JP5380910B2 - Organic radical secondary battery - Google Patents
Organic radical secondary battery Download PDFInfo
- Publication number
- JP5380910B2 JP5380910B2 JP2008147285A JP2008147285A JP5380910B2 JP 5380910 B2 JP5380910 B2 JP 5380910B2 JP 2008147285 A JP2008147285 A JP 2008147285A JP 2008147285 A JP2008147285 A JP 2008147285A JP 5380910 B2 JP5380910 B2 JP 5380910B2
- Authority
- JP
- Japan
- Prior art keywords
- radical
- secondary battery
- compound
- formula
- organic radical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 C*([n]1c(C(C)(*)N)ccc1C(C)(*)*)OC1CC(C)(C)N(*)C(C)(C)C1 Chemical compound C*([n]1c(C(C)(*)N)ccc1C(C)(*)*)OC1CC(C)(C)N(*)C(C)(C)C1 0.000 description 2
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、有機ラジカル二次電池に関し、詳しくは充電容量の検知が容易な有機ラジカル二次電池に関する。 The present invention relates to an organic radical secondary battery, and more particularly to an organic radical secondary battery in which charge capacity can be easily detected .
ノート型コンピューター、携帯電話、デジタルカメラ等電子機器の普及に伴い、これら電子機器を駆動するための二次電池の需要が拡大している。近年、これら電子機器は高機能化の進展に伴い消費電力が増大していることや、小型化が期待されていることから、二次電池に対しては容量の増大が求められている。二次電池の中でも正極活物質として軽量、高起電力であるラジカル化合物を用いた有機ラジカル電池は、高エネルギー密度、高出力密度を有する可能性があることから注目されている。 With the widespread use of electronic devices such as notebook computers, mobile phones, and digital cameras, the demand for secondary batteries for driving these electronic devices is increasing. In recent years, the power consumption of these electronic devices has increased with the progress of higher functionality, and the reduction in size is expected. Therefore, an increase in capacity is required for secondary batteries. Among secondary batteries, an organic radical battery using a radical compound having a light weight and a high electromotive force as a positive electrode active material has attracted attention because it may have a high energy density and a high output density.
ところで、二次電池に対する充放電制御は、端子電圧の変化に基づき行う方法がある。具体的には二次電池の充電容量に応じて変化する端子電圧の大きさに基づき充放電を制御している。
しかし、特許文献1の実施例にあるように、活物質にラジカル化合物を用いて電池を構成した場合、充放電時の電池電圧が平坦であることから、電池電圧を利用して電池の充電状態の簡便に検出することが困難であるという問題がある。 However, as shown in the examples of Patent Document 1, when a battery is configured using a radical compound as an active material, the battery voltage during charging / discharging is flat. There is a problem that it is difficult to detect easily.
本発明は上記実情に鑑み完成したものであり、充放電時の電池電位を多段化することにより、二次電池の充電状態の検出が容易な有機ラジカル二次電池、有機ラジカル二次電池の充放電制御方法及び有機ラジカル二次電池の充放電制御装置を提供することを解決すべき課題とする。 The present invention has been completed in view of the above circumstances, and by charging the battery potential at the time of charging and discharging in multiple stages, the charging state of the organic radical secondary battery and the organic radical secondary battery in which the charged state of the secondary battery can be easily detected. An object to be solved is to provide a discharge control method and a charge / discharge control device for an organic radical secondary battery.
上記課題を解決する請求項1に係る有機ラジカル二次電池の特徴は、陰イオンを吸着及び放出できる正極と、陽イオンを吸着及び放出できる負極と、正極と負極との間で前記陽イオン及び陰イオンを溶解させた電解液と、充放電制御装置を備える有機ラジカル二次電池において、前記正極及び前記負極の少なくとも一方の電極活物質は、酸化還元電位の異なるラジカル化合物を2種以上含有しており、前記充放電制御装置は、所定の上限値と所定の下限値との間に充電容量を保つように充放電を行う充放電制御手段を有し、前記ラジカル化合物の酸化還元電位が、前記充電容量における前記所定の上限値に対応する値以下、前記充電容量における前記所定の下限値に対応する値以上の範囲である使用電圧範囲内に2つ以上存在し、かつ、前記ラジカル化合物の酸化還元電位差が各々0.1V以上であり、端子電圧から充放電状態を算出することにある。 Features of the organic radical secondary battery according to claim 1 for solving the above-mentioned problems, a positive electrode capable of adsorbing and releasing anions, a negative electrode capable of adsorbing and releasing a cation, the cation及 between the positive electrode and the negative electrode In an organic radical secondary battery including an electrolytic solution in which a negative ion is dissolved and a charge / discharge control device , at least one of the positive electrode and the negative electrode includes at least one radical compound having different oxidation-reduction potentials. The charge / discharge control apparatus has charge / discharge control means for performing charge / discharge so as to maintain a charge capacity between a predetermined upper limit value and a predetermined lower limit value, and the oxidation-reduction potential of the radical compound is Two or more in a working voltage range that is equal to or less than a value corresponding to the predetermined upper limit value in the charge capacity, and greater than or equal to a value corresponding to the predetermined lower limit value in the charge capacity, and Redox potential of the radical compound is at each 0.1V or more, it is to calculate the charge and discharge states from the terminal voltage.
上記課題を解決する請求項2に係る有機ラジカル二次電池の特徴は、請求項1において、前記ラジカル化合物がニトロキシラジカル化合物又はオキシラジカル化合物であることにある。 A feature of the organic radical secondary battery according to claim 2 that solves the above problem is that, in claim 1, the radical compound is a nitroxy radical compound or an oxy radical compound .
上記課題を解決する請求項3に係る有機ラジカル二次電池の特徴は、請求項2において、前記ラジカル化合物が下記一般式(E)で表される化合物を含むことにある。
A feature of the organic radical secondary battery according to
(式(E)中、Rは水素、炭素数1〜4のアルキル基、フェニル基、H、OH、F、Cl、Br、CN、及びNH(In the formula (E), R is hydrogen, an alkyl group having 1 to 4 carbon atoms, a phenyl group, H, OH, F, Cl, Br, CN, and NH.
22
の何れかから選択される。式(E)中、Yは−(CHIt is selected from either. In formula (E), Y represents — (CH
22
))
mm
−(mは0〜10の整数)であり、mが1以上のときはYを構成するメチレン基の1つ以上が、−O−、−CH=N−、−S−、−CO−で置換されても良い。)-(M is an integer of 0 to 10), and when m is 1 or more, one or more methylene groups constituting Y are -O-, -CH = N-, -S-, -CO-. It may be replaced. )
上記課題を解決する請求項4に係る有機ラジカル二次電池の特徴は、請求項1〜3の何れか一項において、前記所定の下限値側から前記所定の上限値に前記充電容量が近づいた場合に、前記有機ラジカル二次電池の前記端子電圧が前記2つ以上存在する前記酸化還元電位のうちの1つを超えることにある。
A feature of the organic radical secondary battery according to
上記課題を解決する請求項5に係る有機ラジカル二次電池の特徴は、請求項1〜4の何れか一項において、前記所定の上限値側から前記所定の下限値に前記充電容量が近づいた場合に、前記有機ラジカル二次電池の前記端子電圧が前記2つ以上存在する前記酸化還元電位のうちの1つを下回ることにある。 The feature of the organic radical secondary battery according to claim 5 for solving the above-mentioned problem is that, in any one of claims 1 to 4, the charge capacity approaches the predetermined lower limit value from the predetermined upper limit value side. In some cases, the terminal voltage of the organic radical secondary battery is lower than one of the two or more redox potentials .
上記課題を解決する請求項6に係る有機ラジカル二次電池の特徴は、陰イオンを吸着及び放出できる正極と、陽イオンを吸着及び放出できる負極と、正極と負極との間で前記陽イオン及び陰イオンを溶解させた電解液を備える有機ラジカル二次電池において、
前記正極及び前記負極の少なくとも一方の電極活物質は、酸化還元電位の異なるラジカル化合物を2種以上含有しており、前記ラジカル化合物がニトロキシラジカル化合物又はオキシラジカル化合物であり、前記ラジカル化合物が下記一般式(E)で表される化合物を含むことにある。
The feature of the organic radical secondary battery according to claim 6 for solving the above problem is that a positive electrode capable of adsorbing and releasing anions, a negative electrode capable of adsorbing and releasing cations, and the cation and the positive electrode between the positive electrode and the negative electrode. In an organic radical secondary battery comprising an electrolytic solution in which an anion is dissolved,
At least one electrode active material of the positive electrode and the negative electrode contains two or more radical compounds having different oxidation-reduction potentials, the radical compound is a nitroxy radical compound or an oxy radical compound, and the radical compound is It exists in including the compound represented by general formula (E) .
上記課題を解決する請求項7に係る有機ラジカル二次電池の特徴は、請求項6において、前記ラジカル化合物の酸化還元電位差が各々0.1V以上であることにある。 A feature of the organic radical secondary battery according to claim 7 for solving the above-mentioned problem is that, in claim 6, the oxidation-reduction potential difference of the radical compound is 0.1 V or more .
上記課題を解決する請求項8に係る有機ラジカル二次電池の特徴は、請求項1〜7の何れか一項において、前記ラジカル化合物の最高被占軌道エネルギー差が各々0.2eV以上であることにある。 The feature of the organic radical secondary battery according to claim 8 that solves the above-mentioned problem is that, in any one of claims 1 to 7, a maximum occupied orbital energy difference of each of the radical compounds is 0.2 eV or more. It is in.
上記課題を解決する請求項9に係る有機ラジカル二次電池の特徴は、請求項1〜8の何れか一項において、前記ラジカル化合物が2,2,6,6−テトラメチルピペリジノキシメタクリレートを単位化合物として含むことにある。 Features of the organic radical secondary battery according to claim 9 for solving the above-Oite to any one of claims 1-8, wherein the radical compound 2,2,6,6-tetramethyl-piperidinoethoxy It is to contain xyl methacrylate as a unit compound.
上記課題を解決する請求項10に係る有機ラジカル二次電池の特徴は、請求項1〜9の何れか一項において、前記ラジカル化合物が下記一般式(D1)又は(D2)で表される化合物を含むことにある。
Features of the organic radical secondary battery according to
上記課題を解決する請求項11に係る有機ラジカル二次電池の特徴は、請求項9において、前記ラジカル化合物はポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を含むことにある。 Features of the organic radical secondary battery according to claim 11 for solving the foregoing problem resides in that in Claim 9, in particular the radical compound comprises poly (2,2,6,6-tetramethyl piperidino carboxymethyl methacrylate) is there.
本願に係る発明においては、酸化還元電位が異なる複数種類のラジカル化合物を活物質として有することにより、充放電時の電池電圧が多段化されるため、電池電圧による充電状態の検出が容易乃至は高精度で行うことができることになる。 In the invention according to the present application, by having a plurality of types of radical compounds having different oxidation-reduction potentials as active materials, the battery voltage at the time of charging / discharging is multi-staged. It can be done with accuracy.
特に、請求項1および7に係る発明におけるように、それぞれのラジカル化合物の酸化還元電位の差を0.1V以上にすることが効果的である。また、請求項8に係る発明におけるように、それぞれのラジカル化合物の最高被占軌道エネルギーの差が0.2eV以上にすることが効果的である。最高被占軌道エネルギーの差は半経験的分子軌道法にて算出された値である。半経験的分子軌道法としては特に限定しないが、PPP法、CNDO法、INDO法、MNDO法が例示できる。 In particular, as in the inventions according to claims 1 and 7 , it is effective to set the difference in oxidation-reduction potential of each radical compound to 0.1 V or more. Further, as in the invention according to claim 8 , it is effective that the difference in the maximum occupied orbital energy of each radical compound is 0.2 eV or more. The difference in the maximum occupied orbital energy is a value calculated by the semi-empirical molecular orbital method. Although it does not specifically limit as a semi-empirical molecular orbital method, PPP method, CNDO method, INDO method, MNDO method can be illustrated.
請求項2に係る発明においては、具体的なラジカル化合物として、ニトロキシラジカル化合物又はオキシラジカル化合物を採用することにより、充放電時における電圧変動を好ましいものにすることができる。 In the invention which concerns on Claim 2 , the voltage fluctuation at the time of charging / discharging can be made favorable by employ | adopting a nitroxy radical compound or an oxy radical compound as a specific radical compound.
特に、請求項9に係る発明におけるように、具体的なラジカル化合物として、2,2,6,6−テトラメチルピペリジノキシメタクリレートを単位化合物として含む化合物を採用することにより、充放電時における電圧変動をより好ましいものにすることができる。そして、請求項11に係る発明におけるように、ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を採用することにより、充放電時における電圧変動をより好ましいものにすることができる。 In particular, as in the invention according to claim 9, by adopting a compound containing 2,2,6,6-tetramethylpiperidinoxymethacrylate as a unit compound as a specific radical compound, at the time of charge and discharge The voltage fluctuation can be made more preferable. And, as in the invention according to claim 11 , by adopting poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), it is possible to make voltage fluctuation during charge / discharge more preferable. it can.
また、請求項10に係る発明においては、具体的なラジカル化合物として一般式(D1)又は(D2)で表される化合物を採用することにより、充放電時における電圧変動をより好ましいものにすることができる。
Further, in the invention according to
更に、請求項3および6に係る発明においては、具体的なラジカル化合物として一般式(E)で表される化合物を採用することにより、充放電時における電圧変動をより好ましいものにすることができる。
Furthermore, in the inventions according to
また、請求項1に係る発明においては、上述したような有機ラジカル二次電池を用い、その有機ラジカル二次電池が有する電極活物質中に含まれるラジカル化合物がその有機ラジカル二次電池について充放電が想定される所定の上限値と所定の下限値とに対応する使用電圧範囲内に酸化還元電位を有することにより、有機ラジカル二次電池を使用する際における電圧変動を大きくすることが可能になる。 In the invention according to claim 1 , the organic radical secondary battery as described above is used, and the radical compound contained in the electrode active material of the organic radical secondary battery is charged for the organic radical secondary battery. By having an oxidation-reduction potential within a working voltage range corresponding to a predetermined upper limit value and a predetermined lower limit value that are expected to be discharged, it is possible to increase voltage fluctuation when using an organic radical secondary battery. Become.
特に請求項4に係る発明のように、有機ラジカル二次電池を使用する充放電範囲の上限値近傍にその酸化還元電位を位置させることにより、その酸化還元電位に相当する電池電圧を超えたことにより、充電容量がその充放電範囲の上限近傍になったことを容易に検知することが可能になる。
In particular, as in the invention according to
また請求項5に係る発明のように、有機ラジカル二次電池を使用する充放電範囲の下限値近傍にその酸化還元電位を位置させることにより、その酸化還元電位に相当する電池電圧を下回ることにより、充電容量がその充放電範囲の下限近傍になったことを容易に検知することが可能になる。 Further, as in the invention according to claim 5 , by placing the oxidation-reduction potential in the vicinity of the lower limit value of the charge / discharge range using the organic radical secondary battery, the battery voltage corresponding to the oxidation-reduction potential is reduced. It becomes possible to easily detect that the charge capacity is near the lower limit of the charge / discharge range.
[有機ラジカル二次電池]
以下に本発明の有機ラジカル二次電池について実施形態に基づき説明を行う。本実施形態の有機ラジカル二次電池は、電極活物質中にラジカル化合物を含有することを特徴とする。ラジカル化合物は電池反応に寄与する化合物である。有機ラジカル二次電池は陰イオンを吸着及び放出できる正極と、陽イオンを吸着及び放出できる負極と、正極と負極との間で陽イオン及び陰イオンを溶解させた電解液とを備える。
[Organic radical secondary battery]
The organic radical secondary battery of the present invention will be described below based on the embodiments. The organic radical secondary battery of this embodiment is characterized by containing a radical compound in the electrode active material. A radical compound is a compound that contributes to the battery reaction. The organic radical secondary battery includes a positive electrode capable of adsorbing and releasing anions, a negative electrode capable of adsorbing and releasing cations, and an electrolytic solution in which cations and anions are dissolved between the positive electrode and the negative electrode.
電極活物質(正極及び/又は負極が有する活物質)は2つ以上の酸化還元電位を有する。その酸化還元電位は有機ラジカル二次電池に対して充放電を行う範囲内において通過する電池電圧範囲内に存在する。このように酸化還元電位が2つ以上在ることにより、有機ラジカル二次電池に対して充放電を行う際の電圧変動が大きくなって、電圧変動から充放電状態を検知することが容易になる。酸化還元電位の差は0.1V以上であることが望ましく、0.2V以上であることが更に望ましい。また、半経験的分子軌道方法により計算されたHOMOの値の差が0.2eV以上であることが望ましく、0.4eV以上であることが更に望ましい。 The electrode active material (the active material possessed by the positive electrode and / or the negative electrode) has two or more redox potentials. The oxidation-reduction potential exists in a battery voltage range that passes within a range where charge and discharge are performed on the organic radical secondary battery. Thus, when there are two or more oxidation-reduction potentials, voltage fluctuation when charging / discharging the organic radical secondary battery becomes large, and it becomes easy to detect the charge / discharge state from the voltage fluctuation. . The difference in redox potential is desirably 0.1 V or more , and more desirably 0.2 V or more. Further, the difference in the HOMO values calculated by the semi-empirical molecular orbital method is desirably 0.2 eV or more, and more desirably 0.4 eV or more.
電極活物質が複数の酸化還元電位をもつようにするために、大きく3つの手法を採用する。第1の手法としては、酸化還元電位が異なるラジカル化合物を採用するものである。第2の手法としてはラジカル化合物に加え、テトラチアフルバレン誘導体を含有させる構成を採用するものである。第3の手法としてはラジカル化合物に加え、キノン誘導体を含有させる構成を採用するものである。これらの第1〜第3の手法は組み合わせることも可能である。具体的には酸化還元電位が異なるラジカル化合物とテトラチアフルバレン誘導体とを組み合わせたり、酸化還元電位が異なるラジカル化合物とキノン誘導体とを組み合わせたり、ラジカル化合物とテトラチアフルバレン誘導体とキノン誘導体とを組み合わせたり、酸化還元電位が異なるラジカル化合物とテトラチアフルバレン誘導体とキノン誘導体とを組み合わせたりすることができる。以下、正極及び負極に分けて説明を行う。 In order to make the electrode active material have a plurality of redox potentials, three methods are generally adopted. As a first method, radical compounds having different redox potentials are employed. As a second method, a configuration in which a tetrathiafulvalene derivative is contained in addition to the radical compound is adopted. As a third method, a configuration in which a quinone derivative is contained in addition to the radical compound is adopted. These first to third methods can be combined. Specifically, a radical compound having a different redox potential and a tetrathiafulvalene derivative are combined, a radical compound having a different redox potential and a quinone derivative are combined, or a radical compound, a tetrathiafulvalene derivative and a quinone derivative are combined. A radical compound having a different oxidation-reduction potential, a tetrathiafulvalene derivative, and a quinone derivative can be combined. Hereinafter, description will be made separately for the positive electrode and the negative electrode.
(正極)
正極は、前述の活物質の他、結着材導電助剤等を水、NMP等の溶媒中で混合した後、アルミ等の金属からなる集電体上に塗布することで形成される。上記結着材としては、高分子材料から形成されることが望ましく、二次電池内の雰囲気において化学的・物理的に安定な材料であることが望ましい。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等が挙げられる。また導電助剤としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等などが例示できる。また、導電性高分子ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンなどが例示できる。
(Positive electrode)
The positive electrode is formed by mixing a binder conductive assistant in addition to the above-described active material in a solvent such as water or NMP, and then applying the mixture on a current collector made of a metal such as aluminum. The binder is preferably formed of a polymer material, and is preferably a material that is chemically and physically stable in the atmosphere in the secondary battery. For example, polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, fluorine rubber and the like can be mentioned. Examples of the conductive assistant include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon. Further, conductive polymer polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene and the like can be exemplified.
ラジカル化合物の一例としては、2,2,6,6−テトラメチルピペリジノキシメタクリレートを一部に含む共重合体又は単独重合体、上記一般式(D1)、(D2)、そして(E)で表されるものが挙げられる。2,2,6,6−テトラメチルピペリジノキシメタクリレート、一般式(D1)、(D2)、そして(E)で表される化合物はそれぞれ任意に組み合わせた共重合体とすることができる。 Examples of radical compounds include copolymers or homopolymers partially containing 2,2,6,6-tetramethylpiperidinoxymethacrylate, the above general formulas (D1), (D2), and (E) The thing represented by is mentioned. The compounds represented by 2,2,6,6-tetramethylpiperidinoxymethacrylate, general formulas (D1), (D2), and (E) can be made into a copolymer that is arbitrarily combined.
式(D1)及び(D2)中、R16〜R20は水素、炭素数1〜4のアルキル基(望ましくはメチル基)からそれぞれ独立して選択される。式(D1)中におけるR16及びR17の少なくとも1つは上記一般式(1)〜(4)で表される構造のうちの何れかである。式(D2)中におけるR18及びR20の少なくとも1つは上記一般式(1)〜(4)で表される構造のうちの何れかである。一般式(1)〜(4)のうち、一般式(1)、(2)で表される置換基が望ましい。 In formulas (D1) and (D2), R 16 to R 20 are independently selected from hydrogen and an alkyl group having 1 to 4 carbon atoms (preferably a methyl group). At least one of R 16 and R 17 in the formula (D1) is any one of the structures represented by the general formulas (1) to (4). At least one of R 18 and R 20 in the formula (D2) is any one of the structures represented by the general formulas (1) to (4). Of the general formulas (1) to (4), substituents represented by the general formulas (1) and (2) are preferable.
(負極)
上記負極の活物質としては、正極において説明した、ラジカル化合物、テトラチアフルバレン誘導体、キノン誘導体の組み合わせが採用できる。これらの組み合わせについては再度の説明を省略する。またそれらの化合物の他、リチウムイオンを吸蔵及び放出できる化合物を単独乃至は組み合わせて用いることができる。リチウムイオンを吸蔵及び放出できる化合物の一例としてはリチウム等の金属材料、ケイ素、スズ等を含有する合金材料、グラファイト、コークス、有機高分子化合物焼成体又は非晶質炭素等の炭素材料が挙げられる。これらの活物質は単独で用いるだけでなく、これらを複数種類混合して用いることもできる。例えば、負極活物質としてリチウム金属箔を用いる場合、銅等の金属からなる集電体の表面にリチウム箔を圧着することで形成できる。また負極活物質として合金材料、炭素材料を用いる場合は、負極活物質と結着材、導電助剤等を水、NMP等の溶媒中で混合した後、銅等の金属からなる集電体上に塗布され形成することができる。上記結着材としては、高分子材料から形成されることが望ましく、二次電池内の雰囲気において化学的・物理的に安定な材料であることが望ましい。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等が挙げられる。また導電助剤としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ、非晶質炭素等などが例示できる。また、導電性高分子ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンなどが例示できる。
(Negative electrode)
As the negative electrode active material, the combination of the radical compound, tetrathiafulvalene derivative, and quinone derivative described in the positive electrode can be employed. The description of these combinations will be omitted. In addition to these compounds, compounds capable of occluding and releasing lithium ions can be used alone or in combination. Examples of compounds that can occlude and release lithium ions include metal materials such as lithium, alloy materials containing silicon, tin, etc., graphite, coke, organic polymer compound fired bodies, or carbon materials such as amorphous carbon. . These active materials can be used not only alone but also as a mixture of two or more thereof. For example, when a lithium metal foil is used as the negative electrode active material, it can be formed by pressure bonding the lithium foil to the surface of a current collector made of a metal such as copper. On the other hand, when an alloy material or a carbon material is used as the negative electrode active material, the negative electrode active material, a binder, a conductive additive, etc. are mixed in a solvent such as water or NMP, and then on a current collector made of a metal such as copper. It can be applied and formed. The binder is preferably formed of a polymer material, and is preferably a material that is chemically and physically stable in the atmosphere in the secondary battery. For example, polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, fluorine rubber and the like can be mentioned. Examples of the conductive assistant include ketjen black, acetylene black, carbon black, graphite, carbon nanotube, and amorphous carbon. Further, conductive polymer polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene and the like can be exemplified.
(電解液)
電解質としては特に限定しないが、有機溶媒などの溶媒に支持塩を溶解させたもの、自身が液体状であるイオン液体、そのイオン液体に対して更に支持塩を溶解させたものが例示できる。有機溶媒としては、通常リチウム二次電池の電解液に用いられる有機溶媒が例示できる。例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。特に、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等及びそれらの混合溶媒が適当である。
(Electrolyte)
Although it does not specifically limit as electrolyte, What melt | dissolved supporting salt in solvents, such as an organic solvent, the ionic liquid which is liquid itself, and what further melt | dissolved supporting salt with respect to the ionic liquid can be illustrated. As an organic solvent, the organic solvent normally used for the electrolyte solution of a lithium secondary battery can be illustrated. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, oxolane compounds and the like can be used. In particular, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like, and mixed solvents thereof are suitable.
例に挙げたこれらの有機溶媒のうち、特に、カーボネート類、エーテル類からなる群より選ばれた一種以上の非水溶媒を用いることにより、支持塩の溶解性、誘電率および粘度、安定性において優れ、電池の充放電効率も高いので、好ましい。 Among these organic solvents mentioned in the examples, in particular, by using one or more non-aqueous solvents selected from the group consisting of carbonates and ethers, in terms of solubility, dielectric constant and viscosity, and stability of the supporting salt. It is preferable because it is excellent and the charge / discharge efficiency of the battery is high.
イオン液体は、通常リチウム二次電池の電解液に用いられるイオン液体であれば特に限定されるものではない。例えば、イオン液体のカチオン成分としては、N−メチル−N−プロピルピペリジニウムや、ジメチルエチルメトキシアンモニウムカチオン等が挙げられ、アニオン成分としは、BF4 −、N(SO2CF3)2 −等が挙げられる。 An ionic liquid will not be specifically limited if it is an ionic liquid normally used for the electrolyte solution of a lithium secondary battery. For example, examples of the cation component of the ionic liquid include N-methyl-N-propylpiperidinium and dimethylethylmethoxyammonium cation. Examples of the anion component include BF 4 − , N (SO 2 CF 3 ) 2 —. Etc.
本実施形態の電解質において用いられる支持塩としては、特に限定されない。例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、LiSbF6、LiSCN、LiClO4、LiAlCl
4、NaClO4、NaBF4、NaI、これらの誘導体等の塩化合物が挙げられる。これらの中でも、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(CF3SO2)2、LiC(CF3SO2)3、LiN(FSO2)2、LiN(CF3SO2)(C4F9SO2)、LiCF3SO3の誘導体、LiN(CF3SO2)2の誘導体及びLiC(CF3SO2)3の誘導体からなる群から選ばれる1種以上の塩を用いることが、電気特性の観点からは好ましい。
The supporting salt used in the electrolyte of the present embodiment is not particularly limited. For example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSCN, LiClO 4 , LiAlCl
4 , NaClO 4 , NaBF 4 , NaI, and salt compounds such as derivatives thereof. Among these, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , LiN (CF 3 One or more selected from the group consisting of a derivative of SO 2 ) (C 4 F 9 SO 2 ), a derivative of LiCF 3 SO 3, a derivative of LiN (CF 3 SO 2 ) 2 and a derivative of LiC (CF 3 SO 2 ) 3 It is preferable to use a salt from the viewpoint of electrical characteristics.
正極と負極との間には電気的な絶縁作用とイオン伝導作用とを両立する部材であるセパレータを介装することが望ましい。電解質が液状である場合にはセパレータは、液状の電解質を保持する役割をも果たす。セパレータとしては、多孔質合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)やガラス繊維からなる多孔質膜、不織布が例示できる。更に、セパレータは、正極及び負極の間の絶縁を担保する目的で、正極及び負極よりも更に大きい形態を採用することが好ましい。 It is desirable to interpose a separator that is a member that achieves both electrical insulation and ion conduction between the positive electrode and the negative electrode. When the electrolyte is liquid, the separator also serves to hold the liquid electrolyte. Examples of the separator include porous synthetic resin films, particularly porous films made of polyolefin polymers (polyethylene, polypropylene) and glass fibers, and nonwoven fabrics. Furthermore, it is preferable that the separator has a larger size than the positive electrode and the negative electrode for the purpose of ensuring the insulation between the positive electrode and the negative electrode.
正極、負極、電解質、セパレータなどは何らかのケース内に収納することが一般的である。ケースは、特に限定されるものではなく、公知の材料、形態で作成することができる。 In general, the positive electrode, the negative electrode, the electrolyte, the separator, and the like are housed in some case. The case is not particularly limited and can be made of a known material and form.
[有機ラジカル二次電池の充放電制御方法及び充放電制御装置]
本発明の有機ラジカル二次電池の充放電制御方法及び装置について以下、実施形態に基づき説明を行う。本実施形態の充放電制御方法及び装置が充放電の制御を行う有機ラジカル二次電池は、先に説明した本実施形態の有機ラジカル二次電池である。本実施形態の充放電制御装置は本実施形態の充放電制御方法を実現する装置であるため、充放電制御方法についての説明にて充放電制御装置の説明に代える。
[Charging / Discharging Control Method and Charge / Discharge Control Device for Organic Radical Secondary Battery]
Hereinafter, the charge / discharge control method and apparatus for an organic radical secondary battery of the present invention will be described based on embodiments. The organic radical secondary battery in which the charge / discharge control method and apparatus of this embodiment controls charge / discharge is the organic radical secondary battery of this embodiment described above. Since the charge / discharge control apparatus of this embodiment is an apparatus which implement | achieves the charge / discharge control method of this embodiment, it replaces with description of a charge / discharge control apparatus by description about a charge / discharge control method.
本充放電制御方法は、所定の上限値と所定の下限値との間に充電容量を保つように充放電を行う制御方法である。所定の上限値及び下限値としては任意に設定可能である。本制御方法はこれら所定の上限値及び下限値に対応する上限電圧及び下限電圧で規定される使用電圧範囲に有機ラジカル二次電池の電圧を保つことで充電容量を所定の上限値及び下限値の範囲に制御する方法である。 This charge / discharge control method is a control method for performing charge / discharge so as to maintain the charge capacity between a predetermined upper limit value and a predetermined lower limit value. The predetermined upper limit value and lower limit value can be arbitrarily set. This control method maintains the voltage of the organic radical secondary battery within the operating voltage range defined by the upper limit voltage and the lower limit voltage corresponding to these predetermined upper limit value and lower limit value, thereby reducing the charge capacity to the predetermined upper limit value and lower limit value. It is a method to control to the range.
制御対象の有機ラジカル二次電池の電極活物質が含む、ラジカル化合物、テトラチアフルバレン誘導体、及び/又はキノン誘導体は、この使用電圧範囲内に2つ以上の酸化還元電位をもつ。つまり、酸化還元電位が異なる電極活物質を2種類以上含有する。電極活物質は酸化還元により電池反応に寄与する化合物であり、その含有割合を変化させることにより、任意の充電容量の値において、有機ラジカル二次電池の電圧に大きな変動を生じることができる。 The radical compound, tetrathiafulvalene derivative, and / or quinone derivative contained in the electrode active material of the organic radical secondary battery to be controlled have two or more redox potentials within this operating voltage range. That is, two or more types of electrode active materials having different redox potentials are contained. The electrode active material is a compound that contributes to the battery reaction by oxidation-reduction, and by changing the content ratio, a large fluctuation can be generated in the voltage of the organic radical secondary battery at an arbitrary charge capacity value.
例えば、2種類のラジカル化合物(酸化還元電位が低いラジカル化合物(i)及び酸化還元電位が高いラジカル化合物(ii))のみを組み合わせて電極活物質を構成した有機ラジカル二次電池に基づき説明する。当然、ラジカル化合物とテトラチアフルバレン誘導体との組み合わせ、ラジカル化合物とキノン誘導体との組み合わせ、ラジカル化合物とテトラチアフルバレン誘導体とキノン誘導体との組み合わせの何れであっても良いことは言うまでもない。 For example, description will be made based on an organic radical secondary battery in which an electrode active material is configured by combining only two kinds of radical compounds (a radical compound (i) having a low redox potential and a radical compound (ii) having a high redox potential). Needless to say, any combination of a radical compound and a tetrathiafulvalene derivative, a combination of a radical compound and a quinone derivative, or a combination of a radical compound, a tetrathiafulvalene derivative and a quinone derivative may be used.
この有機ラジカル二次電池について、SOC(充電状態:State of charge)が0%からSOCが100%に向けて充電を行う場合を考えると、2種類のラジカル化合物のうち酸化還元電位が低いラジカル化合物(i)から電池反応に供されることになる。充電が進行するにつれて、ラジカル化合物(i)が優先的に反応する。 With regard to this organic radical secondary battery, considering a case where charging is performed from 0% SOC (state of charge) to 100% SOC, a radical compound having a low redox potential among two types of radical compounds From (i), it will be used for battery reaction. As charging progresses, radical compound (i) reacts preferentially.
ラジカル化合物(i)の反応が終了すると、ラジカル化合物(ii)の反応が進行する。充電を行うことで、以上説明したように電池反応が進行し、電池反応に寄与するラジカル化合物が、酸化還元電位が低いラジカル化合物(i)から酸化還元電位が高いラジカル化合物(ii)に移行する。その結果、電池の電圧が酸化還元電位の変化に伴い高くなる。 When the reaction of the radical compound (i) is completed, the reaction of the radical compound (ii) proceeds. By performing charging, the battery reaction proceeds as described above, and the radical compound contributing to the battery reaction shifts from the radical compound (i) having a low redox potential to the radical compound (ii) having a high redox potential. . As a result, the voltage of the battery increases as the redox potential changes.
ここで、ラジカル化合物(i)とラジカル化合物(ii)との混合比を変更することで、電池反応に関与する化合物がラジカル化合物(i)からラジカル化合物(ii)に切り替わるSOCの値を変化させることができる。 Here, by changing the mixing ratio of the radical compound (i) and the radical compound (ii), the SOC value at which the compound involved in the battery reaction switches from the radical compound (i) to the radical compound (ii) is changed. be able to.
例えば、ラジカル化合物(i)をSOCの80%に相当する量とし、ラジカル化合物(ii)をSOCの20%に相当する量とすることで、SOCが80%になると、電圧の変化が大きくなるように調節できる。この混合量を変化させることで、電圧変化が起きるSOCの大きさを任意に変化できる他、酸化還元電位が異なる、第3、第4の成分を含有させることで、複数のSOCの値にて電圧が大きく変化させることが可能になる。 For example, when the radical compound (i) is in an amount corresponding to 80% of the SOC and the radical compound (ii) is in an amount corresponding to 20% of the SOC, when the SOC becomes 80%, the change in voltage increases. You can adjust as you like. By changing the amount of this mixture, the magnitude of the SOC in which the voltage changes can be changed arbitrarily, and by including the third and fourth components having different oxidation-reduction potentials, a plurality of SOC values can be obtained. The voltage can be changed greatly.
以上、充電時における電圧変動について説明を行ったが、同様の電圧変動は放電時にも生起する。つまり、SOCが100%から0%に向けて放電を行うときに、ラジカル化合物(ii)の反応が終了した後にラジカル化合物(i)の反応に移行するため、その移行が起こるSOCに到達すると、電圧の大きな変化(低下)が生起する。そして、その電圧の変化が起こるSOCはラジカル化合物(i)及び(ii)の混合比により制御できる。 The voltage fluctuation at the time of charging has been described above, but the same voltage fluctuation also occurs at the time of discharging. That is, when the discharge is performed from 100% to 0%, since the reaction of the radical compound (i) is completed after the reaction of the radical compound (ii) is completed, when reaching the SOC where the transition occurs, A large change (decrease) in voltage occurs. The SOC at which the voltage changes can be controlled by the mixing ratio of the radical compounds (i) and (ii).
有機ラジカル二次電池のSOCを有機ラジカル二次電池の電圧測定により検知する場合、特定のSOCにおいて電圧の変化が大きくなると、その近傍におけるSOCの変化の検知精度が良くなって、より精密な充放電量の制御が可能になる。 When detecting the SOC of an organic radical secondary battery by measuring the voltage of the organic radical secondary battery, if the voltage change in a specific SOC increases, the detection accuracy of the SOC change in the vicinity of the SOC increases, and the more precise charging is performed. The discharge amount can be controlled.
特に、所定の下限値(SOC0%)側から所定の上限値(SOC100%)に充電容量が近づいた場合に、有機ラジカル二次電池の端子電圧が変化するように、2つ以上の酸化還元電位のうちの1つを超えるように、成分の混合比を制御することで、SOCの上限付近での制御性が向上できる。
In particular, when the charge capacity approaches the predetermined upper limit value (
反対に、所定の上限値(SOC100%)側から所定の下限値(SOC0%)に充電容量が近づいた場合に、有機ラジカル二次電池の端子電圧が変化するように、2つ以上の酸化還元電位のうちの1つを下回るように、成分の混合比を制御することで、SOCの下限付近での制御性が向上できる。
On the contrary, two or more redox reductions so that the terminal voltage of the organic radical secondary battery changes when the charge capacity approaches the predetermined lower limit (
具体的に前述のラジカル化合物(i)及び(ii)の例で説明すると、電圧変化を生起させる目的のSOCに対応する混合比(例えば、SOC90%の場合)に相当する混合比にてラジカル化合物(i):ラジカル化合物(ii)(充放電量比)を混合(SOC90%の場合は10:90)する。 Specifically, in the example of the radical compound (i) and (ii) described above, the radical compound at a mixing ratio corresponding to the target SOC causing the voltage change (for example, in the case of SOC 90%). (I): The radical compound (ii) (charge / discharge amount ratio) is mixed (in the case of SOC 90%, 10:90).
以下に実施例を示し、本発明の有機ラジカル二次電池の詳細について説明する。 Examples are shown below, and the details of the organic radical secondary battery of the present invention are described.
[実施例1]
(ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)の合成)
窒素雰囲気下、攪拌機を付けた2Lの4口フラスコ中に、4−メタクリロイルオキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルを135g(0.563モル)、エチレングリコールジメタクリレートを6.75g(0.034モル)、n−ヘキシルメタクリレートを1.35g(0.008モル)、そして乾燥トルエン780mlを仕込み、溶解させた後、−10℃まで冷却した。
[Example 1]
(Synthesis of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate))
In a 2 L four-necked flask equipped with a stirrer under a nitrogen atmosphere, 135 g (0.563 mol) of 4-methacryloyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl and ethylene glycol dimethacrylate were added. 6.75 g (0.034 mol), 1.35 g (0.008 mol) of n-hexyl methacrylate, and 780 ml of dry toluene were charged and dissolved, and then cooled to −10 ° C.
反応に係る溶解液の温度が−5℃を超えないようにシクロペンチルマグネシウムクロリドの2Mエーテル溶液14.0ml(0.028モル)をゆっくりと滴下した。滴下終了後、そのまま−10℃で5時間攪拌してから、室温で5時間さらに攪拌した。反応溶液に酢酸34g及びメタノール34gを添加して触媒を失活させてから、水/メタノール(体積比1/9)の混合溶媒10リットル中に滴下し、ろ過及び乾燥することによってポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を得た。 14.0 ml (0.028 mol) of a 2M ether solution of cyclopentylmagnesium chloride was slowly added dropwise so that the temperature of the solution for the reaction did not exceed -5 ° C. After completion of dropping, the mixture was stirred as it was at −10 ° C. for 5 hours, and further stirred at room temperature for 5 hours. After adding 34 g of acetic acid and 34 g of methanol to the reaction solution to deactivate the catalyst, it was dropped into 10 liters of a mixed solvent of water / methanol (volume ratio 1/9), filtered and dried to obtain poly (2,2 2,6,6-tetramethylpiperidinoxymethacrylate) was obtained.
(式(E)の化合物(Yが−(CH2)m−(mは0)、Rが水素)の合成)
−78℃で冷却した(4−ブロモ−2,6−ジ−tert−ブチルフェノキシ)トリメチルシラン(15.0g,41.9mmol)を加えたテトラヒドロフラン溶液(15ml)に、5mol/Lブチルリチウム(28.4mL,42.6mmol)を含有するヘキサン溶液を加えた。この溶液を−78℃で30分攪拌し、その後、N,N,N’,N’−テトラメチルエチレンジアミン(6.9mL)、メチル−4−ブロモベンゼン(4.1g,19.1mmol)とテトラヒドロフラン(19.1mL)を加えた後、室温で12時間保持した。その後、水酸化カリウム(6.9g)を加えた水(19.1mL)を添加し、24時間攪拌し、塩化アンモニウム水溶液と水で洗浄した後、クロロホルムで抽出した。カラムクロマトグラフィー(展開溶媒:ヘキサン−クロロホルム1:2)で抽出液の精製を行った。結果、4−ブロモ−[(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−ベンゼンを得た。
(Synthesis of Compound of Formula (E) (Y is — (CH 2 ) m — (m is 0), R is Hydrogen))
To a tetrahydrofuran solution (15 ml) added with (4-bromo-2,6-di-tert-butylphenoxy) trimethylsilane (15.0 g, 41.9 mmol) cooled at −78 ° C. was added 5 mol / L butyllithium (28 A hexane solution containing 4 mL, 42.6 mmol) was added. This solution was stirred at −78 ° C. for 30 minutes, after which N, N, N ′, N′-tetramethylethylenediamine (6.9 mL), methyl-4-bromobenzene (4.1 g, 19.1 mmol) and tetrahydrofuran were added. (19.1 mL) was added and held at room temperature for 12 hours. Thereafter, water (19.1 mL) to which potassium hydroxide (6.9 g) was added was added, stirred for 24 hours, washed with an aqueous ammonium chloride solution and water, and then extracted with chloroform. The extract was purified by column chromatography (developing solvent: hexane-chloroform 1: 2). As a result, 4-bromo-[(3,5-di-tert-butyl-4-hydroxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5-diene-1-ylidine) Methyl] -benzene was obtained.
4.5g(7.79mmol)の4−ブロモ−[(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−ベンゼンを191mLの無水酢酸に溶解し、過塩素酸を1滴加えた。その溶液を室温にて15h攪拌し、過剰の水を更に添加した。この混合溶液をエーテルと水で抽出を行った。エーテル層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、クロマトグラフィー(シリカゲル、展開溶媒ヘキサン:クロロホルム(1:2))で精製を行った。結果、4−ブロモ−[(3,5−ジ−tert−ブチル−4−アセトキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−ベンゼンを得た。 4.5 g (7.79 mmol) of 4-bromo-[(3,5-di-tert-butyl-4-hydroxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5 -Diene-1-ylidine) methyl] -benzene was dissolved in 191 mL of acetic anhydride and 1 drop of perchloric acid was added. The solution was stirred at room temperature for 15 h and excess water was further added. This mixed solution was extracted with ether and water. The ether layer was dried over sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by chromatography (silica gel, developing solvent hexane: chloroform (1: 2)). As a result, 4-bromo-[(3,5-di-tert-butyl-4-acetoxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5-diene-1-ylidine) Methyl] -benzene was obtained.
3−チオフェンボロニックアシッド(0.68g,5.33mmol)と4−ブロモ−[(3,5−ジ−tert−ブチル−4−アセトキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−ベンゼン(3.0g,4.84mmol)とを1,2−ジメトキシエタン(10.2mL)に溶解し、テトラキス(トリフェニルフォスフィン)−パラジウム(0.352g,0.305mmol)と2Nの炭酸ナトリウム(10.2mL)とを加え、窒素雰囲気下にて95℃で24時間攪拌した。その後、室温まで冷却し、エーテルと水とで抽出を行った。エーテル層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、クロマトグラフィー(シリカゲル、展開溶媒ヘキサン:クロロホルム(1:2))で精製を行った。結果、3−{4−[(3,5−ジ−tert−ブチル−4−アセトキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−フェニル}チオフェンを得た。 3-thiopheneboronic acid (0.68 g, 5.33 mmol) and 4-bromo-[(3,5-di-tert-butyl-4-acetoxyphenyl) (3,5-di-tert-butyl-4- Oxo-cyclohexa-2,5-diene-1-ylidine) methyl] -benzene (3.0 g, 4.84 mmol) was dissolved in 1,2-dimethoxyethane (10.2 mL) and tetrakis (triphenylphosphine). ) -Palladium (0.352 g, 0.305 mmol) and 2N sodium carbonate (10.2 mL) were added, and the mixture was stirred at 95 ° C. for 24 hours under a nitrogen atmosphere. Then, it cooled to room temperature and extracted with ether and water. The ether layer was dried over sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by chromatography (silica gel, developing solvent hexane: chloroform (1: 2)). As a result, 3- {4-[(3,5-di-tert-butyl-4-acetoxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5-diene-1-ylidine ) Methyl] -phenyl} thiophene was obtained.
3−{4−[(3,5−ジ−tert−ブチル−4−アセトキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−フェニル}チオフェン(0.30g,0.482mmol)を溶解させたクロロホルム溶液(96.3ml)に塩化鉄(0.31g,1.91mmol)を加え、窒素雰囲気下にて室温で200時間攪拌し赤紫色の反応混合物を得た。この反応混合物をメタノールに添加し、水とメタノールの混合溶液で数回洗浄した。結果、ポリ(3−{4−[(3,5−ジ−tert−ブチル−4−アセトキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−フェニル}チオフェン)を得た。 3- {4-[(3,5-di-tert-butyl-4-acetoxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5-diene-1-ylidine) methyl ] -Phenyl} thiophene (0.30 g, 0.482 mmol) dissolved in chloroform solution (96.3 ml) was added with iron chloride (0.31 g, 1.91 mmol) and stirred at room temperature for 200 hours under a nitrogen atmosphere. A red-purple reaction mixture was obtained. The reaction mixture was added to methanol and washed several times with a mixed solution of water and methanol. As a result, poly (3- {4-[(3,5-di-tert-butyl-4-acetoxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5-diene-1 -Iridine) methyl] -phenyl} thiophene).
ポリ(3−{4−[(3,5−ジ−tert−ブチル−4−アセトキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−フェニル}チオフェン)(199mg)を少量のテトラヒドロフランに溶解し、ジメチルスルホキシド(31ml)と2.5Nの水酸化カリウム(1.5mL)を加えた。この溶液を窒素雰囲気下にて45℃で12時間攪拌、1Nの塩酸で中和した後、エーテルと水で抽出を行った。有機層を硫酸ナトリウムで乾燥後、減圧留去した。この留去した溶液をメタノールに加え、ポリ(3−{4−[(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−フェニル}チオフェン)を得た。 Poly (3- {4-[(3,5-di-tert-butyl-4-acetoxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5-diene-1-ylidine ) Methyl] -phenyl} thiophene) (199 mg) was dissolved in a small amount of tetrahydrofuran, and dimethyl sulfoxide (31 ml) and 2.5 N potassium hydroxide (1.5 mL) were added. The solution was stirred at 45 ° C. for 12 hours under a nitrogen atmosphere, neutralized with 1N hydrochloric acid, and extracted with ether and water. The organic layer was dried over sodium sulfate and evaporated under reduced pressure. This distilled solution was added to methanol, and poly (3- {4-[(3,5-di-tert-butyl-4-hydroxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa) was added. -2,5-diene-1-ylidine) methyl] -phenyl} thiophene).
ポリ(3−{4−[(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)(3,5−ジ−tert−ブチル−4−オキソ−シクロヘキサ−2,5−ジエン−1−イリジン)メチル]−フェニル}チオフェン)(23.5mg,20ユニットmmol/L)を溶解したトルエン溶液(2mL)に水酸化ナトリウム水溶液(1mL)を加え、窒素雰囲気下にて30分攪拌した。この溶液にフェリシアン化カリウム(13.1mg,ガルビノキシルユニットあたり12等量)水溶液1mLを加え、更に30分攪拌した。トルエン層を水で洗浄し、硫酸ナトリウムで乾燥後、減圧留去し、上記式(E)で表されるラジカル化合物(Yが−(CH2)m−(mは0)、Rが水素。以下単に式(E)の化合物と記載する)を得た。 Poly (3- {4-[(3,5-di-tert-butyl-4-hydroxyphenyl) (3,5-di-tert-butyl-4-oxo-cyclohexa-2,5-diene-1-ylidine ) Methyl] -phenyl} thiophene) (23.5 mg, 20 units mmol / L) in toluene solution (2 mL) was added aqueous sodium hydroxide (1 mL), and the mixture was stirred for 30 minutes under a nitrogen atmosphere. To this solution was added 1 mL of an aqueous solution of potassium ferricyanide (13.1 mg, 12 equivalents per galvinoxyl unit), and the mixture was further stirred for 30 minutes. The toluene layer is washed with water, dried over sodium sulfate, and then distilled off under reduced pressure. The radical compound represented by the above formula (E) (Y is — (CH 2 ) m — (m is 0), and R is hydrogen. (Hereinafter simply referred to as the compound of formula (E)).
(正極の作製)
ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を6質量部、式(E)の化合物を54質量部、アセチレンブラックを30質量部、そしてポリフッ化ビニリデン(PVDF)を10質量部に対し、ノルマルメチルピロリドン(NMP)を加え、混合、分散させて均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。
(Preparation of positive electrode)
6 parts by weight of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), 54 parts by weight of the compound of formula (E), 30 parts by weight of acetylene black, and 10 parts of polyvinylidene fluoride (PVDF) Normal methylpyrrolidone (NMP) was added to the parts by mass, mixed and dispersed to prepare a homogeneous coating liquid. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector.
(負極の作製)
リチウム金属箔(厚み300μm)を所定のサイズに裁断することで負極を作製した。
(Preparation of negative electrode)
A negative electrode was produced by cutting lithium metal foil (thickness 300 μm) into a predetermined size.
(電解液の調製)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7にて混合し、その混合有機溶媒中に支持電解質としてのLiPF6を1モル/Lの濃度で溶解して電解液とした。
(Preparation of electrolyte)
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7, and LiPF 6 as a supporting electrolyte was dissolved in the mixed organic solvent at a concentration of 1 mol / L to obtain an electrolytic solution. .
(電池の作製)
上記で得られた正極及び負極の間にポリプロピレン製セパレータを挟み重ね合わせることで、平板形状の電極体を形成した。得られた平板形状の電極体をケースの内部に挿入し、ケース内に保持した。その後、平板形状の電極体を保持したケース内に上記電解液を注入した後、ケースを密閉、封止した(図2)。
(Production of battery)
A plate-shaped electrode body was formed by sandwiching a polypropylene separator between the positive electrode and the negative electrode obtained above. The obtained flat electrode body was inserted into the case and held in the case. Then, after inject | pouring the said electrolyte solution in the case holding the flat electrode body, the case was sealed and sealed (FIG. 2).
具体的には、正極1には前記正極を用い、負極2にはリチウム金属を用いた。電解液3は調製した前記電解液を用いた。セパレータ7は厚さ25μmのポリエチレン製の多孔質膜をそれぞれ用いてコイン型電池を製造した。正極1には正極集電体1aをもち、負極2には負極集電体2aをもつ。
Specifically, the positive electrode was used for the positive electrode 1 and lithium metal was used for the negative electrode 2. As the
これらの発電要素をステンレス製のケース(正極ケース4と負極ケース5から構成されている)中に収納した。正極ケース4と負極ケース5とは正極端子と負極端子とを兼ねている。正極ケース4と負極ケース5との間にはポリプロピレン製のガスケット6を介装することで密閉性と正極ケース4と負極ケース5との間の絶縁性とを担保した。以上の手順により、φ19mm、厚さ3mmのコイン型電池を製作し本実施例の試験電池とした。
These power generation elements were housed in a stainless steel case (consisting of a
(放電時の電池電圧の評価)
作製した非水電解液二次電池の充放電電圧特性の評価は、0.01mA/cm2の電流値にて2.5Vから4.1Vまで充電した後、0.01mA/cm2の電流値で4.1Vから2.5Vまで放電した際のSOCに対するを電池電圧を測定した結果を図1に示す。その結果、3.6V付近(ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)に相当)と3.1V付近(式(E)の化合物に相当)に平坦部を有し、約80%の充電状態で大きな電圧変化を起こす放電電位曲線を示すことを確認できた。
(Evaluation of battery voltage during discharge)
Evaluation of charge and discharge voltage characteristics of the produced non-aqueous electrolyte secondary battery was charged from 2.5V to 4.1V at a current value of 0.01 mA / cm 2, the current value of 0.01 mA / cm 2 FIG. 1 shows the result of measuring the battery voltage with respect to the SOC when discharging from 4.1 V to 2.5 V. As a result, there are flat portions around 3.6V (corresponding to poly (2,2,6,6-tetramethylpiperidinoxymethacrylate)) and around 3.1V (corresponding to the compound of formula (E)). It was confirmed that a discharge potential curve causing a large voltage change in a charged state of about 80% was shown.
[実施例2]
ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を18質量部、式(E)の化合物を42質量部、アセチレンブラックを30質量部、PVDFを10質量部にNMPを加え、混合、分散させ均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。
[Example 2]
NMP is added to 18 parts by mass of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), 42 parts by mass of the compound of formula (E), 30 parts by mass of acetylene black, and 10 parts by mass of PVDF. , Mixed and dispersed to prepare a homogeneous coating liquid. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector.
上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、約3.6Vと3.1V付近に平坦部を有し、約50%の充電状態で大きな電圧変化を起こす放電電位曲線を示すことを確認できた(図1)。 A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it was confirmed that there were flat portions in the vicinity of about 3.6 V and 3.1 V, and a discharge potential curve that caused a large voltage change in a charged state of about 50% was shown (FIG. 1).
[実施例3]
ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を29質量部、式(E)の化合物を31質量部、アセチレンブラックを30質量部、PVDFを10質量部にNMPを加え、混合、分散させ均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、約3.6Vと3.1V付近に平坦部を有し、約30%の充電状態で大きな電圧変化を起こす放電電位曲線を示すことを確認できた(図1)。
[Example 3]
NMP is added to 29 parts by mass of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), 31 parts by mass of the compound of the formula (E), 30 parts by mass of acetylene black, and 10 parts by mass of PVDF. , Mixed and dispersed to prepare a homogeneous coating liquid. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector. A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it was confirmed that there were flat portions in the vicinity of about 3.6 V and 3.1 V, and a discharge potential curve that caused a large voltage change in a charged state of about 30% was shown (FIG. 1).
[実施例4]
(式(F)の化合物(一般式(D2)におけるR1が一般式(1)、R2及びR3が水素;一般式(1)中、Rが水素、Yが−O(CH2)3−(炭素原子にてピロール環の窒素原子に結合する))の合成)
氷浴で冷却しながら、3−アミノ−1−プロパノール18mL(0.24モル)を酢酸33mL中に加えた後、2,5−ジメトキシテトラヒドロフラン9mL(0.07モル)を一気に加え、2時間還流した。室温まで放冷後、水120mLを加え、ジクロロメタン50mLで3回抽出操作を行った。
[Example 4]
(Compound of Formula (F) (R 1 in General Formula (D2) is General Formula (1), R 2 and R 3 are Hydrogen; In General Formula (1), R is Hydrogen, Y is —O (CH 2 ) Synthesis of 3- (bonded to nitrogen atom of pyrrole ring at carbon atom)))
While cooling in an ice bath, 18 mL (0.24 mol) of 3-amino-1-propanol was added to 33 mL of acetic acid, and 9 mL (0.07 mol) of 2,5-dimethoxytetrahydrofuran was added all at once and refluxed for 2 hours. did. After cooling to room temperature, 120 mL of water was added, and extraction operation was performed 3 times with 50 mL of dichloromethane.
得られた有機層をNa2SO4で乾燥し、溶媒を減圧除去した。メタノール60mLと20質量%NaOH水溶液60mLとを残留物に加え、室温で2.5時間撹拌した。その後、飽和NaCl水溶液100mLを加え、ジクロロメタン50mLで3回抽出操作を行った。 The obtained organic layer was dried over Na 2 SO 4 and the solvent was removed under reduced pressure. Methanol (60 mL) and 20% by mass NaOH aqueous solution (60 mL) were added to the residue, and the mixture was stirred at room temperature for 2.5 hours. Then, 100 mL of saturated NaCl aqueous solution was added, and extraction operation was performed 3 times with 50 mL of dichloromethane.
得られた有機層をNa2SO4で乾燥した後、溶媒を減圧除去し、カラムクロマトグラフィー(展開溶媒:酢酸エチル−ヘキサン1:1)で精製を行い1−(3−ヒドロキシプロピル)−1H−ピロールを得た。 The obtained organic layer was dried over Na 2 SO 4 , the solvent was removed under reduced pressure, and the residue was purified by column chromatography (developing solvent: ethyl acetate-hexane 1: 1) to give 1- (3-hydroxypropyl) -1H. -Pyrrole was obtained.
窒素雰囲気下、氷浴で冷却しながら、1−(3−ヒドロキシプロピル)−1H−ピロール3.5g(0.28モル)とトリエチルアミン4.16mL(0.30モル)とをジクロロメタン25mL中に加えた後、メタンスルホン酸クロライド2.45mL(0.30モル)を滴下し、室温で3時間撹拌した。水60mLを加え、ジクロロメタン60mLで抽出操作を行った。得られた有機層を5質量%NaHCO3水溶液60mLで洗浄した後、Na2SO4で乾燥し、溶媒を減圧除去した。その後、カラムクロマトグラフィー(展開溶媒:クロロホルム)で精製を行い1−(3’−MsO−プロピル)−1H−ピロールを得た。 While cooling with an ice bath in a nitrogen atmosphere, 3.5 g (0.28 mol) of 1- (3-hydroxypropyl) -1H-pyrrole and 4.16 mL (0.30 mol) of triethylamine were added to 25 mL of dichloromethane. Then, 2.45 mL (0.30 mol) of methanesulfonic acid chloride was added dropwise, and the mixture was stirred at room temperature for 3 hours. 60 mL of water was added, and extraction operation was performed with 60 mL of dichloromethane. The obtained organic layer was washed with 60 mL of a 5% by mass aqueous NaHCO 3 solution and then dried over Na 2 SO 4 , and the solvent was removed under reduced pressure. Thereafter, purification was performed by column chromatography (developing solvent: chloroform) to obtain 1- (3′-MsO-propyl) -1H-pyrrole.
窒素雰囲気下、ヘキサンで洗浄したNaH(60%in Oil、0.81g、0.203mol)と4−ヒドロキシ−TEMPO3.5g(0.203モル)をDMF30mL中に加え、0℃で1時間撹拌した。その後、1−(3’−MsO−プロピル)−1H−ピロール5g(0.246モル)を滴下し、室温で15時間撹拌した。水60mLを加え、ヘキサン150mLで抽出操作を行った。得られた有機層を水25mLで6回洗浄した後、Na2SO4で乾燥し、溶媒を減圧除去した。その後、カラムクロマトグラフィー(展開溶媒:酢酸エチル−ヘキサン1:3)で精製を行い下記式(F)で表されるラジカル化合物を得た。 Under nitrogen atmosphere, NaH (60% in Oil, 0.81 g, 0.203 mol) washed with hexane and 3.5 g (0.203 mol) of 4-hydroxy-TEMPO were added to 30 mL of DMF, and the mixture was stirred at 0 ° C. for 1 hour. . Thereafter, 5 g (0.246 mol) of 1- (3′-MsO-propyl) -1H-pyrrole was added dropwise and stirred at room temperature for 15 hours. 60 mL of water was added, and extraction operation was performed with 150 mL of hexane. The obtained organic layer was washed 6 times with 25 mL of water, dried over Na 2 SO 4 , and the solvent was removed under reduced pressure. Thereafter, purification was performed by column chromatography (developing solvent: ethyl acetate-hexane 1: 3) to obtain a radical compound represented by the following formula (F).
式(E)で表される化合物を39質量部、式(F)で表される化合物を21質量部、アセチレンブラックを30質量部、PVDFを10質量部にNMPを加え、混合、分散させ均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、3.6V近傍(式(F)の化合物に相当)と3.1V付近に平坦部を有し、約50%の充電状態で大きな電圧変化を起こす放電電位曲線を示すことを確認できた。 NMP is added to 39 parts by mass of the compound represented by the formula (E), 21 parts by mass of the compound represented by the formula (F), 30 parts by mass of acetylene black, and 10 parts by mass of PVDF. A coating liquid was prepared. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector. A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it can be confirmed that a discharge potential curve having a flat portion near 3.6 V (corresponding to the compound of formula (F)) and 3.1 V and causing a large voltage change in a charged state of about 50% can be confirmed. It was.
[実施例5]
(式(G)の化合物(テトラチアフルバレン誘導体:式(A1)におけるR1〜R3が水素、Yにおけるmが0)の合成)
窒素雰囲気下、氷浴で冷却しながら、テトラヒドロフラン3mLとジイソプロピルアミン(0.94mL,6.7mmol)の溶液に2.71M n−ブチルリチウム/ヘキサン(2.5mL,6.7mmol)を加え15分間攪拌してリチウムジイソプロピルアミド溶液を調製した。窒素雰囲気下、−78℃で、テトラチアフルバレン(化合物a,1.23g,6mmol)とテトラヒドロフラン20mLの溶液に、リチウムジイソプロピルアミド溶液を滴下し1時間攪拌した。トリデカフルオロヘキシルヨウ素(2.6mL,6.7mmol)を一気に加え、更に1時間攪拌した後、約1時間かけて室温に戻してから、少量の水を加え反応を停止させた。溶媒を減圧留去しクロロホルムと水で抽出を行った。有機層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、カラムクロマトグラフィー(シリカゲル、展開溶媒ヘキサン:CHCl3(2:1))で精製を行い化合物bを得た。
[Example 5]
(Synthesis of compound of formula (G) (tetrathiafulvalene derivative: R 1 to R 3 in formula (A1) are hydrogen and m in Y is 0))
While cooling in an ice bath under a nitrogen atmosphere, 2.71M n-butyllithium / hexane (2.5 mL, 6.7 mmol) was added to a solution of 3 mL of tetrahydrofuran and diisopropylamine (0.94 mL, 6.7 mmol) for 15 minutes. A lithium diisopropylamide solution was prepared by stirring. Under a nitrogen atmosphere, a lithium diisopropylamide solution was added dropwise to a solution of tetrathiafulvalene (compound a, 1.23 g, 6 mmol) and
窒素雰囲気下、室温で化合物b(1.0g,3mmol)とテトラキストリフェニルフォスフィンパラジウム(0.46g,0.4mmol)とヨウ化銅(I)(0.15g,0.79mmol)に、トリエチルアミン10mLとテトラヒドロフラン20mLを加えた。次にトリメチルシリルアセチレン(1.0mL,7.2mmol)を加え5時間攪拌した。その後、溶媒を減圧留去し、ヘキサン:CHCl3(1:1)と水で抽出を行った。有機層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、カラムクロマトグラフィー(シリカゲル、展開溶媒ヘキサン:CHCl3(2:1))で精製を行い化合物cを得た。 Triethylamine was added to compound b (1.0 g, 3 mmol), tetrakistriphenylphosphine palladium (0.46 g, 0.4 mmol) and copper (I) iodide (0.15 g, 0.79 mmol) at room temperature under a nitrogen atmosphere. 10 mL and 20 mL of tetrahydrofuran were added. Next, trimethylsilylacetylene (1.0 mL, 7.2 mmol) was added and stirred for 5 hours. Thereafter, the solvent was distilled off under reduced pressure, and extraction was performed with hexane: CHCl 3 (1: 1) and water. The organic layer was dried over sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel, developing solvent hexane: CHCl 3 (2: 1)) to obtain compound c.
室温で化合物c(0.4g,1.3mmol)とテトラヒドロフラン5mlの溶液に、1.0M テトラブチルアンモニウムフルオライド/テトラヒドロフラン(0.75mL,2.6mmol)を加えて5分間攪拌した。その後、カルシウムクロライド(0.33g,3mmol)/水 5mlを加え反応を停止させた。クロロホルムと水で抽出を行い、有機層を硫酸ナトリウムで乾燥後、溶媒を減圧留去し、カラムクロマトグラフィー(シリカゲル、展開溶媒ヘキサン:CHCl3(1:1))で精製を行い化合物dを得た。 To a solution of compound c (0.4 g, 1.3 mmol) and tetrahydrofuran 5 ml at room temperature, 1.0 M tetrabutylammonium fluoride / tetrahydrofuran (0.75 mL, 2.6 mmol) was added and stirred for 5 minutes. Thereafter, calcium chloride (0.33 g, 3 mmol) / 5 ml of water was added to stop the reaction. Extraction was performed with chloroform and water, the organic layer was dried over sodium sulfate, the solvent was distilled off under reduced pressure, and purification was performed by column chromatography (silica gel, developing solvent hexane: CHCl 3 (1: 1)) to obtain compound d. It was.
窒素雰囲気下、室温にて化合物d(228mg,1mmol)とnorbornadiene rhodium(I)chloride dimer(11mg,2.4×10−5mol)とに、トリエチルアミン(1.59mL,11.4mmol)とテトラヒドロフラン4.5mlを加え、3時間攪拌した。クロロホルムを加えろ過し下記式(G)で表されるテトラチアフルバレン誘導体を得た。
Compound d (228 mg, 1 mmol), norbornadiene rhodium (I) chloride dimer (11 mg, 2.4 × 10 −5 mol), triethylamine (1.59 mL, 11.4 mmol) and
ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を15質量部、式(G)を45質量部、アセチレンブラックを30質量部、PVDFを10質量部にNMPを加え、混合、分散させ均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、3.6V付近と3.3V付近(化合物Gに相当)に平坦部を有する放電電位曲線を示すことを確認できた。 Add NMP to 15 parts by mass of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), 45 parts by mass of formula (G), 30 parts by mass of acetylene black, 10 parts by mass of PVDF, and mix Then, a homogeneous coating liquid was prepared by dispersing. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector. A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it was confirmed that a discharge potential curve having a flat portion was observed in the vicinity of 3.6V and 3.3V (corresponding to compound G).
[実施例6]
(式(H)の化合物(キノン誘導体:一般式(B)におけるR8及びR9がOH基、Yにおけるmが0)の合成)
2,5ジヒドロキシベンゾキノンを加え60℃に加温した氷酢酸中にホルムアルデヒド水溶液を加えることで、2,5ジヒドロキシベンゾキノンの重合を行い、下記式(H)の化合物を得た。
[Example 6]
(Synthesis of Compound of Formula (H) (Quinone Derivative: R 8 and R 9 in General Formula (B) are OH Groups, and m in Y is 0))
By adding an aqueous formaldehyde solution in glacial acetic acid that was heated to 60 ° C. with 2,5 dihydroxybenzoquinone, 2,5 dihydroxybenzoquinone was polymerized to obtain a compound of the following formula (H).
ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を15質量部、式(H)の化合物を45質量部、アセチレンブラックを30質量部、PVDFを10質量部にNMPを加え、混合、分散させ均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正
極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、3.6V付近と2.9V(式(H)の化合物部相当)付近に平坦部を有する放電電位曲線を示すことを確認できた。
NMP is added to 15 parts by mass of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), 45 parts by mass of the compound of formula (H), 30 parts by mass of acetylene black, and 10 parts by mass of PVDF. , Mixed and dispersed to prepare a homogeneous coating liquid. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector. A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it was confirmed that a discharge potential curve having a flat portion near 3.6 V and near 2.9 V (corresponding to the compound portion of formula (H)) was shown.
[実施例7]
(式(J)の化合物(キノン誘導体:式(B2)におけるR10及びR11が水素)の
合成2)
硝酸ナトリウムを添加した濃硫酸中に、1,4−ナフトキノンを加え5℃で保持し、メタノールで再結晶化することで、5−ニトロ−1,4−ナフトキノンを得た。5−ニトロ−1,4−ナフトキノンを酢酸中に溶解し、この酢酸溶液に塩化スズを溶解した濃塩酸を添加し、100℃で保温することで、5−アミノ−1,4ジヒドロキシナフタレンを得た。
[Example 7]
(Synthesis 2 of the compound of formula (J) (quinone derivative: R 10 and R 11 in formula (B2) are hydrogen) 2)
1,4-Naphthoquinone was added to concentrated sulfuric acid to which sodium nitrate was added, and the mixture was kept at 5 ° C. and recrystallized with methanol to obtain 5-nitro-1,4-naphthoquinone. 5-Nitro-1,4-dihydroxynaphthalene is obtained by dissolving 5-nitro-1,4-naphthoquinone in acetic acid, adding concentrated hydrochloric acid in which tin chloride is dissolved to this acetic acid solution, and maintaining the temperature at 100 ° C. It was.
更に上記溶液に塩化鉄(III)水溶液を添加し、カラムクロマトグラフィーで精製、再結晶化することで、5−アミノ−1,4ナフトキノンを得た。 Further, an iron (III) chloride aqueous solution was added to the above solution, and purified by column chromatography and recrystallized to obtain 5-amino-1,4 naphthoquinone.
0.1mol/Lの過塩素酸リチウムを溶解したアセトニトリル溶液に、5−アミノ−1,4ナフトキノン(0.01mol/L)を加え、飽和カロメロ電極に対し0.5〜1.45Vの範囲で50mV/secにて電位走査を繰り返すことで電解重合し、下記式(J)で表されるキノン誘導体を得た。電解重合用の電極としてはPt製の電極を用いた。 5-Amino-1,4 naphthoquinone (0.01 mol / L) is added to an acetonitrile solution in which 0.1 mol / L lithium perchlorate is dissolved, and 0.5 to 1.45 V with respect to the saturated calomel electrode. Electrolytic polymerization was performed by repeating potential scanning at 50 mV / sec to obtain a quinone derivative represented by the following formula (J). A Pt electrode was used as the electrode for electrolytic polymerization.
ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を15質量部、式(J)の化合物を45質量部、アセチレンブラックを30質量部、PVDFを10質量部にNMPを加え、混合、分散させ均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、3.6V付近と2.5V付近(式(J)の化合物に相当)に平坦部を有する放電電位曲線を示すことを確認できた。 NMP is added to 15 parts by mass of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), 45 parts by mass of the compound of formula (J), 30 parts by mass of acetylene black, and 10 parts by mass of PVDF. , Mixed and dispersed to prepare a homogeneous coating liquid. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector. A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it was confirmed that a discharge potential curve having a flat portion was exhibited around 3.6 V and around 2.5 V (corresponding to the compound of formula (J)).
[比較例1]
ポリ(2,2,6,6−テトラメチルピペリジノキシメタクリレート)を60質量部、アセチレンブラックを30質量部、PVDFを10質量部にNMPを加え、混合、分散させ均質塗料液を調製した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、約3.6V付近に平坦部を有する放電電位曲線を示すことを確認できた(図1)。
[Comparative Example 1]
NMP was added to 60 parts by mass of poly (2,2,6,6-tetramethylpiperidinoxymethacrylate), 30 parts by mass of acetylene black, and 10 parts by mass of PVDF, and mixed and dispersed to prepare a homogeneous coating liquid. . This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector. A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it was confirmed that a discharge potential curve having a flat portion in the vicinity of about 3.6 V was shown (FIG. 1).
[比較例2]
式(F)の化合物を60質量部、アセチレンブラック 30質量部、ポリフッ化ビニリデン(PVDF) 10質量部にノルマルメチルピロリドン(NMP)を加え、混合、分散させ均質塗料液を調整した。この均質塗料液をアルミ製の集電体(50μm)の片面に塗布し、乾燥、プレス後、所定のサイズに裁断することで正極を作製した。作製した正極の厚みはアルミ製の集電体を含め100μmであった。上記正極を用いた以外は、実施例1と同様の方法で電池を作製し、放電時の電池電圧の評価を実施した。その結果、約3.6V付近に平坦部を有する放電電位曲線を示すことを確認できた(図1)。
[Comparative Example 2]
Normal methyl pyrrolidone (NMP) was added to 60 parts by mass of the compound of formula (F), 30 parts by mass of acetylene black, and 10 parts by mass of polyvinylidene fluoride (PVDF), mixed and dispersed to prepare a homogeneous coating liquid. This homogeneous coating liquid was applied to one side of an aluminum current collector (50 μm), dried, pressed, and then cut into a predetermined size to produce a positive electrode. The thickness of the produced positive electrode was 100 μm including the aluminum current collector. A battery was produced in the same manner as in Example 1 except that the positive electrode was used, and the battery voltage during discharge was evaluated. As a result, it was confirmed that a discharge potential curve having a flat portion in the vicinity of about 3.6 V was shown (FIG. 1).
(結果)
比較例1、2に示す様に、活物質に1種のみのラジカル化合物を用いて電極を構成した場合、放電時の電池電圧が平坦であることから、電池電圧を利用して電池の充電状態の簡便に検出することが困難であったのに対し、酸化還元電位の異なる複数種のラジカル化合物を用いたり(実施例1、4)、ラジカル化合物テトラチアフルバレン誘導体やキノン誘導体を組合わせることで、放電電位を多段化することが可能になるため、電池充電状態の検出が容易な非水電解液二次電池を提供することが可能であることが確認できた。
(result)
As shown in Comparative Examples 1 and 2, when the electrode is configured using only one radical compound as the active material, the battery voltage during discharge is flat. However, it is difficult to detect these compounds by using a plurality of radical compounds having different oxidation-reduction potentials (Examples 1 and 4), or by combining radical compounds tetrathiafulvalene derivatives and quinone derivatives. Since it becomes possible to make the discharge potential multistage, it has been confirmed that it is possible to provide a nonaqueous electrolyte secondary battery in which the battery charge state can be easily detected.
また図1(実施例1、2、3)に示す様に電極内に添加するラジカル化合物の配合量を調整することで電圧が変化するSOCの値を変化させることも可能なため、任意の電池充電状態の検出が容易な有機ラジカル二次電池を提供することが可能であることが確認できた。 Further, as shown in FIG. 1 (Examples 1, 2, and 3), it is possible to change the SOC value at which the voltage changes by adjusting the blending amount of the radical compound added in the electrode. It was confirmed that it is possible to provide an organic radical secondary battery in which the state of charge can be easily detected.
1…正極 1a…正極集電体 2…負極 2a…負極集電体 3…電解液
4…正極ケース 5…負極ケース 6…ガスケット 7…セパレータ
10…コイン型の非水電解液二次電池
DESCRIPTION OF SYMBOLS 1 ... Positive electrode 1a ... Positive electrode collector 2 ... Negative electrode 2a ...
4 ... Positive electrode case 5 ... Negative electrode case 6 ... Gasket 7 ... Separator
10 ... Coin-type non-aqueous electrolyte secondary battery
Claims (11)
前記正極及び前記負極の少なくとも一方の電極活物質は、酸化還元電位の異なるラジカル化合物を2種以上含有しており、
前記充放電制御装置は、所定の上限値と所定の下限値との間に充電容量を保つように充放電を行う充放電制御手段を有し、
前記ラジカル化合物の酸化還元電位が、前記充電容量における前記所定の上限値に対応する値以下、前記充電容量における前記所定の下限値に対応する値以上の範囲である使用電圧範囲内に2つ以上存在し、かつ、前記ラジカル化合物の酸化還元電位差が各々0.1V以上であり、
端子電圧から充放電状態を算出することを特徴とする有機ラジカル二次電池。 A positive electrode capable of adsorbing and releasing anion, Ru comprising a negative electrode capable of adsorbing and releasing cations, an electrolyte solution obtained by dissolving the cation及 beauty anions between the cathode and the anode, the charging and discharging controller organic In radical secondary batteries,
At least one electrode active material of the positive electrode and the negative electrode contains two or more radical compounds having different redox potentials,
The charge / discharge control device has charge / discharge control means for performing charge / discharge so as to maintain a charge capacity between a predetermined upper limit value and a predetermined lower limit value,
Two or more oxidation-reduction potentials of the radical compound are within a working voltage range that is equal to or less than a value corresponding to the predetermined upper limit value in the charge capacity and greater than or equal to a value corresponding to the predetermined lower limit value in the charge capacity. And the radical compound has a redox potential difference of 0.1 V or more,
An organic radical secondary battery characterized in that a charge / discharge state is calculated from a terminal voltage .
前記正極及び前記負極の少なくとも一方の電極活物質は、酸化還元電位の異なるラジカル化合物を2種以上含有しており、
前記ラジカル化合物がニトロキシラジカル化合物又はオキシラジカル化合物であり、
前記ラジカル化合物が下記一般式(E)で表される化合物を含むことを特徴とする有機ラジカル二次電池。
The positive electrode and at least one electrode active material of the negative electrode, Ri Contact contain different radical compound redox potential more,
The radical compound is a nitroxy radical compound or an oxy radical compound;
The said radical compound contains the compound represented by the following general formula (E), The organic radical secondary battery characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008147285A JP5380910B2 (en) | 2008-06-04 | 2008-06-04 | Organic radical secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008147285A JP5380910B2 (en) | 2008-06-04 | 2008-06-04 | Organic radical secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009295397A JP2009295397A (en) | 2009-12-17 |
JP5380910B2 true JP5380910B2 (en) | 2014-01-08 |
Family
ID=41543404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008147285A Expired - Fee Related JP5380910B2 (en) | 2008-06-04 | 2008-06-04 | Organic radical secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5380910B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9640335B2 (en) | 2009-12-24 | 2017-05-02 | Panasonic Corporation | Electrode and electricity storage device |
EP2590244B1 (en) * | 2010-07-01 | 2017-05-03 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery |
JP5573749B2 (en) * | 2011-03-25 | 2014-08-20 | 株式会社デンソー | Non-aqueous electrolyte battery |
JP6020132B2 (en) * | 2012-12-19 | 2016-11-02 | Jsr株式会社 | Electrode active material, electrode, battery and polymer |
TWI562999B (en) * | 2014-06-27 | 2016-12-21 | Lg Chemical Ltd | Additive for electrochemical device and electrolyte, electrode and electrochemical device comprising the same |
JP6895085B2 (en) * | 2015-03-16 | 2021-06-30 | 日本電気株式会社 | Power storage device |
JP2020027787A (en) * | 2018-08-17 | 2020-02-20 | 国立大学法人山形大学 | Conductive composite material with excellent mechanical property |
CN113314751B (en) * | 2021-05-25 | 2022-12-30 | 中国科学技术大学 | Aqueous organic flow battery |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06290779A (en) * | 1993-04-01 | 1994-10-18 | Hitachi Ltd | Non-aqueous solvent secondary battery and its device |
JP2000195558A (en) * | 1998-12-28 | 2000-07-14 | Toyota Central Res & Dev Lab Inc | Charging/discharging control device for nonaqueous electrolyte secondary battery |
JP3687736B2 (en) * | 2000-02-25 | 2005-08-24 | 日本電気株式会社 | Secondary battery |
JP2002170568A (en) * | 2000-12-01 | 2002-06-14 | Nec Corp | Battery |
JP4626058B2 (en) * | 2001-01-11 | 2011-02-02 | 日本電気株式会社 | Non-aqueous electrolyte secondary battery |
JP2004134207A (en) * | 2002-10-10 | 2004-04-30 | Sony Corp | Positive electrode active material and non-aqueous electrolyte secondary battery |
JP2006310011A (en) * | 2005-04-27 | 2006-11-09 | Mori Polymer Kk | Lithium secondary battery |
JP5092224B2 (en) * | 2005-10-05 | 2012-12-05 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery, its battery pack and electronic device |
JP2007250299A (en) * | 2006-03-15 | 2007-09-27 | Hitachi Vehicle Energy Ltd | Nonaqueous electrolyte solution secondary battery |
CN101411009B (en) * | 2006-04-05 | 2011-05-11 | 松下电器产业株式会社 | Method for manufacturing secondary battery and method for preparing positive electrode active material for secondary battery |
JP2007281107A (en) * | 2006-04-05 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Electricity storage device |
JP5036214B2 (en) * | 2006-05-12 | 2012-09-26 | パナソニック株式会社 | Charge / discharge control method for power storage device |
JP2008135371A (en) * | 2006-10-27 | 2008-06-12 | Denso Corp | Secondary battery active substance and secondary battery |
JP2008123816A (en) * | 2006-11-10 | 2008-05-29 | Nec Corp | Battery, and ic card |
-
2008
- 2008-06-04 JP JP2008147285A patent/JP5380910B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009295397A (en) | 2009-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery | |
JP5380910B2 (en) | Organic radical secondary battery | |
JP6765663B2 (en) | Lithium metal battery | |
JP5673825B2 (en) | Power storage device | |
KR102592691B1 (en) | Electrolyte for lithium second battery, and lithium second battery comprising the electrolyte | |
CN102687315B (en) | Electrode and electrical storage device | |
EP2308912B1 (en) | Polymer, semiconductor film, electrode, electrode active material, electrochemical element and electricity storage device | |
JPH09259864A (en) | Electrode containing organic disulfide compound, and manufacture thereof | |
JP5036214B2 (en) | Charge / discharge control method for power storage device | |
WO2007132786A1 (en) | Storage device | |
JP2014130706A (en) | Positive electrode for electricity storage device, and electricity storage device | |
JP5126570B2 (en) | Method for manufacturing lithium secondary battery | |
Zhao et al. | A Critical Review on Room‐Temperature Sodium‐Sulfur Batteries: From Research Advances to Practical Perspectives | |
TWI694630B (en) | Additive for non-aqueous electrolyte, non-aqueous electrolyte, and power storage device | |
JP5110625B2 (en) | Electricity storage device | |
JP2008135371A (en) | Secondary battery active substance and secondary battery | |
JP2008159275A (en) | Electrode active material and power storage device using the same | |
JP4214691B2 (en) | Electrode material, method for producing the electrode material, battery electrode using the electrode material, and battery using the electrode | |
US20200176762A1 (en) | Electron conductive polymer composites and their use as electrode materials | |
JP2013020786A (en) | Electrode and power storage device | |
JP5280806B2 (en) | Secondary battery active material and secondary battery | |
JP2008258031A (en) | Polymer secondary battery | |
JP2004200058A (en) | Power storage device | |
JP3723140B2 (en) | Power storage device using quinoxaline compound | |
WO2013172223A1 (en) | Dual-mode electricity storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130903 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130916 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5380910 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |