[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5383250B2 - Curable resin composition and cured product - Google Patents

Curable resin composition and cured product Download PDF

Info

Publication number
JP5383250B2
JP5383250B2 JP2009044626A JP2009044626A JP5383250B2 JP 5383250 B2 JP5383250 B2 JP 5383250B2 JP 2009044626 A JP2009044626 A JP 2009044626A JP 2009044626 A JP2009044626 A JP 2009044626A JP 5383250 B2 JP5383250 B2 JP 5383250B2
Authority
JP
Japan
Prior art keywords
group
groups
organic
resin composition
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009044626A
Other languages
Japanese (ja)
Other versions
JP2010195986A (en
Inventor
俊宏 河谷
範之 平賀
正敏 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2009044626A priority Critical patent/JP5383250B2/en
Priority to TW99102533A priority patent/TWI470004B/en
Priority to KR1020100009470A priority patent/KR101624924B1/en
Priority to CN2010101177072A priority patent/CN101857727B/en
Publication of JP2010195986A publication Critical patent/JP2010195986A/en
Application granted granted Critical
Publication of JP5383250B2 publication Critical patent/JP5383250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、硬化性樹脂組成物及び硬化物に関する。詳しくは、光学用途、オプトデバイス用途、表示デバイス用途等の光学材料、機械部品材料、電気・電子部品材料等として有用な硬化物を得ることができる硬化性樹脂組成物、及びこれを用いて得られた硬化物に関する。   The present invention relates to a curable resin composition and a cured product. Specifically, a curable resin composition capable of obtaining a cured product useful as an optical material, a mechanical component material, an electrical / electronic component material, etc. for optical applications, optical device applications, display device applications, and the like, and obtained using the same. Relates to the cured product.

機械部品材料、電気・電子部品材料、自動車部品材料、土木建築材料等をはじめ、樹脂を硬化させた成形材が広く使われており、また、成形物以外においても、各種塗料や接着剤として硬化性の樹脂を含んだ樹脂組成物が使用されている。これらの硬化性樹脂組成物には、無機物質を含有させることで、硬化物の熱膨張率を下げることができ、また、耐熱性や透明性を向上させることも可能であることから、近年では、特に電子・電気部品材料において、無機ガラスにかわるものとしてその有用性が期待されている。具体的には、デジタルカメラモジュールは携帯電話に搭載されるなど小型化が進み、低コスト化が求められることから、無機ガラスに代わってPMMA・PCやポリシクロオレフィン等のプラスチックレンズの採用が進んでおり、また、車載カメラなどでの高温暴露環境下での使用を考慮し、長時間の耐熱性が要求されることから、更なる硬化性樹脂組成物の検討が進められている。   Molded materials with cured resin are widely used, including machine parts materials, electrical / electronic parts materials, automotive parts materials, civil engineering and building materials, etc. Also, other than molded products, they are cured as various paints and adhesives. A resin composition containing a functional resin is used. Since these curable resin compositions can contain an inorganic substance, the coefficient of thermal expansion of the cured product can be lowered, and heat resistance and transparency can be improved. In particular, it is expected to be useful as an alternative to inorganic glass in electronic / electrical component materials. Specifically, since digital camera modules are being miniaturized, such as being mounted on mobile phones, and cost reduction is required, the use of plastic lenses such as PMMA / PC and polycycloolefin instead of inorganic glass has advanced. In addition, considering the use in a high-temperature exposure environment such as an in-vehicle camera, long-term heat resistance is required, and therefore further investigations on curable resin compositions are underway.

これらのような硬化性樹脂組成物として、主に耐熱性や透明性に優れた硬化物を得ることができるシリコーン樹脂組成物や、他の硬化性樹脂に比べ硬化収縮が低く成形性が良好な硬化性エポキシ樹脂組成物等が挙げられる。このうち、シリコーン樹脂組成物において、熱膨張率を低下させるために、特定のオルガノポリシロキサン、例えば多官能籠型シルセスキオキサン、ラダー型シルセスキオキサン等の高密度シロキサン化合物を添加する方法が提案されている(例えば、特許文献1参照)。また、特定のオルガノポリシロキサン(籠型シルセスキオキサン等)と特定のオルガノハイドロジェンポリシロキサンとを付加硬化させたものを含んだ樹脂組成物も数多く報告されている(例えば、特許文献2〜4参照)。一方、硬化性エポキシ樹脂組成物において、機械特性、耐熱性を改良する目的でヒュームドシリカなどの無機充填粉末を添加する方法(例えば特許文献5参照)や、透明性の改良のために、オルガノシリカゾル、好ましくはMEKゾルとして無機粒子を添加する方法(例えば、特許文献6、7参照)のほか、シランカップリング剤で表面修飾されたコロイダルシリカを添加する方法(例えば、特許文献8)等も提案されている。   As a curable resin composition such as these, a silicone resin composition capable of mainly obtaining a cured product having excellent heat resistance and transparency, and has a low curing shrinkage and good moldability compared to other curable resins. A curable epoxy resin composition etc. are mentioned. Among these, in the silicone resin composition, a method of adding a high-density siloxane compound such as a specific organopolysiloxane, for example, a polyfunctional cage-type silsesquioxane or a ladder-type silsesquioxane, in order to reduce the coefficient of thermal expansion. Has been proposed (see, for example, Patent Document 1). In addition, many resin compositions including those obtained by addition-curing a specific organopolysiloxane (such as a cage silsesquioxane) and a specific organohydrogenpolysiloxane have been reported (for example, Patent Documents 2 to 2). 4). On the other hand, in the curable epoxy resin composition, a method of adding an inorganic filler powder such as fumed silica for the purpose of improving mechanical properties and heat resistance (for example, see Patent Document 5), In addition to a method of adding inorganic particles as a silica sol, preferably a MEK sol (see, for example, Patent Documents 6 and 7), a method of adding colloidal silica surface-modified with a silane coupling agent (for example, Patent Document 8), etc. Proposed.

特開2008−133442号公報JP 2008-133442 A 特開平9−316299号公報JP 9-316299 A 特開2006−131848号公報JP 2006-131848 A 特開2008−248170号公報JP 2008-248170 A 特開平6−63502号公報JP-A-6-63502 特開2004−250521号公報Japanese Patent Laid-Open No. 2004-250521 特開2002−327165号公報JP 2002-327165 A 特開平3−143915号公報JP-A-3-143915

しかしながら、シリコーン系樹脂を含んだ組成物は耐熱性や耐熱変色性に優れた硬化物を得ることはできても、硬化物製造時に硬化収縮を生じ、硬化物を得る上での再現性に問題がある。一方で、エポキシ系樹脂を含んだ組成物は硬化時の収縮性が低くて成形性に優れるが、併用されるアンチモン系の硬化触媒が高い温度での黄変をもたらすといった耐熱変色性に問題がある。これらの問題は、従来報告されている各種組成物においてそれぞれ完全に解決できているわけではない。   However, even if a composition containing a silicone resin can obtain a cured product excellent in heat resistance and heat discoloration, it causes shrinkage during the production of the cured product, and there is a problem in reproducibility in obtaining the cured product. There is. On the other hand, a composition containing an epoxy resin has low shrinkage at the time of curing and is excellent in moldability, but there is a problem in heat discoloration that an antimony-based curing catalyst used in combination causes yellowing at a high temperature. is there. These problems are not completely solved in various compositions that have been reported in the past.

本発明は、硬化性樹脂組成物の現状に鑑みてなされたものであり、硬化物の製造工程における硬化・加工特性の再現性に優れて、品質の安定した硬化物が得られる低硬化収縮特性を備えた樹脂組成物であって、尚且つ、耐熱変色性、低熱膨張性、高透明性の硬化物を得ることができる硬化性樹脂組成物を提供することを目的とし、また、これにより得られた硬化物を提供することを目的とする。   The present invention has been made in view of the current state of the curable resin composition, and is excellent in reproducibility of curing and processing characteristics in the production process of the cured product, and has a low curing shrinkage property that provides a cured product with stable quality. And a curable resin composition capable of obtaining a cured product having heat discoloration resistance, low thermal expansibility, and high transparency. It is an object to provide a cured product.

本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、有機成分と無機成分とを含んだ特定の複合体を含んだ硬化性樹脂組成物によれば、硬化収縮と熱変色の問題を同時に解決しながら、硬化・加工特性の再現性に優れて、尚且つ、低熱膨張性、及び高透明性の硬化物を得ることができる樹脂組成物が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies in order to solve the above problems, the present inventors have found that, according to the curable resin composition containing a specific complex containing an organic component and an inorganic component, curing shrinkage and thermal discoloration. While solving the problems at the same time, it has been found that a resin composition can be obtained which is excellent in reproducibility of curing and processing characteristics and can obtain a cured product having low thermal expansion and high transparency. It came to be completed.

したがって、本発明は、(A)1分子中に脂肪族不飽和結合を2個以上有し、且つ、籠型シロキサンと有機成分からなる有機−無機複合体であって、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(但し、R1及びR2は、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよく、Xは、炭素数5〜50の脂肪族構造、脂環式構造を有する炭素数5〜50の、又は芳香族構造を有する炭素数5〜50ののいずれかであり、互いに異なる2種以上を含んでもよく、n、m及びlはそれぞれ平均値を表し、nは6〜14の数であり、m+lは2〜2,000である。)で表され、重量平均分子量がMw=5,000〜1,000,000であり、1分子中に不飽和二重結合を有するビニル基、アリル基、(メタ)アクリロイル基からなる群から選ばれた1種又は2種以上の反応性官能基を少なくとも2つ以上有する有機−無機複合体、(B)1分子中に少なくとも2つの(メタ)アクリル基を有するエチレン性不飽和化合物、及び(C)硬化触媒を必須成分とし、(A)、(B)及び(C)成分の合計100重量部に対し、(A)成分の有機−無機複合体を主成分として少なくとも30重量部以上含有することを特徴とする硬化性樹脂組成物である。
Accordingly, the present invention provides (A) an organic-inorganic composite having two or more aliphatic unsaturated bonds in one molecule and comprising a cage siloxane and an organic component, which is represented by the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(However, R 1 and R 2 may be vinyl groups, allyl groups, alkyl groups, aryl groups, (meth) acryloyl groups, or groups having an oxirane ring, and may be the same or different from each other. aliphatic structure of 5 to 50 carbon atoms, group having 5 to 50 carbon atoms having an alicyclic structure, or any one of the groups having 5 to 50 carbon atoms having an aromatic structure, comprising two or more different from each other N, m and l each represent an average value, n is a number from 6 to 14, and m + l is from 2 to 2,000), and the weight average molecular weight is Mw = 5,000 to 1,000,000 at least one or more reactive functional groups selected from the group consisting of a vinyl group having an unsaturated double bond in one molecule, an allyl group, and a (meth) acryloyl group Organic-inorganic composite with two or more, (B) in one molecule An ethylenically unsaturated compound having at least two (meth) acrylic groups and (C) a curing catalyst as essential components, and (A) with respect to a total of 100 parts by weight of components (A), (B) and (C) A curable resin composition containing at least 30 parts by weight of an organic-inorganic composite as a main component.

また、本発明は、上記の硬化性樹脂組成物を、熱、光、またはその両方を用いて硬化して得た硬化物である。   Moreover, this invention is a hardened | cured material obtained by hardening | curing said curable resin composition using a heat | fever, light, or both.

本発明の硬化性樹脂組成物によれば、高い耐熱変色性を備えると共に、高透明性、低熱膨張性及び低硬化収縮性に優れた硬化物を得ることができる。また、得られた硬化物は光学用途、オプトデバイス用途、表示デバイス用途等の光学材料や電気・電子部品をはじめ、各種機械部品、自動車部品、土木建築材、塗料、接着剤等の幅広い用途に適用できる。   According to the curable resin composition of the present invention, it is possible to obtain a cured product having high heat discoloration and excellent in high transparency, low thermal expansibility and low cure shrinkage. In addition, the cured products obtained can be used in a wide range of applications such as optical materials, optical device applications, display device applications, etc., as well as various mechanical parts, automobile parts, civil engineering and building materials, paints, adhesives, etc. Applicable.

図1は、合成例1で得られたシラノール基含有籠型シロキサン(21)のGPCチャート1 is a GPC chart of silanol group-containing cage-type siloxane (21) obtained in Synthesis Example 1. FIG. 図2は、合成例1で得られたシラノール基含有籠型シロキサン(21)の1H−NMRチャートFIG. 2 is a 1 H-NMR chart of silanol group-containing cage-type siloxane (21) obtained in Synthesis Example 1. 図3は、合成例1で得られた有機−無機複合体(22)のGPCチャートFIG. 3 is a GPC chart of the organic-inorganic composite (22) obtained in Synthesis Example 1. 図4は、合成例2で得られたシラノール基含有籠型シロキサン(23)のGPCチャートFIG. 4 is a GPC chart of silanol group-containing cage-type siloxane (23) obtained in Synthesis Example 2. 図5は、合成例2で得られた有機−無機複合体(24)のGPCチャートFIG. 5 is a GPC chart of the organic-inorganic composite (24) obtained in Synthesis Example 2. 図6は、合成例3で得られたシラノール基含有籠型シロキサン(25)のGPCチャートFIG. 6 is a GPC chart of silanol group-containing cage-type siloxane (25) obtained in Synthesis Example 3. 図7は、合成例3で得られた有機−無機複合体(26)のGPCチャートFIG. 7 is a GPC chart of the organic-inorganic composite (26) obtained in Synthesis Example 3.

(A)成分の有機−無機複合体として好適に用いることができる樹脂として、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(但し、R1及びR2はビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよく、Xは、炭素数5〜50の脂肪族構造、脂環式構造を有する炭素数5〜50の、又は芳香族構造を有する炭素数5〜50ののいずれかであり、互いに異なる2種以上を含んでもよく、n、m、及びlはそれぞれ平均値を表し、nは6〜14の数であり、m+lは2〜2,000である。)で表され、重量平均分子量Mw=5,000〜1,000,000であり、1分子中に少なくとも2つ以上は不飽和二重結合を有するビニル基、アリル基、(メタ)アクリロイル基からなる群から選ばれた1種又は2種以上の反応性官能基を有する有機−無機複合体を挙げることができる。
As a resin that can be suitably used as the organic-inorganic composite of component (A), the following formula (1)
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(However, R 1 and R 2 may be vinyl groups, allyl groups, alkyl groups, aryl groups, (meth) acryloyl groups, or groups having an oxirane ring, and may be the same or different from each other, and X is carbon aliphatic structure having 5 to 50, group having 5 to 50 ring carbon atoms having an alicyclic structure, or any one of the groups having 5 to 50 carbon atoms having an aromatic structure, also contain two or more different from each other Well, each of n, m, and l represents an average value, n is a number of 6 to 14, and m + 1 is 2 to 2,000.), And the weight average molecular weight Mw = 5,000 to 1 One or two or more types of reactivity selected from the group consisting of vinyl groups, allyl groups, and (meth) acryloyl groups having at least two unsaturated double bonds in one molecule. Mentioning organic-inorganic composites with functional groups it can.

上記式(1)で表される有機−無機複合体を得るための好ましい方法としては、下記式(2)
(R1SiO3/2)n(HO2/2)k (2)
(但し、R1はビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよく、n及びkは平均値であり、nは6〜14の数、kは1〜4の数を示す。)で表されるシラノール基含有籠型シロキサンと、下記式(3)
HO−X−OH (3)
(但し、Xは、炭素数5〜50の脂肪族構造、脂環式構造を有する炭素数5〜50の、又は芳香族構造を有する炭素数5〜50ののいずれかである。)で表される有機ジオール化合物とを、下記式(4)

Figure 0005383250
(但し、R2は水素原子、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン基であって互いに同じか異なるものであってもよい。)で表されるジクロロシランをシラノール基含有籠型シロキサン及び有機ジオールの合計モルに対して0.5〜5倍モル、好ましくは0.5〜3.0倍モルの範囲で添加して脱塩酸縮合させて式(1)で表される有機−無機複合体とすることができる。 As a preferable method for obtaining the organic-inorganic composite represented by the above formula (1), the following formula (2):
(R 1 SiO 3/2 ) n (HO 2/2 ) k (2)
(However, R 1 may be a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or a group having an oxirane ring, and may be the same or different from each other, and n and k are average values. And n represents a number of 6 to 14, and k represents a number of 1 to 4.) and a silanol group-containing cage-type siloxane represented by the following formula (3):
HO-X-OH (3)
(Wherein, X is either a group having 5 to 50 carbon atoms and having a number 5 to 50 groups or aromatic structure, carbon having aliphatic structure having 5 to 50 carbon atoms, an alicyclic structure.) An organic diol compound represented by the following formula (4):
Figure 0005383250
(Wherein R 2 represents a hydrogen atom, a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or an oxirane group, which may be the same or different from each other). Is added in a range of 0.5 to 5 times mol, preferably 0.5 to 3.0 times mol, with respect to the total mol of silanol group-containing cage-type siloxane and organic diol, and dehydrochlorination condensation is carried out to obtain the formula (1) It can be set as the organic-inorganic composite represented by these.

上記式(2)のシラノール基含有籠型シロキサンと上記式(3)の有機ジオール化合物とを、上記式(4)のジクロロシランを用いて脱塩酸により共重合する具体的な反応条件について、好ましくは塩基性条件下で行うようにするのがよい。例えば、シラノール基含有籠型シロキサンと有機ジオール化合物とを溶媒兼塩基としてピリジン、又はテトラヒドロフランとトリエチルアミンの混合液に溶解し、ジクロロシランをピリジンに溶解した溶液を窒素等の不活性ガス雰囲気下、室温で滴下し、その後、室温で2時間以上撹拌を行うようにするのがよい。この際、反応時間が短いと反応が完結しない。反応終了後、トルエンと水を加え、式(1)で表される有機−無機複合体をトルエンに溶解し、副成する塩酸及び塩酸塩を水層に溶解し除去するようにする。また、有機層を硫酸マグネシウム等の乾燥剤を用いて乾燥し、使用した塩基及び溶媒を減圧濃縮によって除去するようにする。   Regarding specific reaction conditions for copolymerizing silanol group-containing cage-type siloxane of formula (2) and organic diol compound of formula (3) by dehydrochlorination using dichlorosilane of formula (4), Should be carried out under basic conditions. For example, a solution obtained by dissolving a silanol group-containing cage-type siloxane and an organic diol compound as a solvent and base in a mixed solution of pyridine or tetrahydrofuran and triethylamine, and dissolving dichlorosilane in pyridine at room temperature under an inert gas atmosphere such as nitrogen It is good to carry out stirring at room temperature for 2 hours or more after that. At this time, if the reaction time is short, the reaction is not completed. After completion of the reaction, toluene and water are added, and the organic-inorganic complex represented by the formula (1) is dissolved in toluene, and by-product hydrochloric acid and hydrochloride are dissolved and removed in the aqueous layer. Further, the organic layer is dried using a desiccant such as magnesium sulfate, and the used base and solvent are removed by concentration under reduced pressure.

下記式(2)
(R1SiO3/2)n(HO2/2)k (2)
(但し、R1はビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよく、n及びkは平均値であり、nは6〜14の数、kは1〜4の数を示す。)で表されるシラノール基含有籠型シロキサンを得る好ましい手段については、下記式(5)
1SiY3 (5)
(但し、R1はビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって、Yはアルコキシ基、ハロゲン原子及びヒドロキシル基からなる群から選ばれた加水分解性基を示す。)で表されるケイ素化合物を、単独又は複数用いて、塩基性触媒をR1SiY3:塩基性触媒=3〜7モル:1モルとなる範囲の塩基性触媒存在下、極性溶媒又は非極性溶媒あるいはこれらの混合溶媒中で加水分解すると共に加水分解物を縮合反応させ、更に、シロキサン結合の形成(シラノール基の縮合)と開裂を繰り返す過程(平衡)で、塩基性触媒由来のカウンターカチオンを開裂部と結合せしめた後、酸で処理し、開裂部を水酸基に変換して得ることができる。この際、使用する塩基性触媒が上記範囲より少ないとシラノール基の縮合が優先され、シラノール基が減少する。反対に上記範囲より多いと、シロキサン結合の開裂が優先されて、過剰のシラノール基が増加する。これらのことから塩基性触媒の量が上記範囲から外れた場合、次工程の有機化合物とのジクロロシランの脱塩酸反応を用いての縮合反応で、反応不足やゲル化の原因となる。
Following formula (2)
(R 1 SiO 3/2 ) n (HO 2/2 ) k (2)
(However, R 1 may be a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or a group having an oxirane ring, and may be the same or different from each other, and n and k are average values. Yes, n represents a number of 6 to 14, and k represents a number of 1 to 4. For a preferable means for obtaining a silanol group-containing cage-type siloxane represented by the following formula (5):
R 1 SiY 3 (5)
(Wherein R 1 is a vinyl group, an allyl group, an alkyl group, an aryl group, a (meth) acryloyl group or a group having an oxirane ring, and Y is selected from the group consisting of an alkoxy group, a halogen atom and a hydroxyl group. 1 or 2 is used, and the basic catalyst is R 1 SiY 3 : basic catalyst = 3 to 7 mol: 1 mol of basic catalyst is present. In the process of hydrolysis (condensation of silanol groups) and cleavage (equilibrium), hydrolysis is performed in a polar solvent or nonpolar solvent or a mixed solvent thereof and the hydrolyzate is subjected to a condensation reaction. After the counter cation derived from the sex catalyst is bonded to the cleavage portion, it can be obtained by treating with an acid and converting the cleavage portion to a hydroxyl group. At this time, if the basic catalyst used is less than the above range, the condensation of the silanol group is prioritized and the silanol group is reduced. On the other hand, when the amount is larger than the above range, cleavage of the siloxane bond is given priority, and excess silanol groups are increased. From these facts, when the amount of the basic catalyst is out of the above range, the condensation reaction using the dehydrochlorination reaction of dichlorosilane with the organic compound in the next step causes insufficient reaction or gelation.

上記式(2)で表されるシラノール基含有籠型シロキサンを得る際に用いる溶媒については、非極性溶媒と極性溶媒のうち1つもしくは両方を合わせた溶媒である。このうち、非極性溶媒については、ヘキサン、トルエン、キシレン、ベンゼン等の炭化水素系溶媒が例示される。極性溶媒については、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、メタノール、エタノール、2−プロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒が例示される。これらの中でも、反応速度制御の観点から2−プロパノールとトルエンの2相系が好ましい。2−プロパノール/トルエンの体積比は1/2であるのが好ましい。有機溶媒の好ましい使用量は、式(5)のアルコキシシランに対するモル濃度(モル/リットル:M)が0.01〜10Mの範囲であるのがよく、より好ましくは0.01〜1Mであるのがよい。   The solvent used for obtaining the silanol group-containing cage-type siloxane represented by the above formula (2) is a solvent obtained by combining one or both of a nonpolar solvent and a polar solvent. Among these, examples of the nonpolar solvent include hydrocarbon solvents such as hexane, toluene, xylene, and benzene. Examples of the polar solvent include ether solvents such as diethyl ether and tetrahydrofuran, ester solvents such as ethyl acetate, alcohol solvents such as methanol, ethanol and 2-propanol, and ketone solvents such as acetone and methyl ethyl ketone. Among these, a two-phase system of 2-propanol and toluene is preferable from the viewpoint of reaction rate control. The volume ratio of 2-propanol / toluene is preferably 1/2. The preferred amount of the organic solvent used is such that the molar concentration (mol / liter: M) relative to the alkoxysilane of formula (5) is in the range of 0.01 to 10M, more preferably 0.01 to 1M. Is good.

上記式(2)のシラノール基含有籠型シロキサンを合成する際の反応条件について、反応温度は0〜60℃が好ましく、20〜40℃がより好ましい。反応温度が0℃より低いと、反応速度が遅くなり未反応の加水分解性基及びシラノール基が多く残存する結果となる。反対に60℃より高いと、反応速度が速すぎるために複雑な縮合反応が進行し、結果として高分子量化が促進される。また、反応時間は上記式(5)で表される構造のR1によっても異なるが、通常は数分〜数時間であり、好ましくは1〜3時間であるのがよい。 About the reaction conditions at the time of synthesize | combining the silanol group containing cage-type siloxane of said Formula (2), 0-60 degreeC is preferable and 20-40 degreeC is more preferable. When the reaction temperature is lower than 0 ° C., the reaction rate becomes slow, resulting in a large amount of unreacted hydrolyzable groups and silanol groups remaining. On the other hand, when the temperature is higher than 60 ° C., the reaction rate is too high, so that a complicated condensation reaction proceeds, and as a result, high molecular weight is promoted. Although the reaction time varies depending on R 1 a structure represented by the above formula (5), typically a few minutes to several hours, preferably good is 1-3 hours.

式(2)で表されるシラノール基含有籠型シロキサン化合物の具体例を、下記構造式(6)〜(12)にそれぞれ示す。構造式(6)はn=6,k=2、(7)はn=7,k=3、(8)−1及び(8)−2はn=8,k=2、(9)はn=9,k=1、(10)はn=10,k=2、(11)はn=12,k=2、(12)はn=14,k=2である。但し、式(2)で表される構造単位は、構造式(6)〜(12)に示すものに限らない。また、構造式(6)〜(12)において、R1は式(5)と同じである。

Figure 0005383250
Figure 0005383250
Specific examples of the silanol group-containing cage-type siloxane compound represented by the formula (2) are shown in the following structural formulas (6) to (12), respectively. Structural formula (6) is n = 6, k = 2, (7) is n = 7, k = 3, (8) -1 and (8) -2 are n = 8, k = 2, (9) is n = 9, k = 1, (10) is n = 10, k = 2, (11) is n = 12, k = 2, (12) is n = 14, k = 2. However, the structural unit represented by the formula (2) is not limited to those shown in the structural formulas (6) to (12). In Structural Formulas (6) to (12), R 1 is the same as Formula (5).
Figure 0005383250
Figure 0005383250

上記式(5)で表されるケイ素化合物としては、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メチルトリメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、t−ブチルトリメトキシシラン、t−ブチルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロへキシルエチル)トリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、p−スチリルトリメトキシシラン、p−スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が例示される。中でも原料の入手が容易である、フェニルトリメトキシシラン、メチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン及びビニルトリメトキシシランが好ましい。   Examples of the silicon compound represented by the above formula (5) include phenyltrimethoxysilane, phenyltriethoxysilane, methyltrimethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, and n-propyltrimethoxysilane. Ethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, t-butyltrimethoxysilane, t-butyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, methacryloxymethyltrimethoxy Silane, methacryloxymethyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Reethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexylethyl) trimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, Examples include p-styryltrimethoxysilane, p-styryltriethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane. Of these, phenyltrimethoxysilane, methyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane and vinyltrimethoxysilane, which are easily available, are preferred.

上記式(5)の加水分解及び縮合反応に用いられる塩基性触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウムなどのアルカリ金属水酸化物、或いはテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシドなどの水酸化アンモニウム塩が例示される。これらの中でも、触媒活性の高い点からテトラメチルアンモニウムヒドロキシト゛が好ましく用いられる。   Examples of the basic catalyst used in the hydrolysis and condensation reaction of the above formula (5) include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, cesium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide. And ammonium hydroxide salts such as tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, and benzyltriethylammonium hydroxide. Among these, tetramethylammonium hydroxide is preferably used because of its high catalytic activity.

シラノール基含有籠型シロキサンの合成反応終了後は、反応溶液を弱酸性溶液で中和する。中性もしくは酸性よりにした後、水または水含有反応溶媒を分離する。その後、有機層を水又は飽和食塩水で十分に洗浄する。その後、無水硫酸マグネシウム等の乾燥剤で乾燥する。乾燥剤をろ別除去した後、減圧濃縮することで、反応生成物(シラノール基含有籠型シロキサン)を回収できる。減圧濃縮は40℃以下で行う。40℃を超えると反応で生じたシラノール基が縮合し、高分子量化及びゲル化や、次の反応が進行しなくなるという問題が生じる。弱酸性溶液としては硫酸希釈溶液、塩酸希釈溶液、クエン酸希釈溶液、酢酸、塩化アンモニウム水溶液、リンゴ酸溶液、シュウ酸溶液などが例示される。   After completion of the synthesis reaction of the silanol group-containing cage-type siloxane, the reaction solution is neutralized with a weakly acidic solution. After neutralization or acidification, water or water-containing reaction solvent is separated. Thereafter, the organic layer is sufficiently washed with water or saturated saline. Then, it dries with drying agents, such as anhydrous magnesium sulfate. After removing the desiccant by filtration, the reaction product (silanol group-containing cage siloxane) can be recovered by concentration under reduced pressure. Concentration under reduced pressure is performed at 40 ° C or lower. If the temperature exceeds 40 ° C., the silanol groups produced by the reaction are condensed, resulting in a problem that the high molecular weight and gelation and the subsequent reaction do not proceed. Examples of the weakly acidic solution include sulfuric acid diluted solution, hydrochloric acid diluted solution, citric acid diluted solution, acetic acid, ammonium chloride aqueous solution, malic acid solution, oxalic acid solution and the like.

次いで、上記で得られた式(2)シラノール基含有籠型シロキサンと式(3)の有機ジオール化合物とを、式(4)のジクロロシランを用いて共重合することにより籠型シロキサンと有機成分とからなる有機−無機複合体を得ることができる。   Next, the siloxane siloxane and the organic component are obtained by copolymerizing the silanol group-containing cage siloxane obtained above and the organic diol compound of the formula (3) using dichlorosilane of the formula (4). An organic-inorganic composite consisting of

ここで、式(3)で表される有機ジオール化合物としては、ペンタンジオール、ヘキサンジオール、1,9−ノナンジオール、下記式(13)〜(20)、

Figure 0005383250
(但し、上記式(20)のR3は炭素数5〜10の脂肪族炭化水素及び/又は脂環式炭化水素であり、Mw=500〜2,000である。)等を例示することができるが、これらに何ら制限されるものではない。またこれらを単独で使用してもよく、2種以上併用してもよい。 Here, as the organic diol compound represented by the formula (3), pentanediol, hexanediol, 1,9-nonanediol, the following formulas (13) to (20),
Figure 0005383250
(However, R 3 in the above formula (20) is an aliphatic hydrocarbon and / or alicyclic hydrocarbon having 5 to 10 carbon atoms, and Mw = 500 to 2,000). Yes, but you are not limited to these. Moreover, these may be used independently and may be used together 2 or more types.

式(4)で表されるジクロロシラン化合物としては、アリルジクロロシラン、アリルへキシルジクロロシラン、アリルメチルジクロロシラン、アリルフェニルジクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、ジビニルジクロロシラン、ジエチルジクロロシラン、メチルプロピルジクロロシラン、ジエトキシジクロロシラン、ブチルメチルジクロロシラン、フェニルジクロロシラン、ジアリルジクロロシラン、メチルペンチルジクロロシラン、メチルフェニルジクロロシラン、シクロへキシルメチルジクロロシラン、ヘキシルメチルジクロロシラン、フェニルビニルジクロロシラン、6−メチルジクロロシリル−2−ノルボルネン、2−メチルジクロロシリルノルボルネン、3−メタクリロキシプロピルジクロロメチルシラン、ヘプチルメチルシラン、ジブチルジクロロシラン、メチル−β−フェネチルジクロロシラン、メチルオクチルジクロロシラン、t−ブチルフェニルジクロロシラン、デシルメチルジクロロシラン、ジフェニルジクロロシラン、ジへキシルジクロロシラン、ドデシルメチルジクロロシラン、メチルオクタデシルジクロロシラン等を例示することができるが、これらに何ら制限されるものではない。またこれらを単独で使用してもよく、2種以上を併用してもよい。   Examples of the dichlorosilane compound represented by the formula (4) include allyldichlorosilane, allylhexyldichlorosilane, allylmethyldichlorosilane, allylphenyldichlorosilane, methyldichlorosilane, dimethyldichlorosilane, divinyldichlorosilane, diethyldichlorosilane, Methylpropyldichlorosilane, diethoxydichlorosilane, butylmethyldichlorosilane, phenyldichlorosilane, diallyldichlorosilane, methylpentyldichlorosilane, methylphenyldichlorosilane, cyclohexylmethyldichlorosilane, hexylmethyldichlorosilane, phenylvinyldichlorosilane, 6-methyldichlorosilyl-2-norbornene, 2-methyldichlorosilylnorbornene, 3-methacryloxypropyldichloromethylsilane , Heptylmethylsilane, dibutyldichlorosilane, methyl-β-phenethyldichlorosilane, methyloctyldichlorosilane, t-butylphenyldichlorosilane, decylmethyldichlorosilane, diphenyldichlorosilane, dihexyldichlorosilane, dodecylmethyldichlorosilane, methyl Although octadecyl dichlorosilane etc. can be illustrated, it is not restrict | limited at all to these. Moreover, these may be used independently and may use 2 or more types together.

(A)成分の「有機−無機複合体」の配合量は、(A)、(B)及び(C)成分の合計100重量部に対して30重量部以上となるようにする。30重量部に満たないと、耐熱変色性が低下し、更に粘度の低下、硬化収縮が高くなり、成形が困難となる。   The blending amount of the “organic-inorganic composite” of the component (A) is 30 parts by weight or more with respect to 100 parts by weight of the total of the components (A), (B) and (C). If it is less than 30 parts by weight, the heat discoloration will be lowered, the viscosity will be lowered, and the curing shrinkage will be increased, making it difficult to mold.

また、本発明の硬化性樹脂組成物において、(B)成分「1分子中に少なくとも2つの(メタ)アクリル基を有するエチレン性不飽和化合物」は、希釈剤兼架橋剤として作用するものである。(A)成分の「有機−無機複合体」の粘度を成形容易な粘度、好ましくは0.1〜500Pa・s、より好ましくは1〜200Pa・sに調整する、又は、硬化物の高架橋化による低熱膨張化や高強度化のために用いる。   In the curable resin composition of the present invention, the component (B) “ethylenically unsaturated compound having at least two (meth) acrylic groups in one molecule” acts as a diluent and a crosslinking agent. . (A) The viscosity of the “organic-inorganic composite” of component (A) is adjusted to an easily moldable viscosity, preferably 0.1 to 500 Pa · s, more preferably 1 to 200 Pa · s, or by highly cross-linking the cured product. Used for low thermal expansion and high strength.

(B)成分「1分子中に少なくとも2つの(メタ)アクリル基を有するエチレン性不飽和化合物」の配合量は、(A)、(B)及び(C)成分の合計100重量部に対して70重量部未満となるようにするのがよい。70重量部以上になると、耐熱変色性が低下し、更に粘度の低下、硬化収縮が高くなり、成形が困難となる。   The blending amount of component (B) “ethylenically unsaturated compound having at least two (meth) acrylic groups in one molecule” is 100 parts by weight in total of components (A), (B) and (C). It should be less than 70 parts by weight. When it is 70 parts by weight or more, the heat discoloration is lowered, the viscosity is further lowered, and the curing shrinkage is increased, so that molding becomes difficult.

(B)成分の「1分子中に少なくとも2つの(メタ)アクリル基を有するエチレン性不飽和化合物」の具体例としては、エチレングリコール(メタ)アクリレート、トリエチレングリコール(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−へキサンジオールジ(メタ)アクリレート、1,9−のナンジオールジ(メタ)アクリレート、ジメチロール−トリシクロデカンジ(メタ)アクリレート、ビスフェノールA型エポキシ樹脂のジ(メタ)アクリレートエステル、トリメチロールプロパントリ(メタ)アクリレートなどが挙げられるが、1分子中に1つの(メタ)アクリロイル基を有するエチレン性不飽和化合物を併用することも出来る。   Specific examples of the component (B) “ethylenically unsaturated compound having at least two (meth) acrylic groups in one molecule” include ethylene glycol (meth) acrylate, triethylene glycol (meth) acrylate, 1, 4 -Butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nandiol di (meth) acrylate, dimethylol-tricyclodecanedi (meta ) Acrylate, di (meth) acrylate ester of bisphenol A-type epoxy resin, trimethylolpropane tri (meth) acrylate, etc., but combined with an ethylenically unsaturated compound having one (meth) acryloyl group in one molecule You can also

また、(C)成分の硬化触媒については、熱重合開始剤又は光重合開始剤を用いることができる。添加量は硬化性樹脂組成物の合計100重量部に対して0.01〜10重量部であるのがよく、0.01〜5重量部であるのが好ましい。開始剤の添加量が0.01重量部に満たないと硬化が不十分であり、硬化物の強度や剛直性が低くなる。反対に5重量部を超えると、着色等の問題が生じるおそれがある。また、熱重合開始剤又は光重合開始剤は単独で用いてもよく、またその両方を併用してもよい。   Moreover, about the curing catalyst of (C) component, a thermal polymerization initiator or a photoinitiator can be used. The addition amount may be 0.01 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the curable resin composition. If the added amount of the initiator is less than 0.01 parts by weight, curing is insufficient, and the strength and rigidity of the cured product are lowered. Conversely, if it exceeds 5 parts by weight, problems such as coloring may occur. Further, the thermal polymerization initiator or the photopolymerization initiator may be used alone, or both of them may be used in combination.

このうち、熱重合開始剤としては有機過酸化物が好ましく、ケトンパーオキサイド類、ジアシルキルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーカーボネート類などが挙げられる。これらの中で触媒活性の点から、ジアルキルパーオキサイドが好ましい。具体的には、シクロヘキサノンパーオキサイド、1,1−ビス(t−ヘキサパーオキシ)シクロヘキサノン、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキサノエート等を例示することができるが、これらに何ら制限されるものではない。またこれらを単独で使用してもよく、2種以上併用してもよい。   Among these, as the thermal polymerization initiator, organic peroxides are preferable, and ketone peroxides, diacylalkyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, and carbonates. Etc. Among these, dialkyl peroxide is preferable from the viewpoint of catalytic activity. Specifically, cyclohexanone peroxide, 1,1-bis (t-hexaperoxy) cyclohexanone, cumene hydroperoxide, dicumyl peroxide, benzoyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t -Hexylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexanoate and the like can be exemplified, but are not limited thereto. Moreover, these may be used independently and may be used together 2 or more types.

光重合開始剤としてはアルキルフェノン類、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、チオキサントン類、アシルフォスフォンオキサイド類などが挙げられる。これらの中で触媒活性の点から、アルキルフェノン類が好ましい。具体的には、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロへキシル−フェニル−ケトン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−メチル−1−プロパン−1−オン、2−ヒドロキシ−1−[4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]フェニル]−2−メチル−プロパン−1−オン、2−メチル−1−(4−メチルチオフェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォルノフェニル)−ブタノン−1、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モノホリニル)フェニル]−1−ブタノン等を例示することができるが、これらに何ら制限されるものではない。またこれらを単独で使用してもよく、2種以上併用してもよい。   Examples of the photopolymerization initiator include alkylphenones, acetophenones, benzoins, benzophenones, thioxanthones, and acyl phosphooxides. Of these, alkylphenones are preferred from the viewpoint of catalytic activity. Specifically, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propane-1- ON, 1- [4- (2-hydroxyethoxy) -phenyl] -2-methyl-1-propan-1-one, 2-hydroxy-1- [4- [4- (2-hydroxy-2-methyl- Propionyl) -benzyl] phenyl] -2-methyl-propan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino- 1- (4-morpholinophenyl) -butanone-1, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-monophorinyl) phenyl] -1-butanone, etc. Illustrated However, it is not limited to these. Moreover, these may be used independently and may be used together 2 or more types.

また、本発明の硬化性樹脂組成物には、透明性を阻害しない範囲であれば、従来公知の酸化防止剤、アエロジルのような超微細シリカ、屈折率を硬化した樹脂に合わせた無機質充填剤などを機械強度の向上や熱膨張係数を調整する観点から適宜配合してもよい。   Further, in the curable resin composition of the present invention, as long as the transparency is not impaired, a conventionally known antioxidant, ultrafine silica such as Aerosil, and an inorganic filler matched to a resin whose refractive index is cured May be appropriately blended from the viewpoint of improving the mechanical strength and adjusting the thermal expansion coefficient.

本発明の硬化性樹脂組成物は熱、光、又はその両方を用いて硬化することができる。熱重合開始剤を用いて硬化を行なう場合は、熱重合開始剤と促進剤の選択により、室温から200℃前後までの広い範囲で硬化することができる。必要に応じて、ポストキュア(追加加熱)を行うようにしてもよい。一方、光重合開始剤を用いて硬化を行なう場合は、光照射によって硬化物を得ることができ、例えば波長100〜400nmの紫外線や波長400〜700nmの可視光線を照射する。用いる光の波長は特に制限されるものではないが、特に波長200〜400nmの近紫外線が好適に用いられる。紫外線発生剤として用いるランプとしては低圧水銀ランプ(出力:0.4〜4W/cm)、高圧水銀ランプ(40〜160W/cm)、超高圧水銀ランプ(173〜435W/cm)、メタルハライドランプ(80〜160W/cm)、パルスキセノンランプ(80〜160W/cm)、パルスキセノンランプ(80〜120W/cm)、無電極放電ランプ(80〜120W/cm)等を例示することができる。これらの紫外線ランプは、各々その分光分布に特徴があるため、使用する光開始剤の種類に応じて選定する。熱重合開始剤及び光重合開始剤を併用する場合は、上記条件に沿って光熱、熱光の順で順次硬化することができる。特に熱重合性と光重合性が異なる場合に効率よく使用することにより短時間で硬化することができる。更には、本発明の硬化性樹脂組成物を射出成形や圧縮成形することによって、所定の形状を有した硬化物を得るようにしてもよい。この際、成形する成形装置は特に制限されるものではない。   The curable resin composition of the present invention can be cured using heat, light, or both. When curing is performed using a thermal polymerization initiator, curing can be performed in a wide range from room temperature to around 200 ° C. depending on the selection of the thermal polymerization initiator and the accelerator. You may make it perform post-cure (additional heating) as needed. On the other hand, when hardening using a photoinitiator, hardened | cured material can be obtained by light irradiation, for example, ultraviolet rays with a wavelength of 100-400 nm and visible light with a wavelength of 400-700 nm are irradiated. The wavelength of the light to be used is not particularly limited, but near ultraviolet light having a wavelength of 200 to 400 nm is particularly preferably used. As a lamp used as an ultraviolet generator, a low-pressure mercury lamp (output: 0.4 to 4 W / cm), a high-pressure mercury lamp (40 to 160 W / cm), an ultra-high pressure mercury lamp (173 to 435 W / cm), a metal halide lamp (80 ˜160 W / cm), pulse xenon lamp (80 to 160 W / cm), pulse xenon lamp (80 to 120 W / cm), electrodeless discharge lamp (80 to 120 W / cm), and the like. Since each of these ultraviolet lamps is characterized by its spectral distribution, it is selected according to the type of photoinitiator used. When a thermal polymerization initiator and a photopolymerization initiator are used in combination, curing can be performed sequentially in the order of photothermal and thermal light in accordance with the above conditions. In particular, when the thermal polymerizability and the photopolymerizability are different, it can be cured in a short time by using it efficiently. Furthermore, you may make it obtain the hardened | cured material which has a predetermined shape by carrying out injection molding or compression molding of the curable resin composition of this invention. At this time, the molding apparatus for molding is not particularly limited.

本発明の硬化性樹脂組成物は、耐熱変色性、低熱膨張性、高透明性及び低硬化収縮性に優れるため、本来、主にガラスが用いられていた光学用途、オプトデバイス用途、表示デバイス用途の各種材料や、機械部品材料、電気・電子部品材料等を、本発明の硬化性樹脂組成物からなる成型物(硬化物)に置き換えることも可能である。例えば、はんだリフローに耐え得る耐熱性を備えることから、携帯電話、デジタルカメラ、車載カメラ等に搭載されるレンズ付きCCD、レンズ付きCMOSセンサなどのように、半導体とレンズとを一体化したカメラモジュール等の電子部品に適用することもでき、更には回折格子、偏光部品、反射鏡等のガラス代替材料にも使用することができる。   The curable resin composition of the present invention is excellent in heat discoloration, low thermal expansion, high transparency, and low curing shrinkage, so that optical applications, optical device applications, and display device applications in which glass was primarily used were originally used. It is also possible to replace these various materials, mechanical component materials, electrical / electronic component materials, and the like with moldings (cured products) made of the curable resin composition of the present invention. For example, because it has heat resistance that can withstand solder reflow, it is a camera module that integrates a semiconductor and a lens, such as a CCD with a lens and a CMOS sensor with a lens that are mounted on a mobile phone, a digital camera, an in-vehicle camera, etc. The present invention can also be applied to electronic components such as diffraction gratings, polarizing components, reflectors, and other glass substitute materials.

[合成例1]
撹拌機、滴下ロート及び温度計を備えた反応容器に、塩基性触媒として水酸化テトラメチルアンモニウム・5水和物(関東化学製)14.3gを加え、水17.0gに溶解し、続いてトルエン189mLと2−プロパノール95mLを入れた。滴下ロートに、ビニルトリメトキシシラン(信越化学株式会社製;KBM1003)46.8gを加え、反応容器を撹拌しながら、室温でビニルトリメトキシシランを3時間かけて滴下した。滴下終了後、室温で2時間撹拌した。撹拌終了後、撹拌を停止し、1日静止した。その後、反応溶液を10%クエン酸水溶液82.9gで中和した。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体シラノール基含有籠型シロキサン(21)24.9g(97%)を得た。
[Synthesis Example 1]
To a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 14.3 g of tetramethylammonium hydroxide pentahydrate (manufactured by Kanto Chemical) as a basic catalyst is added and dissolved in 17.0 g of water, followed by 189 mL of toluene and 95 mL of 2-propanol were added. 46.8 g of vinyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .; KBM1003) was added to the dropping funnel, and vinyltrimethoxysilane was added dropwise at room temperature over 3 hours while stirring the reaction vessel. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After completion of the stirring, the stirring was stopped and the mixture was left for one day. Thereafter, the reaction solution was neutralized with 82.9 g of a 10% aqueous citric acid solution. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 24.9 g (97%) of a colorless and transparent viscous liquid silanol group-containing cage-type siloxane (21).

上記で得た無色透明粘性液体シラノール基含有籠型シロキサン(21)のGPCを測定した結果を図1に示す。図1から、Mw=1005、Mw/Mn=1.225であることが確認された。その中でも面積比70%を占めている低分子側のピークは、Mw=668、Mw/Mn=1.020であった。次に、H1NMRを測定した結果を図2に示す。5.8〜6.2ppmのビニル基によるマルチプレットピーク、及び1.6ppmのシラノール基のピーク積分比は、ビニル基1に対して、シラノール基0.174であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、下記式
[R1SiO3/2]n[HO1/2]k (2)
として仮定した場合、nが8、及びkが2(R1はビニル基)であることが示唆された。
The result of having measured GPC of the colorless transparent viscous liquid silanol group containing cage-type siloxane (21) obtained above is shown in FIG. From FIG. 1, it was confirmed that Mw = 1005 and Mw / Mn = 1.225. Among them, the peaks on the low molecular side occupying 70% of the area ratio were Mw = 668 and Mw / Mn = 1.020. Next, the result of measuring H 1 NMR is shown in FIG. The peak integration ratio of the multiplet peak due to the vinyl group of 5.8 to 6.2 ppm and the silanol group of 1.6 ppm was 0.174 with respect to the vinyl group 1. Therefore, the compound estimated from the low molecular side Mw that is the main peak and the integration ratio is the following formula:
[R 1 SiO 3/2 ] n [HO 1/2 ] k (2)
It was suggested that n is 8 and k is 2 (R 1 is a vinyl group).

上記で得た無色透明粘性液体シラノール基含有籠型シロキサン(21)のシラノール基の存在を確認するためにIRを測定した。その結果、3100〜3400cm-1にシラノール基由来のブロードピークを有していたことから、シラノール基の存在を確認した。以上の結果より、上記式(2)で表される無色透明粘性液体の構造はシラノール基含有籠型シロキサンと判断された。 In order to confirm the presence of the silanol group of the colorless and transparent viscous liquid silanol group-containing cage-type siloxane (21) obtained above, IR was measured. As a result, it had a broad peak derived from silanol groups at 3100 to 3400 cm −1 , so the presence of silanol groups was confirmed. From the above results, the structure of the colorless and transparent viscous liquid represented by the above formula (2) was determined to be silanol group-containing cage-type siloxane.

上記で得られたシラノール基含籠型シルセスキオキサン(21)のエレクトロスプレーイオン化法質量分析(ESI-MS)を行った結果を表1に示す。下記表1には、質量分析して検出された主なピークとn、kに当てはまる数値をまとめて示す。検出されるピークm/zは、シラノール基含有籠型シロキサン(21)の分子量に、アンモニウムイオン(Mw=18)が付加した値である。この質量分析の結果からも籠構造を形成するシロキサン結合の一部が開裂し、末端部にシラノール基を有する構造となっていることが示される。   Table 1 shows the results of electrospray ionization mass spectrometry (ESI-MS) of the silanol group-containing silsesquioxane (21) obtained above. Table 1 below summarizes the main peaks detected by mass spectrometry and the numerical values applicable to n and k. The detected peak m / z is a value obtained by adding ammonium ions (Mw = 18) to the molecular weight of the silanol group-containing cage-type siloxane (21). From the result of mass spectrometry, it is shown that a part of the siloxane bond forming the cocoon structure is cleaved to have a structure having a silanol group at the terminal portion.

Figure 0005383250
Figure 0005383250

撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シロキサン(21)23.7g、及び下記式(19)

Figure 0005383250
で表されるエポキシアクリレート(共栄社化学株式会社製;3002M)19.3gをはかり込み窒素置換し、ピリジン60mLに溶解した。滴下ロートにジフェニルジクロロシラン19.2g及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(22)を52.1g(回収率97%)得た。 In a reaction vessel equipped with a stirrer and a dropping funnel, 23.7 g of the silanol group-containing cage-type siloxane (21) obtained above and the following formula (19)
Figure 0005383250
19.3 g of epoxy acrylate represented by (Kyoeisha Chemical Co., Ltd .; 3002M) was weighed in and purged with nitrogen, and dissolved in 60 mL of pyridine. Into the dropping funnel, 19.2 g of diphenyldichlorosilane and 76 mL of pyridine were added and dropped at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 52.1 g (97% recovery rate) of an organic-inorganic composite (22) as a colorless transparent viscous liquid.

上記で得た無色透明粘性液体の有機−無機複合体(22)のGPCを測定した結果を図3に示す。図3から、Mw=8035、Mw/Mn=2.755であった。従って、得られた有機−無機複合体(22)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1はビニル基、R2はフェニル基、及びXは式(19)からなる)で表され、nは6〜14、m+l=5であることを確認した。
The result of having measured GPC of the organic-inorganic composite (22) of the colorless and transparent viscous liquid obtained above is shown in FIG. From FIG. 3, it was Mw = 8035 and Mw / Mn = 2.755. Therefore, the obtained organic-inorganic composite (22) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is a vinyl group, R 2 is a phenyl group, and X is composed of the formula (19)). It was confirmed that n was 6 to 14 and m + 1 = 5.

[合成例2]
撹拌機、滴下ロート及び温度計を備えた反応容器に、塩基性触媒として水酸化テトラメチルアンモニウム・5水和物14.3gを加え、水17gに溶解し、続いてトルエン189mLと2−プロパノール95mLを入れた。滴下ロートに、ビニルトリメトキシシラン(信越化学工業株式会社製;KBM1003)23.4g、及びエチルトリメトキシシラン(信越化学工業株式会社製;LS−890)23.7gを加え、反応容器を撹拌しながら、室温でビニルトリメトキシシランとエチルトリメトキシシランの混合液を3時間かけて滴下した。滴下終了後、室温で2時間撹拌した。撹拌終了後、撹拌を停止し、1日静止した。次に、反応容器にディンスターク、冷却管を備え、トルエン95mLを加え、オイルバスを用いて90℃で2−プロパノール、及び加水分解の際に生じたメタノールの除去を行った。その後、オイルバスの温度を120℃に設定し、水を除去しながらトルエンを過熱還流し、再縮合反応を行った。トルエン還流後、3時間撹拌した後、室温に戻して反応を終了とした。反応溶液を10%クエン酸水溶液82.9gで中和した。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体シラノール基含有籠型シロキサン(23)25.5g(98%)を得た。
[Synthesis Example 2]
To a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 14.3 g of tetramethylammonium hydroxide pentahydrate as a basic catalyst is added and dissolved in 17 g of water, followed by 189 mL of toluene and 95 mL of 2-propanol. Put. To the dropping funnel, 23.4 g of vinyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd .; KBM1003) and 23.7 g of ethyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd .; LS-890) are added, and the reaction vessel is stirred. Then, a mixed solution of vinyltrimethoxysilane and ethyltrimethoxysilane was added dropwise at room temperature over 3 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After completion of the stirring, the stirring was stopped and the mixture was left for one day. Next, the reaction vessel was equipped with a Din Stark and a cooling tube, 95 mL of toluene was added, and 2-propanol and methanol generated during hydrolysis were removed at 90 ° C. using an oil bath. Thereafter, the temperature of the oil bath was set to 120 ° C., and toluene was heated to reflux while removing water to perform a recondensation reaction. After refluxing toluene, the mixture was stirred for 3 hours and then returned to room temperature to complete the reaction. The reaction solution was neutralized with 82.9 g of 10% aqueous citric acid solution. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 25.5 g (98%) of a colorless and transparent viscous liquid silanol group-containing cage-type siloxane (23).

上記で得た無色透明粘性液体シラノール基含有籠型シロキサン(23)のGPCを測定した結果を図4に示す。図から、Mw=863、Mw/Mn=1.195であることが確認された。その中でも面積比70%を占めている低分子側のピークは、Mw=650、Mw/Mn=1.032であった。次に、1H−NMRを測定した結果、5.8〜6.2ppmのビニル基によるマルチプレットピーク、0.4〜1.2ppmのエチル基によるマルチプレットピーク、及び1.6ppmのシラノール基のピーク積分比は、ビニル基1に対してエチル基1、シラノール基0.189であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、下記式(2)
[R1SiO3/2]n[HO1/2]k (2)
として仮定した場合、nが8、及びkが2(R1はビニル基:エチル基=1:1)であることが示唆された。
The result of having measured GPC of the colorless transparent viscous liquid silanol group containing cage type | mold siloxane (23) obtained above is shown in FIG. From the figure, it was confirmed that Mw = 863 and Mw / Mn = 1.195. Among them, the peaks on the low molecular side occupying 70% of the area ratio were Mw = 650 and Mw / Mn = 1.032. Next, as a result of measuring 1 H-NMR, a multiplet peak due to a vinyl group of 5.8 to 6.2 ppm, a multiplet peak due to an ethyl group of 0.4 to 1.2 ppm, and a silanol group of 1.6 ppm The peak integration ratio was 1 for ethyl group and 0.189 for silanol group relative to 1 vinyl group. Therefore, the compound estimated from the low molecular side Mw which is the main peak and the integration ratio is represented by the following formula (2).
[R 1 SiO 3/2 ] n [HO 1/2 ] k (2)
It was suggested that n is 8 and k is 2 (R 1 is vinyl group: ethyl group = 1: 1).

撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シルセスキオキサン化合物(23)20.0g、及びシクロヘキサンジメタノール(東京化成株式会社製)4.4gをはかり込み窒素置換し、ピリジン61mLに溶解した。滴下ロートにジフェニルジクロロシラン19.2g及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(24)を35.3g(回収率92%)得た。   In a reaction vessel equipped with a stirrer and a dropping funnel, 20.0 g of the silanol group-containing cage-type silsesquioxane compound (23) obtained above and 4.4 g of cyclohexanedimethanol (manufactured by Tokyo Chemical Industry Co., Ltd.) are weighed. The solution was purged with nitrogen and dissolved in 61 mL of pyridine. Into the dropping funnel, 19.2 g of diphenyldichlorosilane and 76 mL of pyridine were added and dropped at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered and concentrated to obtain 35.3 g (recovery rate: 92%) of an organic-inorganic composite (24) as a colorless transparent viscous liquid.

上記で得た有機−無機複合体(24)のGPCを測定した結果を図5に示す。図5から、Mw=13937、Mw/Mn=4.369であった。従って、得られた有機−無機複合体(24)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1はビニル基:エチル基=1:1、R2はフェニル基及びXはシクロヘキサンジメタノールからなる)で表され、nは6〜14、m+l=11であることを確認した。
The result of having measured GPC of the organic-inorganic composite (24) obtained above is shown in FIG. From FIG. 5, it was Mw = 13937 and Mw / Mn = 4.369. Therefore, the obtained organic-inorganic composite (24) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is represented by vinyl group: ethyl group = 1: 1, R 2 is composed of phenyl group and X is composed of cyclohexanedimethanol), and n was confirmed to be 6 to 14 and m + 1 = 11.

[合成例3]
撹拌機、滴下ロート及び温度計を備えた反応容器に、塩基性触媒として水酸化テトラメチルアンモニウム・5水和物14.3gを加え、水17gに溶解し、続いてトルエン189mLと2−プロパノール95mLを入れた。滴下ロートに、3−メタクリロキシプロピルトリメトキシキシシラン(信越化学工業株式会社製;LS−3380)78.4gを加え、反応容器を撹拌しながら、室温で3−メタクリロキシプロピルトリメトキシシランを3時間かけて滴下した。滴下終了後、室温で2時間撹拌した。撹拌終了後、撹拌を停止し、1日静止した。次に、反応容器にディンスターク、冷却管を備え、トルエン95mLを加え、オイルバスを用いて90℃で2−プロパノール、及び加水分解の際に生じたメタノールの除去を行った。その後、オイルバスの温度を120℃に設定し、水を除去しながらトルエンを過熱還流し、再縮合反応を行った。トルエン還流後、3時間撹拌した後、室温に戻して反応を終了とした。反応溶液を10%クエン酸水溶液82.9gで中和した。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体シラノール基含有籠型シロキサン(25)47.4g(98%)を得た。
[Synthesis Example 3]
To a reaction vessel equipped with a stirrer, a dropping funnel and a thermometer, 14.3 g of tetramethylammonium hydroxide pentahydrate as a basic catalyst is added and dissolved in 17 g of water, followed by 189 mL of toluene and 95 mL of 2-propanol. Put. To the dropping funnel, 78.4 g of 3-methacryloxypropyltrimethoxyxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .; LS-3380) was added, and 3-methacryloxypropyltrimethoxysilane was added at room temperature while stirring the reaction vessel. It was added dropwise over time. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After completion of the stirring, the stirring was stopped and the mixture was left for one day. Next, the reaction vessel was equipped with a Din Stark and a cooling tube, 95 mL of toluene was added, and 2-propanol and methanol generated during hydrolysis were removed at 90 ° C. using an oil bath. Thereafter, the temperature of the oil bath was set to 120 ° C., and toluene was heated to reflux while removing water to perform a recondensation reaction. After refluxing toluene, the mixture was stirred for 3 hours and then returned to room temperature to complete the reaction. The reaction solution was neutralized with 82.9 g of 10% aqueous citric acid solution. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 47.4 g (98%) of a colorless transparent viscous liquid silanol group-containing cage-type siloxane (25).

上記で得た無色透明粘性液体シラノール基含有籠型シロキサン(25)のGPCを測定した結果を図6に示す。図から、Mw=2156、Mw/Mn=1.092であることが確認された。その中でも面積比70%を占めている低分子側のピークは、Mw=1480、Mw/Mn=1.028であった。次に、1H−NMRを測定した結果、5.4〜6.2ppmのメタクリル基によるピーク、及び1.6ppmのシラノール基のピーク積分比は、メタクリル基1に対してシラノール基0.189であった。従って、メインピークである低分子側Mw及び積分比から見積もられた化合物は、下記式(2)
[R1SiO3/2]n[HO1/2]k (2)
として仮定した場合、nが8、及びkが2(R1は3−メタクリロキシプロピル基)であることが示唆された。
The result of having measured GPC of the colorless transparent viscous liquid silanol group containing cage-type siloxane (25) obtained above is shown in FIG. From the figure, it was confirmed that Mw = 2156 and Mw / Mn = 1.092. Among them, the peaks on the low molecular side occupying 70% of the area ratio were Mw = 1480 and Mw / Mn = 1.028. Next, as a result of measuring 1 H-NMR, the peak integration ratio of 5.4 to 6.2 ppm methacryl group and 1.6 ppm silanol group was 0.189 with respect to methacryl group 1. there were. Therefore, the compound estimated from the low molecular side Mw which is the main peak and the integration ratio is represented by the following formula (2).
[R 1 SiO 3/2 ] n [HO 1/2 ] k (2)
It was suggested that n is 8, and k is 2 (R 1 is a 3-methacryloxypropyl group).

撹拌機及び滴下ロートを備えた反応容器に、上記で得られたシラノール基含有籠型シルセスキオキサン化合物(25)20.0g、及び下記式(20)

Figure 0005383250
(但し、R3は−(CH2)6−、Mw=1000である旭化成株式会社製;ETERNACOLL UH−100)で表される有機ジオール化合物13.8gをはかり込み窒素置換し、ピリジン61mLに溶解した。滴下ロートにジフェニルジクロロシラン8.7g、及びピリジン76mLを入れ、室温で2時間かけて滴下した。滴下終了後、室温で2時間撹拌した。2時間撹拌後、トルエン140mL、蒸留水70mLを加えた。水層をトルエンで抽出し、有機層を蒸留水で3回洗浄した。有機層を無水硫酸マグネシウムで乾燥、ろ別し、濃縮することで無色透明粘性液体の有機−無機複合体(26)を40.1g(回収率95%)得た。 In a reaction vessel equipped with a stirrer and a dropping funnel, 20.0 g of the silanol group-containing cage silsesquioxane compound (25) obtained above and the following formula (20)
Figure 0005383250
(However, R 3 is — (CH 2 ) 6 —, Mw = 1000, manufactured by Asahi Kasei Co., Ltd .; ETERNACOLL UH-100). did. Into the dropping funnel, 8.7 g of diphenyldichlorosilane and 76 mL of pyridine were added and dropped at room temperature over 2 hours. After completion of dropping, the mixture was stirred at room temperature for 2 hours. After stirring for 2 hours, 140 mL of toluene and 70 mL of distilled water were added. The aqueous layer was extracted with toluene, and the organic layer was washed 3 times with distilled water. The organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated to obtain 40.1 g (recovery rate: 95%) of an organic-inorganic composite (26) as a colorless transparent viscous liquid.

上記で得た有機−無機複合体(26)のGPCを測定した結果を図7に示す。図7から、Mw=28164、Mw/Mn=7.277であった。従って、得られた有機−無機複合体(26)は、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(R1は3−メタクリロキシプロピル基、R2はフェニル基、及びXは上記式(20)からなる)で表され、nは6〜14、m+l=10であることを確認した。
The result of having measured GPC of the organic-inorganic composite (26) obtained above is shown in FIG. From FIG. 7, it was Mw = 28164 and Mw / Mn = 7.277. Therefore, the obtained organic-inorganic composite (26) has the following formula (1):
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(R 1 is a 3-methacryloxypropyl group, R 2 is a phenyl group, and X is composed of the above formula (20)), and n was confirmed to be 6 to 14 and m + 1 = 10.

[実施例1]
(A)成分である上記合成例1で得られた有機−無機複合体(22)70重量部、及び(B)成分である下記式(27)

Figure 0005383250
(共栄社化学株式会社製;DCP−A)で表される化合物30重量部を混合し、(C)成分である下記式(28)
Figure 0005383250
(日本油脂株式会社製;パークミルD)で表される硬化触媒を(A)、(B)成分の合計100重量部に対して1重量部混合し、よく撹拌し、実施例1の硬化性樹脂組成物を調製した。 [Example 1]
70 parts by weight of the organic-inorganic composite (22) obtained in Synthesis Example 1 as component (A), and the following formula (27) as component (B)
Figure 0005383250
30 parts by weight of a compound represented by (Kyoeisha Chemical Co., Ltd .; DCP-A) is mixed, and the following formula (28) which is the component (C)
Figure 0005383250
1 part by weight of the curing catalyst represented by (Nippon Yushi Co., Ltd .; Park Mill D) is mixed with 100 parts by weight of the total of the components (A) and (B), stirred well, and the curable resin of Example 1 A composition was prepared.

[実施例2]
有機−無機複合体(22)の代わりに、(A)成分として上記合成例2で得られた有機−無機複合体(24)を70重量部用いた以外は実施例1と同様にして、実施例2に係る硬化性樹脂組成物を調製した。
[Example 2]
Implementation was conducted in the same manner as in Example 1 except that 70 parts by weight of the organic-inorganic composite (24) obtained in Synthesis Example 2 was used as the component (A) instead of the organic-inorganic composite (22). A curable resin composition according to Example 2 was prepared.

[実施例3]
(A)成分である上記合成例3で得られた有機−無機複合体(26)70重量部、及び(B)成分である上記式(27)30重量部を混合し、(C)成分である下記式(29)

Figure 0005383250
(チバ・ジャパン株式会社製;Irgacure184)で表される硬化触媒を(A)、(B)成分の合計100重量部に対して1重量部混合し、よく撹拌し、実施例3の硬化性樹脂組成物として調製した。 [Example 3]
70 parts by weight of the organic-inorganic composite (26) obtained in Synthesis Example 3 as the component (A) and 30 parts by weight of the formula (27) as the component (B) are mixed. The following formula (29)
Figure 0005383250
1 part by weight of a curing catalyst represented by (Ciba Japan Co., Ltd .; Irgacure184) is mixed with 100 parts by weight of the total of components (A) and (B), stirred well, and the curable resin of Example 3 Prepared as a composition.

[実施例4]
(A)成分である上記合成例2で得られた有機−無機複合体(24)80重量部、及び(B)成分である下記式(30)

Figure 0005383250
で表されるトリメチロールプロパントリ(メタ)アクリレート(共栄社化学株式会社製;TMPTA)20重量部を混合し、(C)成分である上記式(28)及び(29)の硬化触媒をそれぞれ1重量部混合し、よく撹拌し、実施例5の硬化性樹脂として調製した。 [Example 4]
80 parts by weight of the organic-inorganic composite (24) obtained in Synthesis Example 2 as component (A), and the following formula (30) as component (B)
Figure 0005383250
20 parts by weight of trimethylolpropane tri (meth) acrylate (manufactured by Kyoeisha Chemical Co., Ltd .; TMPTA) represented by the formula (1) is mixed with each of the curing catalysts of the above formulas (28) and (29) as component (C) Part of the mixture was mixed and stirred well to prepare a curable resin of Example 5.

[比較例1]
上記合成例1で調製したシラノール基含有籠型シロキサン(21)100重量部に対して(C)成分の上記式(28)の硬化触媒を1重量部混合し、よく撹拌し、比較例1の組成物を調製した。
[Comparative Example 1]
1 part by weight of the curing catalyst of the above formula (28) as the component (C) is mixed with 100 parts by weight of the silanol group-containing cage-type siloxane (21) prepared in Synthesis Example 1 and stirred well. A composition was prepared.

[比較例2]
(B)成分である上記式(27)で表される化合物100重量部に対して(C)成分の上記式(28)の硬化触媒を1重量部混合し、よく撹拌し、比較例2の組成物を調製した。
[Comparative Example 2]
1 part by weight of the curing catalyst of the above formula (28) as the component (C) is mixed with 100 parts by weight of the compound represented by the above formula (27) as the component (B), and stirred well. A composition was prepared.

上記実施例及び比較例で調製した組成物を用いて、ガラス板に組み込んだ型に厚み2mmとなるように流し込み、[実施例1、2]及び[比較例1、2]については120℃で1時間、150℃で1時間、180℃で2時間それぞれ加熱して成形し、[実施例3]については30W/cmの高圧水銀ランプを用いて、2000mJ/cm2の積算露光量で成形し、[実施例4]は30W/cmの高圧水銀ランプを用いて、2000mJ/cm2の積算露光量で硬化した後、更に200℃で1時間加熱して、それぞれ、50mm×25mm×厚さ2mmの試験用の成形物を得た。 Using the compositions prepared in the above Examples and Comparative Examples, it was poured into a mold incorporated in a glass plate so as to have a thickness of 2 mm, and [Examples 1 and 2] and [Comparative Examples 1 and 2] were at 120 ° C. Molded by heating for 1 hour, 150 ° C for 1 hour, and 180 ° C for 2 hours, respectively, and for [Example 3], a 30 W / cm high-pressure mercury lamp was used and molded with an integrated exposure of 2000 mJ / cm 2. [Example 4] was cured with an integrated exposure amount of 2000 mJ / cm 2 using a 30 W / cm high-pressure mercury lamp, and further heated at 200 ° C. for 1 hour, 50 mm × 25 mm × thickness 2 mm, respectively. A molded product for the test was obtained.

硬化性樹脂組成物の粘度、及び得られた成形物について、下記方法により硬化収縮率、熱膨張係数、リフロー試験後の耐熱性、及び透明性について評価した。結果を表2に示す。   With respect to the viscosity of the curable resin composition and the obtained molded product, the curing shrinkage rate, the thermal expansion coefficient, the heat resistance after the reflow test, and the transparency were evaluated by the following methods. The results are shown in Table 2.

<粘度>
24℃、回転速度D=1/s時の粘度をR/Sレオメーター(米国ブルックフィールド社製)にて評価した。粘度20Pa・s以上ではRC−25−1の測定治具を使用し、20未満ではRC50−1の治具を使用した。D=1/s時点の粘度が測定できないものについては、D=5〜100/sの値を外挿して硬化性樹脂組成物の粘度として評価した。
<Viscosity>
The viscosity at 24 ° C. and rotational speed D = 1 / s was evaluated with an R / S rheometer (manufactured by Brookfield, USA). When the viscosity was 20 Pa · s or more, an RC-25-1 measuring jig was used, and when the viscosity was less than 20, an RC50-1 jig was used. About the thing which cannot measure the viscosity at the time of D = 1 / s, the value of D = 5-100 / s was extrapolated and evaluated as the viscosity of a curable resin composition.

<硬化収縮率>
硬化前後の比重を測定し体積収縮率を算出した。硬化性樹脂組成物の比重はピクノメーター法(JIS K 7112)、硬化物は水中置換法(JIS K 7112)により求めた。
硬化収縮率=(1−硬化前の樹脂の比重/硬化後の樹脂の比重)×100
<Curing shrinkage>
The specific gravity before and after curing was measured and the volume shrinkage was calculated. The specific gravity of the curable resin composition was determined by a pycnometer method (JIS K 7112), and the cured product was determined by an underwater substitution method (JIS K 7112).
Curing shrinkage = (1-specific gravity of resin before curing / specific gravity of resin after curing) × 100

<熱膨張係数>
熱機械分析法に基づき、昇温速度5℃/min及び圧縮荷重0.1Nの条件で求めた。
<Coefficient of thermal expansion>
Based on the thermomechanical analysis method, it calculated | required on conditions with a temperature increase rate of 5 degree-C / min and a compressive load of 0.1N.

<透過率>
吸光度計(島津製作所製、分光光度計UV−3100)を用いて、波長450nmにおける硬化物の透過率を評価した。また、硬化物を、260℃、10分乾燥機内に保持した後の透過率も評価した。
<Transmissivity>
The transmittance of the cured product at a wavelength of 450 nm was evaluated using an absorptiometer (manufactured by Shimadzu Corporation, spectrophotometer UV-3100). Moreover, the transmittance | permeability after hold | maintaining a hardened | cured material in a dryer at 260 degreeC for 10 minutes was also evaluated.

<屈折率>
屈折率計(アタゴ社製、DR−M2)を用いて評価した。また、硬化物を260℃、10分乾燥機内に保持した後の屈折率も評価した。
<Refractive index>
Evaluation was performed using a refractometer (DR-M2 manufactured by Atago Co., Ltd.). Moreover, the refractive index after hold | maintaining hardened | cured material in a dryer at 260 degreeC for 10 minutes was also evaluated.

<濁度>
(日本電色社製、NDH2000)を用いて、硬化物のヘイズを評価した。
<Turbidity>
(Nippon Denshoku make, NDH2000) was used and the haze of hardened | cured material was evaluated.

<硬化後の硬化物の状態>
割れについて目視で確認した。
<State of cured product after curing>
The crack was visually confirmed.

Figure 0005383250
Figure 0005383250

Claims (2)

(A)1分子中に脂肪族不飽和結合を2個以上有し、且つ、籠型シロキサンと有機成分からなる有機−無機複合体であって、下記式(1)
[[(R1SiO3/2)n](R2 2SiO2/2)]m[[XO2/2](R2 2SiO2/2)]l (1)
(但し、R1及びR2は、ビニル基、アリル基、アルキル基、アリール基、(メタ)アクリロイル基又はオキシラン環を有する基であって互いに同じか異なるものであってもよく、Xは、炭素数5〜50の脂肪族構造、脂環式構造を有する炭素数5〜50の、又は芳香族構造を有する炭素数5〜50ののいずれかであり、互いに異なる2種以上を含んでもよく、n、m及びlはそれぞれ平均値を表し、nは6〜14の数であり、m+lは2〜2,000である。)で表され、重量平均分子量がMw=5,000〜1,000,000であり、1分子中に不飽和二重結合を有するビニル基、アリル基、(メタ)アクリロイル基からなる群から選ばれた1種又は2種以上の反応性官能基を少なくとも2つ以上有する有機−無機複合体、
(B)1分子中に少なくとも2つの(メタ)アクリル基を有するエチレン性不飽和化合物、及び
(C)硬化触媒
を必須成分とし、(A)、(B)及び(C)成分の合計100重量部に対し、(A)成分の有機−無機複合体を主成分として少なくとも30重量部以上含有することを特徴とする硬化性樹脂組成物。
(A) An organic-inorganic composite having two or more aliphatic unsaturated bonds in one molecule and comprising a cage siloxane and an organic component, which is represented by the following formula (1)
[[(R 1 SiO 3/2 ) n ] (R 2 2 SiO 2/2 )] m [[XO 2/2 ] (R 2 2 SiO 2/2 )] l (1)
(However, R 1 and R 2 may be vinyl groups, allyl groups, alkyl groups, aryl groups, (meth) acryloyl groups, or groups having an oxirane ring, and may be the same or different from each other. aliphatic structure of 5 to 50 carbon atoms, group having 5 to 50 carbon atoms having an alicyclic structure, or any one of the groups having 5 to 50 carbon atoms having an aromatic structure, comprising two or more different from each other N, m and l each represent an average value, n is a number from 6 to 14, and m + l is from 2 to 2,000), and the weight average molecular weight is Mw = 5,000 to 1,000,000 at least one or more reactive functional groups selected from the group consisting of a vinyl group having an unsaturated double bond in one molecule, an allyl group, and a (meth) acryloyl group An organic-inorganic composite having two or more,
(B) an ethylenically unsaturated compound having at least two (meth) acrylic groups in one molecule, and
(C) A curing catalyst is an essential component, and the organic-inorganic composite of component (A) is contained as a main component in an amount of at least 30 parts by weight based on 100 parts by weight of components (A), (B) and (C) A curable resin composition characterized by comprising:
請求項1記載の硬化性樹脂組成物を、熱、光、またはその両方を用いて硬化して得た硬化物。 The curable resin composition according to claim 1 Symbol placement, heat, light, or cured product obtained by curing using both.
JP2009044626A 2009-02-26 2009-02-26 Curable resin composition and cured product Active JP5383250B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009044626A JP5383250B2 (en) 2009-02-26 2009-02-26 Curable resin composition and cured product
TW99102533A TWI470004B (en) 2009-02-26 2010-01-29 Curable resin composition and cured article
KR1020100009470A KR101624924B1 (en) 2009-02-26 2010-02-02 Curable resin composition and cured product
CN2010101177072A CN101857727B (en) 2009-02-26 2010-02-11 Curable resin composition and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044626A JP5383250B2 (en) 2009-02-26 2009-02-26 Curable resin composition and cured product

Publications (2)

Publication Number Publication Date
JP2010195986A JP2010195986A (en) 2010-09-09
JP5383250B2 true JP5383250B2 (en) 2014-01-08

Family

ID=42821027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044626A Active JP5383250B2 (en) 2009-02-26 2009-02-26 Curable resin composition and cured product

Country Status (4)

Country Link
JP (1) JP5383250B2 (en)
KR (1) KR101624924B1 (en)
CN (1) CN101857727B (en)
TW (1) TWI470004B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336399B2 (en) * 2010-02-03 2013-11-06 新日鉄住金化学株式会社 Heat-resistant compound lens
JP5522116B2 (en) * 2011-04-28 2014-06-18 信越化学工業株式会社 Addition-curing silicone composition and optical semiconductor device using the same
JP6736051B2 (en) * 2016-05-30 2020-08-05 協立化学産業株式会社 Epoxy resin, completely modified epoxy resin and curable composition containing them
JP6751370B2 (en) * 2017-05-10 2020-09-02 信越化学工業株式会社 Curable silicone resin composition, optical semiconductor element sealing material, and optical semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1162472C (en) * 1999-07-27 2004-08-18 博士伦公司 Contact lens material
JP4381636B2 (en) * 2001-11-05 2009-12-09 新日鐵化学株式会社 Silicone resin composition and silicone resin molded article
JP4296053B2 (en) * 2003-07-04 2009-07-15 富士フイルム株式会社 Intermediate layer composition for multilayer resist process and pattern forming method using the same
JP4801320B2 (en) * 2003-12-19 2011-10-26 東レ・ダウコーニング株式会社 Addition reaction curable organopolysiloxane resin composition
JP2005290352A (en) * 2004-03-12 2005-10-20 Asahi Kasei Corp Compound having basket-shaped silsesquioxane structure
TWI499619B (en) * 2007-12-27 2015-09-11 Nippon Steel & Sumikin Chem Co Containing a curable poly cage-shaped structure of silicon oxide copolymer and its manufacturing method and use of the cage structure-containing curable silicon oxide copolymer of poly curable resin composition and cured
JP5234317B2 (en) * 2008-01-08 2013-07-10 株式会社ニコン Cage-type polysilsesquioxane derivative, resin precursor composition for optical material containing the same, resin for optical material, optical element, and production method thereof
JP2009256662A (en) * 2008-03-26 2009-11-05 Nagase Chemtex Corp Silsesquioxane derivative and method for producing the same
JP2010064452A (en) * 2008-09-12 2010-03-25 Asahi Kasei E-Materials Corp Curable resin composition

Also Published As

Publication number Publication date
TWI470004B (en) 2015-01-21
JP2010195986A (en) 2010-09-09
KR20100097597A (en) 2010-09-03
TW201035175A (en) 2010-10-01
CN101857727A (en) 2010-10-13
CN101857727B (en) 2013-03-27
KR101624924B1 (en) 2016-05-27

Similar Documents

Publication Publication Date Title
WO2009119253A1 (en) Silanol-group-containing curable cage-type silsesquioxane compound, cage-structure-containing curable silicone copolymer, processes for producing these, and curable resin composition
CN103068884B (en) Photosensitive silicone resin composition
KR101580246B1 (en) Silicone resins and manufacturing method thereof, as well as curable resin compositions that comprise said silicone resins
JP6021605B2 (en) Cage type silsesquioxane compound, curable resin composition and resin cured product using the same
JP2009173759A (en) Modified product of polyhedral-structure polysiloxane, and composition and cured product using the modified product
JP5342795B2 (en) 籠 Structure-containing curable silicone copolymer, method for producing the same, curable resin composition using 籠 structure-containing curable silicone copolymer, and cured product thereof
JP2009155442A (en) Resin composition for lens and its cured material
JP5383250B2 (en) Curable resin composition and cured product
JP5073738B2 (en) lens
WO2009084562A1 (en) Curable silicone copolymer containing cage structure and process for production thereof, and curable resin composition comprising curable silicone copolymer containing cage structure and cured product thereof
JP5073450B2 (en) Manufacturing method of heat-resistant compound lens
JP6338327B2 (en) Curable resin composition, cured product obtained by curing the composition
JP5844796B2 (en) Curable silicone resin composition and silicone resin cured product
JP4872358B2 (en) Resin composition, optical member using the same, and method for producing the same
CN103154053A (en) Photosensitive resin composition and method for producing same
JP2015025075A (en) Polymerizable composition containing reactive silicone compound
JP5571329B2 (en) A polyhedral polysiloxane modified product and a composition containing the modified product.
JP5271713B2 (en) Radiation curable silicone composition
JP5336399B2 (en) Heat-resistant compound lens
JP2011016968A (en) Polyhedron-structured polysiloxane modified product, producing method of the same and composition containing the same modified product
JP5447458B2 (en) Resin composition, optical member using the same, and method for producing the same
JP2012082303A (en) Curable composition
JP2014084351A (en) Modified product of polyorganosiloxane, composition containing the modified product, and cured product obtained by curing the composition
TW202406993A (en) Silsesquioxane derivative and method of producing the same, curable composition, hard coating agent, cured product, hard coating, and base material
JP5877028B2 (en) Modified polyhedral polysiloxane and composition containing the modified

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250