[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5381901B2 - ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof - Google Patents

ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof Download PDF

Info

Publication number
JP5381901B2
JP5381901B2 JP2010121253A JP2010121253A JP5381901B2 JP 5381901 B2 JP5381901 B2 JP 5381901B2 JP 2010121253 A JP2010121253 A JP 2010121253A JP 2010121253 A JP2010121253 A JP 2010121253A JP 5381901 B2 JP5381901 B2 JP 5381901B2
Authority
JP
Japan
Prior art keywords
steel pipe
braces
less
steel
buckling resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010121253A
Other languages
Japanese (ja)
Other versions
JP2011246972A (en
Inventor
孝聡 福士
英幸 中村
洋司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010121253A priority Critical patent/JP5381901B2/en
Publication of JP2011246972A publication Critical patent/JP2011246972A/en
Application granted granted Critical
Publication of JP5381901B2 publication Critical patent/JP5381901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、建物の耐震補強材として用いられるブレースを構成する耐座屈特性に優れたブレース用電縫鋼管及びその製造方法に関するものである。   The present invention relates to an electric-welded steel pipe for braces having excellent buckling resistance constituting a brace used as a seismic reinforcement for buildings and a method for manufacturing the same.

建物の耐震補強材として用いられるブレースとして、鋼管を用いた鋼管ブレース(特許文献1)が知られている。ブレースは地震の発生時に建物の倒壊を防ぐためのものであり、耐座屈特性が要求される。地震の振動は繰り返されるため、繰り返し載荷時に荷重低下の小さいものが有利である。特許文献1の鋼管ブレースは二重鋼管構造とすることにより耐座屈特性を高めたものであるが、構造が複雑化するためコスト高となる。そこで単一鋼管によるブレースが求められている。   A steel pipe brace (Patent Document 1) using a steel pipe is known as a brace used as a seismic reinforcement for buildings. Braces are intended to prevent the building from collapsing in the event of an earthquake and require buckling resistance. Since earthquake vibration is repeated, it is advantageous to have a small load drop during repeated loading. The steel pipe brace of Patent Document 1 has a double steel pipe structure to improve the buckling resistance. However, since the structure becomes complicated, the cost becomes high. Therefore, there is a demand for braces using a single steel pipe.

非特許文献1である日本建築学会論文報告集260号の104頁には、シームレス鋼管よりも安価に製造できる電縫鋼管を、ブレースとして使用することが記載されている。しかし一般的な電縫鋼管は繰り返し載荷時の荷重低下が大きく、単一鋼管でブレースとして用いるには耐座屈特性が不十分であった。   On page 104 of the Architectural Institute of Japan Proceedings No. 260, which is Non-Patent Document 1, it is described that an ERW steel pipe that can be manufactured at a lower cost than a seamless steel pipe is used as a brace. However, general electric resistance welded steel pipes have a large load drop during repeated loading, and their buckling resistance is insufficient for use as braces with a single steel pipe.

特開2008−223415号公報JP 2008-223415 A

日本建築学会論文報告集260号、昭和52年10月発行、99〜108頁「鉄構造筋違付骨格の復元力特性」The Architectural Institute of Japan Proceedings No. 260, published in October 1977, pp. 99-108 “Resilience characteristics of skeletal skeletal structures”

本発明の目的は上記した従来技術の問題点を解決し、単一鋼管でブレースとして用いるに十分な耐座屈特性を備えたブレース用電縫鋼管及びその製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an electric-welded steel pipe for braces having sufficient buckling resistance for use as a brace with a single steel pipe, and a method for manufacturing the same.

上記の課題を解決するためになされた本発明の耐座屈特性に優れたブレース用電縫鋼管は、質量%で、C:0.03〜0.25、Si:0.05〜1.0、Mn:0.3〜1.6、P:0.03以下、S:0.015以下、Sol.Al:0.005〜0.1、N:0.0005〜0.006、残部Fe及び不可避的不純物からなり、鋼管母材部の転位密度の平均値が2×1015/m2以下であり、かつ溶接部を除き、最大板厚と最小板厚との差td(μm)と、外表面の10点平均粗さRz(μm)が、0≦td×√Rz≦40000の式1の条件を満たすことを特徴とするものである。 The electric resistance welded steel pipe for braces having excellent buckling resistance according to the present invention, which has been made to solve the above-mentioned problems, is in mass%, C: 0.03-0.25, Si: 0.05-1.0, Mn: 0.3-1.6, P : 0.03 or less, S: 0.015 or less, Sol.Al: 0.005 to 0.1, N: 0.0005 to 0.006, balance Fe and inevitable impurities, the average value of the dislocation density of the steel pipe base material part is 2 × 10 15 / m 2 The difference td (μm) between the maximum plate thickness and the minimum plate thickness and the 10-point average roughness Rz (μm) of the outer surface is 0 ≦ td 2 × √Rz ≦ 40000 The condition of the expression 1 is satisfied.

また上記の課題を解決するためになされた本発明の耐座屈特性に優れたブレース用電縫鋼管の製造方法は、質量%で、C:0.03〜0.25、Si:0.05〜1.0、Mn:0.3〜1.6、P:0.03以下、S:0.015以下、Sol.Al:0.005〜0.1、N:0.0005〜0.006、残部Fe及び不可避的不純物からな鋼スラブを、1070℃以上1300℃以下に加熱した後、仕上げ圧延終了温度を800℃以上1070℃以下とする熱間圧延を施し、巻取り温度500℃以上700℃以下で熱延鋼板とした後、ロール成形により巻いて鋼管とし、4ロールサイジングでの縮径歪の合計が0.2%以上0.6%以下となる整形を行い、その後、加熱温度T(K)と加熱時間t(h)が、12800≦T(logt+20)≦19000かつT≦1000の式2の条件を満足する焼鈍を行うことを特徴とするものである。   Moreover, the manufacturing method of the electric-resistance-welded steel pipe for braces excellent in buckling resistance property of the present invention made to solve the above-mentioned problems is in mass%, C: 0.03-0.25, Si: 0.05-1.0, Mn: 0.3 ~ 1.6, P: 0.03 or less, S: 0.015 or less, Sol.Al: 0.005 to 0.1, N: 0.0005 to 0.006, balance Fe and unavoidable impurities after heating the steel slab to 1070 ° C or higher and 1300 ° C or lower, Hot-rolled to a finish rolling end temperature of 800 ° C or higher and 1070 ° C or lower, made into a hot-rolled steel sheet at a coiling temperature of 500 ° C or higher and 700 ° C or lower, then rolled into a steel pipe and reduced by 4-roll sizing. Shaping is performed so that the total radial strain is 0.2% or more and 0.6% or less. After that, the heating temperature T (K) and the heating time t (h) are expressed by Formula 2 where 12800 ≦ T (logt + 20) ≦ 19000 and T ≦ 1000 It is characterized by performing annealing that satisfies the conditions.

なお何れの発明においても、ブレース用電縫鋼管を構成する鋼がさらに、焼入れ性向上元素群として、Cu:0.005〜1.0、Ni: 0.005〜1.0、Cr:0.03〜1.0、Mo:0.1〜0.5、B:0.0001〜0.01、結晶微細化元素群として、Ti:0.005〜0.1、Nb:0.003〜0.2、V:0.001〜0.2、W:0.001〜0.1、介在物形態制御元素として、Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02の中から選択された1種または2種以上の元素を含有することが好ましい。   In any of the inventions, the steel constituting the braided electric resistance welded steel pipe is further used as a hardenability improving element group, Cu: 0.005-1.0, Ni: 0.005-1.0, Cr: 0.03-1.0, Mo: 0.1-0.5, B: 0.0001-0.01, crystal refinement element group, Ti: 0.005-0.1, Nb: 0.003-0.2, V: 0.001-0.2, W: 0.001-0.1, inclusion form control element, Ca: 0.0001-0.02, It is preferable to contain one or more elements selected from Mg: 0.0001 to 0.02, Zr: 0.0001 to 0.02, and REM: 0.0001 to 0.02.

本発明の耐座屈特性に優れたブレース用電縫鋼管は、鋼管母材部の転位密度の平均値を2×1015/m2以下と低くするとともに、最大板厚と最小板厚との差td(μm)と、外表面の10点平均粗さRz(μm)が0≦td×√Rz≦40000の式1の条件を満たすようにしたことにより、荷重印加時における一様伸びが高くかつ応力集中も少なくなり、荷重低下係数kdの値が大きく、その絶対値が小さくなる。このため地震の繰り返し振動により繰返し荷重が負荷された際の耐座屈特性を高めることができ、ブレース用電縫鋼管の耐座屈特性を向上させることができる。 The electric braided steel pipe for braces with excellent buckling resistance according to the present invention has an average dislocation density of the steel pipe base material as low as 2 × 10 15 / m 2 or less, and has a maximum thickness and a minimum thickness. By making the difference td (μm) and the 10-point average roughness Rz (μm) of the outer surface satisfy the condition of Equation 1 where 0 ≦ td 2 × √Rz ≦ 40000, the uniform elongation during load application The stress concentration is high and the load reduction coefficient kd is large and the absolute value is small. For this reason, the buckling resistance characteristic when a repeated load is applied by the repeated vibration of the earthquake can be enhanced, and the buckling resistance characteristic of the electric braided steel pipe for braces can be improved.

また本発明の耐座屈特性に優れたブレース用電縫鋼管の製造方法によれば、上記した特性を備えた転位密度の低いブレース用電縫鋼管を効率よく製造することができる。   Moreover, according to the manufacturing method of the electric braided steel pipe for braces excellent in buckling resistance according to the present invention, the electric brazed electric pipe for braces having the above-described characteristics and a low dislocation density can be efficiently produced.

転位密度と荷重低下係数kdとの関係を示すグラフである。5 is a graph showing the relationship between dislocation density and load reduction coefficient kd. eとnの関係を示すグラフである。It is a graph which shows the relationship between e and n. 圧縮サイクルのみを抜き出したeとnの関係を示すグラフである。It is a graph which shows the relationship between e and n which extracted only the compression cycle. td×√Rzの値と荷重低下係数kdとの関係を示すグラフである。It is a graph showing the relationship between the value and the load reduction factor kd of td 2 × √Rz.

以下に本発明をさらに詳細に説明する。
本発明の耐座屈特性に優れたブレース用電縫鋼管の基本的な鋼組成は、質量%で、C:0.03〜0.25、Si:0.05〜1.0、Mn:0.3〜1.6、P:0.03以下、S:0.015以下、Sol.Al:0.005〜0.1、N:0.0005〜0.006、残部Fe及び不可避的不純物からなるものである。このような組成を持つ鋼よりなる電縫鋼管に後述する加工及び熱処理を施すことにより、転位密度の平均値を2×1015/m2以下と低くして、更に式1の条件を満足するブレース用電縫鋼管を効率的に得ることができる。先ず各元素の数値限定の理由を説明する。
The present invention is described in further detail below.
The basic steel composition of the ERW steel pipe for braces excellent in buckling resistance of the present invention is mass%, C: 0.03 to 0.25, Si: 0.05 to 1.0, Mn: 0.3 to 1.6, P: 0.03 or less, S: 0.015 or less, Sol.Al: 0.005 to 0.1, N: 0.0005 to 0.006, balance Fe and inevitable impurities. By subjecting the ERW steel pipe made of steel having such a composition to the processing and heat treatment described later, the average value of the dislocation density is lowered to 2 × 10 15 / m 2 or less, and the condition of Formula 1 is further satisfied. An electric resistance welded steel pipe for braces can be obtained efficiently. First, the reason for limiting the numerical values of each element will be described.

Cは鋼の強度を左右する元素であり、地震時の圧縮−引張の繰り返し荷重載荷に耐えうる強度を得るためには0.03%以上が必要である。しかし0.25%を超えると電縫鋼管母材部の転位密度が過度に高密度となり強度が過大となるので、耐座屈特性を確保するために0.25%以下とする。Siは脱酸元素として少なくとも0.05%の添加が必要であるが、過剰に添加すると電縫溶接性が低下するため、最大でも1.0%とする。Mnは焼入性を向上して電縫鋼管への熱処理との組合せで電縫鋼管母材部の転位密度を低く抑制するためには有効な元素であり、転位密度の平均値を2×1015/m2以下に制御することが出来る。このためには少なくとも0.3%の添加が必要であるが、過剰に添加すると電縫溶接性が低下して微小割れ等により耐座屈特性が著しく低下するため1.6%以下とする。 C is an element that affects the strength of steel, and 0.03% or more is necessary to obtain a strength that can withstand repeated loading of compression and tension during an earthquake. However, if it exceeds 0.25%, the dislocation density of the ERW steel pipe base metal part becomes excessively high and the strength becomes excessive. Therefore, in order to ensure the buckling resistance, the content is made 0.25% or less. Si needs to be added at least 0.05% as a deoxidizing element, but if added in excess, the electric resistance weldability is lowered, so the maximum is 1.0%. Mn is an effective element to improve the hardenability and reduce the dislocation density of the ERW steel pipe base material in combination with heat treatment of the ERW steel pipe. The average value of the dislocation density is 2 × 10. It can be controlled to 15 / m 2 or less. For this purpose, it is necessary to add at least 0.3%, but if added excessively, the electric resistance weldability is lowered and the buckling resistance is remarkably lowered due to microcracking or the like, so 1.6% or less.

PとSは鋼の清浄度を低下させる元素であるため、それぞれ0.03%以下、0.015%以下とする。Alは脱酸元素として添加が必要であり、またAlNを生成させて結晶の細粒化や粗大化抑制により、焼入性が過度に向上するのを防ぎ転位密度を低く抑える。このためには0.005%以上を添加する必要がある。しかし0.1%を超えると鋼の清浄度を著しく低下させて、地震の圧縮−引張の繰返し荷重が載荷する場合に、粗大AlN起因の割れがブレース用電縫鋼管に発生する懸念があるため、0.005〜0.1%とする。NもAlと同様にAlNを生成させて結晶の細粒化促進や粗大化抑制により、焼入性が過度に向上するのを防ぎ転位密度を低く抑える。このためには0.0005%以上を添加する必要がある。しかし0.006%を超えると鋼の清浄度を著しく低下させて、地震で圧縮−引張の繰返し荷重が載荷する場合に、粗大なAlNに起因する割れがブレース用電縫鋼管に発生する場合があるため、0.0005〜0.006%とする。   P and S are elements that reduce the cleanliness of steel, so they are 0.03% or less and 0.015% or less, respectively. Al needs to be added as a deoxidizing element, and AlN is produced to suppress the crystal grain refinement and coarsening, thereby preventing the hardenability from being excessively increased and keeping the dislocation density low. For this purpose, it is necessary to add 0.005% or more. However, if it exceeds 0.1%, the cleanliness of the steel will be remarkably lowered, and there is a concern that cracks due to coarse AlN will occur in the ERW steel pipe for braces when cyclic compression-tensile repeated loads are applied. ~ 0.1%. N, like Al, generates AlN and promotes crystal grain refinement and suppression of coarsening, thereby preventing the hardenability from being excessively improved and keeping the dislocation density low. For this purpose, it is necessary to add 0.0005% or more. However, if it exceeds 0.006%, the cleanliness of the steel will be remarkably reduced, and cracks due to coarse AlN may occur in the braided ERW steel pipe when repeated compression-tensile loads are loaded in an earthquake. 0.0005 to 0.006%.

上記した基本的な元素のほかに、焼入れ性向上元素群として、Cu:0.005〜1.0、Ni: 0.005〜1.0、Cr:0.03〜1.0、Mo:0.1〜0.5、B:0.0001〜0.01、結晶微細化元素群として、Ti:0.005〜0.1、Nb:0.003〜0.2、V:0.001〜0.2、W:0.001〜0.1、介在物形態制御元素群として、Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02の中から選択された1種または2種以上の元素を含有させることができる。焼入れ性向上元素(Cu、Ni、Cr、Mo、B)は、いずれも焼入性を向上して、電縫鋼管にて、溶接後に前記の加工と焼鈍を施した際に、効率的に転位密度の平均値を2×1015/m2以下に制御するのに有効な元素であるが、過剰に添加すると転位密度の平均値を2×1015/m2以下に低くすることが困難となり、またコストアップの要因ともなるので、上記の範囲とすることが好ましい。結晶微細化元素(Ti、Nb、V、W)は、結晶を微細化するか粗大化抑制するにより、焼入性を抑制してブレース用電縫鋼管の母材部の転位密度を低く抑えるのに有効な元素である。しかし、過剰に添加すると粗大な炭化物や炭窒化物を形成し易くなり式1の条件を満足しても耐座屈特性が低下する場合があり、またコストアップ要因となるので、上記の範囲とすることが好ましい。 In addition to the basic elements described above, the hardenability improving element group is Cu: 0.005-1.0, Ni: 0.005-1.0, Cr: 0.03-1.0, Mo: 0.1-0.5, B: 0.0001-0.01, crystal refinement As element group, Ti: 0.005-0.1, Nb: 0.003-0.2, V: 0.001-0.2, W: 0.001-0.1, Inclusion form control element group, Ca: 0.0001-0.02, Mg: 0.0001-0.02, Zr: One or more elements selected from 0.0001 to 0.02 and REM: 0.0001 to 0.02 can be contained. All of the hardenability-enhancing elements (Cu, Ni, Cr, Mo, B) improve the hardenability and efficiently dislocation when subjected to the above-mentioned processing and annealing in an ERW steel pipe after welding. It is an effective element for controlling the average density to 2 × 10 15 / m 2 or less. However, if added excessively, it becomes difficult to lower the average value of dislocation density to 2 × 10 15 / m 2 or less. In addition, the above range is preferable because it also causes an increase in cost. Crystal refinement elements (Ti, Nb, V, W) reduce the dislocation density of the base metal part of the braided ERW steel pipe by reducing the crystal size or suppressing the coarsening, thereby suppressing the hardenability. Is an effective element. However, if excessively added, coarse carbides and carbonitrides are likely to be formed, and even if the condition of Formula 1 is satisfied, the buckling resistance may be reduced, and the cost may be increased. It is preferable to do.

介在物形態制御元素(Ca、Mg、Zr、REM)は、ブレース用電縫鋼管で粗大な介在物の生成を抑制し、介在物を微細に分散させるので、地震でブレース用電縫鋼管の鋼管長方向に圧縮−引張荷重が繰返し載荷される場合でも、電縫鋼管の母材部または溶接部に割れが発生する懸念を低減させるために有効な元素である。しかし過剰に添加すると、Ca、Mg、Zr、REMの粗大化した硫化物やクラスター化した酸化物といった複合化合物が電縫鋼管の母材部と溶接部に形成し、母材部の清浄度を低下させるとともに電縫溶接部で繰返し荷重負荷時の耐座屈特性が低下するおそれがあるので、上記の範囲とすることが好ましい。   Inclusion morphology control elements (Ca, Mg, Zr, REM) suppress the formation of coarse inclusions in the braided ERW steel pipe and finely disperse the inclusions. Even when a compression-tensile load is repeatedly applied in the long direction, it is an effective element for reducing the concern that cracks will occur in the base material part or welded part of the ERW steel pipe. However, if added excessively, complex compounds such as coarse sulfides and clustered oxides of Ca, Mg, Zr, and REM will form on the base and welded parts of the ERW steel pipe, and the cleanliness of the base will be improved. Since there is a possibility that the buckling resistance characteristics at the time of repeated load loading at the ERW welded portion may be lowered, the above range is preferable.

本発明のブレース用電縫鋼管は、転位密度の平均値が2×1015/m2以下である。図1に示すように、転位密度が2×1015/m2以下では、荷重低下特性の低下はないが、これより増加すると荷重低下特性が急激に低下する。ここで図1に示される荷重低下係数kdについて説明する。鋼管に圧縮荷重と引張荷重を交互に加えて鋼管の変形履歴を求めると、図2に示すようになる。縦軸は荷重を降伏荷重(降伏応力×荷重負荷前の管肉厚断面積)で割って無次元化した値nであり、横軸は変位を降伏変位(降伏歪×荷重負荷前の鋼管長さ)で割って無次元化した値eである。この圧縮荷重側、引張荷重側の降伏応力、降伏歪は、鋼管の引張試験で求まる値を使えば良い。図3は図2のグラフから圧縮サイクルのみを抜き出し、横軸をeの積算値としたグラフである。この図3のグラフにおいて頂点を結ぶ直線の勾配が荷重低下係数kdであり、そのkd値が小さくかつその絶対値が大きいほど繰り返し荷重に対する強度低下が大きいこととなる。なお、さらに詳細は実施例の項で説明する。また、転位密度の平均値を2×1015/m2以下とすることは、本発明者らの別発明のように、電縫鋼管の母材部組織が硬質相を面積分率で3%以上存在する場合には、困難である。 The electric resistance steel pipe for braces of the present invention has an average dislocation density of 2 × 10 15 / m 2 or less. As shown in FIG. 1, when the dislocation density is 2 × 10 15 / m 2 or less, there is no decrease in the load reduction characteristic, but when the dislocation density increases, the load reduction characteristic decreases rapidly. Here, the load reduction coefficient kd shown in FIG. 1 will be described. FIG. 2 shows the deformation history of the steel pipe obtained by alternately applying a compressive load and a tensile load to the steel pipe. The vertical axis is the dimension n obtained by dividing the load by the yield load (yield stress x tube wall thickness cross section before loading), and the horizontal axis is the yield displacement (yield strain x steel pipe length before loading). It is a value e which is divided by the above and made dimensionless. For the yield stress and the yield strain on the compression load side and the tensile load side, values obtained by a steel pipe tensile test may be used. FIG. 3 is a graph in which only the compression cycle is extracted from the graph of FIG. 2 and the horizontal axis is the integrated value of e. The slope of the straight line connecting the vertices in the graph of FIG. 3 is the load reduction coefficient kd. The smaller the kd value and the larger the absolute value, the greater the strength reduction against repeated loads. Further details will be described in the example section. In addition, when the average value of dislocation density is 2 × 10 15 / m 2 or less, as in another invention of the present inventors, the base material structure of the ERW steel pipe is 3% in area fraction of the hard phase. If there are more, it is difficult.

また本発明のブレース用電縫鋼管は、溶接部を除き、最大板厚と最小板厚との差td(μm)と、外表面の10点平均粗さRz(μm)が、0≦td×√Rz≦40000の式1の条件を満たすことを特徴とするものである。図4は式1のtd×√Rzの値と荷重低下係数kdとの関係を示すグラフである。このグラフから明らかなように、0≦td×√Rz≦40000の範囲では荷重低下係数kdは一定であるが、40000を超えると急激に低下する。ここでtd×√Rzの値が大きいということはtdとRzの少なくとも一方の値が大きいということを意味しており、tdが大きくなると板厚の薄いところに荷重が集中し、またRzが大きくなると鋼管の外表面凹凸の凹部に荷重が集中するため、荷重低下係数kdが大幅に小さくなると考えられる。 In addition, the electric resistance welded steel pipe for braces of the present invention has a difference td (μm) between the maximum thickness and the minimum thickness excluding the welded portion, and the 10-point average roughness Rz (μm) of the outer surface is 0 ≦ td 2 X√Rz ≦ 40000 The condition of the expression 1 is satisfied. FIG. 4 is a graph showing the relationship between the value of td 2 × √Rz in Equation 1 and the load reduction coefficient kd. As is apparent from this graph, the load reduction coefficient kd is constant in the range of 0 ≦ td 2 × √Rz ≦ 40000, but rapidly decreases when it exceeds 40000. Here, a large value of td 2 × √Rz means that at least one of td and Rz is large, and when td is large, the load is concentrated at a thin plate thickness, and Rz is When it becomes larger, the load concentrates on the concaves and convexes on the outer surface of the steel pipe, so the load reduction coefficient kd is considered to be significantly reduced.

次に本発明のブレース用電縫鋼管の製造方法を説明する。本発明のブレース用電縫鋼管は、上記組成の鋼からなる鋼スラブを、1070℃以上1300℃以下に加熱した後、仕上げ圧延終了温度を800℃以上1070℃以下とする熱間圧延を施し、巻取り温度500℃以上700℃以下で熱延鋼板とした後、ロール成形により巻いて鋼管とし、4ロールサイジングでの縮径歪の合計が0.2%以上0.6%以下となる整形を行い、その後、加熱温度T(K)と加熱時間t(h)が、12800≦T(logt+20)≦19000かつT≦1000の式2を満足する焼鈍を行うことを特徴とする工程で製造される。ロール成形で巻いて鋼管とするには、ロール成形により鋼板幅両端部を接近せしめ、その鋼板幅両端部に電縫溶接を施せば良い。   Next, the manufacturing method of the electric resistance steel pipe for braces of this invention is demonstrated. The electric braided steel pipe for braces of the present invention is a steel slab made of steel having the above composition, heated to 1070 ° C. or higher and 1300 ° C. or lower, and then subjected to hot rolling with a finish rolling end temperature of 800 ° C. or higher and 1070 ° C. or lower, After forming a hot-rolled steel sheet at a coiling temperature of 500 ° C. or more and 700 ° C. or less, it is rolled to form a steel pipe, and shaped so that the total diameter reduction strain in a 4-roll sizing is 0.2% to 0.6%, The heating temperature T (K) and the heating time t (h) are manufactured in a process characterized by performing annealing satisfying Expression 2 where 12800 ≦ T (logt + 20) ≦ 19000 and T ≦ 1000. In order to wind a steel pipe by roll forming, both ends of the steel plate width are brought close to each other by roll forming, and electric resistance welding is performed on both ends of the steel plate width.

加熱温度を1070℃以上とするのは、鋼スラブの溶融凝固過程で析出した炭化物、窒化合物、炭窒化合物を再固溶させ、元素を均一分散させるためである。しかし加熱温度が1300℃を超えると熱間圧延工程でAlNが粗大に析出し、鋼の清浄度を低下させて、地震時の圧縮−引張荷重の繰返し載荷により、粗大AlN起因の割れがブレース用電縫鋼管に発生する懸念があるので、加熱温度を1070℃以上1300℃以下とした。   The reason why the heating temperature is set to 1070 ° C. or higher is to re-dissolve carbides, nitrogen compounds, and carbonitride compounds precipitated during the melting and solidification process of the steel slab to uniformly disperse the elements. However, when the heating temperature exceeds 1300 ° C, AlN precipitates coarsely in the hot rolling process, reducing the cleanliness of the steel, and cracks due to coarse AlN are used for braces due to repeated loading of compression-tensile loads during earthquakes. The heating temperature was set to 1070 ° C or higher and 1300 ° C or lower because there was a concern that it would occur in ERW steel pipes.

圧延終了温度を800℃以上とするのは、この温度よりも低温であると仕上圧延時に鋼板の転位密度が増加し、鋼管母材部で転位密度の平均値が2×1015/m2を超過し易いためである。しかし1070℃を超えると粒成長が顕著となり結晶粒が粗大化するため、熱間圧延における圧延終了温度を800℃以上1070℃以下とした。 The rolling end temperature is set to 800 ° C or higher if the temperature is lower than this temperature, the dislocation density of the steel sheet increases during finish rolling, and the average value of the dislocation density at the steel pipe base is 2 × 10 15 / m 2 . It is because it is easy to exceed. However, when the temperature exceeds 1070 ° C., the grain growth becomes remarkable and the crystal grains become coarse. Therefore, the rolling end temperature in the hot rolling is set to 800 ° C. or more and 1070 ° C. or less.

巻取り温度を500℃以上とするのは、この温度よりも低温であると電縫鋼管の母材部での転位密度の平均値が2×1015/m2を超過する場合があり耐座屈特性が低下する懸念があるためである。しかし700℃を超えるとフェライトの核生成が不十分で粗大粒となる懸念があるため、巻取り温度を500℃以上700℃以下とした。 The coiling temperature is set to 500 ° C or higher. If the temperature is lower than this temperature, the average value of the dislocation density in the base material of the ERW steel pipe may exceed 2 × 10 15 / m 2. This is because there is a concern that the bending characteristics may deteriorate. However, if the temperature exceeds 700 ° C., there is a concern that the nucleation of ferrite is insufficient and coarse grains may be formed, so the coiling temperature is set to 500 ° C. or more and 700 ° C. or less.

このようにして得られた熱延鋼板はロール成形により巻いて前記鋼板の幅両端同士を電縫溶接して電縫鋼管としたうえ、4ロールサイジングで縮径歪の合計が0.2%以上0.6%以下となる整形を行う。本発明の電縫鋼管の電縫溶接とは、電気抵抗溶接(高周波溶接、低中周波溶接、高周波誘導溶接含む)やレーザー溶接やレーザ・アークハイブリッド溶接等が可能である。4ロールサイジングを採用するのは、鋼管の周方向の均一性を確保するためであり、2ロールでは鋼管の0°位置と180°位置に歪が集中し、3ロールでは鋼管の0°位置と120°位置と240°位置に歪が集中するため、前記の式1を満足するよにtdとRzの値を小さくすることが困難である。   The hot-rolled steel sheet thus obtained is wound by roll forming, and the two ends of the steel sheet are electro-welded to form an electric-welded steel pipe, and the total shrinkage distortion is 0.2% or more and 0.6% by 4-roll sizing. Perform the following formatting. The electric resistance welding of the electric resistance welded steel pipe of the present invention includes electric resistance welding (including high frequency welding, low and medium frequency welding, high frequency induction welding), laser welding, laser / arc hybrid welding, and the like. The 4-roll sizing is used to ensure the uniformity in the circumferential direction of the steel pipe. With 2 rolls, strain is concentrated at the 0 ° position and 180 ° position of the steel pipe. Since strain concentrates at the 120 ° position and the 240 ° position, it is difficult to reduce the values of td and Rz so as to satisfy the above formula 1.

4ロールサイジングで縮径歪の合計を0.2%以上とするのは、縮径しながら電縫鋼管の肉厚差及び外表面粗さを均一にするためである。しかし縮径歪が0.6%を超えると鋼管が歪み過ぎて、肉厚差tdと外表面粗さRzが大きくなりすぎるため、式1の条件を安定的に満足することが困難になり、また後述の式2の焼鈍熱処理を電縫鋼管に施しても、加工転位が多すぎ鋼管母材部の転位密度を低くすることが困難となる。このため、縮径歪の合計を0.2%以上0.6%以下とした。   The reason why the total reduction strain is set to 0.2% or more in the 4-roll sizing is to make the thickness difference and the outer surface roughness of the ERW steel pipe uniform while reducing the diameter. However, if the reduced diameter strain exceeds 0.6%, the steel pipe is excessively distorted and the wall thickness difference td and the outer surface roughness Rz become too large, so that it is difficult to stably satisfy the condition of Equation 1 and will be described later. Even if the annealing heat treatment of Formula 2 is applied to the ERW steel pipe, it is difficult to reduce the dislocation density of the steel pipe base material portion because of too many work dislocations. For this reason, the total diameter reduction strain is set to 0.2% to 0.6%.

その後、加熱温度T(K)と加熱時間t(h)が、12800≦T(logt+20)≦19000かつT≦1000の式2を満足する焼鈍を行う。この式2のT(logt+20)の値を12800以上とするのは、鋼管母材部の転位密度の平均値を2×1015/m2以下とするのに有効なためであり、19000以下とするのは繰り返し荷重に耐え得る強度を確保するためである。加熱温度T(K)が1000(K)を超える場合には、熱処理中に生成したオーステナイトから鋼管母材部で硬質相が面積率で3%以上存在する場合があるので、母材部の転位密度を低くすることが難しい。 Thereafter, annealing is performed such that the heating temperature T (K) and the heating time t (h) satisfy Expression 2 where 12800 ≦ T (logt + 20) ≦ 19000 and T ≦ 1000. The reason why the value of T (logt + 20) in Equation 2 is 12800 or more is that it is effective for making the average value of the dislocation density of the steel pipe base material 2 × 10 15 / m 2 or less. The reason for this is to ensure the strength to withstand repeated loads. When the heating temperature T (K) exceeds 1000 (K), the hard phase may exist in the steel pipe base material part by 3% or more from the austenite produced during the heat treatment. It is difficult to reduce the density.

本発明における各値の測定方法は次の通りである。
転位密度の測定は、X線でのWilliamson-Hall法(CAMP-ISIJ Vol.17(2004)-396)によった。電縫鋼管の母材部から、管周方向と管長手方向に各10mmの四角の試験片を5個採取して、管表面のスケールを酸洗除去してから、転位密度測定用の試験片とした。試験片の表面に前記の方法でX線にて転位密度を測定した。測定した5個の転位密度の平均値を、鋼管母材部の転位密度の平均値とした。
The measuring method of each value in the present invention is as follows.
The dislocation density was measured by the Williamson-Hall method (CAMP-ISIJ Vol.17 (2004) -396) with X-rays. Five square test pieces of 10 mm each in the circumferential direction and the longitudinal direction of the pipe are taken from the base material of the ERW steel pipe, the scale on the pipe surface is pickled and removed, and then the test piece for measuring the dislocation density. It was. The dislocation density was measured by X-rays on the surface of the test piece by the method described above. The average value of the measured five dislocation densities was taken as the average value of the dislocation density of the steel pipe base material part.

tdは鋼管の断面を切断して板厚を周方向に測定し、溶接部を除く最大板厚と最小板厚との差をtdとした。Rzは、基準長さ(長手方向)2.5mm分のうち、高さ方向で5番目までの山頂の平均値と最深から5番目までの谷底の平均値との差を算出し、Rzとした。   td was measured by cutting the cross section of the steel pipe and measuring the plate thickness in the circumferential direction, and the difference between the maximum plate thickness and the minimum plate thickness excluding the weld was taken as td. Rz was calculated as the difference between the average value of the top of the fifth peak in the height direction and the average value of the bottom of the valley from the deepest to the fifth in the reference length (longitudinal direction) of 2.5 mm.

このようにして製造された本発明のブレース用電縫鋼管は、ブレースとして用いるに十分な耐座屈特性を備えたものである。なお、ブレース用鋼管としては、引張強度が400MPa級、490MPa級、590MPa級の鋼管が一般的に使用される。本発明のブレース用電縫鋼管は、この強度レベルを十分に満足可能である。これより強度レベルが著しく低い電縫鋼管(例えば、C含有量が本発明下限値未満である降伏強度100MPa級)では、地震時の圧縮−引張荷重の繰り返し載荷に十分耐えることが困難である。また、著しく強度が高い超高強度鋼管(例えばC含有量が本発明上限値超である引張強度が1050MPa級、1150MPa級)では、本発明の転位密度条件と式1の両方を同時に満足することが難しいので、ブレース用鋼管としては、地震時に圧縮−引張荷重の繰り返し載荷に対して、荷重低下が大きくなり、耐座屈特性が低下する場合がある。なお、本発明のブレース用電縫鋼管は、鋼組成条件や転位密度条件や式1の条件を全て満足していれば、鋼管の素鋼板としては、熱延鋼板に更に冷延や焼鈍を施した鋼板を用いても良く、又は、それら鋼板に表面処理(防錆処理、潤滑処理等)を加えた鋼板を用いても良い。電縫溶接後に表面処理(防錆処理等)を施した電縫鋼管であっても、本発明の範囲を逸脱するものではない。本発明の電縫鋼管の管寸法は、式1の条件を満足していれば、ブレース用電縫鋼管を使用するための設計条件に応じて決めることが出来る。例えば電縫鋼管の管外径100mm〜400mm、板厚(溶接部を除く管肉厚)で3〜25mmでも構わない。
以下に本発明の実施例を比較例とともに示す。
The electric resistance welded steel pipe for braces of the present invention thus produced has sufficient buckling resistance characteristics for use as a brace. In addition, as a steel pipe for braces, steel pipes having a tensile strength of 400 MPa class, 490 MPa class, and 590 MPa class are generally used. The electric braided steel pipe for braces of the present invention can sufficiently satisfy this strength level. With an ERW steel pipe having a significantly lower strength level (for example, a yield strength of 100 MPa class in which the C content is less than the lower limit of the present invention), it is difficult to sufficiently withstand repeated loading of a compression-tensile load during an earthquake. For extremely high strength steel pipes with extremely high strength (for example, tensile strengths with C content exceeding the upper limit of the present invention are 1050 MPa class and 1150 MPa class), both the dislocation density condition of the present invention and Equation 1 must be satisfied at the same time. Therefore, as for the steel pipe for braces, the load drop becomes large and the buckling resistance characteristic may be lowered with respect to repeated loading of compression-tensile load at the time of earthquake. In addition, if the electric braided steel pipe for braces of the present invention satisfies all the steel composition conditions, dislocation density conditions, and the condition of Formula 1, the hot rolled steel sheet is further subjected to cold rolling or annealing as the base steel sheet of the steel pipe. Steel plates obtained by adding surface treatment (rust prevention treatment, lubrication treatment, etc.) to these steel plates may be used. Even an ERW steel pipe that has undergone surface treatment (such as rust prevention treatment) after ERW welding does not depart from the scope of the present invention. If the conditions of Formula 1 are satisfied, the pipe dimensions of the ERW steel pipe of the present invention can be determined according to the design conditions for using the ERW steel pipe for braces. For example, the outer diameter of the electric resistance steel pipe may be 100 mm to 400 mm, and the plate thickness (pipe thickness excluding the welded portion) may be 3 to 25 mm.
Examples of the present invention are shown below together with comparative examples.

表1に示される組成の鋼から、表2に示される製造条件でブレース用電縫鋼管を製造し、各鋼管の耐座屈特性を測定した結果を表2中に示した。試験に使用した電縫鋼管の寸法は、φ244.5mm×t8.0mm×L2600mmである。耐座屈特性の測定方法は次の通りである。非特許文献1において用いられている方法と同様に、鋼管に引張−圧縮荷重を変位制御で繰り返し加えた。鋼管の降伏変位をδyとし、加える変位δとの比δ/δyをeしたとき、各サイクルで加える変位をeの値がサイクル数と等しくなるように加えていった。そのとき鋼管に加わる荷重をPとし、Pを降伏軸力Pyで除した値P/Pyをnとし、図2に例示するように各サイクルで得られるe‐nの関係を測定した。上側が圧縮、下側が引張りである。次に図3に示すように最大荷重点を結んだ近似直線を引き、その勾配を荷重低下係数kdとした。また鋼管中央部に局部座屈を生じたときのeの値も記録した。 Table 2 shows the results of producing braided ERW steel pipes from the steel compositions shown in Table 1 under the production conditions shown in Table 2 and measuring the buckling resistance of each steel pipe. The dimensions of the ERW steel pipe used for the test are φ244.5mm × t8.0mm × L2600mm. The method for measuring the buckling resistance is as follows. Similar to the method used in Non-Patent Document 1, a tensile-compressive load was repeatedly applied to the steel pipe by displacement control. When the yield displacement of the steel pipe is δ y and the ratio δ / δ y to the applied displacement δ is e, the displacement applied in each cycle is added so that the value of e is equal to the number of cycles. Then the load applied to the steel pipe is P, the value P / P y obtained by dividing the P at yield axial force P y is n, was determined a relationship between the e-n obtained in each cycle as illustrated in Figure 2. The upper side is compression and the lower side is tension. Next, as shown in FIG. 3, an approximate straight line connecting the maximum load points was drawn, and the gradient was used as the load reduction coefficient kd. The value of e when local buckling occurred in the center of the steel pipe was also recorded.

さらに非特許文献1に記載されているkd=−0.1(√εy ×λ−0.75)の式から得られた従来の電縫鋼管で予測されるkdの計算値も参考のために表2に示した。耐座屈特性は実際に局部座屈を生じたときのeの値で評価し、eが10超を良好とした。 Further, the calculated value of kd predicted for the conventional electric resistance welded steel pipe obtained from the equation of kd = −0.1 (√ε y × λ−0.75) described in Non-Patent Document 1 is also shown in Table 2 for reference. Indicated. The buckling resistance was evaluated based on the value of e when local buckling actually occurred.

Figure 0005381901
Figure 0005381901

Figure 0005381901
Figure 0005381901

発明例の1〜24では何れも鋼管母材部の転位密度の平均値が2×1015/m2以下と十分に小さく、地震時の圧縮−引張荷重の繰返し載荷において電縫鋼管に転位が導入されても局部座屈を生じにくい状態となっており、またtd×√Rzが式1を満足して小さいので、載荷荷重の集中が少ない。このためkdの実測値は従来の電縫鋼管から推定されるkdの計算値よりも大きく、その結果、座屈を起こすeの値も10超であり、比較例の数倍程度と優れた耐座屈特性を示す。表2に示されるように、実施例ではtdは40〜70μm、Rzは10〜30μmの範囲に入る。 In all of Examples 1 to 24 of the invention, the average value of the dislocation density of the steel pipe base material part is sufficiently small as 2 × 10 15 / m 2 or less, and dislocations are generated in the ERW pipe during repeated loading of compression-tensile load during earthquakes. Even if it is introduced, local buckling is unlikely to occur, and since td 2 × √Rz satisfies Equation 1 and is small, the concentration of the load is small. For this reason, the measured value of kd is larger than the calculated value of kd estimated from the conventional ERW steel pipe, and as a result, the value of e causing buckling is more than 10, which is about several times that of the comparative example and excellent resistance. Shows buckling characteristics. As shown in Table 2, in the examples, td falls within the range of 40 to 70 μm, and Rz falls within the range of 10 to 30 μm.

一方、比較例1ではC成分値が高く鋼管の転位密度が高すぎ延性が低いので耐座屈特性が不十分である。比較例2はMn成分値が過小であり繰り返し荷重に耐え得る強度が得られないため、耐座屈特性が悪い。比較例3は圧延終了温度が低く転位密度が高いので耐座屈特性が悪い。比較例4は2ロールサイジングを行ったため鋼管の周方向で歪みの偏差が生じ、tdとRzが十分に小さくならず式1のtd×√Rzの条件を満足しないので耐座屈特性が悪い。比較例5は縮径歪が0.18%と不足したため十分な縮径ができていないので、tdとRzが十分に小さくならず式1のtd×√Rzの条件を外れるので耐座屈特性が悪い。比較例6は焼鈍条件の加熱温度Tが1000K超で高すぎてT(logt+20)が大きすぎるから式2を満足せず、転位密度も高すぎるので、耐座屈特性が悪い。比較例7は式2のT(logt+20)の値が小さ過ぎるので、鋼管母材分の転位密度を低下するのに十分な焼鈍ができていないために転位密度が2×1015/m2を超えるので、耐座屈特性が悪い。比較例8はサイジング後の焼鈍を行っていないために、サイジング工程で電縫鋼管に転位が増加したままであり、転位密度が2×1015/m2を大幅に超えているので、やはり耐座屈特性が悪い。 On the other hand, in Comparative Example 1, since the C component value is high and the dislocation density of the steel pipe is too high and the ductility is low, the buckling resistance is insufficient. In Comparative Example 2, the Mn component value is too small and the strength to withstand repeated loads cannot be obtained, so the buckling resistance is poor. Comparative Example 3 has poor buckling resistance because the rolling end temperature is low and the dislocation density is high. In Comparative Example 4, since the two-roll sizing was performed, distortion deviation occurred in the circumferential direction of the steel pipe, and td and Rz were not sufficiently small, and the condition of td 2 × √Rz in Equation 1 was not satisfied, so the buckling resistance was poor. . In Comparative Example 5, since the diameter reduction strain was insufficient at 0.18%, sufficient diameter reduction was not possible. Therefore, td and Rz were not sufficiently reduced, and the condition of td 2 × √Rz in Equation 1 was not satisfied, so the buckling resistance was poor. bad. In Comparative Example 6, the heating temperature T in the annealing condition is over 1000K and is too high, and T (logt + 20) is too large. Therefore, Formula 2 is not satisfied and the dislocation density is too high, so the buckling resistance is poor. In Comparative Example 7, since the value of T (logt + 20) in Formula 2 is too small, the dislocation density is 2 × 10 15 / m 2 because annealing is not sufficient to reduce the dislocation density of the steel pipe base material. Since it exceeds, buckling resistance is poor. Since Comparative Example 8 was not annealed after sizing, dislocations still increased in the ERW steel pipe in the sizing process, and the dislocation density greatly exceeded 2 × 10 15 / m 2 , so Bad buckling characteristics.

Claims (4)

質量%で、C:0.03〜0.25、Si:0.05〜1.0、Mn:0.3〜1.6、P:0.03以下、S:0.015以下、Sol.Al:0.005〜0.1、N:0.0005〜0.006、残部Fe及び不可避的不純物からなり、鋼管母材部の転位密度の平均値が2×1015/m2以下であり、かつ溶接部を除き、最大板厚と最小板厚との差td(μm)と、外表面の10点平均粗さRz(μm)が、0≦td×√Rz≦40000の式1の条件を満たすことを特徴とする耐座屈特性に優れたブレース用電縫鋼管。 In mass%, C: 0.03-0.25, Si: 0.05-1.0, Mn: 0.3-1.6, P: 0.03 or less, S: 0.015 or less, Sol.Al: 0.005-0.1, N: 0.0005-0.006, the remainder Fe and inevitable The average value of dislocation density in the steel pipe base metal part is 2 × 10 15 / m 2 or less, and the difference between the maximum and minimum plate thickness td (μm), excluding the weld, An electric-welded steel pipe for braces with excellent buckling resistance, characterized in that the 10-point average roughness Rz (μm) of the surface satisfies the condition of Formula 1 where 0 ≦ td 2 × √Rz ≦ 40000. ブレース用電縫鋼管を構成する鋼がさらに、焼入れ性向上元素群として、Cu:0.005〜1.0、Ni: 0.005〜1.0、Cr:0.03〜1.0、Mo:0.1〜0.5、B:0.0001〜0.01、結晶微細化元素群として、Ti:0.005〜0.1、Nb:0.003〜0.2、V:0.001〜0.2、W:0.001〜0.1、介在物形態制御元素として、Ca:0.0001〜0.02、Mg:0.0001〜0.2、Zr:0.0001〜0.02、REM:0.0001〜0.02の中から選択された1種または2種以上の元素を含有することを特徴とする請求項1に記載の耐座屈特性に優れたブレース用電縫鋼管。   The steel constituting the ERW steel pipe for braces is further divided into Cu: 0.005-1.0, Ni: 0.005-1.0, Cr: 0.03-1.0, Mo: 0.1-0.5, B: 0.0001-0.01, crystal As refinement element group, Ti: 0.005-0.1, Nb: 0.003-0.2, V: 0.001-0.2, W: 0.001-0.1, Inclusion form control element, Ca: 0.0001-0.02, Mg: 0.0001-0.2, Zr The electric braided steel pipe for braces having excellent buckling resistance according to claim 1, comprising one or more elements selected from: 0.0001 to 0.02 and REM: 0.0001 to 0.02. . 質量%で、C:0.03〜0.25、Si:0.05〜1.0、Mn:0.3〜1.6、P:0.03以下、S:0.015以下、Sol.Al:0.005〜0.1、N:0.0005〜0.006、残部Fe及び不可避的不純物からなる鋼スラブを、1070℃以上1300℃以下に加熱した後、仕上げ圧延終了温度を800℃以上1070℃以下とする熱間圧延を施し、巻取り温度500℃以上700℃以下で熱延鋼板とした後、ロール成形により巻いて鋼管とし、4ロールサイジングでの縮径歪の合計が0.2%以上0.6%以下となる整形を行い、その後、加熱温度T(K)と加熱時間t(h)が、12800≦T(logt+20)≦19000かつT≦1000の式2の条件を満足する焼鈍を行うことを特徴とする耐座屈特性に優れたブレース用電縫鋼管の製造方法。   In mass%, C: 0.03-0.25, Si: 0.05-1.0, Mn: 0.3-1.6, P: 0.03 or less, S: 0.015 or less, Sol.Al: 0.005-0.1, N: 0.0005-0.006, the remainder Fe and inevitable After heating steel slabs composed of mechanical impurities to 1070 ° C or higher and 1300 ° C or lower, they are hot-rolled to a finish rolling finish temperature of 800 ° C or higher and 1070 ° C or lower, and hot rolled at a coiling temperature of 500 ° C or higher and 700 ° C or lower. After forming into a steel plate, it is rolled into a steel pipe by roll forming, and shaping is performed so that the total reduced diameter strain in 4-roll sizing is 0.2% to 0.6%, and then heating temperature T (K) and heating time t (h ) Is an annealing process that satisfies the conditions of Formula 2 with 12800 ≦ T (logt + 20) ≦ 19000 and T ≦ 1000. ブレース用電縫鋼管を構成する鋼がさらに、焼入れ性向上元素群として、Cu:0.005〜1.0、Ni: 0.005〜1.0、Cr:0.03〜1.0、Mo:0.1〜0.5、B:0.0001〜0.01、結晶微細化元素群として、Ti:0.005〜0.1、Nb:0.003〜0.2、V:0.001〜0.2、W:0.001〜0.1、介在物形態制御元素として、Ca:0.0001〜0.02、Mg:0.0001〜0.02、Zr:0.0001〜0.02、REM:0.0001〜0.02の中から選択された1種または2種以上の元素を含有することを特徴とする請求項3に記載の耐座屈特性に優れたブレース用電縫鋼管の製造方法。   The steel constituting the ERW steel pipe for braces is further divided into Cu: 0.005-1.0, Ni: 0.005-1.0, Cr: 0.03-1.0, Mo: 0.1-0.5, B: 0.0001-0.01, crystal As refinement element group, Ti: 0.005-0.1, Nb: 0.003-0.2, V: 0.001-0.2, W: 0.001-0.1, Inclusion form control element, Ca: 0.0001-0.02, Mg: 0.0001-0.02, Zr The braided ERW steel pipe with excellent buckling resistance according to claim 3, comprising one or more elements selected from: 0.0001 to 0.02 and REM: 0.0001 to 0.02. Manufacturing method.
JP2010121253A 2010-05-27 2010-05-27 ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof Active JP5381901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121253A JP5381901B2 (en) 2010-05-27 2010-05-27 ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121253A JP5381901B2 (en) 2010-05-27 2010-05-27 ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011246972A JP2011246972A (en) 2011-12-08
JP5381901B2 true JP5381901B2 (en) 2014-01-08

Family

ID=45412570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121253A Active JP5381901B2 (en) 2010-05-27 2010-05-27 ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5381901B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051119A1 (en) * 2012-09-27 2014-04-03 新日鐵住金株式会社 Electric resistance welded steel pipe
CN118427907B (en) * 2024-07-05 2024-09-10 深圳市烨兴智能空间技术有限公司 Digital twinning-based multi-curved-surface special-shaped film structure installation method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231401A (en) * 2005-02-28 2006-09-07 Jfe Steel Kk Method of manufacturing extra-low yr electric welded tube for building material
JP4859240B2 (en) * 2007-04-03 2012-01-25 日新製鋼株式会社 Manufacturing method of ERW steel pipe for hollow stabilizer
JP5088631B2 (en) * 2008-09-17 2012-12-05 新日本製鐵株式会社 Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method

Also Published As

Publication number Publication date
JP2011246972A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
KR101660149B1 (en) Hot rolled steel sheet for square column for builiding structural members and method for manufacturing the same
JP6693606B1 (en) Square steel pipe, manufacturing method thereof, and building structure
JP5447278B2 (en) Spiral steel pipe with internal protrusion and its manufacturing method
JP2006299415A (en) Method for producing hot-rolled steel sheet for low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP5005543B2 (en) High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same
JP6123713B2 (en) Thick-walled hot-rolled steel strip and method for producing the same
CN110088346B (en) Steel material for welded steel pipe having excellent longitudinal uniform elongation, method for producing same, and steel pipe using same
JP5768603B2 (en) High-strength welded steel pipe with high uniform elongation characteristics and excellent low-temperature toughness at welds, and method for producing the same
TWI795923B (en) Square steel pipe, manufacturing method thereof, and building structure
JP6128042B2 (en) Low yield ratio high strength spiral steel pipe pile and manufacturing method thereof
JP4231226B2 (en) Manufacturing method of rolled H-section steel
JP5381900B2 (en) ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof
WO2023053837A1 (en) Rectangular steel pipe and method for manufacturing same, hot-rolled steel sheet and method for manufacturing same, and building structure
JP5381901B2 (en) ERW steel pipe for brace having excellent buckling resistance and manufacturing method thereof
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
JP7396552B1 (en) Hot-rolled steel plates, square steel pipes, their manufacturing methods, and architectural structures
WO2020170775A1 (en) Square steel pipe, method for manufacturing same, and building structure
CN114729436A (en) Austenitic stainless steel with improved yield ratio and method for manufacturing same
JP2007332414A (en) High strength wide steel sheet pile and its production method
JP6048108B2 (en) Hot-rolled steel sheet having excellent surface properties, small anisotropy and good shape after cutting, and method for producing the same
JP2009052108A (en) Extra-low carbon and extremely thin cold rolled steel sheet for building material, and method for producing the same
JP6825751B1 (en) Hot-rolled steel strip for cold roll-formed square steel pipe and its manufacturing method, and cold roll-formed square steel pipe manufacturing method
JP7347361B2 (en) H-shaped steel with protrusions and its manufacturing method
JP6123734B2 (en) Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same
JP7571918B1 (en) Square steel pipe, its manufacturing method and building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350