JP5385774B2 - Thermal shock resistant silicon nitride sintered body and method for producing the same - Google Patents
Thermal shock resistant silicon nitride sintered body and method for producing the same Download PDFInfo
- Publication number
- JP5385774B2 JP5385774B2 JP2009293194A JP2009293194A JP5385774B2 JP 5385774 B2 JP5385774 B2 JP 5385774B2 JP 2009293194 A JP2009293194 A JP 2009293194A JP 2009293194 A JP2009293194 A JP 2009293194A JP 5385774 B2 JP5385774 B2 JP 5385774B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- major axis
- axis diameter
- thermal shock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Ceramic Products (AREA)
Description
本発明は、耐熱衝撃性に優れた窒化珪素焼結体に関する。例えば、金属溶湯に接触する溶湯部材として用いられる。 The present invention relates to a silicon nitride sintered body excellent in thermal shock resistance. For example, it is used as a molten metal member that contacts a molten metal.
窒化珪素は、耐熱性に優れ、金属とは濡れ難いことから、金属溶湯を流し込む溶湯部材に適している。 Since silicon nitride is excellent in heat resistance and hardly wets with metal, it is suitable for a molten metal member into which a molten metal is poured.
溶湯部材には、一瞬で500℃以上の金属溶湯が注ぎ込まれ、場合によっては、溶湯を冷却させるために、部材そのものを急冷させる必要が生じる。そのため、溶湯部材には、耐熱衝撃性が要求される。耐熱衝撃性に関わるパラメータには熱伝導率、熱膨張率や強度などがあり、一般的に、低熱膨張率、低ヤング率、高強度、高熱伝導率なものほど、耐熱衝撃性に優れている。窒化珪素については、特に熱伝導率及び強度に主眼を置いた研究が多くなされている。 A molten metal having a temperature of 500 ° C. or higher is poured into the molten metal member instantly. In some cases, it is necessary to rapidly cool the member itself in order to cool the molten metal. For this reason, the molten metal member is required to have thermal shock resistance. Parameters related to thermal shock resistance include thermal conductivity, thermal expansion coefficient, and strength. Generally, the lower thermal expansion coefficient, lower Young's modulus, higher strength, and higher thermal conductivity, the better the thermal shock resistance. . With regard to silicon nitride, many studies have been conducted with a particular focus on thermal conductivity and strength.
例えば、窒化珪素の熱伝導率を向上させるために、従来多く用いられていたAl−RE(希土類元素)−O系ではなく、Mg−Y−O系の焼結助剤を用いることが提案されている(特許文献1および2参照)。 For example, in order to improve the thermal conductivity of silicon nitride, it has been proposed to use an Mg—Y—O-based sintering aid instead of the conventionally used Al—RE (rare earth element) —O system. (See Patent Documents 1 and 2).
特許文献1では、窒化珪素結晶粒子中へのAl原子の固溶、およびサイアロン相の形成によって窒化珪素結晶自体の熱伝導率が低下することから、焼結助剤にMg−Y−O系を用いた例が示されている。具体的には、窒化珪素を主成分とし、希土類元素およびMgを酸化物換算による合量で4〜30モル%、希土類金属とMgを酸化物換算のモル比(RE2O3/MgO)が0.1〜15となる比率で含有するとともに、Alの酸化物換算量が1モル%以下の相対密度が48〜56%の成形体を、1500〜1800℃の非酸化性雰囲気中で焼成して、相対密度90%以上に緻密化して、焼結体の切断面における窒化珪素結晶の平均長軸径が0.5〜3μmの熱伝導率50W/m・K、強度600MPa以上の窒化珪素質放熱部材を得ることが記載されている。 In Patent Document 1, since the thermal conductivity of the silicon nitride crystal itself decreases due to the solid solution of Al atoms in the silicon nitride crystal particles and the formation of the sialon phase, the Mg—YO system is used as a sintering aid. An example used is shown. Specifically, silicon nitride is the main component, and the rare earth element and Mg are combined in an oxide equivalent amount of 4 to 30 mol%, and the rare earth metal and Mg equivalent oxide equivalent molar ratio (RE 2 O 3 / MgO) is A molded body containing 0.1 to 15 and a relative density of 48 to 56% with an Al oxide equivalent of 1 mol% or less is fired in a non-oxidizing atmosphere at 1500 to 1800 ° C. The silicon nitride material having a thermal conductivity of 50 W / m · K and an intensity of 600 MPa or more with an average major axis diameter of the silicon nitride crystal of 0.5 to 3 μm at the cut surface of the sintered body. It is described that a heat dissipating member is obtained.
また、特許文献2も特許文献1と同様に、Mg−Y−O系の焼結助剤を用いた例が示されている。具体的には、窒化ケイ素質粉末1〜50重量部と、平均粒子径が0.2〜4μmのα型窒化珪素粉末99〜50重量部と、Mgと、La,Y及びYbを含む希土類元素から選択された少なくとも1種の希土類元素でなる焼結助剤とからなる焼結体であって、前記Mgを酸化マグネシウム換算し、La,Y及びYbを含む希土類元素から選択された少なくとも1種の元素を酸化物(REXOY)換算し、これら酸化物換算含有量の合計が0.6〜7wt%、且つ(MgO/REXOY)の重量比が1〜70である窒化ケイ素質焼結体が記載されている。 Patent Document 2 also shows an example in which an Mg—Y—O-based sintering aid is used, as in Patent Document 1. Specifically, 1 to 50 parts by weight of silicon nitride powder, 99 to 50 parts by weight of α-type silicon nitride powder having an average particle size of 0.2 to 4 μm, a rare earth element including Mg, La, Y, and Yb And a sintering aid comprising at least one kind of rare earth element selected from the above, wherein the Mg is converted into magnesium oxide and at least one kind selected from rare earth elements including La, Y and Yb. Silicon nitride in which the elements of the above are converted into oxides (RE X O Y ), the total content of these oxides is 0.6 to 7 wt%, and the weight ratio of (MgO / RE X O Y ) is 1 to 70 An elementary sintered body is described.
しかしながら、これらの文献に記載された発明では、熱伝導率および曲げ強度は高いものの、耐熱衝撃性としては十分なものとは言えず、より耐熱衝撃性の高い部材が求められていた。また、Mg−Y−O系の焼結助剤では、焼結体に色ムラが生じる場合があり、改善が望まれていた。 However, in the inventions described in these documents, although thermal conductivity and bending strength are high, it cannot be said that the thermal shock resistance is sufficient, and a member having higher thermal shock resistance has been demanded. Further, with the Mg—Y—O-based sintering aid, color unevenness may occur in the sintered body, and improvement has been desired.
本発明は、これらの問題に鑑みてなされたものであり、色ムラがなく、耐熱衝撃性に優れた窒化珪素焼結体を提供するものである。 The present invention has been made in view of these problems, and provides a silicon nitride sintered body having no color unevenness and excellent thermal shock resistance.
本発明は、ネオジムと鉄を含み、Fe2O3/Nd2O3で表される質量比が0.17〜10であり、鉄を酸化第二鉄換算で0.1〜0.5質量%、ネオジムを酸化物換算で0.05〜0.59質量%含み、マグネシウム、イットリウム及びネオジムを酸化物換算で合計0.1〜10質量%含み、MgO/(Y 2 O 3 +Nd 2 O 3 )で表される質量比が0.5〜10であり、焼結体断面観察による平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合が20%以下、1.5倍以上の長軸径を有する粒子の面積割合が25%以上、これらの合計が30〜70%であることを特徴とする耐熱衝撃性窒化珪素焼結体である。本発明は、窒化珪素焼結体において、ネオジムと鉄を所定量含ませることで、耐熱衝撃性が向上することを見出したものである。上記の範囲とすることで、酸化ネオジムの液相化温度が低下し窒化珪素の粒成長が促進され、緻密化と耐熱衝撃性が向上する。また、ネオジムと鉄を含ませることで、窒化珪素焼結体の色ムラを低減することができる。 The present invention includes a neodymium iron, the mass ratio represented by Fe 2 O 3 / Nd 2 O 3 is from 0.17 to 10, 0.1 to 0.5 mass ferric converted oxidize iron %, Neodymium 0.05 to 0.59% by mass in terms of oxide, magnesium, yttrium, and neodymium 0.1 to 10% by mass in terms of oxide, MgO / (Y 2 O 3 + Nd 2 O 3 ) And the area ratio of particles having a major axis diameter of 0.5 times or less of the average major axis diameter by cross-sectional observation of the sintered body is 20% or less, 1 A thermal shock-resistant silicon nitride sintered body characterized in that the area ratio of particles having a major axis diameter of 5 times or more is 25% or more, and the total of these is 30 to 70% . The present invention has been found that the thermal shock resistance is improved by including a predetermined amount of neodymium and iron in a silicon nitride sintered body. By setting it as said range, the liquidus temperature of neodymium oxide falls, the grain growth of silicon nitride is accelerated | stimulated, and densification and a thermal shock resistance improve. Moreover, the color nonuniformity of a silicon nitride sintered compact can be reduced by including neodymium and iron.
鉄を酸化第二鉄換算で0.1〜0.5質量%、ネオジムを酸化物換算で0.05〜0.59質量%含ませることが好ましい。上記質量比とし、かつこのような含有量とすることで耐熱衝撃性が向上する。 It is preferable to contain iron in an amount of 0.1 to 0.5% by mass in terms of ferric oxide and neodymium in an amount of 0.05 to 0.59% in terms of oxide. Thermal shock resistance improves by setting it as the said mass ratio and setting it as such content.
さらに、本発明では、マグネシウム及びイットリウムが含まれていても良い。例えば、マグネシウム、イットリウム及びネオジムを酸化物換算で合計0.1〜10質量%含み、MgO/(Y2O3+Nd2O3)で表される質量比が0.5〜10である窒化珪素焼結体とすることができる。マグネシウムやイットリウムを含ませることで、より一層耐熱衝撃性が向上する。 Furthermore, in the present invention, magnesium and yttrium may be included. For example, silicon nitride containing magnesium, yttrium, and neodymium in a total amount of 0.1 to 10% by mass in terms of oxides and having a mass ratio represented by MgO / (Y 2 O 3 + Nd 2 O 3 ) of 0.5 to 10 It can be a sintered body. By including magnesium or yttrium, the thermal shock resistance is further improved.
本発明の窒化珪素焼結体は、焼結体断面観察による平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合が20%以下、1.5倍以上の長軸径を有する粒子の面積割合が25%以上、これらの合計が30〜70%であることを特徴とする。このような組織を形成することにより耐熱衝撃性は飛躍的に向上する。これは、熱伝導率の向上に加え、上記のような複合組織により粗大粒子によるクラックの偏向(クラックディフレクション)による破壊エネルギー散逸効果が最大限に発揮されるため、焼結体が高靭化し、優れた耐熱衝撃性が得られる。 In the silicon nitride sintered body of the present invention, the area ratio of particles having a major axis diameter of 0.5 times or less of the average major axis diameter by cross-sectional observation of the sintered body is 20% or less and 1.5 times or more long. The area ratio of particles having an axial diameter is 25% or more, and the total of these is 30 to 70%. By forming such a structure, the thermal shock resistance is dramatically improved. In addition to improving the thermal conductivity, the composite structure as described above maximizes the effect of dissipating fracture energy due to crack deflection (crack deflection) caused by coarse particles. Excellent thermal shock resistance can be obtained.
原料粉末の成形体を脱脂して得られた脱脂体を、少なくとも内面が窒化物で構成された容器内に設置し、1200℃以上における不活性ガス雰囲気圧を0.5〜2.0MPaとして焼結したものであることが好ましい。炭素が付着するのを防ぎ、色ムラの発生を抑えるためである。また、不活性ガス雰囲気とし、その圧力を制御するのは、窒化珪素の分解を防ぎ、緻密化を促進し、酸化マグネシウム等の液相形成成分の揮発を防ぐためである。このような焼結条件の調整により、耐熱衝撃性に優れた窒化珪素焼結体を得ることができる。さらに、不活性ガス雰囲気圧の制御は、室温以上で行うことがより好ましい。 The degreased body obtained by degreasing the compact of the raw material powder is placed in a container having at least an inner surface made of nitride, and fired at an inert gas atmosphere pressure of 1200 ° C. or higher at 0.5 to 2.0 MPa. It is preferable that it is what was tied. This is to prevent carbon from adhering and suppress the occurrence of color unevenness. Moreover, the inert gas atmosphere is used and the pressure is controlled in order to prevent decomposition of silicon nitride, promote densification, and prevent volatilization of liquid phase forming components such as magnesium oxide. By adjusting the sintering conditions, a silicon nitride sintered body excellent in thermal shock resistance can be obtained. Furthermore, it is more preferable to control the inert gas atmosphere pressure at room temperature or higher.
色ムラがなく、耐熱衝撃性に優れた窒化珪素焼結体を提供する。 A silicon nitride sintered body having no color unevenness and excellent thermal shock resistance is provided.
以下、本発明の窒化珪素焼結体について、より詳細に説明する。 Hereinafter, the silicon nitride sintered body of the present invention will be described in more detail.
本発明の窒化珪素焼結体は、ネオジムと鉄を含む。本発明は、窒化珪素焼結体において、ネオジムと鉄を所定量含ませることで、耐熱衝撃性が向上することを見出したものである。また、ネオジムと鉄を含ませることで、窒化珪素焼結体の色ムラが低減される。色ムラは輻射に影響することから、部材の均熱を図るために色調は均一であることが好ましい。色ムラが低減されるのは、これらを両方添加することで発色を打ち消し合っているためと推察される。 The silicon nitride sintered body of the present invention contains neodymium and iron. The present invention has been found that the thermal shock resistance is improved by including a predetermined amount of neodymium and iron in a silicon nitride sintered body. Further, by including neodymium and iron, color unevenness of the silicon nitride sintered body is reduced. Since color unevenness affects radiation, it is preferable that the color tone is uniform in order to equalize the temperature of the member. The reason why the color unevenness is reduced is presumably because the color development is canceled by adding both of them.
ネオジムと鉄の含有量は、Fe2O3/Nd2O3で表される質量比が0.17〜10となるようにすることが好ましい。上記の範囲とすることで、酸化ネオジムの液相化温度が低下し窒化珪素の粒成長が促進され、緻密化と耐熱衝撃性が向上する。また、このような範囲であれば、色ムラを抑えることができる。 The content of neodymium and iron is preferably such that the mass ratio represented by Fe 2 O 3 / Nd 2 O 3 is 0.17-10. By setting it as said range, the liquidus temperature of neodymium oxide falls, the grain growth of silicon nitride is accelerated | stimulated, and densification and a thermal shock resistance improve. Moreover, if it is such a range, a color nonuniformity can be suppressed.
また鉄を酸化第二鉄換算で0.1〜0.5質量%、ネオジムを酸化物換算で0.05〜0.59質量%含ませることが好ましい。上記質量比とし、かつこのような含有量とすることで耐熱衝撃性が向上するまた、また、色ムラを抑えることができる。 Moreover, it is preferable to contain 0.1-0.5 mass% of iron in conversion of ferric oxide, and 0.05-0.59 mass% of neodymium in conversion of oxide. By setting the above mass ratio and such a content, the thermal shock resistance is improved, and color unevenness can be suppressed.
さらに、本発明では、マグネシウム及びイットリウムが含まれていても良い。例えば、マグネシウム、イットリウム及びネオジムを酸化物換算で合計0.1〜10質量%含み、MgO/(Y2O3+Nd2O3)で表される質量比が0.5〜10である窒化珪素焼結体とすることができる。マグネシウムやイットリウムを含ませることで、より一層耐熱衝撃性が向上する。 Furthermore, in the present invention, magnesium and yttrium may be included. For example, silicon nitride containing magnesium, yttrium, and neodymium in a total amount of 0.1 to 10% by mass in terms of oxides and having a mass ratio represented by MgO / (Y 2 O 3 + Nd 2 O 3 ) of 0.5 to 10 It can be a sintered body. By including magnesium or yttrium, the thermal shock resistance is further improved.
マグネシウムやイットリウムを酸化物等の形態で添加すると、窒化珪素原料粉末の表面に存在するシリカと反応し液相を形成し、窒化珪素粒子の粒成長を促進する。上記範囲で含有させることにより容易に緻密化することができる。 When magnesium or yttrium is added in the form of an oxide or the like, it reacts with silica present on the surface of the silicon nitride raw material powder to form a liquid phase and promote the growth of silicon nitride particles. By containing in the above range, it can be easily densified.
本発明の窒化珪素焼結体は、焼結体断面観察による平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合が20%以下、1.5倍以上の長軸径を有する粒子の面積割合が25%以上、これらの合計が30〜70%であることを特徴とする。このような組織を形成することにより耐熱衝撃性は飛躍的に向上する。これは、熱伝導率の向上に加え、上記のような複合組織によりクラックが進展し難くなるためである。 In the silicon nitride sintered body of the present invention, the area ratio of particles having a major axis diameter of 0.5 times or less of the average major axis diameter by cross-sectional observation of the sintered body is 20% or less and 1.5 times or more long. The area ratio of particles having an axial diameter is 25% or more, and the total of these is 30 to 70%. By forming such a structure, the thermal shock resistance is dramatically improved. This is because, in addition to the improvement of thermal conductivity, cracks are difficult to progress due to the composite structure as described above.
また、本発明の窒化珪素焼結体は、焼結体表面と内部の平均長軸径の差が10%以下である。上記のように、平均長軸径を調整するとともに、焼結体の表面と内部との組織を均一化することで耐熱衝撃性を高めることができる。なお、平均長軸径は、2〜5μmとすることが好ましい。このような範囲であれば窒化珪素焼結体の緻密化が可能である。なお、焼結体表面は、焼結後研削加工が施されていない焼き放しの表面をいう。本発明の窒化珪素焼結体は、耐熱衝撃性に優れており、例えば、金属溶湯に接する溶湯部材として用いることができる。このような部材では、溶湯の流路など加工が困難なものや、複雑形状のため焼結後の加工でコスト高となるものが多い。生加工で形状を付与することによって焼結後の加工をなくし、焼き放し表面を有する部材が用いられる。したがって、本発明の窒化珪素焼結体は、焼き放し表面を有し、かつ耐熱衝撃性が求められる部材に好適である。 In the silicon nitride sintered body of the present invention, the difference between the average major axis diameter of the sintered body surface and the inside is 10% or less. As described above, the thermal shock resistance can be improved by adjusting the average major axis diameter and making the structure of the surface and the inside of the sintered body uniform. In addition, it is preferable that an average major axis diameter shall be 2-5 micrometers. Within such a range, the silicon nitride sintered body can be densified. Note that the surface of the sintered body refers to a surface that is not burned after sintering. The silicon nitride sintered body of the present invention is excellent in thermal shock resistance and can be used, for example, as a molten metal member in contact with a molten metal. Many of such members are difficult to process such as a flow path of a molten metal, and have a complicated shape, which increases the cost of processing after sintering. By imparting the shape by raw processing, processing after sintering is eliminated, and a member having a surface to be used is used. Therefore, the silicon nitride sintered body of the present invention is suitable for a member having a surface to be burned and requiring thermal shock resistance.
また、本発明は、焼き放しの焼結体表面と、焼結体内部に含まれるマグネシウムの含有率の差が1%以下とすることが好ましい。焼結体の表面と内部とのマグネシウム含有率の差を小さくすることは、上記のような焼結体の結晶構造を得るうえで好ましい。 In the present invention, the difference in the content of magnesium contained in the surface of the sintered body and the content of magnesium contained in the sintered body is preferably 1% or less. In order to obtain the crystal structure of the sintered body, it is preferable to reduce the difference in magnesium content between the surface and the inside of the sintered body.
次に本発明の窒化珪素焼結体の製造方法について説明する。 Next, the manufacturing method of the silicon nitride sintered compact of this invention is demonstrated.
原料である窒化珪素粉末の平均粒径は1μm以下が好ましい。また、β分率が10%以下の窒化珪素原料粉末を用いることが好ましい。さらに、純度は、粒界相の生成等に影響するため、高純度であることが好ましく、具体的には、98.0%以上であることが望ましい。このような原料粉末を用いることで極めて耐熱衝撃性の良好な窒化珪素焼結体を得ることが容易になる。なお、本発明では、レーザー回折式粒度分布測定によるメジアン径(D50)をもって原料粉末の平均粒径とする。 The average particle diameter of the raw material silicon nitride powder is preferably 1 μm or less. Moreover, it is preferable to use a silicon nitride raw material powder having a β fraction of 10% or less. Furthermore, since the purity affects the generation of the grain boundary phase and the like, it is preferable that the purity is high, and specifically, it is preferably 98.0% or more. By using such raw material powder, it becomes easy to obtain a silicon nitride sintered body having extremely good thermal shock resistance. In the present invention, the median diameter (D50) obtained by laser diffraction particle size distribution measurement is used as the average particle diameter of the raw material powder.
窒化珪素の原料粉末には、ある程度の酸素が含まれていることが好ましい。これは複合酸化物及び酸化物からなる液相を形成するためである。酸素量としては、1〜3質量%が好ましい。このような範囲とすることは原料粉末の表面に存在するシリカと酸化鉄、酸化ネオジム、酸化マグネシウム、酸化イットリウム等が液相を形成し、粒成長を制御して耐熱衝撃性を向上させるうえで好ましい。 The raw material powder of silicon nitride preferably contains a certain amount of oxygen. This is to form a liquid phase composed of a complex oxide and an oxide. As oxygen amount, 1-3 mass% is preferable. In this range, silica and iron oxide, neodymium oxide, magnesium oxide, yttrium oxide, etc. present on the surface of the raw material powder form a liquid phase to control grain growth and improve thermal shock resistance. preferable.
ネオジムの添加は、酸化ネオジム、水酸化ネオジム、硝酸ネオジム等のネオジム化合物の原料粉末を用いることができる。鉄は酸化第二鉄の他、酸化第一鉄、水酸化鉄、硝酸塩等の種々の粉末を適用することができる。これらの純度は高純度であることが好ましく、純度97%以上、より好ましくは99%以上の原料粉末を用いることが望ましい。また、平均粒径は、1μm以下の粉末を用いることが好ましい。 For the addition of neodymium, a raw material powder of a neodymium compound such as neodymium oxide, neodymium hydroxide, or neodymium nitrate can be used. As the iron, various powders such as ferrous oxide, iron hydroxide, and nitrate can be applied in addition to ferric oxide. The purity is preferably high purity, and it is desirable to use raw material powder having a purity of 97% or more, more preferably 99% or more. Moreover, it is preferable to use a powder having an average particle diameter of 1 μm or less.
マグネシウムの添加は、酸化マグネシウムの他、水酸化マグネシウム、硝酸マグネシウム等種々のマグネシウム化合物の粉末を用いることができる。純度は、粒界相の生成等に影響するため、高純度であることが好ましく、純度97%以上、より好ましくは99%以上の原料粉末を用いることが望ましい。また、平均粒径は、1μm以下の粉末を用いることが好ましい。 For the addition of magnesium, powders of various magnesium compounds such as magnesium hydroxide and magnesium nitrate can be used in addition to magnesium oxide. Since the purity affects the generation of the grain boundary phase and the like, it is preferable that the purity is high, and it is desirable to use a raw material powder having a purity of 97% or more, more preferably 99% or more. Moreover, it is preferable to use a powder having an average particle diameter of 1 μm or less.
イットリウムを添加する場合も同様に、酸化イットリウム、水酸化イットリウム、硝酸イットリウム等のイットリウム化合物の原料粉末を用いることができる。 Similarly, when adding yttrium, raw material powders of yttrium compounds such as yttrium oxide, yttrium hydroxide, and yttrium nitrate can be used.
原料粉末の混合は、乾式、湿式問わず種々の方法により行うことができる。 The raw material powder can be mixed by various methods regardless of whether it is dry or wet.
原料粉末は、プレス成形、CIP成形、鋳込み成形等の成形方法により成形される。プレス成形やCIP成形等の乾式成形を用いる場合には、原料粉末にバインダを加えて噴霧乾燥法等により顆粒とすることが好ましい。 The raw material powder is molded by a molding method such as press molding, CIP molding, or casting. When dry molding such as press molding or CIP molding is used, it is preferable to add a binder to the raw material powder to form granules by a spray drying method or the like.
上記成形方法により得られた成形体について、バインダや分散剤等の有機物を除去するための脱脂を行う。脱脂は、500〜600℃で行うことが好ましい。 About the molded object obtained by the said shaping | molding method, degreasing for removing organic substances, such as a binder and a dispersing agent, is performed. Degreasing is preferably performed at 500 to 600 ° C.
焼結は、常圧焼結、加圧雰囲気焼結、ホットプレス焼結等の焼結方法により作製できる。焼成温度はα型からβ型の転移が生じる温度以上が好ましく、1700〜1900℃が好ましい。1900℃より高温では、窒化珪素の分解が生じ、1700℃より低温では、十分に緻密化しない場合がある。 Sintering can be produced by a sintering method such as normal pressure sintering, pressurized atmosphere sintering, hot press sintering and the like. The firing temperature is preferably equal to or higher than the temperature at which the transition from α type to β type occurs, and is preferably 1700 to 1900 ° C. When the temperature is higher than 1900 ° C., silicon nitride is decomposed, and when the temperature is lower than 1700 ° C., it may not be sufficiently densified.
焼成雰囲気は、アルゴン、窒素等の不活性ガス雰囲気が好ましく、窒素を用いることがより好ましい。その場合の圧力は、0.5〜2.0MPaで行うことが好ましい。これは、窒化珪素の分解を防ぎ、緻密化を促進するためである。また、酸化マグネシウム等の液相形成成分の揮発を防ぐためである。特に酸化マグネシウムは揮発し易く、焼成初期から雰囲気圧を指定の圧力範囲にしないと緻密化不足や色ムラが生じ易くなる。上記雰囲気で制御する温度域は酸化マグネシウムの揮発が生じやすい1200℃以上が好ましく、600℃以上がより好ましく、室温(25℃)以上が最も好ましい。 The firing atmosphere is preferably an inert gas atmosphere such as argon or nitrogen, more preferably nitrogen. In this case, the pressure is preferably 0.5 to 2.0 MPa. This is for preventing decomposition of silicon nitride and promoting densification. Moreover, it is for preventing volatilization of liquid phase formation components, such as magnesium oxide. In particular, magnesium oxide is easily volatilized, and insufficient densification and color unevenness are likely to occur unless the atmospheric pressure is within a specified pressure range from the beginning of firing. The temperature range controlled in the above atmosphere is preferably 1200 ° C. or higher, where magnesium oxide is likely to volatilize, more preferably 600 ° C. or higher, and most preferably room temperature (25 ° C.) or higher.
また、焼結は、少なくとも内面が窒化物で構成された容器内に脱脂体を入れて行うことが好ましい。これは、炉壁や発熱体等の炭素が脱脂体に付着するのを防ぐためである。炭素が付着すると、色ムラが生じ易くなるため好ましくない。上記容器としては、窒化珪素、窒化ホウ素等の窒化物焼結体からなるものや、カーボンの容器の内面に窒化珪素やBN等を塗布したものを用いることができる。さらに、容器内には、その容積に対し0.01g/cm3以上の雰囲気形成粉末を脱脂体とともに入れて焼結を行っても良い。雰囲気形成粉末は、脱脂体と同成分の粉末や、揮発し易い酸化マグネシウムやその他の添加物からなる粉末、またはそれらの混合粉末としても良い。このような雰囲気形成粉末を用いることは焼結体の組織を均一化するうえで好ましい。 Sintering is preferably performed by putting a degreased body in a container having at least an inner surface made of nitride. This is to prevent carbon such as a furnace wall and a heating element from adhering to the degreased body. If carbon adheres, color unevenness tends to occur, which is not preferable. As said container, what consists of nitride sintered compacts, such as silicon nitride and boron nitride, and what apply | coated silicon nitride, BN, etc. to the inner surface of the container of carbon can be used. Furthermore, in the container, 0.01 g / cm 3 or more of the atmosphere forming powder with respect to its volume may be put together with the degreased body and sintered. The atmosphere forming powder may be a powder of the same component as the defatted body, a powder composed of magnesium oxide and other additives that are easily volatilized, or a mixed powder thereof. Use of such an atmosphere-forming powder is preferable for making the structure of the sintered body uniform.
本発明の窒化珪素焼結体は、窒化珪素を主成分とする。その窒化珪素はβ型窒化珪素であることが望ましい。α型窒化珪素は熱伝導率が低いため好ましくない。したがって、本発明の窒化珪素焼結体は、β型窒化珪素粒子と、酸化マグネシウムやその他の添加物等からなる粒界相から構成される。 The silicon nitride sintered body of the present invention contains silicon nitride as a main component. The silicon nitride is preferably β-type silicon nitride. α-type silicon nitride is not preferable because of its low thermal conductivity. Therefore, the silicon nitride sintered body of the present invention is composed of β-type silicon nitride particles and a grain boundary phase composed of magnesium oxide or other additives.
次に、本発明の窒化珪素焼結体の製造方法について説明する。 Next, the manufacturing method of the silicon nitride sintered compact of this invention is demonstrated.
以下、実施例を用いて本発明の窒化珪素焼結体の製造方法について説明する。 Hereinafter, the manufacturing method of the silicon nitride sintered compact of this invention is demonstrated using an Example.
[窒化珪素焼結体の作製]
窒化珪素原料粉末(平均粒径が1.0μm、酸素量が1.5%、β分率が6%以下)に、酸化ネオジム、酸化マグネシウム源の水酸化マグネシウム、酸化イットリウム、酸化第二鉄を用いて表1に示すような組成で添加して混合した。水酸化マグネシウムの添加量は、窒化珪素焼結体に含まれる酸化マグネシウム量が所定の数値になるように調整して添加した。得られた混合粉末に対して成形用バインダとしてアクリル樹脂を、イオン交換水を溶媒として添加し、噴霧乾燥後、篩を通して成形用顆粒を得た。なお、平均粒径はレーザー回折式粒度分布測定機により測定した。
[Preparation of sintered silicon nitride]
Silicon nitride raw material powder (average particle size is 1.0 μm, oxygen content is 1.5%, β fraction is 6% or less), neodymium oxide, magnesium oxide source magnesium hydroxide, yttrium oxide, ferric oxide Using the composition shown in Table 1, it was added and mixed. The amount of magnesium hydroxide added was adjusted so that the amount of magnesium oxide contained in the silicon nitride sintered body was a predetermined value. To the obtained mixed powder, an acrylic resin was added as a molding binder, and ion-exchanged water was added as a solvent. After spray drying, molding granules were obtained through a sieve. The average particle size was measured with a laser diffraction particle size distribution measuring machine.
得られた成形用顆粒を成形圧1.5t/cm2で□50×25mmの板状の成形体を得た。 A plate-like molded body of □ 50 × 25 mm was obtained from the obtained granules for molding at a molding pressure of 1.5 t / cm 2 .
脱脂は大気中、500℃×6hr、20℃/hrで行った。 Degreasing was performed in air at 500 ° C. × 6 hr, 20 ° C./hr.
焼成は、容器に窒化ホウ素サヤを用い、その容積に対し0.05g/cm3の成形体と同組成粉末を入れ、所定温度まで真空中で焼成し、おおよそ□40×20mmの焼結体を得た。所定温度以降は、雰囲気を調整して行った。焼結温度は、1750〜1900℃とした。表1にこれらの条件を記した。表1にこれらの条件を記した。 For firing, a boron nitride sheath is used for the container, and a powder having the same composition as 0.05 g / cm 3 is put into the container, fired in vacuum to a predetermined temperature, and a sintered body of approximately □ 40 × 20 mm is obtained. Obtained. After the predetermined temperature, the atmosphere was adjusted. The sintering temperature was 1750-1900 ° C. Table 1 shows these conditions. Table 1 shows these conditions.
[評価]
焼結体の密度は、アルキメデス法により算出した。平均長軸径の測定方法は、焼結体の任意の切断面を鏡面加工し、酸素+四弗化炭素の混同ガス中で粒界相をエッチングした後に、走査型電子顕微鏡観察を行い、その写真を用いて算出した。具体的には、少なくとも50個の粒子に交差するよう無作為に直線を引き、交差した粒子全てについて長軸径を求め平均した。また、交差した粒子の面積を求めて、平均長軸径に対して0.5倍以下及び1.5倍以上の長軸径を有する粒子の面積割合(表1において、それぞれA、Bと表記)を算出した。焼結体表面と内部の平均長軸径の差については、焼き放しの表面から1mmの切断面と10mmの切断面をそれぞれ、表面と内部として評価した。なお、焼結体の平均長軸径は内部のものを採用し、表面の平均長軸径から内部のそれを引いた差を平均長軸径で除したものを表面と内部の差を百分率で評価した。
[Evaluation]
The density of the sintered body was calculated by the Archimedes method. The average major axis diameter is measured by mirror-processing an arbitrary cut surface of the sintered body, etching the grain boundary phase in a mixed gas of oxygen and carbon tetrafluoride, and observing with a scanning electron microscope. Calculated using photographs. Specifically, a straight line was drawn at random so as to intersect at least 50 particles, and the major axis diameter was obtained and averaged for all the intersected particles. Moreover, the area ratio of particles having a major axis diameter of 0.5 times or less and 1.5 times or more with respect to the average major axis diameter (represented as A and B in Table 1, respectively) is obtained by calculating the area of intersecting particles. ) Was calculated. About the difference of the average major axis diameter of a sintered compact surface and an inside, the 1 mm cut surface and the 10 mm cut surface were evaluated as the surface and the inside, respectively from the surface of burning. The average major axis diameter of the sintered body is the internal one, and the difference between the average major axis diameter of the surface divided by the average major axis diameter is divided by the average major axis diameter. evaluated.
耐熱衝撃性の評価は、4×4×40mmの試験片を大気雰囲気中1000℃で1時間保持した後に、23℃の水中へ投下したときのクラック有無を確認することによって行った。色ムラは目視により、その有無を調べた。クラックが生じなかったものを「○」とし、生じたものを「×」とした。表1では、クラックの発生したもの、相対密度が著しく低いもの、及び焼結体が得られなかったものの作製No.の後に「※」を表記した。 The thermal shock resistance was evaluated by checking the presence or absence of cracks when the test piece of 4 × 4 × 40 mm was held in air at 1000 ° C. for 1 hour and then dropped into 23 ° C. water. The presence or absence of color unevenness was examined visually. The case where no crack was generated was indicated as “◯”, and the case where crack was generated was indicated as “X”. In Table 1, the production numbers of cracked ones, those having a remarkably low relative density, and those in which a sintered body was not obtained. "*" Was written after the.
作製No.2〜5、8〜10、13〜17、20、23では、耐熱衝撃性に優れ、色ムラのない緻密な窒化珪素焼結体が得られた。 Production No. In 2-5, 8-10, 13-17, 20, 23, a dense silicon nitride sintered body having excellent thermal shock resistance and no color unevenness was obtained.
一方、作製No.1ではネオジムが含まれていなかったため、耐熱衝撃性の良好な窒化珪素焼結体が得られなかった。また、窒化珪素焼結体には色ムラが生じていた。 On the other hand, Production No. In No. 1, neodymium was not contained, and thus a silicon nitride sintered body having good thermal shock resistance could not be obtained. Further, color unevenness occurred in the silicon nitride sintered body.
また、作製No.6ではネオジムの含有量が多すぎたため、耐熱衝撃性の良好な窒化珪素焼結体が得られなかった。また、窒化珪素焼結体には色ムラが生じていた。 In addition, Production No. In No. 6, since there was too much content of neodymium, the silicon nitride sintered compact with favorable thermal shock resistance was not obtained. Further, color unevenness occurred in the silicon nitride sintered body.
作製No.7では、平均長軸径が小さく、平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合が20%を超えたことから、焼結体が高靭化せず、耐熱衝撃性が低かった。また、窒化珪素焼結体には色ムラが生じていた。 Production No. In No. 7, since the average major axis diameter is small and the area ratio of particles having a major axis diameter of 0.5 times or less of the average major axis diameter exceeds 20%, the sintered body does not become tough. The thermal shock resistance was low. Further, color unevenness occurred in the silicon nitride sintered body.
作製No.11では、鉄の含有量が多く、平均長軸径が大きく、平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合が20%を超えたことから、焼結体が高靭化せず、耐熱衝撃性が低かった。また、窒化珪素焼結体には色ムラが生じていた。 Production No. No. 11 has a large iron content, a large average major axis diameter, and the area ratio of particles having a major axis diameter of 0.5 times or less of the average major axis diameter exceeded 20%. The body was not toughened and the thermal shock resistance was low. Further, color unevenness occurred in the silicon nitride sintered body.
作製No.12では、ガラス相が多く生成したため耐熱衝撃性が低かった。また、窒化珪素焼結体には色ムラが生じていた。 Production No. In No. 12, the thermal shock resistance was low because a lot of glass phase was produced. Further, color unevenness occurred in the silicon nitride sintered body.
作製No.18では、平均長軸径に対して1.5倍以上の長軸径を有する粒子の面積割合が25%に満たず、また、平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合との合計が、30%に満たなかったことから、焼結体が高靭化せず、耐熱衝撃性が低かった。また、窒化珪素焼結体には色ムラが生じていた。 Production No. 18, the area ratio of particles having a major axis diameter of 1.5 times or more with respect to the average major axis diameter is less than 25%, and the major axis diameter is 0.5 times or less with respect to the average major axis diameter. Since the total of the area ratio of the particles having less than 30% was less than 30%, the sintered body was not toughened and the thermal shock resistance was low. Further, color unevenness occurred in the silicon nitride sintered body.
作製No.19では、窒素雰囲気圧が小さかったため焼結体が得られなかった。 Production No. In No. 19, since the nitrogen atmosphere pressure was small, a sintered body could not be obtained.
作製No.21では、窒素雰囲気圧が大きかったため焼結体が緻密化しなかった。 Production No. In No. 21, the sintered body was not densified because the nitrogen atmosphere pressure was large.
作製No.22では、平均長軸径が小さく、平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合が20%を超え、また、平均長軸径に対して1.5倍以上の長軸径を有する粒子の面積割合が25%に満たなかったことから、焼結体が高靭化せず、耐熱衝撃性が低かった。また、窒化珪素焼結体には色ムラが生じていた。 Production No. No. 22, the average major axis diameter is small, the area ratio of particles having a major axis diameter of 0.5 times or less with respect to the average major axis diameter exceeds 20%, and 1.5% with respect to the average major axis diameter. Since the area ratio of particles having a major axis diameter of twice or more was less than 25%, the sintered body was not toughened and the thermal shock resistance was low. Further, color unevenness occurred in the silicon nitride sintered body.
作製No.24では、平均長軸径が大きく、平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合と、平均長軸径に対して1.5倍以上の長軸径を有する粒子の面積割合との合計が70%を超えたことから、焼結体が高靭化せず、耐熱衝撃性が低かった。 Production No. 24, the average major axis diameter is large, the area ratio of particles having a major axis diameter of 0.5 times or less with respect to the average major axis diameter, and the major axis diameter of 1.5 times or more with respect to the average major axis diameter Since the total with the area ratio of the particles having the ratio exceeded 70%, the sintered body was not toughened and the thermal shock resistance was low.
なお、本発明の窒化珪素焼結体のX線回折においては、β型の窒化珪素のみ検出され、α型窒化珪素は検出されなかった。また、作製No.2〜5、8〜10、13〜17、20、23では、焼結体表面と内部の平均長軸径の差が10%以下であった。さらに表面と内部のマグネシウム含有率の差をFE−EPMA(フィールドエミッション電子線マイクロプローブアナライザ,日本電子社製JXA−8500F)により測定したところ、作製No.2〜5、8〜10、13〜17、20、23は1%以下であった。 In the X-ray diffraction of the silicon nitride sintered body of the present invention, only β-type silicon nitride was detected, and α-type silicon nitride was not detected. In addition, Production No. In 2-5, 8-10, 13-17, 20, 23, the difference of the average long-axis diameter of a sintered compact surface and an inside was 10% or less. Further, when the difference in magnesium content between the surface and the inside was measured by FE-EPMA (Field Emission Electron Beam Microprobe Analyzer, JXA-8500F manufactured by JEOL Ltd.), the production No. 1 was measured. 2-5, 8-10, 13-17, 20, 23 was 1% or less.
Claims (2)
Fe2O3/Nd2O3で表される質量比が0.17〜10であり、
鉄を酸化第二鉄換算で0.1〜0.5質量%、ネオジムを酸化物換算で0.05〜0.59質量%含み、
マグネシウム、イットリウム及びネオジムを酸化物換算で合計0.1〜10質量%含み、
MgO/(Y 2 O 3 +Nd 2 O 3 )で表される質量比が0.5〜10であり、
焼結体断面観察による平均長軸径に対して0.5倍以下の長軸径を有する粒子の面積割合が20%以下、1.5倍以上の長軸径を有する粒子の面積割合が25%以上、これらの合計が30〜70%である耐熱衝撃性窒化珪素焼結体。 Including neodymium and iron,
The mass ratio represented by Fe 2 O 3 / Nd 2 O 3 is 0.17 to 10 ,
Containing 0.1 to 0.5% by mass of iron in terms of ferric oxide, 0.05 to 0.59% by mass of neodymium in terms of oxide,
Magnesium, yttrium and neodymium are included in a total amount of 0.1 to 10% by mass in terms of oxides,
The mass ratio represented by MgO / (Y 2 O 3 + Nd 2 O 3 ) is 0.5 to 10,
The area ratio of particles having a major axis diameter of 0.5 times or less of the average major axis diameter by cross-sectional observation of the sintered body is 20% or less, and the area ratio of particles having a major axis diameter of 1.5 times or more is 25. %, A thermal shock-resistant silicon nitride sintered body having a total of 30 to 70% .
少なくとも内面が窒化物で構成された容器内に、原料粉末の成形体を脱脂して得られた脱脂体を設置し、
1200℃以上における不活性ガス雰囲気圧を0.5〜2.0MPaとして焼結することを特徴とする耐熱衝撃性窒化珪素焼結体の製造方法。
A mass ratio represented by Fe 2 O 3 / Nd 2 O 3 containing 0.1 to 0.5% by mass of iron in terms of ferric oxide and 0.05 to 0.59% by mass of neodymium in terms of oxide. Is 0.17 to 10 and contains 0.1 to 10% by mass of magnesium, yttrium and neodymium in terms of oxides, and the mass ratio represented by MgO / (Y 2 O 3 + Nd 2 O 3 ) is 0.00. 5 to 10, and the area ratio of particles having a major axis diameter of 0.5 times or less of the average major axis diameter by cross-sectional observation of the sintered body is 20% or less, and the major axis diameter is 1.5 times or more. A method for producing a thermal shock resistant silicon nitride sintered body having an area ratio of particles of 25% or more and a total of 30 to 70%,
In a container having at least an inner surface made of nitride, a degreased body obtained by degreasing the compact of the raw material powder is installed,
A method for producing a thermal shock resistant silicon nitride sintered body characterized by sintering at 1200 ° C. or higher with an inert gas atmosphere pressure of 0.5 to 2.0 MPa.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009293194A JP5385774B2 (en) | 2009-12-24 | 2009-12-24 | Thermal shock resistant silicon nitride sintered body and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009293194A JP5385774B2 (en) | 2009-12-24 | 2009-12-24 | Thermal shock resistant silicon nitride sintered body and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011132070A JP2011132070A (en) | 2011-07-07 |
JP5385774B2 true JP5385774B2 (en) | 2014-01-08 |
Family
ID=44345243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009293194A Active JP5385774B2 (en) | 2009-12-24 | 2009-12-24 | Thermal shock resistant silicon nitride sintered body and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5385774B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112110734B (en) * | 2019-06-21 | 2021-10-01 | 中国科学院上海硅酸盐研究所 | Cyan silicon nitride ceramic and preparation method thereof |
CN115667185A (en) * | 2020-05-26 | 2023-01-31 | 株式会社东芝 | Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07223865A (en) * | 1994-02-10 | 1995-08-22 | Sumitomo Electric Ind Ltd | Silicone nitride-based sintered material and production thereof |
JP3995284B2 (en) * | 1996-02-23 | 2007-10-24 | 新日鉄マテリアルズ株式会社 | Silicon nitride-based sintered body and method for producing the same |
JP2002293642A (en) * | 2001-03-30 | 2002-10-09 | Hitachi Metals Ltd | Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board |
JP4969030B2 (en) * | 2003-08-26 | 2012-07-04 | 京セラ株式会社 | Fused metal member and method for producing the same |
-
2009
- 2009-12-24 JP JP2009293194A patent/JP5385774B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011132070A (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101456737A (en) | Boron carbide base composite ceramic and preparation method thereof | |
JP2010248615A (en) | Molybdenum alloy and method for manufacturing the same | |
JP2005132654A (en) | Ceramic composite material and its manufacturing process | |
JP2007269605A (en) | Molten siliceous refractory and method for manufacturing the same | |
JP2007197226A (en) | High-thermal conductive silicon nitride ceramic having high reliability and method of manufacturing the same | |
JP4869070B2 (en) | High thermal conductivity silicon nitride sintered body and silicon nitride structural member | |
JP4667520B2 (en) | Silicon nitride based composite ceramics and method for producing the same | |
JP2012106920A (en) | Member for molten metal, and heater tube | |
JP5385774B2 (en) | Thermal shock resistant silicon nitride sintered body and method for producing the same | |
JP2005075659A (en) | Ceramic sintered compact, method for producing the same, and biomaterial | |
JP5521910B2 (en) | Manufacturing method of silicon nitride-boron nitride composite ceramics, silicon nitride-boron nitride composite ceramics, and member for molten metal | |
Ferreira et al. | Densification and microstructure of Si 3 N 4-TiN ceramic composites | |
JP2008069031A (en) | Silicon nitride sintered compact and method of manufacturing the same | |
JP2004262756A (en) | Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact | |
JP2011132069A (en) | Thermal shock resistant silicon nitride sintered compact and method for producing the same | |
JP4969030B2 (en) | Fused metal member and method for producing the same | |
JP2020097509A (en) | Mullite-based sintered compact and method for producing the same | |
JP2010173877A (en) | Silicon nitride sintered compact | |
JP5001567B2 (en) | Corrosion resistant ceramic material | |
JP2003095747A (en) | Sintered silicon nitride compact and circuit board obtained by using the same | |
JP5944996B2 (en) | Silicon nitride sintered body and heat conductive member | |
JPH01239068A (en) | Sintered material of titanium boride base and production thereof | |
JP2019202910A (en) | Aluminum nitride sintered compact | |
JP2008273752A (en) | Boron carbide-based sintered compact and protective member | |
JP2008297135A (en) | Boron carbide based sintered compact, its manufacturing method and protective member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130611 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130716 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131004 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5385774 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |