyl-4-methylpentyl ether, t-butyl-3-methylpentyl ether, t- Butyl-2-methylpentyl ether, t-butyl-1-methylpentyl ether, 3,3-dimethylbutyl-t-butyl ether, 2,2-dimethylbutyl-t-butyl ether, 1,1-dimethylbutyl-t-butyl ether 1,2-dimethylbutyl-t-butyl Ether, 1,3-dimethylbutyl-t-butyl ether, 2,3-dimethylbutyl-t-butyl ether and the like;

及びRの炭素数が5と6との組み合わせの溶剤として、n−アミル−n−ヘキシルエーテル、n−アミル−4−メチルペンチルエーテル、n−アミル−3−メチルペンチルエーテル、n−アミル−2−メチルペンチルエーテル、n−アミル−1−メチルペンチルエーテル、n−アミル−3,3−ジメチルブチルエーテル、n−アミル−2,2−ジメチルブチルエーテル、n−アミル−1,1−ジメチルブチルエーテル、n−アミル−1,2−ジメチルブチルエーテル、n−アミル−1,3−ジメチルブチルエーテル、n−アミル−2,3−ジメチルブチルエーテル、3−メチルブチル−n−ヘキシルエーテル、3−メチルブチル−4−メチルペンチルエーテル、3−メチルブチル−3−メチルペンチルエーテル、3−メチルブチル−2−メチルペンチルエーテル、3−メチルブチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−3−メチルブチルエーテル、2,2−ジメチルブチル−3−メチルブチルエーテル、1,1−ジメチルブチル−3−メチルブチルエーテル、1,2−ジメチルブチル−3−メチルブチルエーテル、1,3−ジメチルブチル−3−メチルブチルエーテル、2,3−ジメチルブチル−3−メチルブチルエーテル、2−メチルブチル−n−ヘキシルエーテル、2−メチルブチル−4−メチルペンチルエーテル、2−メチルブチル−3−メチルペンチルエーテル、2−メチルブチル−2−メチルペンチルエーテル、2−メチルブチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−2−メチルブチルエーテル、2,2−ジメチルブチル−2−メチルブチルエーテル、1,1−ジメチルブチル−2−メチルブチルエーテル、1,2−ジメチルブチル−2−メチルブチルエーテル、1,3−ジメチルブチル−2−メチルブチルエーテル、2,3−ジメチルブチル−2−メチルブチルエーテル、1−メチルブチル−n−ヘキシルエーテル、1−メチルブチル−4−メチルペンチルエーテル、1−メチルブチル−3−メチルペンチルエーテル、1−メチルブチル−2−メチルペンチルエーテル、1−メチルブチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−1−メチルブチルエーテル、2,2−ジメチルブチル−1−メチルブチルエーテル、1,1−ジメチルブチル−1−メチルブチルエーテル、1,2−ジメチルブチル−1−メチルブチルエーテル、1,3−ジメチルブチル−1−メチルブチルエーテル、2,3−ジメチルブチル−1−メチルブチルエーテル、n−ヘキシル−2,2−ジメチルプロピルエーテル、n−ヘキシル−2,2−ジメチルプロピルエーテル、4−メチルペンチル−2,2−ジメチルプロピルエーテル、3−メチルペンチル−2,2−ジメチルプロピルエーテル、2−メチルペンチル−2,2−ジメチルプロピルエーテル、1−メチルペンチル−2,2−ジメチルプロピルエーテル、3,3−ジメチルブチル−2,2−ジメチルプロピルエーテル、2,2−ジメチルブチル−2,2−ジメチルプロピルエーテル、1,1−ジメチルブチル−2,2−ジメチルプロピルエーテル、1,2−ジメチルブチル−2,2−ジメチルプロピルエーテル、1,3−ジメチルブチル−2,2−ジメチルプロピルエーテル、2,3−ジメチルブチル−2,2−ジメチルプロピルエーテル等; As a solvent in which R 1 and R 2 have 5 and 6 carbon atoms, n-amyl-n-hexyl ether, n-amyl-4-methylpentyl ether, n-amyl-3-methylpentyl ether, n- Amyl-2-methylpentyl ether, n-amyl-1-methylpentyl ether, n-amyl-3,3-dimethylbutyl ether, n-amyl-2,2-dimethylbutyl ether, n-amyl-1,1-dimethylbutyl ether N-amyl-1,2-dimethylbutyl ether, n-amyl-1,3-dimethylbutyl ether, n-amyl-2,3-dimethylbutyl ether, 3-methylbutyl-n-hexyl ether, 3-methylbutyl-4-methyl Pentyl ether, 3-methylbutyl-3-methylpentyl ether, 3-methylbutyl -Methylpentyl ether, 3-methylbutyl-1-methylpentyl ether, 3,3-dimethylbutyl-3-methylbutyl ether, 2,2-dimethylbutyl-3-methylbutyl ether, 1,1-dimethylbutyl-3-methylbutyl ether 1,2-dimethylbutyl-3-methylbutyl ether, 1,3-dimethylbutyl-3-methylbutyl ether, 2,3-dimethylbutyl-3-methylbutyl ether, 2-methylbutyl-n-hexyl ether, 2-methylbutyl- 4-methylpentyl ether, 2-methylbutyl-3-methylpentyl ether, 2-methylbutyl-2-methylpentyl ether, 2-methylbutyl-1-methylpentyl ether, 3,3-dimethylbutyl-2-methylbutyl ether, 2, 2-dimethyl buty 2-methylbutyl ether, 1,1-dimethylbutyl-2-methylbutyl ether, 1,2-dimethylbutyl-2-methylbutyl ether, 1,3-dimethylbutyl-2-methylbutyl ether, 2,3-dimethylbutyl- 2-methylbutyl ether, 1-methylbutyl-n-hexyl ether, 1-methylbutyl-4-methylpentyl ether, 1-methylbutyl-3-methylpentyl ether, 1-methylbutyl-2-methylpentyl ether, 1-methylbutyl-1- Methyl pentyl ether, 3,3-dimethylbutyl-1-methylbutyl ether, 2,2-dimethylbutyl-1-methylbutyl ether, 1,1-dimethylbutyl-1-methylbutyl ether, 1,2-dimethylbutyl-1-methyl Butyl ether, 1,3-dimethyl Rubutyl-1-methylbutyl ether, 2,3-dimethylbutyl-1-methylbutyl ether, n-hexyl-2,2-dimethylpropyl ether, n-hexyl-2,2-dimethylpropyl ether, 4-methylpentyl-2, 2-dimethylpropyl ether, 3-methylpentyl-2,2-dimethylpropyl ether, 2-methylpentyl-2,2-dimethylpropyl ether, 1-methylpentyl-2,2-dimethylpropyl ether, 3,3-dimethyl Butyl-2,2-dimethylpropyl ether, 2,2-dimethylbutyl-2,2-dimethylpropyl ether, 1,1-dimethylbutyl-2,2-dimethylpropyl ether, 1,2-dimethylbutyl-2,2 -Dimethylpropyl ether, 1,3-dimethylbutyl-2,2-di Chill propyl ether, 2,3-dimethylbutyl 2,2-dimethyl propyl ether and the like;

及びRの炭素数が6と6との組み合わせの溶剤として、ジ(n−ヘキシル)エーテル、n−ヘキシル−4−メチルペンチルエーテル、n−ヘキシル−3−メチルペンチルエーテル、n−ヘキシル−2−メチルペンチルエーテル、n−ヘキシル−1−メチルペンチルエーテル、3,3−ジメチルブチル−n−ヘキシルエーテル、2,2−ジメチルブチル−n−ヘキシルエーテル、1,1−ジメチルブチル−n−ヘキシルエーテル、1,2−ジメチルブチル−n−ヘキシルエーテル、1,3−ジメチルブチル−n−ヘキシルエーテル、2,3−ジメチルブチル−n−ヘキシルエーテル、ジ(4−メチルペンチル)エーテル、4−メチルペンチル−3−メチルペンチルエーテル、4−メチルペンチル−2−メチルペンチルエーテル、4−メチルペンチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−4−メチルペンチルエーテル、2,2−ジメチルブチル−4−メチルペンチルエーテル、1,1−ジメチルブチル−4−メチルペンチルエーテル、1,2−ジメチルブチル−4−メチルペンチルエーテル、1,3−ジメチルブチル−4−メチルペンチルエーテル、2,3−ジメチルブチル−4−メチルペンチルエーテル、ジ(3−メチルペンチル)エーテル、3−メチルペンチル−2−メチルペンチルエーテル、3−メチルペンチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−3−メチルペンチルエーテル、2,2−ジメチルブチル−3−メチルペンチルエーテル、1,1−ジメチルブチル−3−メチルペンチルエーテル、1,2−ジメチルブチル−3−メチルペンチルエーテル、1,3−ジメチルブチル−3−メチルペンチルエーテル、2,3−ジメチルブチル−3−メチルペンチルエーテル、ジ(2−メチルペンチル)エーテル、2−メチルペンチル−1−メチルペンチルエーテル、3,3−ジメチルブチル−2−メチルペンチルエーテル、2,2−ジメチルブチル−2−メチルペンチルエーテル、1,1−ジメチルブチル−2−メチルペンチルエーテル、1,2−ジメチルブチル−2−メチルペンチルエーテル、1,3−ジメチルブチル−2−メチルペンチルエーテル、2,3−ジメチルブチル−2−メチルペンチルエーテル、ジ(1−メチルペンチル)エーテル、3,3−ジメチルブチル−1−メチルペンチルエーテル、2,2−ジメチルブチル−1−メチルペンチルエーテル、1,1−ジメチルブチル−1−メチルペンチルエーテル、1,2−ジメチルブチル−1−メチルペンチルエーテル、1,3−ジメチルブチル−1−メチルペンチルエーテル、2,3−ジメチルブチル−1−メチルペンチルエーテル、ジ(3,3−ジメチルブチル)エーテル、2,2−ジメチルブチル−3,3−ジメチルブチルエーテル、1,1−ジメチルブチル−3,3−ジメチルブチルエーテル、1,2−ジメチルブチル−3,3−ジメチルブチルエーテル、1,3−ジメチルブチル−3,3−ジメチルブチルエーテル、2,3−ジメチルブチル−3,3−ジメチルブチルエーテル、ジ(2,2−ジメチルブチル)エーテル、1,1−ジメチルブチル−2,2−ジメチルブチルエーテル、1,2−ジメチルブチル−2,2−ジメチルブチルエーテル、1,3−ジメチルブチル−2,2−ジメチルブチルエーテル、2,3−ジメチルブチル−2,2−ジメチルブチルエーテル、ジ(1,1−ジメチルブチル)エーテル、1,2−ジメチルブチル−1,1−ジメチルブチルエーテル、1,3−ジメチルブチル−1,1−ジメチルブチルエーテル、2,3−ジメチルブチル−1,1−ジメチルブチルエーテル、ジ(1,2−ジメチルブチル)エーテル、1,3−ジメチルブチル−1,2−ジメチルブチルエーテル、2,3−ジメチルブチル−1,2−ジメチルブチルエーテル、ジ(1,3−ジメチルブチル)エーテル、2,3−ジメチルブチル−1,3−ジメチルブチルエーテル、ジ(2,3−ジメチルブチル)エーテル等
が挙げられる。
As a solvent in which R 1 and R 2 have 6 and 6 carbon atoms, di (n-hexyl) ether, n-hexyl-4-methylpentyl ether, n-hexyl-3-methylpentyl ether, n-hexyl 2-methylpentyl ether, n-hexyl-1-methylpentyl ether, 3,3-dimethylbutyl-n-hexyl ether, 2,2-dimethylbutyl-n-hexyl ether, 1,1-dimethylbutyl-n- Hexyl ether, 1,2-dimethylbutyl-n-hexyl ether, 1,3-dimethylbutyl-n-hexyl ether, 2,3-dimethylbutyl-n-hexyl ether, di (4-methylpentyl) ether, 4- Methylpentyl-3-methylpentyl ether, 4-methylpentyl-2-methylpentyl ether, 4-methylpentyl ether Rupentyl-1-methylpentyl ether, 3,3-dimethylbutyl-4-methylpentyl ether, 2,2-dimethylbutyl-4-methylpentyl ether, 1,1-dimethylbutyl-4-methylpentyl ether, 1,2 -Dimethylbutyl-4-methylpentyl ether, 1,3-dimethylbutyl-4-methylpentyl ether, 2,3-dimethylbutyl-4-methylpentyl ether, di (3-methylpentyl) ether, 3-methylpentyl- 2-methylpentyl ether, 3-methylpentyl-1-methylpentyl ether, 3,3-dimethylbutyl-3-methylpentyl ether, 2,2-dimethylbutyl-3-methylpentyl ether, 1,1-dimethylbutyl- 3-methylpentyl ether, 1,2-dimethylbutyl-3- Methylpentyl ether, 1,3-dimethylbutyl-3-methylpentyl ether, 2,3-dimethylbutyl-3-methylpentyl ether, di (2-methylpentyl) ether, 2-methylpentyl-1-methylpentyl ether, 3,3-dimethylbutyl-2-methylpentyl ether, 2,2-dimethylbutyl-2-methylpentyl ether, 1,1-dimethylbutyl-2-methylpentyl ether, 1,2-dimethylbutyl-2-methylpentyl Ether, 1,3-dimethylbutyl-2-methylpentyl ether, 2,3-dimethylbutyl-2-methylpentyl ether, di (1-methylpentyl) ether, 3,3-dimethylbutyl-1-methylpentyl ether, 2,2-dimethylbutyl-1-methylpentyl ether, 1,1 Dimethylbutyl-1-methylpentyl ether, 1,2-dimethylbutyl-1-methylpentyl ether, 1,3-dimethylbutyl-1-methylpentyl ether, 2,3-dimethylbutyl-1-methylpentyl ether, di ( 3,3-dimethylbutyl) ether, 2,2-dimethylbutyl-3,3-dimethylbutyl ether, 1,1-dimethylbutyl-3,3-dimethylbutyl ether, 1,2-dimethylbutyl-3,3-dimethylbutyl ether 1,3-dimethylbutyl-3,3-dimethylbutyl ether, 2,3-dimethylbutyl-3,3-dimethylbutyl ether, di (2,2-dimethylbutyl) ether, 1,1-dimethylbutyl-2,2 -Dimethylbutyl ether, 1,2-dimethylbutyl-2,2-dimethylbutyl ether 1,3-dimethylbutyl-2,2-dimethylbutyl ether, 2,3-dimethylbutyl-2,2-dimethylbutyl ether, di (1,1-dimethylbutyl) ether, 1,2-dimethylbutyl-1,1 -Dimethylbutyl ether, 1,3-dimethylbutyl-1,1-dimethylbutyl ether, 2,3-dimethylbutyl-1,1-dimethylbutyl ether, di (1,2-dimethylbutyl) ether, 1,3-dimethylbutyl- 1,2-dimethylbutyl ether, 2,3-dimethylbutyl-1,2-dimethylbutyl ether, di (1,3-dimethylbutyl) ether, 2,3-dimethylbutyl-1,3-dimethylbutyl ether, di (2, 3-dimethylbutyl) ether and the like.

これらの中でも特に、スリット塗布性向上及び乾燥工程の高速化の観点から、上記式(1)においてR及びRが炭素数5又は6で同一である化合物に相当するジ(n−アミル)エーテル、n−アミル−イソアミルエーテル(n−アミル−3−メチルブチルエーテル)、ジイソアミルエーテル(ジ(3−メチルブチル)エーテル)、ジ(t−アミル)エーテル、ジ(n−ヘキシル)エーテル、ジ(4−メチルペンチル)エーテルを用いることが好ましい。 Among these, di (n-amyl) corresponding to the compound in which R 1 and R 2 are the same in 5 or 6 carbon atoms in the above formula (1) from the viewpoint of improving the slit coatability and speeding up the drying process. Ether, n-amyl-isoamyl ether (n-amyl-3-methylbutyl ether), diisoamyl ether (di (3-methylbutyl) ether), di (t-amyl) ether, di (n-hexyl) ether, di ( 4-methylpentyl) ether is preferably used.

[C]成分の溶剤の含有量は、感放射線性樹脂組成物中の全溶剤量に対し、好ましくは5質量%以上40質量%以下で、更に好ましくは5質量%以上30質量%以下の範囲である。[C]成分の溶剤の感放射線性樹脂組成物中の全溶剤量に対する含有量が、5質量%以上40質量%以下の時、感放射線性樹脂組成物の粘度と固形分濃度がより良好にバランスされ、さらに乾燥工程の短縮化を図りつつ、膜厚の均一性に優れた塗布膜が得られる。   The content of the solvent of the component [C] is preferably 5% by mass or more and 40% by mass or less, more preferably 5% by mass or more and 30% by mass or less, with respect to the total amount of the solvent in the radiation sensitive resin composition. It is. When the content of the solvent of the component [C] with respect to the total amount of the solvent in the radiation-sensitive resin composition is 5% by mass or more and 40% by mass or less, the viscosity and solid content concentration of the radiation-sensitive resin composition are improved. A coating film that is balanced and has excellent film thickness uniformity can be obtained while shortening the drying process.

[D]成分:他の溶剤
本発明のポジ型感放射線性樹脂組成物は、上記[C]成分の溶剤以外に[D]溶剤を含み、その[D]溶剤は、アルコール系溶剤、グリコールエーテル系溶剤、エチレングリコールアルキルエーテルアセテート系溶剤、ジエチレングリコールモノアルキルエーテル系溶剤、ジエチレングリコールジアルキルエーテル系溶剤、ジプロピレングリコールジアルキルエーテル系溶剤、プロピレングリコールモノアルキルエーテル系溶剤、プロピレングリコールアルキルエーテルアセテート系溶剤、プロピレングリコールアルキルエーテルプロピオネート系溶剤、ケトン系溶剤、ラクトン系溶媒及びエステル系溶剤よりなる群より選ばれる少なくとも1種の溶剤であることが好ましい。
[D] Component: Other Solvent The positive radiation sensitive resin composition of the present invention contains a [D] solvent in addition to the solvent of the above [C] component, and the [D] solvent is an alcohol solvent, glycol ether. Solvents, ethylene glycol alkyl ether acetate solvents, diethylene glycol monoalkyl ether solvents, diethylene glycol dialkyl ether solvents, dipropylene glycol dialkyl ether solvents, propylene glycol monoalkyl ether solvents, propylene glycol alkyl ether acetate solvents, propylene glycol It is preferably at least one solvent selected from the group consisting of alkyl ether propionate solvents, ketone solvents, lactone solvents and ester solvents.

これらの他の溶剤の具体例としては、例えば、
アルコール系溶剤として、ベンジルアルコール、ジアセトンアルコール等;
グリコールエーテル系溶剤として、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等;
エチレングリコールアルキルエーテルアセテート系溶剤として、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等;
ジエチレングリコールモノアルキルエーテル系溶剤として、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等;
ジエチレングリコールジアルキルエーテル系溶剤として、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル等;
ジプロピレングリコールジアルキルエーテル系溶剤として、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールエチルメチルエーテル等;
プロピレングリコールモノアルキルエーテル系溶剤として、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールプロピルエーテル、プロピレングリコールブチルエーテル等;
プロピレングリコールアルキルエーテルアセテート系溶剤として、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート等;
プロピレングリコールアルキルエーテルプロピオネート系溶剤として、プロピレングリコールメチルエーテルプロピオネート、プロピレングリコールエチルエーテルプロピオネート、プロピレングリコールプロピルエーテルプロピオネート等;
ケトン系溶剤として、メチルエチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノン、メチルイソアミルケトン等;
ラクトン系溶剤として、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等;
エステル系溶剤(上記アセテート系溶剤及び上記プロピオネート系溶剤を除く)としては、酢酸エチル、酢酸ブチル、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、2−エトキシプロピオン酸エチル、2−エトキシプロピオン酸プロピル、2−エトキシプロピオン酸ブチル、2−ブトキシプロピオン酸メチル、2−ブトキシプロピオン酸エチル、2−ブトキシプロピオン酸プロピル、2−ブトキシプロピオン酸ブチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸プロピル、3−エトキシプロピオン酸ブチル、3−プロポキシプロピオン酸メチル等がそれぞれ挙げられる。
Specific examples of these other solvents include, for example,
Examples of alcohol solvents include benzyl alcohol and diacetone alcohol;
Examples of glycol ether solvents include ethylene glycol monomethyl ether and ethylene glycol monoethyl ether;
Examples of ethylene glycol alkyl ether acetate solvents include ethylene glycol monobutyl ether acetate and diethylene glycol monoethyl ether acetate;
Examples of diethylene glycol monoalkyl ether solvents include diethylene glycol monomethyl ether and diethylene glycol monoethyl ether;
Diethylene glycol dialkyl ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, etc .;
Dipropylene glycol dialkyl ether solvents include dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol ethyl methyl ether, etc .;
As propylene glycol monoalkyl ether solvents, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol propyl ether, propylene glycol butyl ether, etc .;
As propylene glycol alkyl ether acetate solvents, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, etc .;
As propylene glycol alkyl ether propionate solvents, propylene glycol methyl ether propionate, propylene glycol ethyl ether propionate, propylene glycol propyl ether propionate, etc .;
Examples of ketone solvents include methyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, and methyl isoamyl ketone.
Examples of lactone solvents include γ-butyrolactone, γ-valerolactone, δ-valerolactone, and the like;
Examples of ester solvents (excluding acetate solvents and propionate solvents) include ethyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, and 2-hydroxy-2-methyl. Ethyl propionate, hydroxybutyl acetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate, methyl 2-butoxypropionate, 2- Ethyl butoxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 3- Methyl Tokishipuropion acid, ethyl 3-ethoxypropionate, 3-ethoxy propionate propyl, 3-ethoxy propionate butyl, 3-propoxy-propionic acid methyl, and the like, respectively.

これらのうち、特に、ベンジルアルコール、ジアセトンアルコール、ジエチレングリコールエチルメチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、シクロヘキサノン、ジプロピレングリコールジメチルエーテル、プロピレングリコールメチルエーテルプロピオネート等が好ましい。   Of these, benzyl alcohol, diacetone alcohol, diethylene glycol ethyl methyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol diethyl ether, 3 -Methyl methoxypropionate, ethyl 3-ethoxypropionate, cyclohexanone, dipropylene glycol dimethyl ether, propylene glycol methyl ether propionate and the like are preferable.

[D]成分の溶剤の含有量は、感放射線性樹脂組成物中の全溶剤量に対し好ましくは60質量%以上95質量%以下で、更に好ましくは70質量%以上95質量%以下の範囲である。[D]成分の溶剤の感放射線性樹脂組成物中の全溶剤量に対する含有量が、60質量%以上95質量%以下の時、感放射線性樹脂組成物の粘度と固形濃度がより良好にバランスされ、さらに高速塗布性に優れた感放射線性樹脂組成物が得られる。   The content of the solvent of the component [D] is preferably 60% by mass or more and 95% by mass or less, more preferably 70% by mass or more and 95% by mass or less, with respect to the total amount of the solvent in the radiation sensitive resin composition. is there. When the content of the solvent of the component [D] with respect to the total amount of solvent in the radiation-sensitive resin composition is 60% by mass or more and 95% by mass or less, the viscosity and the solid concentration of the radiation-sensitive resin composition are better balanced. In addition, a radiation sensitive resin composition excellent in high-speed coating property can be obtained.

[E]成分:他のシラン化合物
本発明のポジ型感放射線性樹脂組成物は、必須成分としての[A]〜[C]成分、任意成分である[D]以外に、[E]他のシラン化合物を含んでいてもよい。[E]成分は、下記式(6)又は(8)で示されるシラン化合物である。この[E]成分は、上述の[A]成分のシロキサンポリマー(好ましくは上記式(2)で表される加水分解性シラン化合物の加水分解縮合物)と共に縮合し、硬化物を形成する。
[E] Component: Other Silane Compound In addition to the [A] to [C] components as essential components and the optional component [D], the positive-type radiation-sensitive resin composition of the present invention includes [E] other A silane compound may be included. The component [E] is a silane compound represented by the following formula (6) or (8). This [E] component condenses with the siloxane polymer of the above-mentioned [A] component (preferably a hydrolysis condensate of a hydrolyzable silane compound represented by the above formula (2)) to form a cured product.

Figure 0005397152
(式(6)中、R及びR10はそれぞれ独立に炭素数が1〜4のアルキル基であり、Rは炭素数1〜6のアルキレン基、フェニレン基又は下記式(7)で示される基である。)
Figure 0005397152
(In Formula (6), R 8 and R 10 are each independently an alkyl group having 1 to 4 carbon atoms, and R 9 is an alkylene group having 1 to 6 carbon atoms, a phenylene group, or the following formula (7). Group.)

Figure 0005397152
(式(7)中、aは1〜4の整数である。)
Figure 0005397152
(In Formula (7), a is an integer of 1-4.)

Figure 0005397152
(式(8)中、R11、R12及びR13はそれぞれ独立に炭素数が1〜4のアルキル基であり、bは1〜6の整数である。)
Figure 0005397152
(In the formula (8), R 11 , R 12 and R 13 are each independently an alkyl group having 1 to 4 carbon atoms, and b is an integer of 1 to 6).

式(6)のR及びR10の好ましい具体例としては、メチル基、エチル基、プロピル基、ブチル基が挙げられる。これらのアルキル基の中でも、メチル基、エチル基がより好ましい。式(6)のRの好ましい具体例としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、フェニレン基が挙げられる。これらの基の中でも、メチレン基、エチレン基、フェニレン基がより好ましい。また、Rが式(7)で示される基である場合、式(7)中のaとしては1又は2が好ましい。[E]成分として、このような好ましい構造の上記式(6)のシラン化合物を用いることによって、[A]成分との反応性が向上する。 Preferable specific examples of R 8 and R 10 in formula (6) include a methyl group, an ethyl group, a propyl group, and a butyl group. Among these alkyl groups, a methyl group and an ethyl group are more preferable. Preferable specific examples of R 9 in the formula (6) include a methylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and a phenylene group. Among these groups, a methylene group, an ethylene group, and a phenylene group are more preferable. When R 9 is a group represented by the formula (7), a in the formula (7) is preferably 1 or 2. By using the silane compound of the above formula (6) having such a preferable structure as the [E] component, the reactivity with the [A] component is improved.

式(8)のR11、R12及びR13の好ましい具体例としては、[A]成分との反応性の観点から、メチル基、エチル基、プロピル基、ブチル基が挙げられる。これらのアルキル基の中でも、メチル基がより好ましい。また、式(8)中のbは、[A]成分との反応性や相溶性の観点から、1〜3の整数であることが好ましい。 Preferable specific examples of R 11 , R 12 and R 13 in the formula (8) include a methyl group, an ethyl group, a propyl group, and a butyl group from the viewpoint of reactivity with the component [A]. Among these alkyl groups, a methyl group is more preferable. Moreover, it is preferable that b in Formula (8) is an integer of 1-3 from a reactive or compatible viewpoint with a [A] component.

当該ポジ型感放射線性組成物が[E]成分を含むとき、[E]成分は、1種単独で用いても、2種以上組み合わせて用いてもよい。式(6)及び(8)のシラン化合物のうち、式(8)で示されるイソシアヌル環を有するシラン化合物がより好ましい。このように、一分子中に3個のトリアルコキシシリル基が結合したイソシアヌル環を有するシラン化合物を用いることによって、高い放射線感度を示すポジ型感放射線性組成物が得られると共に、その組成物から形成される層間絶縁膜の架橋度を向上させることができる。さらに、このようなイソシアヌル環含有シラン化合物を含むポジ型感放射線性組成物は、現像後の加熱工程におけるメルトフローに対する高い耐性を示す。   When the positive radiation sensitive composition contains an [E] component, the [E] component may be used alone or in combination of two or more. Of the silane compounds of the formulas (6) and (8), a silane compound having an isocyanuric ring represented by the formula (8) is more preferable. Thus, by using a silane compound having an isocyanuric ring in which three trialkoxysilyl groups are bonded in one molecule, a positive radiation-sensitive composition showing high radiation sensitivity can be obtained, and from the composition The degree of cross-linking of the formed interlayer insulating film can be improved. Furthermore, a positive radiation sensitive composition containing such an isocyanuric ring-containing silane compound exhibits high resistance to melt flow in the heating step after development.

式(6)及び(8)で示されるシラン化合物の具体例としては、ビストリエトキシシリルエタン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス−1,2−(トリメトキシシリル)エタン、ビス−1,2−(トリエトキシシリル)エタン、ビス−1,6−(トリメトキシシリル)ヘキサン、ビス−1,6−(トリエトキシシリル)ヘキサン、ビス−1,4−(トリメトキシシリル)ベンゼン、ビス−1,4−(トリエトキシシリル)ベンゼン、1,4−ビス(トリメトキシシリルメチル)ベンゼン、1,4−ビス(トリメトキシシリルエチル)ベンゼン、1,4−ビス(トリエトキシシリルメチル)ベンゼン、1,4−ビス(トリエトキシシリルエチル)ベンゼン、トリス−(3−トリメトキシシリルメチル)イソシアヌレート、トリス−(3−トリエトキシシリルメチル)イソシアヌレート、トリス−(3−トリメトキシシリルエチル)イソシアヌレート、トリス−(3−トリエトキシシリルエチル)イソシアヌレート、トリス−(3−トリメトキシシリルプロピル)イソシアヌレート、トリス−(3−トリエトキシシリルプロピル)イソシアヌレート等が挙げられる。これらのうち、放射線感度、及び現像後の加熱工程における耐メルトフロー性向上の観点から、1,4−ビス(トリメトキシシリルメチル)ベンゼン、ビス(トリエトキシシリル)エタン、トリス−(3−トリメトキシシリルエチル)イソシアヌレート、トリス−(3−トリメトキシシリルプロピル)イソシアヌレート、トリス−(3−トリエトキシシリルプロピル)イソシアヌレートが特に好ましい。   Specific examples of the silane compounds represented by the formulas (6) and (8) include bistriethoxysilylethane, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, and bis-1,2- (trimethoxysilyl). ) Ethane, bis-1,2- (triethoxysilyl) ethane, bis-1,6- (trimethoxysilyl) hexane, bis-1,6- (triethoxysilyl) hexane, bis-1,4- (tri Methoxysilyl) benzene, bis-1,4- (triethoxysilyl) benzene, 1,4-bis (trimethoxysilylmethyl) benzene, 1,4-bis (trimethoxysilylethyl) benzene, 1,4-bis ( Triethoxysilylmethyl) benzene, 1,4-bis (triethoxysilylethyl) benzene, tris- (3-trimethoxysilylmethyl) Isocyanurate, tris- (3-triethoxysilylmethyl) isocyanurate, tris- (3-trimethoxysilylethyl) isocyanurate, tris- (3-triethoxysilylethyl) isocyanurate, tris- (3-trimethoxysilyl) Propyl) isocyanurate, tris- (3-triethoxysilylpropyl) isocyanurate and the like. Of these, 1,4-bis (trimethoxysilylmethyl) benzene, bis (triethoxysilyl) ethane, tris- (3-tri-), from the viewpoint of improving radiation sensitivity and melt flow resistance in the heating step after development. Methoxysilylethyl) isocyanurate, tris- (3-trimethoxysilylpropyl) isocyanurate, tris- (3-triethoxysilylpropyl) isocyanurate are particularly preferred.

当該ポジ型感放射線性組成物が[E]成分を含む場合、[E]成分の使用量は、[A]成分100質量部に対して、好ましくは5質量部以上70質量部以下、さらに好ましくは10質量部以上50質量部以下である。[E]成分の使用量を5質量部以上70質量部以下とすることによって、放射線感度、及び現像後の加熱工程における耐メルトフロー性がバランス良く優れたポジ型感放射線性組成物を得ることができる。   When the positive radiation sensitive composition includes the [E] component, the amount of the [E] component used is preferably 5 parts by mass or more and 70 parts by mass or less, more preferably 100 parts by mass of the [A] component. Is 10 parts by mass or more and 50 parts by mass or less. [E] By making the usage-amount of a component into 5 mass parts or more and 70 mass parts or less, the positive radiation sensitive composition which was excellent in the radiation sensitivity and the melt flow resistance in the heating process after image development with good balance is obtained. Can do.

[F]成分:感熱性酸発生剤又は感熱性塩基発生剤
[F]成分の感熱性酸発生剤又は感熱性塩基発生剤は、熱をかけることによって、[A]成分のシロキサンポリマー(好ましくは上記式(2)で表される加水分解性シラン化合物の加水分解縮合物)と、[E]成分のシラン化合物とを縮合・硬化反応させる際の触媒として作用する酸性活性物質又は塩基性活性物質を放出することができる化合物と定義される。このとき、[A]成分のシロキサンポリマー同士が一部加水分解縮合物を形成していてもよい。このような[F]成分の化合物を用いることにより、ポジ型感放射線性組成物の耐メルトフロー性を高め、得られる層間絶縁膜の耐熱性を向上させることができる。なお、[F]成分の感熱性酸発生剤又は感熱性塩基発生剤としては、ポジ型感放射線性組成物の塗膜形成工程における比較的低温(例えば70〜120℃)のプレベーク時には酸性活性物質又は塩基性活性物質を放出せず、現像後の加熱工程における比較的高温(例えば120〜250℃)のポストベーク時に酸性活性物質又は塩基性活性物質を放出する性質を有するものが好ましい。
[F] component: heat-sensitive acid generator or heat-sensitive base generator The heat-sensitive acid generator or heat-sensitive base generator of the component [F] is heated to produce a siloxane polymer of the component [A] (preferably Hydrolytic condensate of hydrolyzable silane compound represented by the above formula (2)) and acidic active substance or basic active substance that acts as a catalyst for the condensation / curing reaction of the silane compound of [E] component Is defined as a compound capable of releasing. At this time, the siloxane polymers of the [A] component may partially form a hydrolysis condensate. By using such a compound of the [F] component, it is possible to increase the melt flow resistance of the positive radiation sensitive composition and to improve the heat resistance of the resulting interlayer insulating film. In addition, as the heat-sensitive acid generator or heat-sensitive base generator of the component [F], an acidic active substance at the time of pre-baking at a relatively low temperature (for example, 70 to 120 ° C.) in the coating film forming step of the positive radiation sensitive composition. Alternatively, those that do not release a basic active substance and that have a property of releasing an acidic active substance or a basic active substance during post-baking at a relatively high temperature (for example, 120 to 250 ° C.) in a heating step after development are preferable.

[F]成分の感熱性酸発生剤としては、例えばジフェニルヨードニウム塩、トリフェニルスルホニウム塩、スルホニウム塩、ベンゾチアゾニウム塩、アンモニウム塩、ホスホニウム塩、テトラヒドロチオフェニウム塩等のオニウム塩が挙げられる。   Examples of the heat-sensitive acid generator of component [F] include onium salts such as diphenyliodonium salt, triphenylsulfonium salt, sulfonium salt, benzothiazonium salt, ammonium salt, phosphonium salt, and tetrahydrothiophenium salt. .

ジフェニルヨードニウム塩の例としては、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム−p−トルエンスルホナート、ジフェニルヨードニウムブチルトリス(2,6−ジフルオロフェニル)ボレート、4−メトキシフェニルフェニルヨードニウムテトラフルオロボレート、ビス(4−t−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4−t−ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4−t−ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4−t−ブチルフェニル)ヨードニウム−p−トルエンスルホナート、ビス(4−t−ブチルフェニル)ヨードニウムカンファースルホン酸等が挙げられる。   Examples of diphenyliodonium salts include diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyl Iodonium butyltris (2,6-difluorophenyl) borate, 4-methoxyphenylphenyliodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium hexafluoroarce Bis (4-tert-butylphenyl) iodonium trifluorometa Examples include sulfonate, bis (4-tert-butylphenyl) iodonium trifluoroacetate, bis (4-tert-butylphenyl) iodonium-p-toluenesulfonate, bis (4-tert-butylphenyl) iodonium camphorsulfonic acid, and the like. .

トリフェニルスルホニウム塩の例としては、トリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムカンファースルホン酸、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム−p−トルエンスルホナート、トリフェニルスルホニウムブチルトリス(2、6−ジフルオロフェニル)ボレート等が挙げられる。   Examples of triphenylsulfonium salts include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonic acid, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, triphenyl Examples include sulfonium butyl tris (2,6-difluorophenyl) borate.

スルホニウム塩の例としては、アルキルスルホニウム塩、ベンジルスルホニウム塩、ジベンジルスルホニウム塩、置換ベンジルスルホニウム塩等を挙げることができる。   Examples of the sulfonium salt include alkylsulfonium salts, benzylsulfonium salts, dibenzylsulfonium salts, substituted benzylsulfonium salts and the like.

これらのスルホニウム塩としては、
アルキルスルホニウム塩として、例えば4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ジメチル−4−(ベンジルオキシカルボニルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアルセネート、ジメチル−3−クロロ−4−アセトキシフェニルスルホニウムヘキサフルオロアンチモネート等;
As these sulfonium salts,
Examples of the alkylsulfonium salt include 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- ( Benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate, dimethyl-3-chloro-4-acetoxyphenylsulfonium hexafluoroantimonate, etc .;

ベンジルスルホニウム塩として、例えばベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−2−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、4−メトキシベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート等;   Examples of benzylsulfonium salts include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, and benzyl-4-methoxyphenylmethyl. Sulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenylmethyl Sulfonium hexafluorophosphate, etc .;

ジベンジルスルホニウム塩として、例えばジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルジベンジルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−3−クロロ−4−ヒドロキシフェニルスルホニウムヘキサフルオロアルセネート、ジベンジル−3−メチル−4−ヒドロキシ−5−t−ブチルフェニルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート等;   Examples of the dibenzylsulfonium salt include dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyl dibenzylsulfonium hexafluoroantimonate, dibenzyl-4-methoxyphenylsulfonium hexa Fluoroantimonate, dibenzyl-3-chloro-4-hydroxyphenylsulfonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-t-butylphenylsulfonium hexafluoroantimonate, benzyl-4-methoxybenzyl-4 -Hydroxyphenylsulfonium hexafluorophosphate and the like;

置換ベンジルスルホニウム塩として、例えばp−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−ニトロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、p−ニトロベンジル−3−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5−ジクロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、o−クロロベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート等をそれぞれ挙げることができる。   Examples of substituted benzylsulfonium salts include p-chlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, and p-chlorobenzyl-4-hydroxyphenylmethylsulfonium. Hexafluorophosphate, p-nitrobenzyl-3-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, o-chlorobenzyl-3-chloro Examples include -4-hydroxyphenylmethylsulfonium hexafluoroantimonate.

ベンゾチアゾニウム塩の例としては、3−ベンジルベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾニウムヘキサフルオロホスフェート、3−ベンジルベンゾチアゾニウムテトラフルオロボレート、3−(p−メトキシベンジル)ベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−2−メチルチオベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−5−クロロベンゾチアゾニウムヘキサフルオロアンチモネート等が挙げられる。   Examples of benzothiazonium salts include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3- (p-methoxy Benzyl) benzothiazonium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate, and the like.

テトラヒドロチオフェニウム塩の例としては、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウムノナフルオロ−n−ブタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−1,1,2,2−テトラフルオロ−2−(ノルボルナン−2−イル)エタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−2−(5−t−ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン−2−イル)−1,1,2,2−テトラフルオロエタンスルホネート、1−(4−n−ブトキシナフタレン−1−イル)テトラヒドロチオフェニウム−2−(6−t−ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン−2−イル)−1,1,2,2−テトラフルオロエタンスルホネート、1−(4,7−ジブトキシ−1−ナフタレニル)テトラヒドロチオフェニウムトリフルオロメタンスルホナート等が挙げられる。   Examples of tetrahydrothiophenium salts include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium Nonafluoro-n-butanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium-1,1,2,2-tetrafluoro-2- (norbornan-2-yl) ethanesulfonate, 1- (4-n-Butoxynaphthalen-1-yl) tetrahydrothiophenium-2- (5-t-butoxycarbonyloxybicyclo [2.2.1] heptan-2-yl) -1,1,2, 2-tetrafluoroethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydro Ofenium-2- (6-t-butoxycarbonyloxybicyclo [2.2.1] heptan-2-yl) -1,1,2,2-tetrafluoroethanesulfonate, 1- (4,7-dibutoxy-1 -Naphthalenyl) tetrahydrothiophenium trifluoromethanesulfonate and the like.

これらの感熱性酸発生剤の中でも、ポジ型感放射線性組成物の耐メルトフロー性及び得られる層間絶縁膜の耐熱性の向上の観点から、トリフェニルスルホニウム塩、スルホニウム塩、ベンゾチアゾニウム塩及びテトラヒドロチオフェニウム塩が好ましく用いられる。この中でも特に、トリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムカンファースルホン酸、4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾニウムヘキサフルオロアンチモネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、1−(4,7−ジブトキシ−1−ナフタレニル)テトラヒドロチオフェニウムトリフルオロメタンスルホナートが好ましく用いられる。   Among these heat-sensitive acid generators, from the viewpoint of improving the melt flow resistance of the positive radiation-sensitive composition and the heat resistance of the obtained interlayer insulating film, triphenylsulfonium salt, sulfonium salt, benzothiazonium salt And tetrahydrothiophenium salts are preferably used. Among these, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonic acid, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylmethylsulfonium Hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexa Fluorophosphate, 1- (4,7-dibutoxy-1 Naphthalenyl) tetrahydrothiophenium trifluoromethanesulfonate are preferred.

[F]成分の感熱性塩基発生剤の例としては、2−ニトロベンジルシクロヘキシルカルバメート、[〔(2,6−ジニトロベンジル)オキシ〕カルボニル]シクロヘキシルアミン、N−(2−ニトロベンジルオキシカルボニル)ピロリジン、ビス[〔(2−ニトロベンジル)オキシ〕カルボニル]ヘキサン−1,6−ジアミン、トリフェニルメタノール、O−カルバモイルヒドロキシアミド、O−カルバモイルオキシム、4−(メチルチオベンゾイル)−1−メチル−1−モルホリノエタン、(4−モルホリノベンゾイル)−1−ベンジル−1−ジメチルアミノプロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)等が挙げられる。これら[F]成分の感熱性塩基発生剤の中でも、ポジ型感放射線性組成物の耐メルトフロー性及び得られる層間絶縁膜の耐熱性の向上の観点から、2−ニトロベンジルシクロヘキシルカルバメート及びO−カルバモイルヒドロキシアミドが特に好ましい。   Examples of heat-sensitive base generators for the [F] component include 2-nitrobenzylcyclohexyl carbamate, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, N- (2-nitrobenzyloxycarbonyl) pyrrolidine. Bis [[(2-nitrobenzyl) oxy] carbonyl] hexane-1,6-diamine, triphenylmethanol, O-carbamoylhydroxyamide, O-carbamoyloxime, 4- (methylthiobenzoyl) -1-methyl-1- Morpholinoethane, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, hexaamminecobalt (III) tris (triphenyl) Methyl borate) It is. Among these heat-sensitive base generators of the [F] component, 2-nitrobenzyl cyclohexyl carbamate and O- from the viewpoint of improving the melt flow resistance of the positive radiation-sensitive composition and the heat resistance of the resulting interlayer insulating film. Carbamoylhydroxyamide is particularly preferred.

[F]成分の感熱性酸発生剤又は感熱性塩基発生剤は、酸あるいは塩基のいずれかが使用され、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。[F]成分を使用する場合の量は、[A]成分100質量部に対して、好ましくは0.1質量部以上20質量部以下、更に好ましくは1質量部以上10質量部以下である。[F]成分の使用量を0.1質量部以上20質量部以下とすることによって、耐メルトフロー性、及び形成される層間絶縁膜の耐熱性がバランス良く優れたポジ型感放射線性組成物を得ることができ、また、塗膜の形成工程において析出物の発生を防止し、塗膜形成を容易にすることが可能となる。   As the heat-sensitive acid generator or heat-sensitive base generator of the component [F], either an acid or a base is used, and one kind may be used alone, or two or more kinds may be mixed and used. Also good. The amount when the component [F] is used is preferably 0.1 parts by mass or more and 20 parts by mass or less, and more preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the component [A]. By using the amount of the component [F] in the range of 0.1 to 20 parts by mass, the positive radiation sensitive composition has excellent balance of melt flow resistance and heat resistance of the formed interlayer insulating film. In addition, it is possible to prevent the formation of precipitates in the coating film forming process and facilitate the coating film formation.

その他の任意成分
本発明のポジ型感放射線性組成物は、必須成分として上記の[A]〜[C]成分、並びに任意成分としての[D]〜[F]成分に加え、所期の効果を損なわない範囲で、必要に応じて[G]成分の脱水剤、[H]成分の界面活性剤等の他の任意成分を含有することができる。
Other optional components The positive radiation-sensitive composition of the present invention has the desired effects in addition to the [A] to [C] components as essential components and the [D] to [F] components as optional components. As long as it does not impair, other optional components such as a dehydrating agent [G] component and a surfactant [H] component can be contained.

[G]成分の脱水剤は、水を化学反応により水以外の物質に変換することができるか、又は水を物理吸着もしくは包接によりトラップすることができる物質として定義される。当該ポジ型感放射線性組成物に、任意に[G]脱水剤を含有させることにより、環境から浸入する水分、又はポジ型感放射線性組成物の現像後の加熱工程における[A]同士による縮合若しくは[A]成分と[B]成分との縮合の結果発生する水分を低減することができる。従って、[G]脱水剤を用いることによって、組成物中の水分を低減することが可能であり、その結果、組成物の保存安定性を向上させることができる。さらに、[A]及び[E]成分の縮合の反応性を高め、ポジ型感放射線性組成物の耐メルトフロー性を向上させることができると考えられる。このような[G]脱水剤としては、カルボン酸エステル、アセタール類(ケタール類を含む)、及びカルボン酸無水物からなる群から選択される少なくとも1種の化合物が好ましく使用できる。   The dehydrating agent of the component [G] is defined as a substance that can convert water into a substance other than water by a chemical reaction or trap water by physical adsorption or inclusion. By allowing the positive radiation sensitive composition to optionally contain [G] dehydrating agent, moisture entering from the environment, or condensation between [A] in the heating step after development of the positive radiation sensitive composition Alternatively, moisture generated as a result of condensation between the [A] component and the [B] component can be reduced. Therefore, by using [G] dehydrating agent, it is possible to reduce the water content in the composition, and as a result, the storage stability of the composition can be improved. Furthermore, it is considered that the condensation reactivity of the components [A] and [E] can be increased and the melt flow resistance of the positive radiation-sensitive composition can be improved. As such [G] dehydrating agent, at least one compound selected from the group consisting of carboxylic acid esters, acetals (including ketals), and carboxylic acid anhydrides can be preferably used.

カルボン酸エステルの好ましい例としては、オルトカルボン酸エステル、カルボン酸シリルエステル等が好ましい。オルトカルボン酸エステルの具体例としては、例えばオルト蟻酸メチル、オルト蟻酸エチル、オルト蟻酸プロピル、オルト蟻酸ブチル、オルト酢酸メチル、オルト酢酸エチル、オルト酢酸プロピル、オルト酢酸ブチル、オルトプロピオン酸メチル、オルトプロピオン酸エチル等が挙げられる。また、これらのオルトカルボン酸エステルのうち、オルト蟻酸メチル等のオルト蟻酸エステルが特に好ましい。カルボン酸シリルエステルの具体例としては、酢酸トリメチルシリル、酢酸トリブチルシリル、蟻酸トリメチルシリル、シュウ酸トリメチルシリル等が挙げられる。   Preferred examples of the carboxylic acid ester include orthocarboxylic acid ester and carboxylic acid silyl ester. Specific examples of the orthocarboxylic acid ester include, for example, methyl orthoformate, ethyl orthoformate, propyl orthoformate, butyl orthoformate, methyl orthoacetate, ethyl orthoacetate, propyl orthoacetate, butyl orthoacetate, methyl orthopropionate, orthopropion Examples include ethyl acid. Of these orthocarboxylic acid esters, orthoformate such as methyl orthoformate is particularly preferred. Specific examples of the carboxylic acid silyl ester include trimethylsilyl acetate, tributylsilyl acetate, trimethylsilyl formate, and trimethylsilyl oxalate.

アセタール類の好ましい例としては、ケトン類とアルコールとの反応物、ケトン類とジアルコールとの反応物、ケテンシリルアセタール類を挙げることができる。ケトン類とアルコールとの反応物の具体例としては、ジメチルアセタール、ジエチルアセタール、ジプロピルアセタール等を挙げることができる。   Preferable examples of acetals include a reaction product of a ketone and an alcohol, a reaction product of a ketone and a dialcohol, and a ketene silyl acetal. Specific examples of the reaction product of ketones and alcohol include dimethyl acetal, diethyl acetal, dipropyl acetal and the like.

カルボン酸無水物の好ましい例としては、無水蟻酸、無水酢酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水安息香酸、酢酸安息香酸無水物等が挙げられる。これらのカルボン酸無水物の中でも、脱水効果の点で、無水酢酸及び無水コハク酸が好ましい。   Preferable examples of the carboxylic anhydride include formic anhydride, acetic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, benzoic anhydride, and the like. Among these carboxylic acid anhydrides, acetic anhydride and succinic anhydride are preferable from the viewpoint of dehydration effect.

[G]脱水剤を使用する場合の量は、[A]成分100質量部に対して、好ましくは、0.001質量部以上50質量部以下であり、さらに好ましくは0.01質量部以上30質量部以下であり、特に好ましくは0.05質量部以上10質量部以下である。[G]脱水剤の使用量を0.001質量部以上50質量部以下とすることによって、ポジ型感放射線性組成物の保存安定性を最適化することができる。   [G] When the dehydrating agent is used, the amount is preferably 0.001 part by mass or more and 50 parts by mass or less, and more preferably 0.01 part by mass or more and 30 parts by mass with respect to 100 parts by mass of the component [A]. It is not more than part by mass, particularly preferably not less than 0.05 part by mass and not more than 10 parts by mass. [G] By setting the amount of the dehydrating agent used to be 0.001 part by mass or more and 50 parts by mass or less, the storage stability of the positive radiation sensitive composition can be optimized.

[H]成分の界面活性剤は、ポジ型感放射線性組成物の塗布性の改善や、塗布ムラの低減、放射線照射部の現像性を改良するために添加することができる。好ましい界面活性剤の例としては、ノニオン系界面活性剤、フッ素系界面活性剤及びシリコーン系界面活性剤が挙げられる。   The surfactant of the component [H] can be added to improve the coating property of the positive radiation sensitive composition, reduce coating unevenness, and improve the developability of the radiation irradiated part. Examples of preferred surfactants include nonionic surfactants, fluorine surfactants, and silicone surfactants.

ノニオン系界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアリールエーテル類;ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジアルキルエステル類;(メタ)アクリル酸系共重合体類等が挙げられる。(メタ)アクリル酸系共重合体類の例としては、市販されている商品名で、ポリフローNo.57、同No.95(共栄社化学(株)製)等を挙げることができる。   Nonionic surfactants include, for example, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, and the like. Polyoxyethylene aryl ethers; polyethylene glycol dialkyl esters such as polyethylene glycol dilaurate and polyethylene glycol distearate; (meth) acrylic acid copolymers and the like. As an example of (meth) acrylic acid-based copolymers, Polyflow No. 57, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.).

フッ素系界面活性剤としては、例えば1,1,2,2−テトラフルオロオクチル(1,1,2,2−テトラフルオロプロピル)エーテル、1,1,2,2−テトラフルオロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2−テトラフルオロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3−ヘキサフルオロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2−テトラフルオロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3−ヘキサフルオロペンチル)エーテル等のフルオロエーテル類;パーフルオロドデシルスルホン酸ナトリウム;1,1,2,2,8,8,9,9,10,10−デカフルオロドデカン、1,1,2,2,3,3−ヘキサフルオロデカン等のフルオロアルカン類;フルオロアルキルベンゼンスルホン酸ナトリウム類;フルオロアルキルオキシエチレンエーテル類;フルオロアルキルアンモニウムヨージド類;フルオロアルキルポリオキシエチレンエーテル類;パーフルオロアルキルポリオキシエタノール類;パーフルオロアルキルアルコキシレート類;フッ素系アルキルエステル類等を挙げることができる。   Examples of the fluorosurfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctyl hexyl ether, octa Ethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1,1,2, , 2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether and other fluoroethers; sodium perfluorododecylsulfonate; 1,1,2, 2,8,8,9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexa Fluoroalkanes such as lurodecane; sodium fluoroalkylbenzenesulfonates; fluoroalkyloxyethylene ethers; fluoroalkylammonium iodides; fluoroalkylpolyoxyethylene ethers; perfluoroalkylpolyoxyethanols; perfluoroalkylalkoxylates And fluorine-based alkyl esters.

これらのフッ素系界面活性剤の市販品としては、エフトップEF301、303、352(新秋田化成(株)製)、メガファックF171、172、173(大日本インキ(株)製)、フロラードFC430、431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンS−382、SC−101、102、103、104、105、106(旭硝子(株)製)、FTX−218((株)ネオス製)等を挙げることができる。   Commercially available products of these fluorosurfactants include F-top EF301, 303, 352 (manufactured by Shin-Akita Kasei Co., Ltd.), MegaFuck F171, 172, 173 (manufactured by Dainippon Ink Co., Ltd.), Florard FC430, 431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC-101, 102, 103, 104, 105, 106 (manufactured by Asahi Glass Co., Ltd.), FTX-218 (manufactured by Neos Co., Ltd.) Etc.

シリコーン系界面活性剤の例としては、市販されている商品名で、SH200−100cs、SH28PA、SH30PA、ST89PA、SH190、SH 8400 FLUID(東レダウコーニングシリコーン(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等が挙げられる。   Examples of silicone-based surfactants are commercially available under the trade names SH200-100cs, SH28PA, SH30PA, ST89PA, SH190, SH8400 FLUID (manufactured by Toray Dow Corning Silicone), organosiloxane polymer KP341 (Shin-Etsu) Chemical Industry Co., Ltd.).

[H]界面活性剤を使用する場合の量は、[A]成分100質量部に対して、好ましくは0.01質量部以上10質量部以下、より好ましくは0.05質量部以上5質量部以下である。[H]界面活性剤の使用量を0.01質量部以上10質量部以下とすることにより、ポジ型感放射線性組成物の塗布性を最適化することができる。   [H] The amount of the surfactant used is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.05 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the component [A]. It is as follows. [H] By making the usage-amount of surfactant into 0.01 mass part or more and 10 mass parts or less, the applicability | paintability of positive type radiation sensitive composition can be optimized.

ポジ型感放射線性組成物
本発明のポジ型感放射線性組成物は、上記の[A]成分のシロキサンポリマー、[B]成分のキノンジアジド化合物及び[C]成分の溶剤、並びに任意成分([D]成分の他の溶剤、[E]成分の他のシラン化合物、[F]成分の感熱性酸発生剤又は感熱性塩基発生剤等)を混合することによって調製される。通常、ポジ型感放射線性組成物は、好ましくは適当な溶剤に溶解又は分散させた状態に調製され、使用される。例えば溶剤中で、[A]、[B]及び[C]成分、並びに任意成分を所定の割合で混合することにより、ポジ型感放射線性組成物を調製することができる。
Positive-type radiation-sensitive composition The positive-type radiation-sensitive composition of the present invention comprises the above-mentioned [A] component siloxane polymer, [B] component quinonediazide compound and [C] component solvent, and optional component ([D ] Other solvent, [E] component silane compound, [F] component heat-sensitive acid generator or heat-sensitive base generator, etc.). Usually, the positive radiation-sensitive composition is preferably prepared and used in a state dissolved or dispersed in an appropriate solvent. For example, a positive radiation-sensitive composition can be prepared by mixing the [A], [B] and [C] components and optional components in a solvent in a predetermined ratio.

当該ポジ型感放射線性組成物の調製に用いることができる溶剤としては、各成分を均一に溶解又は分散し、各成分と反応しないものが好適に用いられる。このような溶剤としては、上述の[C]成分及び[D]成分を好適に用いることができる。上述の[C]成分及び[D]成分以外の溶剤としては、エーテル類として、例えばテトラヒドロフラン等、芳香族炭化水素類として、例えばトルエン、キシレン等の溶剤が挙げられる。   As the solvent that can be used for the preparation of the positive radiation-sensitive composition, a solvent that uniformly dissolves or disperses each component and does not react with each component is preferably used. As such a solvent, the above-mentioned [C] component and [D] component can be used conveniently. Examples of the solvent other than the above [C] component and [D] component include ethers such as tetrahydrofuran, and aromatic hydrocarbons such as toluene and xylene.

上記した溶剤に加え、さらに必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、アセトニルアセトン、イソホロン、カプロン酸、カプリル酸、1−オクタノール、1−ノナノール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン、フェニルセロソルブアセテート、カルビトールアセテート等の高沸点溶剤を併用することもできる。   In addition to the solvents described above, benzyl ethyl ether, dihexyl ether, acetonyl acetone, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl acetate, ethyl benzoate, diethyl oxalate, A high boiling point solvent such as diethyl maleate, ethylene carbonate, propylene carbonate, phenyl cellosolve acetate or carbitol acetate can also be used in combination.

ポジ型感放射線性組成物を溶液又は分散液状態として調製する場合、液中に占める溶剤以外の成分(すなわち、[A]及び[B]成分並びにその他の任意成分の合計量)の割合は、使用目的や所望の膜厚等に応じて任意に設定することができるが、好ましくは5質量%以上50質量%以下、より好ましくは10質量%以上40質量%以下、さらに好ましくは15質量%以上35質量%以下である。   When the positive radiation-sensitive composition is prepared as a solution or dispersion, the proportion of components other than the solvent in the liquid (that is, the total amount of the [A] and [B] components and other optional components) is as follows: Although it can be arbitrarily set according to the purpose of use and desired film thickness, it is preferably 5% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 40% by mass or less, and further preferably 15% by mass or more. 35% by mass or less.

層間絶縁膜の形成
次に、上記のポジ型感放射線性組成物を用いて、基板上に層間絶縁膜の硬化膜を形成する方法について説明する。当該方法は、以下の工程を含む。
(1)本発明のポジ型感放射線性組成物の塗膜を基板上に形成する工程、
(2)工程(1)で形成した塗膜の少なくとも一部に放射線を照射する工程、
(3)工程(2)で放射線を照射された塗膜を現像する工程、及び
(4)工程(3)で現像された塗膜を加熱する工程。
Formation of Interlayer Insulating Film Next, a method for forming a cured film of the interlayer insulating film on the substrate using the above positive radiation sensitive composition will be described. The method includes the following steps.
(1) The process of forming the coating film of the positive radiation sensitive composition of this invention on a board | substrate,
(2) A step of irradiating at least a part of the coating film formed in step (1),
(3) A step of developing the coating film irradiated with radiation in the step (2), and (4) A step of heating the coating film developed in the step (3).

(1)ポジ型感放射線性組成物の塗膜を基板上に形成する工程
上記工程(1)において、基板上に本発明のポジ型感放射線性組成物の溶液又は分散液を塗布した後、好ましくは塗布面を加熱(プレベーク)することにより溶剤を除去して、塗膜を形成する。使用できる基板の例としては、ガラス、石英、シリコン、樹脂等を挙げることができる。樹脂の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリイミド、環状オレフィンの開環重合体及びその水素添加物等を挙げることができる。
(1) Step of forming positive type radiation sensitive composition coating film on substrate In step (1) above, after applying the positive type radiation sensitive composition solution or dispersion of the present invention on the substrate, Preferably, the solvent is removed by heating (pre-baking) the coated surface to form a coating film. Examples of the substrate that can be used include glass, quartz, silicon, and resin. Specific examples of the resin include polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, polyimide, a ring-opening polymer of cyclic olefin, and hydrogenated products thereof.

組成物溶液又は分散液の塗布方法としては、特に限定されず、例えばスプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法等の適宜の方法を採用することができる。これらの塗布方法の中でも、特にスピンコート法又はスリットダイ塗布法が好ましい。プレベークの条件は、各成分の種類、配合割合等によっても異なるが、好ましくは70〜120℃で1〜10分間程度とすることができる。   The coating method of the composition solution or dispersion is not particularly limited, and an appropriate method such as a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, or the like is employed. be able to. Among these coating methods, a spin coating method or a slit die coating method is particularly preferable. Prebaking conditions vary depending on the type of each component, the blending ratio, and the like, but can be preferably about 70 to 120 ° C for about 1 to 10 minutes.

(2)塗膜の少なくとも一部に放射線を照射する工程
上記工程(2)では、形成された塗膜の少なくとも一部に露光する。この場合、塗膜の一部に露光する際には、通常、所定のパターンを有するフォトマスクを介して露光する。露光に使用される放射線としては、例えば可視光線、紫外線、遠紫外線、電子線、X線等を使用できる。これらの放射線の中でも、波長が190〜450nmの範囲にある放射線が好ましく、特に365nmの紫外線を含む放射線が好ましい。
(2) Step of irradiating at least a part of the coating film In the step (2), at least a part of the formed coating film is exposed. In this case, when exposing to a part of coating film, it exposes normally through the photomask which has a predetermined pattern. As radiation used for exposure, visible light, ultraviolet rays, far ultraviolet rays, electron beams, X-rays, and the like can be used, for example. Among these radiations, radiation having a wavelength in the range of 190 to 450 nm is preferable, and radiation containing ultraviolet light of 365 nm is particularly preferable.

当該工程における露光量は、放射線の波長365nmにおける強度を、照度計(OAI model356、OAI Optical Associates Inc.製)により測定した値として、好ましくは100〜10,000J/m、より好ましくは500〜6,000J/mである。 The amount of exposure in this step is preferably 100 to 10,000 J / m 2 , more preferably 500 to 500, as a value measured with a luminometer (OAI model 356, manufactured by OAI Optical Associates Inc.) at a wavelength of 365 nm. 6,000 J / m 2 .

(3)現像工程
上記工程(3)では、露光後の塗膜を現像することにより、不要な部分(放射線の照射部分)を除去して、所定のパターンを形成する。現像工程に使用される現像液としては、アルカリ(塩基性化合物)の水溶液が好ましい。アルカリの例としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア等の無機アルカリ;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩等を挙げることができる。
(3) Development process In the said process (3), an unnecessary part (radiation irradiation part) is removed by developing the coating film after exposure, and a predetermined pattern is formed. The developer used in the development step is preferably an aqueous solution of an alkali (basic compound). Examples of alkalis include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide. be able to.

また、このようなアルカリ水溶液には、メタノール、エタノール等の水溶性有機溶媒や界面活性剤を適当量添加して使用することもできる。アルカリ水溶液におけるアルカリの濃度は、適当な現像性を得る観点から、好ましくは0.1質量%以上5質量%以下とすることができる。現像方法としては、例えば液盛り法、ディッピング法、揺動浸漬法、シャワー法等の適宜の方法を利用することができる。現像時間は、ポジ型感放射線性組成物の組成によって異なるが、好ましくは10〜180秒間程度である。このような現像処理に続いて、例えば流水洗浄を30〜90秒間行った後、例えば圧縮空気や圧縮窒素で風乾させることによって、所望のパターンを形成することができる。   In addition, an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant can be added to such an alkaline aqueous solution. The concentration of the alkali in the alkaline aqueous solution is preferably from 0.1% by mass to 5% by mass from the viewpoint of obtaining appropriate developability. As a developing method, for example, an appropriate method such as a liquid filling method, a dipping method, a rocking dipping method, a shower method, or the like can be used. The development time varies depending on the composition of the positive radiation-sensitive composition, but is preferably about 10 to 180 seconds. Following such development processing, for example, after washing with running water for 30 to 90 seconds, a desired pattern can be formed by, for example, air drying with compressed air or compressed nitrogen.

(4)加熱工程
上記工程(4)では、ホットプレート、オーブン等の加熱装置を用い、パターニングされた薄膜を比較的高温で加熱することによって、上記[A]成分単独、又は[A]成分及び[E]成分の縮合反応を促進し、確実に硬化物を得ることができる。特に、[F]成分の感熱性酸発生剤又は感熱性塩基発生剤を用いる場合には、加熱工程において酸性活性物質又は塩基性活性物質が発生し、これが触媒となって[A]及び[E]成分の縮合反応がさらに促進される。当該工程における加熱温度は、例えば120〜250℃である。加熱時間は、加熱機器の種類により異なるが、例えば、ホットプレート上で加熱工程を行う場合には5〜30分間、オーブン中で加熱工程を行う場合には30〜90分間とすることができる。2回以上の加熱工程を行うステップベーク法等を用いることもできる。このようにして、目的とする層間絶縁膜に対応するパターン状薄膜を基板の表面上に形成することができる。
(4) Heating step In the above step (4), the patterned thin film is heated at a relatively high temperature using a heating device such as a hot plate or an oven, whereby the above [A] component alone or the [A] component and The condensation reaction of the component [E] can be promoted and a cured product can be obtained with certainty. In particular, when the heat-sensitive acid generator or heat-sensitive base generator of the component [F] is used, an acidic active substance or a basic active substance is generated in the heating step, and this becomes a catalyst and becomes [A] and [E]. The condensation reaction of the components is further accelerated. The heating temperature in the said process is 120-250 degreeC, for example. Although heating time changes with kinds of heating apparatus, for example, when performing a heating process on a hotplate, it can be set to 30 to 90 minutes when performing a heating process in an oven. The step baking method etc. which perform a heating process 2 times or more can also be used. In this way, a patterned thin film corresponding to the target interlayer insulating film can be formed on the surface of the substrate.

層間絶縁膜
このように形成された層間絶縁膜の膜厚は、好ましくは0.1〜8μm、より好ましくは0.1〜6μm、さらに好ましくは0.1〜4μmである。
Interlayer Insulating Film The film thickness of the interlayer insulating film thus formed is preferably 0.1 to 8 μm, more preferably 0.1 to 6 μm, and further preferably 0.1 to 4 μm.

本発明のポジ型感放射線性組成物から形成された層間絶縁膜は、下記の実施例からも明らかにされるように、耐熱性、透明性、耐溶剤性及び低誘電性という一般的な要求特性をバランス良く満たすと共に、電圧保持率が高い液晶パネルを形成することができる。そのため、当該層間絶縁膜は、液晶表示素子用として好適に用いられる。   The interlayer insulating film formed from the positive radiation-sensitive composition of the present invention has general requirements of heat resistance, transparency, solvent resistance and low dielectric property, as will be apparent from the following examples. A liquid crystal panel that satisfies the characteristics in a well-balanced manner and has a high voltage holding ratio can be formed. Therefore, the interlayer insulating film is preferably used for a liquid crystal display element.

以下に合成例、実施例を示して、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   The present invention will be described more specifically with reference to synthesis examples and examples. However, the present invention is not limited to the following examples.

以下の各合成例から得られた加水分解性シラン化合物の加水分解縮合物の数平均分子量(Mn)及び重量平均分子量(Mw)は、下記の仕様によるゲルパーミエーションクロマトグラフィ(GPC)により測定した。
装置:GPC−101(昭和電工(株)製)
カラム:GPC−KF−801、GPC−KF−802、GPC−KF−803及びGPC−KF−804(昭和電工(株)製)を結合したもの
移動相:テトラヒドロフラン
The number average molecular weight (Mn) and the weight average molecular weight (Mw) of the hydrolysis condensate of the hydrolyzable silane compound obtained from each of the following synthesis examples were measured by gel permeation chromatography (GPC) according to the following specifications.
Apparatus: GPC-101 (made by Showa Denko KK)
Column: GPC-KF-801, GPC-KF-802, GPC-KF-803 and GPC-KF-804 (manufactured by Showa Denko KK) combined Mobile phase: Tetrahydrofuran

[A]成分の加水分解性シラン化合物の加水分解縮合物の合成例
[合成例1]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、続いて、メチルトリメトキシシラン30質量部、フェニルトリメトキシシラン23質量部及びテトラ−i−プロポキシアルミニウム0.1質量部を仕込み、溶液温度が60℃になるまで加熱した。溶液温度が60℃に到達後、イオン交換水18質量部を仕込み、75℃になるまで加熱し、3時間保持した。次いで脱水剤としてオルト蟻酸メチル28質量部を加え、1時間攪拌した。さらに、溶液温度を40℃にし、温度を保ちながらエバポレーションすることで、イオン交換水及び加水分解縮合で発生したメタノールを除去した。以上により、加水分解縮合物(A−1)を得た。加水分解縮合物(A−1)の固形分濃度は40.5質量%であり、得られた加水分解縮合物の数平均分子量(Mn)は1,500であり、分子量分布(Mw/Mn)は2であった。
[A] Synthesis example of hydrolysis condensate of component hydrolyzable silane compound [Synthesis Example 1]
In a vessel equipped with a stirrer, 25 parts by mass of propylene glycol monomethyl ether is charged, followed by 30 parts by mass of methyltrimethoxysilane, 23 parts by mass of phenyltrimethoxysilane and 0.1 parts by mass of tetra-i-propoxyaluminum. The solution was heated until the solution temperature reached 60 ° C. After the solution temperature reached 60 ° C., 18 parts by mass of ion-exchanged water was charged, heated to 75 ° C. and held for 3 hours. Next, 28 parts by mass of methyl orthoformate was added as a dehydrating agent and stirred for 1 hour. Furthermore, the solution temperature was set to 40 ° C., and evaporation was performed while maintaining the temperature, thereby removing ion-exchanged water and methanol generated by hydrolysis condensation. Thus, a hydrolysis-condensation product (A-1) was obtained. The solid content concentration of the hydrolysis condensate (A-1) is 40.5% by mass, the number average molecular weight (Mn) of the obtained hydrolysis condensate is 1,500, and the molecular weight distribution (Mw / Mn) is 2. Met.

[合成例2]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、続いて、メチルトリメトキシシラン18質量部、テトラエトキシシラン15質量部、フェニルトリメトキシシラン20質量部、及びシュウ酸0.5質量部を仕込み、合成例1と同様の方法により、加水分解縮合物(A−2)を得た。加水分解縮合物(A−2)の固形分濃度は40.8質量%であり、得られた加水分解縮合物の数平均分子量(Mn)は1,200であり、分子量分布(Mw/Mn)は2であった。
[Synthesis Example 2]
In a container equipped with a stirrer, 25 parts by mass of propylene glycol monomethyl ether was charged, followed by 18 parts by mass of methyltrimethoxysilane, 15 parts by mass of tetraethoxysilane, 20 parts by mass of phenyltrimethoxysilane, and 0.5 parts of oxalic acid. A hydrolysis condensate (A-2) was obtained in the same manner as in Synthesis Example 1 by charging a mass part. The solid content concentration of the hydrolysis condensate (A-2) is 40.8% by mass, the number average molecular weight (Mn) of the obtained hydrolysis condensate is 1,200, and the molecular weight distribution (Mw / Mn) is 2. Met.

[合成例3]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、続いて、メチルトリメトキシシラン22質量部、γ−グリシドキシプロピルトリメトキシシラン12質量部、フェニルトリメトキシシラン20質量部、及びテトラ−i−プロポキシアルミニウム0.1質量部を仕込み、合成例1と同様の方法により、加水分解縮合物(A−3)を得た。加水分解縮合物(A−3)の固形分濃度は39.8質量%であり、得られた加水分解縮合物の数平均分子量(Mn)は1,600であり、分子量分布(Mw/Mn)は2であった。
[Synthesis Example 3]
In a vessel equipped with a stirrer, 25 parts by mass of propylene glycol monomethyl ether was charged, followed by 22 parts by mass of methyltrimethoxysilane, 12 parts by mass of γ-glycidoxypropyltrimethoxysilane, 20 parts by mass of phenyltrimethoxysilane, Then, 0.1 parts by mass of tetra-i-propoxyaluminum was charged, and a hydrolysis condensate (A-3) was obtained in the same manner as in Synthesis Example 1. The solid content concentration of the hydrolysis condensate (A-3) is 39.8% by mass, the number average molecular weight (Mn) of the obtained hydrolysis condensate is 1,600, and the molecular weight distribution (Mw / Mn) is 2. Met.

[合成例4]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、続いて、メチルトリメトキシシラン22質量部、3−メタクリロキシプロピルトリメトキシシラン12質量部、フェニルトリメトキシシラン20質量部、及びシュウ酸0.5質量部を仕込み、合成例1と同様の方法により、加水分解縮合物(A−4)を得た。加水分解縮合物(A−4)の固形分濃度は39.8質量%であり、得られた加水分解縮合物の数平均分子量(Mn)は1,200であり、分子量分布(Mw/Mn)は2であった。
[Synthesis Example 4]
In a container equipped with a stirrer, 25 parts by mass of propylene glycol monomethyl ether was charged, followed by 22 parts by mass of methyltrimethoxysilane, 12 parts by mass of 3-methacryloxypropyltrimethoxysilane, 20 parts by mass of phenyltrimethoxysilane, and 0.5 parts by mass of oxalic acid was charged, and a hydrolysis condensate (A-4) was obtained in the same manner as in Synthesis Example 1. The solid content concentration of the hydrolysis condensate (A-4) is 39.8% by mass, the number average molecular weight (Mn) of the obtained hydrolysis condensate is 1,200, and the molecular weight distribution (Mw / Mn) is 2. Met.

[合成例5]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、続いて、メチルトリメトキシシラン17質量部、テトラエトキシシラン15質量部、γ−グリシドキシプロピルトリメトキシシラン12質量部、フェニルトリメトキシシラン15質量部、及びテトラ−i−プロポキシアルミニウム0.1質量部を仕込み、合成例1と同様の方法により、加水分解縮合物(A−5)を得た。加水分解縮合物(A−5)の固形分濃度は40.8質量%であり、得られた加水分解縮合物の数平均分子量(Mn)は1,600であり、分子量分布(Mw/Mn)は2であった。
[Synthesis Example 5]
In a vessel equipped with a stirrer, 25 parts by mass of propylene glycol monomethyl ether was charged, followed by 17 parts by mass of methyltrimethoxysilane, 15 parts by mass of tetraethoxysilane, 12 parts by mass of γ-glycidoxypropyltrimethoxysilane, phenyl By adding 15 parts by mass of trimethoxysilane and 0.1 part by mass of tetra-i-propoxyaluminum, a hydrolysis condensate (A-5) was obtained in the same manner as in Synthesis Example 1. The solid content concentration of the hydrolysis condensate (A-5) is 40.8% by mass, the number average molecular weight (Mn) of the obtained hydrolysis condensate is 1,600, and the molecular weight distribution (Mw / Mn) is 2. Met.

[合成例6]
撹拌機付の容器内に、プロピレングリコールモノメチルエーテル25質量部を仕込み、続いて、メチルトリメトキシシラン17質量部、テトラエトキシシラン15質量部、3−メタクリロキシプロピルトリメトキシシラン12質量部、フェニルトリメトキシシラン15質量部、及びシュウ酸0.5質量部を仕込み、合成例1と同様の方法により、加水分解縮合物(A−6)を得た。加水分解縮合物(A−6)の固形分濃度は40.8質量%であり、得られた加水分解縮合物の数平均分子量(Mn)は1,600であり、分子量分布(Mw/Mn)は2であった。
[Synthesis Example 6]
In a container equipped with a stirrer, 25 parts by mass of propylene glycol monomethyl ether was charged, followed by 17 parts by mass of methyltrimethoxysilane, 15 parts by mass of tetraethoxysilane, 12 parts by mass of 3-methacryloxypropyltrimethoxysilane, phenyltrimethylsilane. 15 parts by mass of methoxysilane and 0.5 parts by mass of oxalic acid were charged, and a hydrolysis condensate (A-6) was obtained in the same manner as in Synthesis Example 1. The solid content concentration of the hydrolysis condensate (A-6) is 40.8% by mass, the number average molecular weight (Mn) of the obtained hydrolysis condensate is 1,600, and the molecular weight distribution (Mw / Mn) is 2. Met.

ポジ型感放射線性組成物の調製
[実施例1]
[A]シロキサンポリマーとして合成例1で得られた加水分解縮合物(A−1)を含む溶液(加水分解縮合物(A−1)100質量部(固形分)に相当する量)に、[B]キノンジアジド化合物として(B−1)4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(3.0モル)の縮合物10質量部、[C]溶剤としてジイソアミルエーテル450質量部、[G]脱水剤としてオルト蟻酸メチル0.05質量部、[H]界面活性剤としてフッ素系界面活性剤((株)ネオス製の「FTX−218」)0.1質量部を加え、ポジ型感放射線性組成物を調製した。
Preparation of positive radiation sensitive composition [Example 1]
[A] To a solution containing the hydrolysis condensate (A-1) obtained in Synthesis Example 1 as a siloxane polymer (an amount corresponding to 100 parts by mass (solid content) of the hydrolysis condensate (A-1)), [ B] (B-1) 4,4 ′-[1- [4- [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1, as quinonediazide compound 10 parts by mass of a condensate of 2-naphthoquinonediazide-5-sulfonic acid chloride (3.0 mol), 450 parts by mass of diisoamyl ether as a [C] solvent, 0.05 parts by mass of methyl orthoformate as a dehydrating agent, [H] 0.1 parts by mass of a fluorosurfactant ("FTX-218" manufactured by Neos Co., Ltd.) was added as a surfactant to prepare a positive radiation sensitive composition.

[実施例2〜23及び比較例1〜6]
各成分の種類及び量を表1に記載の通りとした他は、実施例1と同様にしてポジ型感放射線性組成物を調製した。
[Examples 2 to 23 and Comparative Examples 1 to 6]
A positive radiation-sensitive composition was prepared in the same manner as in Example 1 except that the types and amounts of each component were as described in Table 1.

物性評価
上記のように調製したポジ型感放射線性組成物を使用し、以下のように当該組成物、層間絶縁膜としての各種の特性を評価した。
Evaluation of Physical Properties Using the positive radiation sensitive composition prepared as described above, various properties as the composition and the interlayer insulating film were evaluated as follows.

〔ポジ型感放射性樹脂組成物の塗布性(縦筋ムラ、モヤムラ)の評価〕
550mm×650mmのクロム成膜ガラス上に、調製した組成物溶液を、スリットダイコーター(TR632105−CL、東京応化工業(株)製)を用いて塗布した。0.5Torrまで減圧乾燥した後、ホットプレート上で100℃にて2分間プレベークして塗膜を形成し、さらに2,000J/mの露光量で露光することにより、クロム成膜ガラスの上面からの膜厚が4μmの膜を形成した。
膜表面をナトリウムランプにて照らし、目視にて塗布膜面を確認した。縦筋ムラ(塗布方向、もしくはそれに交差する方向にできる一本または複数本の直線のムラ)、モヤムラ(雲状のムラ)がはっきりと確認できた場合は×、僅かに確認できた場合は△、殆ど確認できなかった場合は○、筋ムラ、モヤムラを確認できなかった場合は◎と表記する。結果を表1に示す。
[Evaluation of coatability (vertical streak unevenness, mist unevenness) of positive radiation sensitive resin composition]
The prepared composition solution was applied on a 550 mm × 650 mm chromium film-forming glass by using a slit die coater (TR6322105-CL, manufactured by Tokyo Ohka Kogyo Co., Ltd.). After drying under reduced pressure to 0.5 Torr, pre-baking on a hot plate at 100 ° C. for 2 minutes to form a coating film, and further exposing at an exposure amount of 2,000 J / m 2 , the upper surface of the chromium film-forming glass A film having a thickness of 4 μm was formed.
The surface of the film was illuminated with a sodium lamp, and the coated film surface was visually confirmed. Vertical stripe unevenness (single or multiple straight line unevenness in the direction of application or in the direction intersecting with it) and haze unevenness (cloud-like unevenness) can be confirmed clearly, x if slightly confirmed In the case where almost no confirmation was made, ◯, and in the case where streak unevenness or moire unevenness could not be confirmed, it was indicated as ◎. The results are shown in Table 1.

〔ポジ型感放射性樹脂組成物の塗布膜厚の均一性の評価〕
上述のようにして作製したクロム成膜ガラス上の塗膜の膜厚を、針接触式測定機(KLA Tencor社製 AS200)を用いて測定した。
ユニフォミティとして、9つの測定点における膜厚から計算した。9つの測定点とは基板の短軸方向をX、長軸方向をYとすると、(X[mm]、Y[mm])が、(275、20)、(275、30)、(275、60)、(275、100)、(275、325)、(275、550)、(275、590)、(275、620)、(275、630)である。
ユニフォミティの計算式としては、下記式で表される。下記式のFT(X、Y)maxは、9つの測定点における膜厚中の最大値、FT(X、Y)minは、9つの測定点における膜厚中の最小値、FT(X、Y)avg.は、9つの測定点における膜厚中の平均値である。ユニフォミティが2%以下の場合は、膜厚均一性は良好と判断できる。結果を表1に示す。
ユニフォミティ(%)={FT(X、Y)max − FT(X、Y)min}×100/{2×FT(X、Y)avg.}
[Evaluation of coating film thickness uniformity of positive-type radiation-sensitive resin composition]
The film thickness of the coating film on the chromium-deposited glass produced as described above was measured using a needle contact measuring device (AS200 manufactured by KLA Tencor).
The uniformity was calculated from the film thickness at nine measurement points. The nine measurement points are (X [mm], Y [mm]), where (X [mm], Y [mm]) is (275, 20), (275, 30), (275, 60), (275, 100), (275, 325), (275, 550), (275, 590), (275, 620), (275, 630).
The uniformity calculation formula is expressed by the following formula. FT (X, Y) max in the following formula is the maximum value in the film thickness at nine measurement points, FT (X, Y) min is the minimum value in the film thickness at nine measurement points, and FT (X, Y Avg. Is an average value in the film thickness at nine measurement points. When the uniformity is 2% or less, it can be judged that the film thickness uniformity is good. The results are shown in Table 1.
Uniformity (%) = {FT (X, Y) max−FT (X, Y) min} × 100 / {2 × FT (X, Y) avg. }

〔ポジ型感放射性樹脂組成物の高速塗布性の評価〕
550mm×650mmの無アルカリガラス基板上に、スリットコーターを用いて塗布し、塗布条件として、下地とノズルの距離(GAP)150μm、膜厚露光後2.5μmとなるように、ノズルから塗布液を吐出し、ノズルの移動速度を120mm/s〜220mm/sの範囲で変量し、液切れによる筋状のムラが発生しない最大速度を求めた。この時、200mm/s以上の速度でも筋状のムラが発生しない場合は、高速塗布に対応が可能であると判断できる。結果を表1に示す。
[Evaluation of high-speed coating property of positive-type radiation-sensitive resin composition]
Coating is performed on a non-alkali glass substrate of 550 mm × 650 mm using a slit coater, and the coating conditions are as follows. The maximum speed at which the streaky unevenness due to liquid breakage did not occur was determined by discharging and varying the moving speed of the nozzle in the range of 120 mm / s to 220 mm / s. At this time, if no streak-like unevenness occurs even at a speed of 200 mm / s or higher, it can be determined that high-speed application is possible. The results are shown in Table 1.

〔ポジ型感放射線性組成物の放射線感度の評価〕
シリコン基板上に、実施例1〜3及び5〜23並びに比較例1〜6については、スピンナーを用いて各組成物を塗布した後、100℃にて2分間ホットプレート上でプレベークすることにより膜厚4.0μmの塗膜を形成した。実施例4については、スリットダイコーターを用いて組成物を塗布した後、室温で15秒かけて0.5Torrまで減圧し、溶媒を除去した後、100℃にて2分間ホットプレート上でプレベークすることにより膜厚4.0μmの塗膜を形成した。得られた塗膜に対し、キヤノン(株)製PLA−501F露光機(超高圧水銀ランプ)を用い、3.0μmのライン・アンド・スペース(10対1)のパターンを有するマスクを介して露光時間を変化させて露光を行った後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、80秒間、液盛り法で現像した。次いで、超純水で1分間流水洗浄を行い、乾燥させてシリコン基板上にパターンを形成した。このとき、スペース線幅(底部)が0.30μmとなるのに必要な最小露光量を測定した。この最小露光量を放射線感度として表1に示す。最小露光量が600(J/m)以下の時、感度は良好であると言える。
[Evaluation of radiation sensitivity of positive radiation-sensitive composition]
About Examples 1-3 and 5-23, and Comparative Examples 1-6 on a silicon substrate, after apply | coating each composition using a spinner, it is a film | membrane by prebaking on a hotplate for 2 minutes at 100 degreeC. A coating film having a thickness of 4.0 μm was formed. For Example 4, after applying the composition using a slit die coater, the pressure was reduced to 0.5 Torr over 15 seconds at room temperature, the solvent was removed, and then prebaked on a hot plate at 100 ° C. for 2 minutes. As a result, a coating film having a film thickness of 4.0 μm was formed. The obtained coating film is exposed through a mask having a 3.0 μm line and space (10 to 1) pattern using a PLA-501F exposure machine (extra high pressure mercury lamp) manufactured by Canon Inc. After performing exposure while changing the time, the film was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 25 ° C. for 80 seconds by a puddle method. Next, running water was washed with ultrapure water for 1 minute and dried to form a pattern on the silicon substrate. At this time, the minimum exposure amount necessary for the space line width (bottom) to be 0.30 μm was measured. This minimum exposure amount is shown in Table 1 as radiation sensitivity. It can be said that the sensitivity is good when the minimum exposure amount is 600 (J / m 2 ) or less.

〔ポジ型感放射線性組成物の加熱工程におけるパターン形状の耐メルトフロー性評価〕
上記「放射線感度の評価」で形成したスペース線幅(底部)が0.30μmとなるパターンについて、現像後、キヤノン(株)製PLA−501F露光機(超高圧水銀ランプ)を用いて、積算照射量が3,000J/mとなるように露光を行った後、クリーンオーブン内にて220℃で1時間加熱することにより硬化膜を得た。さらに230℃で10分間加熱して、パターンをメルトフローさせ、SEM(走査型電子顕微鏡)によりパターン底部の寸法を測定した。この時、パターン底部の寸法が0.35μm未満であるとき、耐メルトフロー性が良好であるといえる。一方、パターン底部の寸法が0.35μm以上の場合、耐メルトフロー性は不良であるといえる。このパターン底部の寸法測定結果を、耐メルトフロー性の評価として表1に示す。
[Evaluation of Melt Flow Resistance of Pattern Shape in Heating Process of Positive Radiation Sensitive Composition]
For patterns with a space line width (bottom part) of 0.30 μm formed in the above “Evaluation of Radiation Sensitivity”, integrated development is performed using a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. After performing exposure so that the amount was 3,000 J / m 2 , a cured film was obtained by heating at 220 ° C. for 1 hour in a clean oven. Furthermore, it heated at 230 degreeC for 10 minute (s), the pattern was melt-flowed, and the dimension of the pattern bottom part was measured with SEM (scanning electron microscope). At this time, when the dimension of the pattern bottom is less than 0.35 μm, it can be said that the melt flow resistance is good. On the other hand, when the dimension of the pattern bottom is 0.35 μm or more, it can be said that the melt flow resistance is poor. Table 1 shows the results of dimensional measurement at the bottom of the pattern as an evaluation of melt flow resistance.

〔層間絶縁膜の耐溶剤性の評価〕
上記「放射線感度の評価」で露光しなかった以外は、同様にシリコン基板上に塗膜を形成した。その後、得られた塗膜に、それぞれキヤノン(株)製PLA−501F露光機(超高圧水銀ランプ)を用いて、積算照射量が3,000J/mとなるように露光を行った後、クリーンオーブン内にて220℃で1時間加熱することにより硬化膜を得た。得られた硬化膜の膜厚(T1)を測定した。そして、この硬化膜が形成されたシリコン基板を70℃に温度制御されたジメチルスルホキシド中に20分間浸漬した後、当該硬化膜の膜厚(t1)を測定し、浸漬による膜厚変化率{|t1−T1|/T1}×100〔%〕を算出した。この膜厚変化率の結果を、耐溶剤性の評価として表1に示す。この値が4%以下の時、耐溶剤性は良好であると言える。なお、耐溶剤性の評価においては、形成する膜のパターニングは不要のため、現像工程を省略し、塗膜形成工程、放射線照射工程及び加熱工程のみ行い評価に供した。
[Evaluation of solvent resistance of interlayer insulation film]
A coating film was formed on the silicon substrate in the same manner except that the exposure was not performed in the above "Evaluation of radiation sensitivity". Thereafter, the obtained coating film was exposed to a cumulative irradiation amount of 3,000 J / m 2 by using a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. A cured film was obtained by heating at 220 ° C. for 1 hour in a clean oven. The film thickness (T1) of the obtained cured film was measured. And after immersing the silicon substrate on which this cured film was formed in dimethyl sulfoxide whose temperature was controlled at 70 ° C. for 20 minutes, the thickness (t1) of the cured film was measured, and the film thickness change rate {| t1-T1 | / T1} × 100 [%] was calculated. The results of the film thickness change rate are shown in Table 1 as solvent resistance evaluation. When this value is 4% or less, it can be said that the solvent resistance is good. In the evaluation of solvent resistance, the patterning of the film to be formed is unnecessary, so the development process was omitted, and only the coating film forming process, the radiation irradiation process, and the heating process were performed for evaluation.

〔層間絶縁膜の耐熱性の評価〕
上記「耐溶剤性の評価」と同様にしてシリコン基板上に硬化膜を形成し、得られた硬化膜の膜厚(T2)を測定した。次いで、この硬化膜が形成されたシリコン基板を、クリーンオーブン内にて240℃で1時間追加ベークした後、当該硬化膜の膜厚(t2)を測定し、追加ベークによる膜厚変化率{|t2−T2|/T2}×100〔%〕を算出した。この膜厚変化率の結果を、耐熱性の評価として表1に示す。この値が3%未満の時、耐熱性は良好であると言える。
[Evaluation of heat resistance of interlayer insulation film]
A cured film was formed on a silicon substrate in the same manner as in the above “evaluation of solvent resistance”, and the thickness (T2) of the obtained cured film was measured. Next, the silicon substrate on which the cured film is formed is additionally baked in a clean oven at 240 ° C. for 1 hour, and then the thickness (t2) of the cured film is measured, and the rate of change in film thickness due to the additional baking {| t2−T2 | / T2} × 100 [%] was calculated. The results of the film thickness change rate are shown in Table 1 as heat resistance evaluation. When this value is less than 3%, it can be said that the heat resistance is good.

〔層間絶縁膜の光線透過率(透明性)の評価〕
上記「耐溶剤性の評価」において、シリコン基板の代わりにガラス基板「コーニング7059」(コーニング社製)を用いたこと以外は同様にして、ガラス基板上に硬化膜を形成した。この硬化膜が形成されたガラス基板の光線透過率を、分光光度計「150−20型ダブルビーム」((株)日立製作所製)を用いて、400〜800nmの範囲の波長で測定した。そのときの最低光線透過率の値を表1に示す。最低光線透過率が95%以上の時、光線透過率は良好であると言える。
[Evaluation of light transmittance (transparency) of interlayer insulation film]
In the above “Evaluation of solvent resistance”, a cured film was formed on the glass substrate in the same manner except that a glass substrate “Corning 7059” (manufactured by Corning) was used instead of the silicon substrate. The light transmittance of the glass substrate on which this cured film was formed was measured at a wavelength in the range of 400 to 800 nm using a spectrophotometer “150-20 type double beam” (manufactured by Hitachi, Ltd.). Table 1 shows the values of the minimum light transmittance at that time. When the minimum light transmittance is 95% or more, it can be said that the light transmittance is good.

〔層間絶縁膜の比誘電率(低誘電性)の評価〕
研磨したSUS304製基板上に、実施例1〜3及び5〜23並びに比較例1〜6については、スピンナーを用いて各組成物を塗布した後、100℃にて2分間ホットプレート上でプレベークすることにより膜厚3.0μmの塗膜を形成した。実施例4については、スリットダイコーターを用いて組成物を塗布した後、室温で15秒かけて0.5Torrまで減圧し、溶媒を除去した後、100℃にて2分間ホットプレート上でプレベークすることにより膜厚3.0μmの塗膜を形成した。得られた塗膜に対し、キヤノン(株)製PLA−501F露光機(超高圧水銀ランプ)を用い、積算照射量が3,000J/mとなるように露光を行った後、クリーンオーブン内にて220℃で1時間加熱することにより、基板上に硬化膜を形成した。この硬化膜上に、蒸着法によりPt/Pd電極パターンを形成し、比誘電率測定用サンプルを作成した。得られたサンプルにつき、横河・ヒューレットパッカード(株)製HP16451B電極及びHP4284AプレシジョンLCRメーターを用いて、CV法により、周波数10kHzの周波数における比誘電率を測定した。結果を表1に示す。なお、比誘電率の評価においては、形成する膜のパターニングは不要のため、現像工程を省略し、塗膜形成工程、放射線照射工程及び加熱工程のみ行い評価に供した。
[Evaluation of relative dielectric constant (low dielectric constant) of interlayer insulating film]
For Examples 1 to 3 and 5 to 23 and Comparative Examples 1 to 6 on a polished SUS304 substrate, each composition was applied using a spinner and then pre-baked on a hot plate at 100 ° C. for 2 minutes. As a result, a coating film having a thickness of 3.0 μm was formed. For Example 4, after applying the composition using a slit die coater, the pressure was reduced to 0.5 Torr over 15 seconds at room temperature, the solvent was removed, and then prebaked on a hot plate at 100 ° C. for 2 minutes. As a result, a coating film having a thickness of 3.0 μm was formed. The resulting coating film was exposed to a cumulative irradiation amount of 3,000 J / m 2 using a Canon-made PLA-501F exposure machine (extra-high pressure mercury lamp), and then in a clean oven. A cured film was formed on the substrate by heating at 220 ° C. for 1 hour. On this cured film, a Pt / Pd electrode pattern was formed by vapor deposition to prepare a sample for measuring relative permittivity. About the obtained sample, the dielectric constant in the frequency of 10 kHz was measured by CV method using the HP16451B electrode and HP4284A precision LCR meter by a Yokogawa Hewlett-Packard Co., Ltd. product. The results are shown in Table 1. In the evaluation of the relative dielectric constant, since the patterning of the film to be formed is unnecessary, the development process was omitted, and only the coating film forming process, the radiation irradiation process, and the heating process were performed for evaluation.

〔液晶セルの電圧保持率の評価〕
表面にナトリウムイオンの溶出を防止するSiO膜が形成され、さらにITO(インジウム−酸化錫合金)電極を所定形状に蒸着したソーダガラス基板上に、スピンナーを用いて表1に記載の各組成物を塗布し、100℃のホットプレート上で2分間プレベークを行って、膜厚2.0μmの塗膜を形成した。2.38重量%のテトラメチルアンモニウムヒドロキシド水溶液にて、25℃、80秒間、ディップ法による現像を行った。次いで、高圧水銀ランプを用い、フォトマスクを介さずに、塗膜に365nm、405nm及び436nmの各波長を含む放射線を3,000J/mの積算照射量で露光した。さらに220℃で1時間ポストベークを行い、硬化膜を形成した。次いで、この硬化膜を有する基板上に5.5μm径のビーズスペーサーを散布後、これと表面にITO電極を所定形状に蒸着しただけのソーダガラス基板とを対向させた状態で、液晶注入口を残して4辺を0.8mmのガラスビーズを混合したシール剤を用いて貼り合わせ、メルク社製の液晶MLC6608(商品名)を注入した後に液晶注入口を封止することにより、液晶セルを作製した。
[Evaluation of voltage holding ratio of liquid crystal cell]
Each composition described in Table 1 using a spinner on a soda glass substrate on which a SiO 2 film for preventing elution of sodium ions is formed on a surface and an ITO (indium-tin oxide alloy) electrode is deposited in a predetermined shape. Was applied and prebaked on a hot plate at 100 ° C. for 2 minutes to form a coating film having a thickness of 2.0 μm. Development was carried out by a dip method in a 2.38 wt% tetramethylammonium hydroxide aqueous solution at 25 ° C. for 80 seconds. Next, using a high-pressure mercury lamp, the coating film was exposed to radiation containing wavelengths of 365 nm, 405 nm, and 436 nm at an integrated dose of 3,000 J / m 2 without using a photomask. Further, post-baking was performed at 220 ° C. for 1 hour to form a cured film. Next, after spraying a 5.5 μm diameter bead spacer on the substrate having the cured film, the liquid crystal injection port is placed in a state where this is opposed to a soda glass substrate on which the ITO electrode is deposited in a predetermined shape. The remaining four sides were bonded using a sealing agent mixed with 0.8 mm glass beads, and liquid crystal MLC6608 (trade name) manufactured by Merck was injected, and then the liquid crystal injection port was sealed to produce a liquid crystal cell. did.

この液晶セルを60℃の恒温層に入れて、東陽テクニカ製の液晶電圧保持率測定システムVHR−1A型(商品名)により、印加電圧を5.5Vの方形波とし、測定周波数を60Hzとして液晶セルの電圧保持率を測定した。結果を表1に示す。なお、ここで電圧保持率とは、下記式で求められる値である。液晶セルの電圧保持率の値が低いほど、液晶パネル形成時に「焼き付き」と呼ばれる不具合を起こす可能性が高くなる。一方、電圧保持率の値が高くなるほど、「焼き付き」発生の可能性が低くなり、液晶パネルの信頼性が高くなると言える。
電圧保持率(%)=(基準時から16.7ミリ秒後の液晶セル電位差)/(0ミリ秒〔基準時〕で印加した電圧)×100
This liquid crystal cell is placed in a constant temperature layer of 60 ° C., and a liquid crystal voltage holding ratio measurement system VHR-1A (trade name) manufactured by Toyo Technica is used to form a square wave with an applied voltage of 5.5 V and a measurement frequency of 60 Hz. The voltage holding ratio of the cell was measured. The results are shown in Table 1. Here, the voltage holding ratio is a value obtained by the following formula. The lower the value of the voltage holding ratio of the liquid crystal cell, the higher the possibility of causing a problem called “burn-in” when forming the liquid crystal panel. On the other hand, it can be said that the higher the value of the voltage holding ratio, the lower the possibility of occurrence of “burn-in” and the higher the reliability of the liquid crystal panel.
Voltage holding ratio (%) = (liquid crystal cell potential difference after 16.7 milliseconds from the reference time) / (voltage applied at 0 milliseconds [reference time]) × 100

〔ポジ型感放射線性組成物の保存安定性の評価〕
粘度計(東京計器(株)製の「ELD型粘度計」)を用い、25℃におけるポジ型感放射線性組成物の粘度を測定した。その後、この組成物を25℃にて静置しつつ、25℃における粘度を24時間毎に測定した。調製直後のポジ型感放射線性組成物の粘度を基準に5%増粘するのに要した日数を求め、この日数を保存安定性の評価として表1に示した。この日数が15日以上のとき、ポジ型感放射線性組成物の保存安定性は良好であると言える。
[Evaluation of storage stability of positive radiation-sensitive composition]
Using a viscometer (“ELD viscometer” manufactured by Tokyo Keiki Co., Ltd.), the viscosity of the positive radiation sensitive composition at 25 ° C. was measured. Then, the viscosity at 25 ° C. was measured every 24 hours while the composition was allowed to stand at 25 ° C. The number of days required to increase the viscosity by 5% based on the viscosity of the positive-type radiation-sensitive composition immediately after preparation was determined, and this number of days was shown in Table 1 as an evaluation of storage stability. When this number of days is 15 days or more, it can be said that the storage stability of the positive radiation-sensitive composition is good.

なお、表1において、[B]キノンジアジド化合物、[C]溶剤、[D]他の溶剤、[E]他のシラン化合物、[F]感熱性酸発生剤又は感熱性塩基発生剤、[G]脱水剤及び[H]界面活性剤の略称は、それぞれ以下のものを表す。
B−1:4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(3.0モル)との縮合物
B−2:1,1,1−トリ(p−ヒドロキシフェニル)エタン(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(3.0モル)との縮合物
C−1:ジイソアミルエーテル(ジ(3−メチルブチル)エーテル)
C−2:ジ(n−アミル)エーテル(ジ(n−ペンチル)エーテル)
C−3:n−アミル−イソアミルエーテル(n−アミル−3−メチルブチルエーテル)
C−4:3−メチルブチル−4−メチルペンチルエーテル
C−5:ジ(4−メチルペンチル)エーテル
D−1:3−メトキシプロピオン酸メチル
D−2:プロピレングリコールモノメチルエーテルアセテート
D−3:ジアセトンアルコール
E−1:トリス−(3−トリメトキシシリルプロピル)イソシアヌレート
F−1:トリフェニルスルホニウムトリフルオロメタンスルホナート
G−1:オルト蟻酸メチル
H−1:シリコーン系界面活性剤((株)東レ・ダウコーニング製の「SH 8400 FLUID」)
c−1:ジ(n−ブチル)エーテル
c−2:ジ(n−プロピル)エーテル
c−3:ジ(n−ヘプチル)エーテル
In Table 1, [B] quinonediazide compound, [C] solvent, [D] other solvent, [E] other silane compound, [F] thermosensitive acid generator or thermosensitive base generator, [G] Abbreviations of dehydrating agent and [H] surfactant represent the following, respectively.
B-1: 4,4 ′-[1- [4- [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5 -Condensate with sulfonic acid chloride (3.0 mol) B-2: 1,1,1-tri (p-hydroxyphenyl) ethane (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid Condensate with chloride (3.0 mol) C-1: Diisoamyl ether (di (3-methylbutyl) ether)
C-2: Di (n-amyl) ether (di (n-pentyl) ether)
C-3: n-amyl-isoamyl ether (n-amyl-3-methylbutyl ether)
C-4: 3-methylbutyl-4-methylpentyl ether C-5: di (4-methylpentyl) ether D-1: methyl 3-methoxypropionate D-2: propylene glycol monomethyl ether acetate D-3: diacetone Alcohol E-1: Tris- (3-trimethoxysilylpropyl) isocyanurate F-1: Triphenylsulfonium trifluoromethanesulfonate G-1: Methyl orthoformate H-1: Silicone surfactant (Toray Industries, Inc.) "SH 8400 FLUID" manufactured by Dow Corning)
c-1: di (n-butyl) ether c-2: di (n-propyl) ether c-3: di (n-heptyl) ether

Figure 0005397152
Figure 0005397152

表1の結果から明らかなように、[A]、[B]及び[C]成分を含む実施例1〜23のポジ型感放射線性組成物は、[C]成分を含まない比較例1〜6のポジ型感放射線性組成物と比べて、塗布ムラの抑制効果及び塗布膜の厚さの均一性に優れており、それでいて高速塗布が可能であった。さらに、これらの実施例のポジ型感放射性樹脂組成物は、現像後の加熱工程におけるメルトフローに対する耐性が良好であり、放射線感度及び保存安定性がバランス良く優れていると共に、耐熱性、透明性、耐溶剤性、光線透過率及び低誘電性という一般的な要求特性の全てを満足する層間絶縁膜を形成可能であり、さらに高い電圧保持率を有する液晶セルが得られることが分かった。   As is apparent from the results in Table 1, the positive radiation sensitive compositions of Examples 1 to 23 containing the [A], [B] and [C] components were compared with Comparative Examples 1 to 1 containing no [C] component. Compared with No. 6 positive-type radiation-sensitive composition, it was excellent in the effect of suppressing coating unevenness and the uniformity of the thickness of the coating film, and was capable of high-speed coating. Furthermore, the positive radiation-sensitive resin compositions of these examples have good resistance to melt flow in the heating process after development, excellent balance between radiation sensitivity and storage stability, and heat resistance and transparency. It was found that an interlayer insulating film satisfying all the general required characteristics of solvent resistance, light transmittance and low dielectric property can be formed, and a liquid crystal cell having a higher voltage holding ratio can be obtained.

本発明のポジ型感放射線性組成物は、上述のように、塗布方法としてスリット塗布法を採用した場合であっても、優れた塗布性ないし膜厚均一性を示しかつ塗布膜の乾燥時間を短縮が可能であり、放射線感度及び保存安定性に加えて、加熱工程における耐メルトフロー性が優れ、かつ耐熱性、透明性等の一般的な要求特性を全て満足する層間絶縁膜を形成可能であり、また高い電圧保持率を有する液晶セルを得ることができる。従って、当該ポジ型感放射線性組成物は、液晶表示素子用の層間絶縁膜を形成するために好適に用いることができる。   As described above, the positive radiation-sensitive composition of the present invention exhibits excellent coating properties or film thickness uniformity even when the slit coating method is adopted as the coating method, and increases the drying time of the coating film. In addition to radiation sensitivity and storage stability, it is possible to form an interlayer insulation film that has excellent melt flow resistance in the heating process and satisfies all general required characteristics such as heat resistance and transparency. In addition, a liquid crystal cell having a high voltage holding ratio can be obtained. Therefore, the positive radiation sensitive composition can be suitably used for forming an interlayer insulating film for a liquid crystal display element.

Claims (7)

[A]シロキサンポリマー、
[B]キノンジアジド化合物、及び
[C]下記式(1)で表される溶剤
を含有するポジ型感放射線性樹脂組成物。
Figure 0005397152
(式(1)中、R及びRは、それぞれ独立して、炭素数が1から6の直鎖状若しくは分岐状のアルキル基である(ただし、R及びRのいずれか一方の炭素数が1〜4である場合は、他方の炭素数は5又は6である)。)
[A] siloxane polymer,
[B] A positive radiation sensitive resin composition containing a quinonediazide compound, and [C] a solvent represented by the following formula (1).
Figure 0005397152
(In formula (1), R 1 and R 2 are each independently a linear or branched alkyl group having 1 to 6 carbon atoms (provided that either one of R 1 and R 2 is When the carbon number is 1 to 4, the other carbon number is 5 or 6).)
上記式(1)において、R及びRは、直鎖状又は分岐状の炭素数が5又は6の同一のアルキル基である請求項1に記載のポジ型感放射線性樹脂組成物。 2. The positive radiation-sensitive resin composition according to claim 1, wherein in the formula (1), R 1 and R 2 are linear or branched alkyl groups having 5 or 6 carbon atoms. [C]成分の溶剤の含有量が、ポジ型感放射線性樹脂組成物の全溶剤量に対して、5質量%以上40質量%以下である請求項1又は請求項2に記載のポジ型感放射線性樹脂組成物。   The positive type sensation according to claim 1 or 2, wherein the content of the solvent of the component [C] is 5% by mass or more and 40% by mass or less with respect to the total amount of the solvent of the positive type radiation sensitive resin composition. Radiation resin composition. [C]成分の溶剤以外の[D]溶剤を含み、その[D]溶剤は、アルコール系溶剤、グリコールエーテル系溶剤、エチレングリコールアルキルエーテルアセテート系溶剤、ジエチレングリコールモノアルキルエーテル系溶剤、ジエチレングリコールジアルキルエーテル系溶剤、ジプロピレングリコールジアルキルエーテル系溶剤、プロピレングリコールモノアルキルエーテル系溶剤、プロピレングリコールアルキルエーテルアセテート系溶剤、プロピレングリコールアルキルエーテルプロピオネート系溶剤、ケトン系溶剤、ラクトン系溶剤、及びエステル系溶剤よりなる群より選ばれる少なくとも1種の溶剤である請求項1、請求項2又は請求項3に記載のポジ型感放射線性樹脂組成物。   [D] Solvent other than the solvent of [C] component is included, and the [D] solvent is alcohol solvent, glycol ether solvent, ethylene glycol alkyl ether acetate solvent, diethylene glycol monoalkyl ether solvent, diethylene glycol dialkyl ether solvent. Solvent, dipropylene glycol dialkyl ether solvent, propylene glycol monoalkyl ether solvent, propylene glycol alkyl ether acetate solvent, propylene glycol alkyl ether propionate solvent, ketone solvent, lactone solvent, and ester solvent The positive-type radiation-sensitive resin composition according to claim 1, wherein the positive-type radiation-sensitive resin composition is at least one solvent selected from the group. 液晶表示素子の層間絶縁膜を形成するために用いられる請求項1から請求項4のいずれか1項に記載のポジ型感放射線性樹脂組成物。   The positive radiation-sensitive resin composition according to any one of claims 1 to 4, which is used for forming an interlayer insulating film of a liquid crystal display element. 請求項5に記載のポジ型感放射線性樹脂組成物から形成された液晶表示素子の層間絶縁膜。   The interlayer insulation film of the liquid crystal display element formed from the positive radiation sensitive resin composition of Claim 5. (1)請求項5に記載のポジ型感放射線性組成物の塗膜を基板上に形成する工程、
(2)工程(1)で形成した塗膜の少なくとも一部に放射線を照射する工程、
(3)工程(2)で放射線を照射された塗膜を現像する工程、及び
(4)工程(3)で現像された塗膜を加熱する工程
を含む液晶表示素子用層間絶縁膜の形成方法。
(1) The process of forming the coating film of the positive radiation sensitive composition of Claim 5 on a board | substrate,
(2) A step of irradiating at least a part of the coating film formed in step (1),
(3) A method of forming an interlayer insulating film for a liquid crystal display device, comprising: a step of developing the coating film irradiated with radiation in step (2); and (4) a step of heating the coating film developed in step (3). .
JP2009243920A 2009-10-22 2009-10-22 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same Active JP5397152B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009243920A JP5397152B2 (en) 2009-10-22 2009-10-22 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
KR1020100101781A KR20110044147A (en) 2009-10-22 2010-10-19 Positive radiation-sensitive resin composition, and interlayer insulating film and method for forming the same
CN2010105225569A CN102043339A (en) 2009-10-22 2010-10-20 Positive radiation-sensitive resin composition, and interlayer insulating film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009243920A JP5397152B2 (en) 2009-10-22 2009-10-22 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same

Publications (2)

Publication Number Publication Date
JP2011090164A JP2011090164A (en) 2011-05-06
JP5397152B2 true JP5397152B2 (en) 2014-01-22

Family

ID=43909597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009243920A Active JP5397152B2 (en) 2009-10-22 2009-10-22 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same

Country Status (3)

Country Link
JP (1) JP5397152B2 (en)
KR (1) KR20110044147A (en)
CN (1) CN102043339A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133392A1 (en) * 2012-03-09 2013-09-12 旭硝子株式会社 Positive photosensitive resin composition, partition wall and optical element
JP2014071373A (en) * 2012-09-28 2014-04-21 Asahi Kasei E-Materials Corp Photosensitive resin composition
JP2018028630A (en) * 2016-08-19 2018-02-22 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Black matrix composition and method of manufacturing black matrix using the same
WO2019151153A1 (en) * 2018-02-05 2019-08-08 Jsr株式会社 Film-forming composition for semiconductor lithography process, silicon-containing film, and method for forming resist pattern
JP6639724B1 (en) * 2019-03-15 2020-02-05 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Positive photosensitive polysiloxane composition
JP7484710B2 (en) 2019-03-26 2024-05-16 東レ株式会社 Positive-type photosensitive resin composition, cured film thereof, and optical device having the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586703B2 (en) * 2004-10-14 2010-11-24 住友化学株式会社 Radiation sensitive resin composition
EP1662322B1 (en) * 2004-11-26 2017-01-11 Toray Industries, Inc. Positive type photo-sensitive siloxane composition, curing film formed by the composition and device with the curing film
JP4771083B2 (en) * 2005-11-29 2011-09-14 信越化学工業株式会社 Resist protective film material and pattern forming method
US8158981B2 (en) * 2006-09-25 2012-04-17 Hitachi Chemical Company, Ltd. Radiation-sensitive composition, method of forming silica-based coating film, silica-based coating film, apparatus and member having silica-based coating film and photosensitizing agent for insulating film
JP2008102429A (en) * 2006-10-20 2008-05-01 Tokyo Ohka Kogyo Co Ltd Resist pattern forming method and negative resist composition
JP5240459B2 (en) * 2008-02-19 2013-07-17 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
JP5182365B2 (en) * 2008-03-31 2013-04-17 Jsr株式会社 Positive radiation-sensitive resin composition, microlens and method for forming microlens

Also Published As

Publication number Publication date
CN102043339A (en) 2011-05-04
JP2011090164A (en) 2011-05-06
KR20110044147A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5533232B2 (en) Positive radiation sensitive composition, cured film, interlayer insulating film, method for forming interlayer insulating film, display element, and siloxane polymer for forming interlayer insulating film
US7374856B2 (en) Positive type photo-sensitive siloxane composition, cured film formed from the composition and device incorporating the cured film
JP5504823B2 (en) Radiation-sensitive composition, protective film, interlayer insulating film, and method for forming them
TWI432895B (en) Photo-sensitive polysiloxane composition and protecting film formed therefrom
JP5549124B2 (en) Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP5413124B2 (en) Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP5917150B2 (en) Positive radiation-sensitive composition, cured film and method for forming the same
JP6318634B2 (en) Photosensitive siloxane composition, cured film and device
JP5397152B2 (en) Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP2011123450A (en) Positive radiation-sensitive composition, interlayer insulating film, and forming method of the same
JP5540689B2 (en) Radiation-sensitive composition, cured film and method for forming the same
JP5867006B2 (en) Positive radiation sensitive composition, cured film for display element, method for forming cured film for display element, and display element
KR20200060466A (en) Positive photosensitive siloxane composition and cured film using same
JP5659561B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP5740832B2 (en) Radiation-sensitive composition, protective film, interlayer insulating film, and method for forming them
JP5803635B2 (en) Positive radiation-sensitive composition, cured film, and method for forming cured film
JP5581684B2 (en) Radiation-sensitive composition and cured film
JP2012155226A (en) Positive type radiation-sensitive composition, cured film, method for forming cured film, display element, and polysiloxane for forming cured film
JP2012168289A (en) Positive radiation-sensitive resin composition, interlayer insulating film for display element, and formation method thereof
JP2014149330A (en) Photosensitive siloxane composition, cured film and element
JP6186766B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
JP5659714B2 (en) Positive radiation-sensitive composition, interlayer insulating film and method for forming the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Ref document number: 5397152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250