JP5381878B2 - Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same - Google Patents
Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same Download PDFInfo
- Publication number
- JP5381878B2 JP5381878B2 JP2010089456A JP2010089456A JP5381878B2 JP 5381878 B2 JP5381878 B2 JP 5381878B2 JP 2010089456 A JP2010089456 A JP 2010089456A JP 2010089456 A JP2010089456 A JP 2010089456A JP 5381878 B2 JP5381878 B2 JP 5381878B2
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- heating
- heating element
- heater unit
- support plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 93
- 239000004065 semiconductor Substances 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000000463 material Substances 0.000 claims description 12
- 239000012212 insulator Substances 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 4
- 235000012431 wafers Nutrition 0.000 description 51
- 238000001816 cooling Methods 0.000 description 25
- 239000011888 foil Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 238000002791 soaking Methods 0.000 description 12
- 239000004642 Polyimide Substances 0.000 description 9
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 8
- 239000004809 Teflon Substances 0.000 description 7
- 229920006362 Teflon® Polymers 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Resistance Heating (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、半導体製造装置に用いられる、ウェハ加熱用ヒータユニットに関する。特に、急速昇温性、均熱性に優れ、信頼性に優れたウェハ加熱用ヒータユニットに関する。 The present invention relates to a wafer heating heater unit used in a semiconductor manufacturing apparatus. In particular, the present invention relates to a heater unit for heating a wafer that is excellent in rapid temperature rise and heat uniformity and excellent in reliability.
半導体の製造工程では、被処理物である半導体ウェハに対して成膜処理やエッチング処理など様々な処理が行われる。ウェハを加熱する必要のある場合には、ウェハ加熱用ヒータユニットにウェハを載置し、所定の熱処理を施している。例えば、ウェハのフォトリソグラフィーに使用されるコータデベロッパや半導体検査用のウェハプローバ、成膜用のCVD装置等が挙げられる。 In a semiconductor manufacturing process, various processes such as a film forming process and an etching process are performed on a semiconductor wafer which is an object to be processed. When it is necessary to heat the wafer, the wafer is placed on the wafer heating heater unit and subjected to a predetermined heat treatment. Examples thereof include a coater developer used for wafer photolithography, a wafer prober for semiconductor inspection, and a CVD apparatus for film formation.
このうち、ウェハにレジスト膜を形成するフォトリソグラフィー工程においては、ウェハを洗浄し、加熱・乾燥し、冷却した後、ウェハ表面にレジスト膜を塗布し、フォトリソグラフィー処理装置内のヒータユニットにウェハを搭載し、乾燥した後、露光、現像などの処理が施される。 Among these, in the photolithography process for forming a resist film on the wafer, the wafer is washed, heated, dried, cooled, and then coated with a resist film on the wafer surface, and the wafer is applied to the heater unit in the photolithography processing apparatus. After mounting and drying, processing such as exposure and development is performed.
これらの半導体製造装置におけるウェハの処理については、スループットを向上させるために、できるだけ短時間で処理を終わらせることが要求される。また、ウェハを加熱する際に、ウェハをヒータユニットに搭載し、熱処理を行い、ウェハをヒータユニットから次の工程に搬送するために離脱させるまでの間、過渡状態を含め厳密な温度管理、均熱性が要求される。加えて、ヒータの温度条件を変化させる、例えば昇温、降温させる場合には、ヒータの温度をすばやく設定した温度にする必要がある。また、使用するヒータには信頼性が要求される。 Regarding the processing of wafers in these semiconductor manufacturing apparatuses, it is required to finish the processing in as short a time as possible in order to improve the throughput. Also, when the wafer is heated, the wafer is mounted on the heater unit, subjected to heat treatment, and then removed from the heater unit for transfer to the next process. Thermal properties are required. In addition, when the temperature condition of the heater is changed, for example, when the temperature is raised or lowered, it is necessary to quickly set the heater temperature. In addition, reliability is required for the heater to be used.
例えば、特許文献1には、ウェハを加熱するための加熱体であって、発熱体を備えたヒータと断熱層を介して均熱板を備えた加熱体が開示されている。特許文献1において発熱体が金属箔である場合には、金属箔を例えば耐熱性の樹脂で挟み込み、金属箔を挟み込んだ樹脂をヒータ基板と均熱板とで断熱層を介して固定することが開示されている。 For example, Patent Document 1 discloses a heating body for heating a wafer, which includes a heater provided with a heating element and a soaking plate via a heat insulating layer. In Patent Document 1, when the heating element is a metal foil, the metal foil is sandwiched between heat-resistant resins, for example, and the resin sandwiched between the metal foils is fixed between the heater substrate and the heat equalizing plate via a heat insulating layer. It is disclosed.
特許文献1のように、金属箔の発熱体を耐熱性の樹脂で挟み込み、ヒータ基板と均熱板とで断熱層を介して挟み込む場合、金属箔を挟み込んだ樹脂は、金属箔の存在する部分では、金属箔が存在しない部分に比較して厚みが薄くなる。このため、金属箔の存在しない部分では、ヒータ基板、または均熱板との間に空隙が生じやすくなり、この空隙によって金属箔で発生した熱が、ヒータ基板、均熱板に均一に伝導せず、均熱性を阻害することがある。 As in Patent Document 1, when a metal foil heating element is sandwiched between heat-resistant resins and sandwiched between a heater substrate and a soaking plate via a heat insulating layer, the resin sandwiched between the metal foils is a portion where the metal foil is present. Then, the thickness is reduced as compared with a portion where no metal foil is present. For this reason, in the portion where the metal foil does not exist, a gap is likely to be generated between the heater substrate or the soaking plate, and the heat generated in the metal foil by this gap is uniformly conducted to the heater substrate and the soaking plate. In some cases, the soaking property may be impaired.
また、金属箔が発熱したとき、金属箔、断熱層ともに温度上昇するが、これら金属箔、断熱層が互いに熱膨張係数が異なる場合、金属箔と断熱層の熱膨張量が異なるため、金属箔と断熱層を接着すると、その熱膨張量の差により加熱体が変形し、反り等が発生する。このため、ヒータ基板、発熱体、均熱板の密着性が損なわれ、均熱性が大幅に悪化するとともに、これらを機械的に固定している場合には、固定部分の破損を引き起こすことがあった。 In addition, when the metal foil generates heat, both the metal foil and the heat insulation layer rise in temperature. However, when the metal foil and the heat insulation layer have different thermal expansion coefficients, the metal foil and the heat insulation layer have different amounts of thermal expansion. When the heat insulating layer is bonded, the heating body is deformed due to the difference in thermal expansion amount, and warpage or the like occurs. For this reason, the adhesion of the heater substrate, the heating element, and the soaking plate is impaired, so that the soaking property is greatly deteriorated, and when these are mechanically fixed, the fixing portion may be damaged. It was.
更に、均熱板に冷却モジュールを当接した場合にも、冷却モジュールと均熱板との間に空隙があれば、空隙部分の冷却が遅くなり、温度ムラも発生しやすくなるという問題も存在する。 Furthermore, even when the cooling module is in contact with the soaking plate, there is a problem that if there is a gap between the cooling module and the soaking plate, the cooling of the gap becomes slow and temperature unevenness is likely to occur. To do.
本発明は、上記問題点を解決するためになされたものである。すなわち、本発明は、均熱性、信頼性に優れたウェハ加熱用ヒータユニットおよびそれを搭載した半導体製造装置を提供することを目的とする。 The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a wafer heating heater unit excellent in heat uniformity and reliability and a semiconductor manufacturing apparatus equipped with the same.
本発明のウェハ加熱用ヒータユニットは、ウェハ載置面を有する載置台と、該ウェハ載置面の反対側の面に抵抗発熱ユニットを有し、前記載置台と前記抵抗発熱ユニットを支持する支持板とから構成され、前記抵抗発熱ユニットは発熱体と該発熱体と前記載置台の間の絶縁層とからなり、前記発熱体のパターンが存在しない部分に発熱体と同じ材料の介在物が存在し、前記発熱体と前記介在物の間に絶縁体を備え、前記発熱体と前記介在物の厚みが略同一であることを特徴とする。 The heater unit for heating a wafer according to the present invention has a mounting table having a wafer mounting surface, a resistance heating unit on the surface opposite to the wafer mounting surface, and supports the mounting table and the resistance heating unit. The resistance heating unit is composed of a heating element and an insulating layer between the heating element and the mounting table, and the inclusion of the same material as the heating element exists in a portion where the pattern of the heating element does not exist In addition, an insulator is provided between the heating element and the inclusion, and the heating element and the inclusion have substantially the same thickness .
前記支持板が導電体であり、前記抵抗発熱ユニットと支持板の間に絶縁層が存在することが好ましい。 Preferably, the support plate is a conductor, and an insulating layer exists between the resistance heating unit and the support plate.
このようなウェハ加熱用ヒータユニットを搭載した半導体製造装置は、均熱性、信頼性、スループットに優れたものとすることができる。 A semiconductor manufacturing apparatus equipped with such a wafer heating heater unit can be excellent in heat uniformity, reliability, and throughput.
本発明によれば、均熱性や信頼性に優れたウェハ加熱用ヒータユニットを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the heater unit for wafer heating excellent in soaking | uniform-heating property and reliability can be provided.
図1を参照して、本発明のウェハ加熱用ヒータユニットは、ウェハ載置面10を有する載置台1と、該ウェハ載置面の反対側の面に抵抗発熱ユニット2を有し、前記載置台と抵抗発熱ユニットを支持する支持板3とから構成され、抵抗発熱ユニット2は発熱体21と該発熱体と載置台1の間の絶縁層22とからなり、発熱体21のパターンの存在しない部分に介在物23が存在する。
Referring to FIG. 1, the heater unit for heating a wafer according to the present invention has a mounting table 1 having a
発熱体のパターンの存在しない部分に介在物23が存在することにより、発熱体の有無による厚みの分布がなくなり、載置台と抵抗発熱ユニットと支持坂との密着性が高まるので、熱伝達の差異がなくなるので、ウェハ載置面の均熱性を向上させることができる。 The presence of the inclusions 23 in the portion where the pattern of the heating element does not exist eliminates the thickness distribution due to the presence or absence of the heating element, and the adhesion between the mounting table, the resistance heating unit, and the support hill increases. Therefore, the thermal uniformity of the wafer mounting surface can be improved.
前記発熱体と介在物は、同じ材料であっても良い。この場合、発熱体のパターン形成した時に発生する抜きパターンを介在物として用いることができるので、経済的である。なお、発熱体と介在物の間には、絶縁体を挿入しておく必要がある。 The heating element and the inclusion may be the same material. In this case, the punching pattern generated when the heating element pattern is formed can be used as an inclusion, which is economical. It is necessary to insert an insulator between the heating element and the inclusion.
あるいは、前記発熱体と介在物がほぼ同じ厚みであり、介在物が絶縁体であってもよい。この場合、絶縁体に発熱パターンを抜いた絶縁体に発熱体をはめ込んで組み込めるため、製作工程が容易で生産性を向上することができる。 Alternatively, the heating element and the inclusion may have substantially the same thickness, and the inclusion may be an insulator. In this case, since the heating element is fitted into the insulator obtained by removing the heating pattern from the insulator, the manufacturing process is easy and the productivity can be improved.
発熱体の厚みと介在物の厚みは、同じかあるいは発熱体の厚みが20μm程度厚くすることが好ましい。発熱体の厚みを介在物の厚みより50μmを超えるまで厚くすると、上記均熱性などに悪影響が出やすくなるので好ましくない。最も好ましい範囲は、同等から10μm程度までである。 The thickness of the heating element and the thickness of the inclusion are preferably the same or the heating element is preferably about 20 μm thick. If the thickness of the heating element is increased to more than 50 μm from the thickness of the inclusions, it is not preferable because the above-mentioned heat uniformity is likely to be adversely affected. The most preferred range is from equivalent to about 10 μm.
また、支持板が導電体の場合は、抵抗発熱ユニットと支持板との間に、絶縁層を挿入する必要がある。 When the support plate is a conductor, it is necessary to insert an insulating layer between the resistance heating unit and the support plate.
本発明においては、発熱体を2層以上積層することができる。 In the present invention, two or more heating elements can be laminated.
本発明の載置台と支持板は、均熱性の観点から熱伝導率の高い材料が好ましい。熱伝導率の高い材料としては、銅、アルミニウム、炭化ケイ素、窒化アルミニウム、及びこれらを含む複合材料を挙げることができる。複合材料とは、例えばシリコンと炭化ケイ素の複合体(Si−SiC)やアルミニウムと炭化ケイ素の複合体(Al−SiC)等がある。 The mounting table and the support plate of the present invention are preferably made of a material having high thermal conductivity from the viewpoint of heat uniformity. Examples of the material having high thermal conductivity include copper, aluminum, silicon carbide, aluminum nitride, and composite materials containing these. Examples of the composite material include a composite of silicon and silicon carbide (Si—SiC) and a composite of aluminum and silicon carbide (Al—SiC).
載置台と支持板の組合せでは、少なくともどちらかが剛性の高い材料にすることが好ましい。剛性の高い材料は、窒化アルミニウムや、炭化ケイ素、およびこれらのセラミックスを含む複合体である。 In the combination of the mounting table and the support plate, at least one of them is preferably made of a highly rigid material. The material having high rigidity is a composite containing aluminum nitride, silicon carbide, and ceramics thereof.
もし載置台と支持板の両方が、例えばアルミニウムなどの比較的剛性の低い材料とした場合は、抵抗発熱ユニットなどの熱サイクルにより変形が生じ易くなり、冷却モジュールと支持板、あるいは抵抗発熱ユニットと載置台との密着性が変化し、載置面の形状が変化することにより、均熱性などの特性が悪化するため好ましくない。また、載置するウェハの均熱性を良好にするためには、載置台の熱伝導率を比較的高くし、支持板の剛性(ヤング率)を比較的高くすることが好ましい。 If both the mounting table and the support plate are made of a material with relatively low rigidity, such as aluminum, deformation is likely to occur due to the heat cycle of the resistance heating unit or the like, and the cooling module and the support plate or resistance heating unit Since the adhesiveness with the mounting table changes and the shape of the mounting surface changes, characteristics such as heat uniformity deteriorate, which is not preferable. Further, in order to improve the thermal uniformity of the wafer to be mounted, it is preferable that the thermal conductivity of the mounting table is relatively high and the rigidity (Young's modulus) of the support plate is relatively high.
発熱体は、ステンレス、ニッケルクロム合金、インコネル、モリブデン、タングステンなどの金属箔であることが好ましい。この中では、ステンレスが、生産性とコスト面で、最も好ましい。 The heating element is preferably a metal foil such as stainless steel, nickel chromium alloy, inconel, molybdenum, tungsten. Among these, stainless steel is most preferable in terms of productivity and cost.
絶縁層は、ポリイミド、マイカ、テフロン(登録商標)などであることが好ましい。この中では、熱抵抗の少ない厚みが薄いものが使用できるので、ポリイミドが最も好ましい。 The insulating layer is preferably made of polyimide, mica, Teflon (registered trademark), or the like. Of these, polyimide is most preferred because it can be used with a low thermal resistance and a small thickness.
介在物は、発熱体と同じ材料であるか、ポリイミドあるいはテフロン(登録商標)などであることが好ましい。介在物と発熱体が同じ材料の場合は、介在物と発熱体の間に、ポリイミドあるいはテフロン(登録商標)の絶縁体を挿入して、介在物と発熱体との絶縁をとる必要がある。 The inclusion is preferably made of the same material as the heating element, or is polyimide or Teflon (registered trademark). When the inclusion and the heating element are made of the same material, it is necessary to insert a polyimide or Teflon (registered trademark) insulator between the inclusion and the heating element to insulate the inclusion from the heating element.
載置台と支持板とは、抵抗発熱ユニットを挟み込んで、機械的に結合することが好ましい。載置台と支持坂の材質が異なる場合や、冷却モジュールを支持板側に設置した場合、常温のウェハを載置台に搭載したときに、温度差や熱膨張差が生じるので、これらの影響を受けにくくするためである。機械的な結合方法は、ネジ止めやバネによる固定が挙げられるが、安定性の観点から、ネジ止めが最も好ましい。 The mounting table and the support plate are preferably mechanically coupled with the resistance heating unit interposed therebetween. When the material of the mounting table and the support hill are different, or when the cooling module is installed on the support plate side, when a normal temperature wafer is mounted on the mounting table, a temperature difference or a thermal expansion difference occurs, which is affected by these effects. This is to make it difficult. Examples of the mechanical coupling method include screwing and fixing with a spring, but screwing is most preferable from the viewpoint of stability.
載置面には、ウェハを支持する支持体(図示せず)を設置することが好ましい。支持体は、ウェハと載置面との間に微小な空間を形成し、ウェハ裏面へのパーティクルの付着を防止するとともに、微小な空間を形成することによりウェハの温度分布(均熱性)を向上させることができる。支持体は、ウェハと載置面の間隔を、10〜300μm程度になるように設置することが好ましい。 It is preferable to install a support (not shown) for supporting the wafer on the mounting surface. The support forms a minute space between the wafer and the mounting surface to prevent particles from adhering to the backside of the wafer, and improves the temperature distribution (thermal uniformity) of the wafer by forming a minute space. Can be made. The support is preferably installed so that the distance between the wafer and the mounting surface is about 10 to 300 μm.
本発明のウェハ加熱用ヒータユニットには、支持板の下部に可動式冷却モジュールを備えることが好ましい。例えば、加熱時には冷却モジュールを支持板から離しておき、冷却時に支持板に当接することにより、冷却速度を向上させることができる。冷却モジュールは、例えば銅あるいはアルミニウム等の板状体に溝を形成し、その溝に金属パイプを取り付け、このパイプに水や有機系の冷媒を流す方法がある。 The heater unit for heating a wafer according to the present invention preferably includes a movable cooling module below the support plate. For example, the cooling rate can be improved by keeping the cooling module away from the support plate during heating and contacting the support plate during cooling. The cooling module includes a method in which a groove is formed in a plate-like body such as copper or aluminum, a metal pipe is attached to the groove, and water or an organic refrigerant is allowed to flow through the pipe.
また、2枚の金属板の片方あるいは両方に流路を形成し、ロウ付けや溶接で接合して冷却モジュールとすることができる。また、冷却モジュールには冷媒を流す流路を形成しないで、冷却モジュールが支持板から離間したときにチャンバーなどの容器に接触するようにして、容器に冷媒を流して冷却モジュールを冷却するような構造であってもよい。 Moreover, a flow path can be formed in one or both of two metal plates, and it can join by brazing or welding to make a cooling module. In addition, the cooling module is not formed with a flow path for flowing the refrigerant, but is brought into contact with a container such as a chamber when the cooling module is separated from the support plate, so that the cooling module is cooled by flowing the refrigerant through the container. It may be a structure.
上記の中では、冷却モジュールそのものに冷媒の流路を形成しない方が、冷却モジュールの温度分布を、ウェハ加熱用ヒータユニットに影響を与え難いので好ましい。冷却モジュールに冷媒の流路を形成すると、冷媒の導入部分出は冷却モジュールの温度が低いが、冷媒の出口付近では冷媒の温度が上昇しているので、冷却モジュールの温度が高くなるという温度分布が生じる。この冷却モジュールの温度分布が、ウェハ加熱用ヒータユニットのウェハ載置面の温度分布に影響を与えることがあるからである。 Among the above, it is preferable not to form a refrigerant flow path in the cooling module itself because the temperature distribution of the cooling module is less likely to affect the wafer heating heater unit. When the refrigerant flow path is formed in the cooling module, the temperature of the refrigerant introduction portion out is low, but the temperature of the cooling module increases because the temperature of the refrigerant rises near the refrigerant outlet. Occurs. This is because the temperature distribution of the cooling module may affect the temperature distribution of the wafer mounting surface of the wafer heating heater unit.
載置台として、窒化アルミニウム焼結体(AlN)、銅(Cu)、アルミニウム(Al)の板を用意した。これらの直径は320mmで、厚みは5mmとした。 A plate of aluminum nitride sintered body (AlN), copper (Cu), and aluminum (Al) was prepared as a mounting table. These diameters were 320 mm and the thickness was 5 mm.
窒化アルミニウム焼結体は、窒化アルミニウム(AlN)粉末99.5重量部に、酸化イットリウム(Y2O3)を、0.5重量部添加し、アクリルバインダー、有機溶剤を加え、ボールミルにて24時間混合して、AlNスラリーを作製した。このスラリーを、スプレードライにて顆粒を作製し、プレス成形した後、700℃、窒素雰囲気中で脱脂し、1850℃、窒素雰囲気中で焼結して作製した。このAlN焼結体を機械加工して、直径320mm、厚さ5mmとした。このAlN焼結体の上下面の表面粗さはRa0.8μm、平面度は50μmであった。 The aluminum nitride sintered body was prepared by adding 0.5 parts by weight of yttrium oxide (Y 2 O 3 ) to 99.5 parts by weight of aluminum nitride (AlN) powder, adding an acrylic binder and an organic solvent, and adding 24 parts by a ball mill. Mixing for a time, an AlN slurry was prepared. The slurry was produced by spray-drying granules, press-molded, degreased in a nitrogen atmosphere at 700 ° C., and sintered in a nitrogen atmosphere at 1850 ° C. This AlN sintered body was machined to have a diameter of 320 mm and a thickness of 5 mm. The surface roughness of the upper and lower surfaces of this AlN sintered body was Ra 0.8 μm, and the flatness was 50 μm.
厚さ50μmのステンレス箔(SUS)あるいは、ニッケルクロム合金(NiCr)を所定の回路パターンにエッチングして、発熱体とした。また、厚み25μmのポリイミドあるいは厚み200μmのマイカ、厚み200μmのテフロン(登録商標)を用意し、絶縁層とした。また、介在物として、ステンレス箔、ポリイミド、ニッケルクロム合金を用意した。ステンレス箔とニッケルクロム合金の場合は、前記発熱体の回路パターンの抜きパターンを利用し、発熱体との間に、発熱体パターンと前記抜きパターン介在物の領域を抜いたポリイミドシートを挿入して絶縁をとった。なお、絶縁をテフロン(登録商標)でとる場合は、テフロン(登録商標)樹脂を発熱体と介在物の間に埋め込み固めた後、発熱体と同じ厚みになるよう加工すればよい。介在物がポリイミドの場合は、エッチングによって、発熱体の回路パターンの抜きパターンにあるようにした。これらの発熱体と介在物と絶縁層を組み合わせて、抵抗発熱ユニットとした。 A 50 μm thick stainless steel foil (SUS) or nickel chrome alloy (NiCr) was etched into a predetermined circuit pattern to obtain a heating element. Further, polyimide having a thickness of 25 μm, mica having a thickness of 200 μm, and Teflon (registered trademark) having a thickness of 200 μm were prepared and used as an insulating layer. Moreover, stainless steel foil, polyimide, and nickel chrome alloy were prepared as inclusions. In the case of stainless steel foil and nickel chrome alloy, use the extraction pattern of the circuit pattern of the heating element, and insert a polyimide sheet with the heating element pattern and the area of the inclusion of the extraction pattern between the heating element. Insulated. When insulation is made of Teflon (registered trademark), a Teflon (registered trademark) resin is embedded between the heating element and the inclusion and hardened, and then processed to have the same thickness as the heating element. When the inclusion was polyimide, it was made to be in the extraction pattern of the circuit pattern of the heating element by etching. These heating elements, inclusions, and insulating layers were combined to form a resistance heating unit.
支持板として、Si−SiC、Al−SiC、窒化アルミニウム焼結体を用意した。これらの直径は、320mmで厚みは5mmとした。 As the support plate, Si—SiC, Al—SiC, and an aluminum nitride sintered body were prepared. These diameters were 320 mm and the thickness was 5 mm.
前記載置台と前記抵抗発熱ユニットと前記支持板をネジ止めにより固定し、発熱体に給電用の電極を取り付け、温度制御用の測温抵抗素子を載置台のウェハ載置面の反対側に取り付け、ウェハ加熱用ヒータユニットとした。なお、支持板が、Si−SiCとAl−SiCの場合は、これらは導電体であるので、支持板と抵抗発熱ユニットの間に、厚み25μmのポリイミドもしくは、厚み200μmのテフロン(登録商標)、厚み200μmのマイカを絶縁層として挿入した。 The mounting table, the resistance heating unit and the support plate are fixed with screws, a power supply electrode is mounted on the heating element, and a temperature measuring resistance element for temperature control is mounted on the opposite side of the mounting table on the wafer mounting surface. A heater unit for heating the wafer was obtained. When the support plate is Si—SiC and Al—SiC, these are conductors, and therefore, between the support plate and the resistance heating unit, polyimide having a thickness of 25 μm or Teflon (registered trademark) having a thickness of 200 μm, Mica having a thickness of 200 μm was inserted as an insulating layer.
これらのウェハ加熱用ヒータユニットの、130℃における均熱性を測定した。測定は、130℃まで昇温して15分間キープして安定状態になってから、65点測定可能な直径300mmのウェハ温度計をウェハ搬送装置によって載置面に搭載し、搭載してから60秒後の、65点の最高温度と最低温度の差を均熱性とした。 The heat uniformity at 130 ° C. of these heater units for heating the wafer was measured. In the measurement, the temperature is raised to 130 ° C. and kept stable for 15 minutes, and then a wafer thermometer having a diameter of 300 mm capable of measuring 65 points is mounted on the mounting surface by the wafer transfer device, and then mounted. The difference between the maximum temperature and the minimum temperature at 65 points after 2 seconds was regarded as soaking.
また、130℃から80℃に冷却するまでの時間を測定した。冷却は、冷却速度を上げるために、チャンバー底部に冷却管を埋め込み、チラーにより冷却した冷却水を流し、可動式冷却モジュールとして厚み5mmで直径320mmのアルミニウム板を使用し、冷却時のみ支持板に密着させた。 Moreover, the time until cooling from 130 ° C. to 80 ° C. was measured. In order to increase the cooling speed, a cooling pipe is embedded in the bottom of the chamber, cooling water cooled by a chiller is poured, and an aluminum plate having a thickness of 5 mm and a diameter of 320 mm is used as a movable cooling module. Adhered.
載置台、発熱体、支持板等の材質と、均熱性および冷却時間の測定結果を表1に示す。 Table 1 shows the measurement results of the materials such as the mounting table, the heating element, and the support plate, and the soaking property and cooling time.
なお、いずれのウェハ加熱用ヒータユニットにおいても、ウェハ載置面には、支持体(プロキシミティ)をウェハ載置面の中心部に1個、ウェハ載置面の外周部に8個、その中間領域に4個をほぼ均等に配置し、ウェハ載置面とウェハ裏面の距離が0.1mmになるようにした。 In any of the heater units for heating the wafer, on the wafer mounting surface, one support (proximity) is provided at the center of the wafer mounting surface, eight at the outer peripheral portion of the wafer mounting surface, and the middle. Four pieces were arranged almost uniformly in the area so that the distance between the wafer mounting surface and the wafer back surface was 0.1 mm.
本発明のように、発熱体のパターン間に介在物が存在し、介在物の熱伝導率が良好なものにすれば、均熱性も冷却性能もともに、良くなることが判る。 It can be seen that, as in the present invention, inclusions exist between the patterns of the heating elements and the inclusions have good thermal conductivity, so that both heat uniformity and cooling performance are improved.
本発明によれば、信頼性が高く、均熱性に優れるウェハ加熱用ヒータユニットおよびそれを搭載した半導体製造装置を提供することができる。 According to the present invention, it is possible to provide a wafer heating heater unit having high reliability and excellent heat uniformity, and a semiconductor manufacturing apparatus equipped with the same.
1 載置台
2 抵抗発熱ユニット
3 支持板
10 ウェハ載置面
21 発熱体
22 絶縁層
23 介在物
DESCRIPTION OF SYMBOLS 1
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010089456A JP5381878B2 (en) | 2010-04-08 | 2010-04-08 | Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010089456A JP5381878B2 (en) | 2010-04-08 | 2010-04-08 | Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011222256A JP2011222256A (en) | 2011-11-04 |
JP5381878B2 true JP5381878B2 (en) | 2014-01-08 |
Family
ID=45039012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010089456A Active JP5381878B2 (en) | 2010-04-08 | 2010-04-08 | Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5381878B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6398487B2 (en) * | 2014-09-03 | 2018-10-03 | 東芝ライテック株式会社 | Heater and image forming apparatus |
JP6695204B2 (en) * | 2016-04-18 | 2020-05-20 | 日本特殊陶業株式会社 | Holding device |
WO2018016588A1 (en) * | 2016-07-20 | 2018-01-25 | Toto株式会社 | Electrostatic chuck |
JP6238098B1 (en) * | 2016-07-20 | 2017-11-29 | Toto株式会社 | Electrostatic chuck |
JP6238097B1 (en) * | 2016-07-20 | 2017-11-29 | Toto株式会社 | Electrostatic chuck |
WO2018016587A1 (en) * | 2016-07-20 | 2018-01-25 | Toto株式会社 | Electrostatic chuck |
CN113201728B (en) * | 2021-04-28 | 2023-10-31 | 錼创显示科技股份有限公司 | Semiconductor wafer bearing structure and metal organic chemical vapor deposition device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05226065A (en) * | 1992-02-10 | 1993-09-03 | Kurabe Ind Co Ltd | Surface heating body |
JPH09102384A (en) * | 1995-10-06 | 1997-04-15 | Sharp Corp | Planar heating body |
JPH10321355A (en) * | 1997-05-23 | 1998-12-04 | Ushio Inc | Planar heating unit |
JP3608185B2 (en) * | 1997-08-26 | 2005-01-05 | 東芝セラミックス株式会社 | Plate heater and manufacturing method thereof |
JP3646914B2 (en) * | 1999-04-13 | 2005-05-11 | 東芝セラミックス株式会社 | Manufacturing method of ceramic heater |
JP2005056620A (en) * | 2003-08-08 | 2005-03-03 | Keihin Sokki Kk | Heater device in semiconductor wafer, and its manufacturing method |
JP2005340043A (en) * | 2004-05-28 | 2005-12-08 | Sumitomo Electric Ind Ltd | Heating device |
JP2006140367A (en) * | 2004-11-15 | 2006-06-01 | Sumitomo Electric Ind Ltd | Heating element for semiconductor manufacturing apparatus and heating apparatus loading heating element |
JP2009170389A (en) * | 2008-01-10 | 2009-07-30 | Zaiken:Kk | Ceramic heater, and manufacturing method thereof |
-
2010
- 2010-04-08 JP JP2010089456A patent/JP5381878B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011222256A (en) | 2011-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4497103B2 (en) | Wafer holder, heater unit on which it is mounted, and wafer prober | |
JP5381878B2 (en) | Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same | |
JP4950688B2 (en) | Mounting device | |
US7425838B2 (en) | Body for keeping a wafer and wafer prober using the same | |
JP5416570B2 (en) | Heating / cooling device and apparatus equipped with the same | |
JP2007035747A (en) | Wafer holder, and wafer prober equipped with the same | |
JP2007043042A (en) | Wafer holder and manufacturing method thereof, wafer prober mounting same, and semiconductor heating device | |
JP5157131B2 (en) | Heating body and semiconductor manufacturing apparatus equipped with the same | |
JP6060889B2 (en) | Heater unit for wafer heating | |
JP2011159684A (en) | Electrostatic chuck device | |
JP5500421B2 (en) | Wafer holder and wafer prober equipped with the same | |
JP2007042959A (en) | Wafer holder for wafer prober and wafer prober mounted with same | |
JP2013123053A (en) | Device for heating and cooling, and apparatus with the same | |
JP5381879B2 (en) | Wafer heating heater unit and semiconductor manufacturing apparatus equipped with the same | |
JP2013004810A (en) | Heater for heating wafer | |
JP4433478B2 (en) | Heating device and wafer prober equipped with the same | |
JP2007227442A (en) | Wafer holding body and wafer prober mounted with the same | |
JP2012175046A (en) | Heater unit for semiconductor manufacturing device | |
JP2005340043A (en) | Heating device | |
JP4525571B2 (en) | Wafer holder, heater unit on which it is mounted, and wafer prober | |
JP2011081932A (en) | Heater and device mounting the same | |
JP2007042960A (en) | Wafer holder and wafer prober mounting same | |
JP7573165B1 (en) | Wafer Heating Device | |
JP6593414B2 (en) | Heater unit for wafer heating | |
JP2007208186A (en) | Wafer holder, semiconductor manufacturing device mounted with the same and wafer prober |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130416 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130916 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5381878 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |